
Schmitt-Grohe, Stephanie; Uribe, Martin

Working Paper

Liquidity Traps with Global Taylor Rules

Working Paper, No. 2000-14

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Schmitt-Grohe, Stephanie; Uribe, Martin (2000) : Liquidity Traps with Global
Taylor Rules, Working Paper, No. 2000-14, Rutgers University, Department of Economics, New
Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/94285

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/94285
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Liquidity Traps with Global Taylor Rules∗

Stephanie Schmitt-Grohé†
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Abstract

A key result of a recent literature that focuses on the global consequences of Taylor-
type interest rate feedback rules is that such rules in combination with the zero bound
on nominal interest rates can lead to unintended liquidity traps. An immediate ques-
tion posed by this result is whether the government could avoid liquidity traps by
ignoring the zero bound, that is, by threatening to set the nominal interest rate at
a negative value should the inflation rate fall below a certain threshold. This paper
shows that even if the government could credibly commit to setting the interest rate
at a negative value, self-fulfilling liquidity traps can still emerge. That is, deflation-
ary equilibria originating arbitrarily near the intended equilibrium and leading to low
(possibly zero) interest rates and low (and possibly negative) rates of inflation cannot
be ruled out by lifting the zero bound on the monetary policy rule. This result obtains
in models with flexible and sticky prices and under continuous and discrete time.
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1 Introduction

A growing recent literature in macroeconomics stresses the consequences of interest rate

feedback rules for aggregate stability. One reason for the renewed interest in this type of

monetary policy rule is empirical. Since the influential work of Taylor (1993), a number of

authors has documented that in the post-Volker era U.S. monetary policy is well described by

a feedback rule whereby the nominal interest rate is set as an increasing function of inflation

and the output gap.1 Indeed, interest rate rules have been found to be a good representation

of actual monetary policy in the largest developed economies (Clarida, Gaĺı, and Gertler,

1998).

Theoretically, the appeal of interest-rate feedback rules is founded on the argument that

active interest-rate rules, or Taylor rules, are conducive to macroeconomic stability. Active

interest rate rules are those that stipulate an inflation coefficient larger than unity.2 Active

interest-rate rules are also known as Taylor rules after Taylor’s (1993) study of monetary

policy in the United States. In the context of a flexible-price model, Leeper (1991) shows

that active interest rate rules are stabilizing in the sense that they ensure uniqueness of the

rational expectations equilibrium.3 A similar result has been derived in models with nominal

rigidities by Clarida, Gaĺı, and Gertler (1997) and Woodford (1996). Active interest-rate

rules have also been advocated on the grounds that they minimize the variability of output

and inflation. For example, Levin, Wieland, and Willams (1999) show, in the context of an

ad-hoc model, that Taylor-type rules minimize a loss function that is quadratic in deviations

of inflation and output from target. Rotemberg and Woodford (1999) obtain a similar result

using a utility maximizing model and a welfare criterion for evaluating monetary policy.

A common element present in the body of work described above is its focus on local

dynamics around the intended, or target, steady-state equilibrium. Benhabib, Schmitt-

Grohé, and Uribe (2000b) argue that this local approach leaves in obscurity a number of

important macroeconomic consequences of Taylor rules. Specifically, they point out that

if the interest rate feedback rule is assumed to respect the zero bound on nominal rates,

then there emerges a second (unintended) steady state. In this steady state, inflation is

low and possibly negative and the nominal interest rate is below target and possibly zero.

More importantly, they show that the rational expectations equilibrium is no longer unique.

In particular, there exist deflationary spirals connecting the target steady state with the

1See, for example, Sack (1998), Orphanides (1997), Clarida, Gaĺı, and Gertler (1997), and Taylor (1999).
2The term ‘active’ in referring to monetary policy was introduced by Leeper (1991).
3A requirement for Leeper’s result to hold is that fiscal policy be passive, that is, that it guarantee that

the government’s intertemporal budget constraint be satisfied under all possible (local) paths of the price
level.
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Figure 1: The zero bound and multiple steady-state equilibria
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unintended one.

The consequences of the zero lower bound on nominal rates for the number of steady-

state equilibria can be conveyed by means of two basic relationships: one is the steady-state

Fischer equation R = r + π, where R denotes the nominal interest rate, π denotes the rate

of inflation, and r denotes the real interest rate. The other relationship is a non-negative

interest rate feedback rule like the piecewise linear function R = max[0, r + π∗ + γ(π − π∗)],

where π∗ denotes the target rate of inflation and γ is a parameter greater than one. Figure 1

plots both relationships. One solution to these two equations is π = π∗ and R = R∗ ≡ r+π∗.

At the inflation rate π∗ monetary policy is active because γ > 1.

Most of the existing related literature that advocates the use of Taylor rules has been

build on the result that under plausible economic environments the intended steady state

(π∗, R∗) is locally the unique rational expectations equilibrium.4 But the two equations

plotted in figure 1 admit another solution, π = −r and R = 0. The emergence of this second

steady state is a direct consequence of the imposed zero bound on the nominal interest

rate. At the low inflation steady state monetary policy is passive. Benhabib, Schmitt-

Grohé and Uribe (2000b) show that around this steady state, the rational expectations

equilibrium is indeterminate. Moreover, Benhabib, Schmitt-Grohé and Uribe show that

there exist equilibrium trajectories originating arbitrarily close to the target steady state

that converge to the unintended steady state. They argue that these equilibrium dynamics

have the essential characteristics of liquidity traps. For they represent situations in which

the economy embarks on a deflationary path, which the monetary authority is unable to

4However, a number of recent papers call into question the plausibility of local stability under active
interest rate rules. For example, Benhabib, Schmitt-Grohé and Uribe (2000a) show that local uniqueness
of equilibrium under active interest-rate rules depends on preference and technology specifications. Dupor
(1999) shows that in production economies with sticky prices active interest-rate rules lead either to the
inexistence or the indeterminacy of local equilibria. Carlstrom and Fuerst (2000) show that in models
with capital and flexible prices active forward-looking interest rate rules render the equilibrium locally
indeterminate.
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Figure 2: A globally valid Taylor rule
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stop in spite of its repeated efforts to inflate the economy through aggressive cuts in interest

rates.

The above discussion makes it clear that it is the imposition of a zero bound on nominal

rates that opens the door to a second, undesired steady state and to the possibility of self-

fulfilling liquidity traps. It is therefore natural to ask whether the removal of the zero bound

on nominal rates would eliminate the low-inflation steady state and with it the undesired

liquidity trap equilibria. This question is the central focus of the present study.

Continuing with the linear example given above, the lifting of the zero bound on the

interest rate rule results in a globally active rule of the form R = r + π∗ + γ(π − π∗).

The interest rate feedback rule and the steady-state Fisher equation then have a unique

solution given by the intended steady state π = π∗ and R = R∗ (see figure 2). Perhaps the

most important difficulty with assuming the global validity of the Taylor criterion is that

in reality governments may not be able to credibly commit to it. If the inflation rate falls

within the range for which the rule stipulates a negative interest rate, the central bank would

most likely not be willing to implement the prescribed policy. For in this case, an arbitrage

opportunity would arise allowing private agents to make unbounded profits on account of

the government.5

In this paper, we do not take a position on whether governments can credibly commit

to globally active interest rate rules or not. Rather, we ask whether, assuming that the

monetary authority can indeed maintain a global Taylor rule, equilibrium liquidity traps

are still possible. We find that the answer is yes. In the context of standard monetary

models, we show that if the Taylor rule takes the form shown in figure 2, then there exists

a continuum of rational expectations equilibria in each of which the nominal interest rate

converges asymptotically to zero and the inflation rate converges to a constant greater than

5This lack-of-credibility argument is of the same nature as that put forth by those who question the logical
possibility of non-Ricardian fiscal policy in the context of the fiscal theory of price level determination (e.g.,
Buiter, 1998, 1999).
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−r (labeled π̃ in figure 2). These are liquidity traps in which the economy converges to a

situation that does not represent a steady state. In particular, in the limiting state of the

economy the steady state Fisher equation is not satisfied. This result is of particular interest

because it establishes that the possibility of self-fulfilling liquidity traps under Taylor rules

is not necessarily the consequence of the presence of a second steady state induced by the

zero bound on nominal rates.

We begin by demonstrating the existence of liquidity traps under global Taylor rules

using a simple continuous-time, flexible-price, money-in-the-utility-function model. This

task is accomplished in sections 2 and 3. Section 3 also contains two important extensions.

Subsection 3.2 shows that liquidity traps may not exist under two particular preference

specifications: when consumption and real balances enter the utility function in an additively

separable fashion and when the instant utility index exhibits satiation in real balances.

The latter case is particularly relevant because it comprises the class of cash-in-advance

models with cash-and-credit goods introduced by Lucas and Stokey (1987). Subsection 3.3

demonstrates that the possibility of liquidity traps under globally active interest-rate rules

is robust to assuming that time is a discrete variable.

In section 4, we consider a more realistic environment with endogenous labor supply,

production, and sluggish price adjustment a là Rotemberg (1982). We show that, as in the

endowment, flexible-price economy, self-fulfilling liquidity traps arise despite the fact that

the interest rate feedback rule is globally active. Finally, section 5 present some concluding

remarks.

2 The model

In this section we use a simple economic environment to illustrate how a monetary–fiscal

regime frequently advocated on the basis of aggregate stability can in fact lead to expecta-

tional traps. The difference between our analysis and that found in the related literature is

twofold: first, we do not restrict the analysis to local dynamics around a particular station-

ary state. Second, we assume that the central bank follows a globally active interest rate

feedback rule. As a consequence, the central bank commits to set negative nominal rates for

sufficiently low rates of inflation.

2.1 Households

Consider an endowment economy populated by a large number of identical infinitely lived

households with preferences defined over consumption and real balances and described by
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the utility function ∫ ∞

0

e−rtu(c, m)dt, (1)

where r > 0 denotes the subjective rate of time preference, c denotes consumption, M

denotes nominal money balances, and P denotes the price level. The instantaneous utility

index u is assumed to be increasing in both arguments, concave, and to satisfy ucm > 0, so

that consumption and real balances are Edgeworth complements. We also assume that

lim
m→∞

uc(c, m) = ∞ ∀c > 0, (2)

and that

lim
m→∞

um(c, m)

uc(c, m)
= 0 ∀y > 0. (3)

This last assumption implies that money demand approaches infinity as the nominal interest

rate vanishes. All of the above assumptions are satisfied, for example, when the instant

utility function takes the CRRA/CES form

u(c, m) =
[acρ + (1 − a)mρ](1−σ)/ρ

1 − σ
, (4)

with a ∈ (0, 1), σ ≥ 0, and ρ < 1.

In addition to fiat money, the representative household has access to nominal government

bonds, denoted by B, that pay the nominal interest rate R. The household is endowed with

a constant stream of perishable goods y and pays real lump-sum taxes τ . Its instant budget

constraint is then given by

Pc + Pτ + Ṁ + Ḃ = RB + Py.

Letting m ≡ M/P denote real balances and a ≡ (M +B)/P real financial wealth, the above

constraint can be written as

c + τ + ȧ = (R − π)a − Rm + y, (5)

where π ≡ Ṗ /P denotes the instant rate of inflation. The right-hand side of this budget

constraint represents the sources of income: real interest on the household’s assets net of the

opportunity cost of holding money and the endowment. The left hand side shows the uses
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of income: consumption, tax payments, and savings. Households are subject to a borrowing

limit of the form

lim
t→∞

e−
∫ t
0 [R(s)−π(s)]dsa(t) ≥ 0 (6)

that prevents them from engaging in Ponzi games. This no-Ponzi-game constraint says that

the household is not permitted to implement consumption and money-holding plans that

imply that its real debt position net of money holdings grows at a rate higher than or equal

to the real interest rate. Clearly, because the utility function is increasing in consumption

and real balances, the household will always find it optimal to satisfy the above borrowing

limit with equality.

The representative household chooses paths for consumption, real balances, and wealth so

as to maximize (1) subject to the instant budget constraint (5) and the borrowing limit (6),

given its initial real wealth, a(0), and the paths of taxes, inflation, and nominal interest

rates. The associated optimality conditions are (5), (6) holding with equality, and

uc(c, m) = λ (7)

um(c, m) = λR (8)

λ̇
λ

= r + π − R, (9)

where λ is the Lagrange multiplier associated with the instant budget constraint.

2.2 Monetary and fiscal policy

We assume that the monetary authority follows a Taylor-type interest-rate feedback rule of

the form

R = r + π∗ + γ(π − π∗), (10)

where π∗ > −r denotes the central bank’s inflation target and γ > 1 defines the respon-

siveness of the interest rate to deviations of inflation from its target.6 Loosely speaking, the

central bank raises the real interest rate in response to an increase in inflation and lowers it

in response to a decrease in inflation. We assume that the central bank adheres to the Taylor

criterion (γ > 1) globally, that is, for all possible rates of inflation. As a consequence, there

exists an inflation rate π̃ ≡ π∗− (r+π∗)/γ > −r such that whenever π < π̃, the interest rate

feedback rule prescribes a negative nominal interest rate. This assumption distinguishes the

6Leeper (1991) refers to monetary policy as active if γ > 1 and as passive if γ < 1.
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analysis of the existence of liquidity traps under interest rate feedback rules presented in this

paper from that contained in Benhabib, Schmitt-Grohé, and Uribe (2000b) and Woodford

(1999).

The government finances its deficits by printing money, M , and issuing nominal bonds,

B, that pay the nominal interest rate R. We assume that public consumption is zero and

that the government levies real lump-sum taxes, τ . Therefore, the instant budget constraint

of the government is given by Ḃ = RB − Ṁ − Pτ , which can be written as

ȧ = (R − π)a − Rm − τ. (11)

By definition, the initial condition a(0) satisfies

a(0) =
A(0)

P (0)
, (12)

where A(0) ≡ M(0) + B(0) > 0 denotes the initial level of total nominal government liabili-

ties. We will assume that fiscal policy is Ricardian in the sense of Benhabib, Schmitt-Grohé,

and Uribe (2000a). Ricardian fiscal policies are those that ensure that the present discounted

value of total government liabilities converges to zero—that is,

lim
t→∞

e−
∫ t
0 [R(s)−π(s)]dsa(t) = 0 (13)

is satisfied under all possible, equilibrium or off-equilibrium, paths of endogenous variables,

such as the price level, the money supply, inflation, or the nominal interest rate. We restrict

attention to one particular Ricardian fiscal policy that takes the form

τ + Rm = α a, (14)

where the sequence α is chosen arbitrarily by the government subject to the constraint that

it is positive and bounded below by some α > 0. This policy states that consolidated

government revenues, that is, tax revenues plus interest savings from the issuance of money,

are always higher than a certain fraction α of total government liabilities.

2.3 Equilibrium

Equilibrium in the goods market requires that consumption be equal to the endowment

c = y. (15)
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Given the assumptions regarding the form of the instant utility function, equations (7), (8),

and (15) define a decreasing function linking λ and R:

λ = L(R); L′ < 0. (16)

Using this expression to eliminate λ from equation (7) yields the following equilibrium Euler

equation:

Ṙ =
L(R)

L′(R)
[r + π − R]. (17)

Finally, using the feedback rule (10) to eliminate inflation from this expression we obtain a

univariate first-order differential equation describing the equilibrium dynamics of the nominal

interest rate:

Ṙ =
(1 − γ)L(R)

γL′(R)
[R − R∗], (18)

where R∗ ≡ r + π∗ is the nominal interest rate associated with the target rate of inflation

π∗.

In turn, combining the government budget constraint (11) with the monetary and fiscal

policy rules, equations (10) and (14), yields

ȧ = [(1 − γ−1)(R − R∗) + r − α]a (19)

Finally, using (10) to eliminate π from (13), the transversality condition becomes

lim
t→∞

e−
∫ t
0
[(1−γ−1)(R(s)−R∗)+r]dsa(t) = 0 (20)

A perfect-foresight competitive equilibrium is defined as an initial price level P (0) and

functions of time R and a satisfying (12) and (18)-(20), given the initial condition A(0).

Note that because of the assumed Ricardian nature of the fiscal policy regime, given a

function R satisfying (18), equations (12) and (19) imply a path for a that satisfies the

transversality condition for any initial a(0). This fact has two implications. First, any non-

negative function of time R satisfying (18) constitutes a perfect-foresight equilibrium, and,

second if an equilibrium exists, then the initial price level P (0) is indeterminate. However,

nominal indeterminacy is not the focus of our analysis. We are instead concerned with

real determinacy, that is, the determinacy of the function R, which in turn governs the

determination of real balances and thus welfare.
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3 Liquidity traps with global Taylor rules

Consider first the steady-state solutions to equation (18). Clearly, because γ 6= 1, there is a

unique steady state R = R∗. The result that the steady-state equilibrium is unique is driven

by the assumption that the monetary authority can make it credible that it will follow an

active interest rate feedback rule globally. As shown in Benhabib, Schmitt-Grohé, and Uribe

(2000b), if instead the interest rate feedback rule is constrained to be non-negative, then a

second steady state emerges. This second steady state represents a liquidity trap in sofar

that inflation is low and possibly negative and the nominal interest rate is below the target

rate.

Because R is a non-predetermined variable, the steady state R∗ is, in fact, a perfect-

foresight equilibrium. Furthermore, R∗ is locally the unique perfect foresight equilibrium.

Note that given our maintained assumption that the feedback rule is globally active, (1 −
γ)/γL(R)/L′(R) is always positive. This implies that the sign of Ṙ in equation (18) is the

same as the sign of R − R∗. It follows that the steady state R∗ is locally unique in the

sense that trajectories starting near R∗ diverge from R∗. Thus, if one were to limit the

analysis to equilibria in which R remains forever in a small neighborhood around R∗, then

the only perfect-foresight equilibrium is the steady state itself. This local uniqueness result

has served as a key theoretical argument for advocating the use of active, or Taylor-type,

interest-rate feedback rules to ensure aggregate stability (e.g., Leeper, 1991; and Clarida,

Gaĺı, and Gertler, 1997).

However, as we show next, R∗ is not the only perfect-foresight equilibrium. Specifically,

we wish to show that under certain assumptions regarding the form of the instant utility

function, there exists a continuum of perfect foresight equilibria in each of which R converges

to zero. Thus, in each of these equilibria the economy is caught in a expectations driven

liquidity trap.

Suppose that the interest rate semi elasticity of the equilibrium marginal utility of con-

sumption becomes unboundedly large as the nominal interest rate approaches zero. Formally,

assume that the function L(·) satisfies

lim
R→0

L′(R)

L(R)
= ∞ (21)

Given assumption (3), it is straightforward to show that (21) is equivalent to assuming

that

lim
m→∞

umm(y, m)

ucm(y, m)
= 0. (22)
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Figure 3: Phase diagram
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This assumption is satisfied, for example, when the instant utility index takes the form given

in (4).

Figure 3 depicts the phase diagram of R implied by equation (18) under assumption (21).

Clearly, if the economy starts at R(0) = R∗, then it remains at the target rate forever.

However, if the initial interest rate satisfies 0 < R(0) < R∗, then R falls continuously and

approaches zero asymptotically.7

Trajectories like the one just described posses all the characteristics of a liquidity trap.

Namely, inflation is expected to follow a declining spiral. The central bank, in turn, attempts

to inflate the economy by lowering the nominal interest rate so aggressively that the real

interest rate falls. This continuous decline in the real interest rate induces a declining path

in desired consumption. But because aggregate supply is fixed, the equilibrium response is

a further decline in prices.

3.1 The dynamics of money, wealth, taxes, and inflation

Because the linear Taylor rule is assumed to hold globally, inflation is linearly linked to the

nominal interest rate along the entire deflationary spiral. Thus, π decreases monotonically

and converges asymptotically to π̃. The declining path of the nominal interest rate is accom-

panied by less than one-to-one declines in inflation. As a result, the real interest rate, given

by R − π, decreases monotonically and converges to −π̃, which may be positive or negative

depending on the values taken by γ, π∗, and r.

Given assumption (3), real balances become unboundedly large as the nominal interest

rate vanishes. At the same time, the asymptotic evolution of total government liabilities is

7It is worth noting that R = 0 does not represent a steady-state equilibrium, for at that level of interest
rates real balances cease to be finite.
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Figure 4: Time path of key variables
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given by ȧ = −(π̃ + α)a. So a converges to zero if −π̃ − α < 0 and to infinity otherwise.

In particular, if the long-run inflation rate π̃ is nonnegative, total government liabilities

vanish asymptotically. Because real money balances grow without bounds, it follows if a

converges to zero, then increases in the money supply are brought about through open

market operations. In the long run the stock of government bonds becomes negative and

unboundedly large in real terms.8 Note that if total government liabilities converges to

zero, then asymptotically the government rebates all seigniorage revenue through lump-sum

transfers, τ = −Rm. In turn, the evolution of seignorage revenue depends exclusively on

the specification of preferences. Specifically, mR = mum(y, m)/uc(y, m). So for example, if

u(c, m) = (1 − σ)−1[acρ + (1 − a)mρ](1−σ)/ρ, then mR is proportional to mρ. In the Cobb-

Douglas case, ρ = 0, lump-sum transfers are constant in the long-run. If the elasticity of

substitution between real balances and consumption is less (greater) than unity, ρ < (>)0,

then lump-sum transfers converge to zero (infinity). Figure 4 depicts the dynamics of the

nominal interest rate, inflation, the real interest rate, real wealth, real balances, and real

lump-sum taxes for the case of Cobb-Douglas preferences

3.2 Separability and satiation

Thus far we have shown that when the Taylor criterion holds globally, the possibility of liq-

uidity traps emerges under a wide range of preference specifications. Preferences in this class

include, but are not limited to, the family of instant utility functions given in equation (4).

One commonly used preference specification under which liquidity traps are impossible

8Indeed, the stock of bonds becomes negative in finite time.
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is one in which the instant utility index is additively separable in consumption and real

balances. To see why, note that in this case the marginal utility of consumption depends

only on consumption and thus is constant in equilibrium. It then follows from equation (7)

that the equilibrium value of λ is constant. Thus, by the Euler equation (9), we have that

in equilibrium R = r + π. Combining this expression with the Taylor rule (10), we obtain

the unique and constant equilibrium interest rate R∗.

It is important to note, however, that the impossibility of liquidity traps under additive

separability in preferences is unrelated to the assumption that the Taylor criterion holds

globally. Rather, the uniqueness of equilibrium is a consequence of the fact that under

separable preferences the marginal utility is constant over time.9 Interestingly, in discrete

time liquidity traps arise under separability provided the feedback rule respects the zero

bound on nominal rates (Woodford 1999, 2000). But, as we show in the next section, this

type of equilibrium is impossible in discrete time if the feedback rule is active everywhere.

Liquidity traps may also be impossible when preferences display satiation in real balances.

An example of an environment in which satiation occurs naturally, is the cash-in-advance

model with cash and credit goods of Lucas and Stokey (1987). In this economy, households

have preferences defined over consumption of cash and credit goods, c1 and c2, respectively.

Suppose for simplicity that the instant utility function is of the form ln c1 + ζ ln c2. Con-

sumption of the cash good is subject to a cash-in-advance constraint of the form m ≥ c1.

In turn, consumption is subject to the resource constraint c1 + c2 = y, where y > 0 is an

exogenous and constant endowment. This constraint implies a unit relative price of c1 in

terms of c2. The budget and borrowing constraints faced by the household are (5) and (6),

with c ≡ c1 + c2. It is straightforward to show that the optimization problem of the repre-

sentative household in this economy is identical to that of the representative household in a

money-in-the-utility-function economy with instant utility given by

u(c, m) =

{
ln m + ζ ln(c − m) if m < m∗

lnm∗ + ζ ln(c − m∗) if m ≥ m∗ , (23)

where m∗ ≡ y/(1 + ζ).10

Consider first the existence of liquidity traps in which the nominal interest rate is positive

but converges asymptotically to zero. Combining the first-order conditions (7) and (8) and

9Benhabib, Schmitt-Grohé, and Uribe (2000b) discuss the case of separable preferences assuming that
the monetary authority’s interest rate feedback rule satisfies the non-negativity constraint.

10The satiation point m∗ is given by argmaxc1 [ln c1 + ζ ln(y − c1)].
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replacing c by y yields the following equilibrium money demand function:

y − (1 + ζ)m

ζm
= R,

In deriving this liquidity preference function we are using the fact that if R > 0, then

m < m∗. It follows from this expression that as R vanishes, real money balances converge

to m∗. The evolution of the nominal interest rate is given by equation (18). Thus, as in

the case of no satiation, the existence of a liquidity trap requires that assumption (21) is

satisfied. Under satiation, assumption (21) is no longer equivalent to (22) but instead to

lim
m→m∗

umm(y, m)

ucm(y, m)
= 0.

Using the utility function (23) and taking into account that when R > 0, m < m∗, we have

umm(y, m)

ucm(y, m)
= −(1 + ζ),

which clearly does not converge to zero as real balances converge to the satiation point m∗.

Therefore, in this economy, liquidity traps in which the nominal interest rate is positive but

converges to zero are impossible.

It remains to establish that liquidity traps in which R reaches zero in finite time are also

impossible. If R = 0, then the Euler equation (9) is violated. To see why, note that if R = 0,

then m ≥ m∗. Thus, λ = uc(y, m∗) is positive and constant, so the left hand side of (9) is

zero. On the other hand, the right hand side of (9) becomes r + π̃, which is different from

zero.

We close this section by noting that if the (linear) Taylor rule (10) is required to satisfy

the zero bound—so that R = max{0, r + π∗ + γ(π − π∗)}—then liquidity traps exist when

preferences exhibit satiation like in equation (23). In these economies, liquidity traps are

characterized by interest rate dynamics that reach the value of zero in finite time. Benhabib,

Schmitt-Grohé, and Uribe (2000c) analyze this case in an economic environment like the one

presented here (see in particular the appendix). Schmitt-Grohé and Uribe (2000) derive the

result in a discrete-time model.11

11Schmitt-Grohé and Uribe (2000) conduct the analysis under the assumption that the government follows
a balanced-budget rule. They show that linear Taylor rules that satisfy the zero bound may lead to dynamics
in which the economy perpetually fluctuates between two states. In one the interest rate converges to a
strictly positive value. In the other the economy falls into a liquidity trap with a zero nominal interest rate.
See proposition 3 and in particular the case illustrated in the bottom right panel of figure 3. The result that
liquidity traps cannot last forever (i.e., Rt = 0 for all t cannot be supported as a steady-state equilibrium)
is a consequence of the assumed balanced-budget requirement.
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3.3 Discrete Time

The objective of this subsection is to briefly show that the basic result that liquidity traps

exist when the Taylor criterion is valid globally is robust to assuming that time is a discrete

variable. To this end, let the utility function take the form
∑∞

t=0 βtu(ct, mt), with β ∈ (0, 1).

The period utility function u(·, ·) is assumed to be increasing in both arguments, concave,

and to satisfy ucm > 0. In addition, we assume that u satisfies assumptions (2) and (3).

Letting fiscal policy be Ricardian, the equilibrium dynamics of inflation and the nominal

interest rate are governed by the discrete-time counterparts of the Taylor rule (10) and the

equilibrium Euler equation (17), which are given, respectively, by

1 + Rt = (1 + R∗) + γ(πt − π∗) (24)

and

L(Rt) = βL(Rt+1)
1 + Rt

1 + πt+1

, (25)

where 1+R∗ ≡ (1+π∗)/β. The function L(·) is implicitly given by the solution for λ to the

equilibrium conditions λ = uc(y, m) and um(y, m)/uc(y, m) = R/(1 + R). The assumptions

imposed on the period utility function imply that L(R) > 0, L′(R) < 0 for all R > 0,

and limR→0 L(R) = ∞. We assume that the inflation coefficient of the Taylor rule satisfies

βγ > 1, so that the elasticity of the gross nominal interest rate with respect to gross inflation

at the intended steady state is greater than one. Combining (24) and (25) yields the following

first-order difference equation describing the equilibrium law of motion of Rt:
12

L(Rt) = βL(Rt+1)
1 + Rt

1 + π∗ + γ−1(Rt+1 − R∗)
(26)

This difference equation admits a unique constant solution given by Rt = R∗ for all t. This

solution is therefore the unique steady-state equilibrium. Furthermore, this equilibrium is

locally the unique perfect-foresight equilibrium. To see this, log-linearize (26) around R∗ to

obtain:

R̂t+1 =

[
η − R∗/(1 + R∗)

η − (γβ)−1R∗/(1 + R∗)

]
R̂t

where R̂t ≡ ln(Rt/R
∗) denotes the log-deviation of Rt from its intended steady-state value

and η ≡ L′(R∗)R∗/L(R∗) < 0 denotes the steady-state elasticity of the marginal utility of

12This equation is the discrete-time version of (18).
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Figure 5: Phase diagram in the discrete-time model
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consumption with respect to the nominal interest rate. Because η < 0 and βγ > 1, we

have that the coefficient in square brackets in the above expression is greater than 1. It

follows that the only solution to ( 26) that originates in a small neighborhood around R∗

and converges to it is R∗ itself.

But, as in the continuous-time case, the discrete-time economy under study admits other

equilibria in which the nominal interest rate moves away from the intended steady state.

Indeed, there exist liquidity traps in which the nominal interest rate converges to zero. To

see why, note that because L(R) converges to infinity as R vanishes, equation (26) implies

that if Rt converges to zero, so does Rt+1. Figure 5 depicts the phase diagram associated

with (26). The phase diagram crosses the 45o line at Rt = R∗ from below. Also, for

Rt ∈ (0, R∗), the phase diagram is positive and lies below the 45o line. Thus, sequences

{Rt}∞t=0 with 0 < R0 < R∗ converge monotonically to zero. Along such trajectories, inflation

falls continuously, the real interest rate falls, and real balances increase without bounds.

4 A Sticky-Price Model

In this section we consider an economic environment with nominal rigidities. In addition,

unlike in the flexible-price economy, in the model analyzed here product markets are imper-

fectly competitive and labor supply (and thus production) is endogenous. Price stickiness,

production, and imperfect competition constitute three basic elements typically present in

theoretical evaluations of the stabilizing properties of Taylor rules (e.g., Rotemberg and
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Woodford, 1999). Our goal continues to be to show that even in the absence of the zero

bound on the interest-rate rule, that is, even if one believes that the monetary authority

can credibly threaten to set a negative interest rate, liquidity traps may arise as equilibrium

outcomes.

The economy is assumed to be populated by a continuum of household–firm units indexed

by j each of which produces a differentiated good Y j . Firms have market power and set

prices so as to maximize profits. The demand faced by firm j is given by Y dd(P j/P ),

where Y d denotes the level of aggregate demand, P j the price firm j charges for the good

it produces, and P the aggregate price level. Such a demand function can be derived by

assuming that households have preferences over a composite good that is produced from

differentiated intermediate goods via a Dixit-Stiglitz production function. The function d(·)
is assumed to be twice continuously differentiable, decreasing, and to satisfy d(1) = 1 and

d′(1) < −1.13

The production of good j uses labor, hj , supplied by household j as the only input. For

simplicity, we assume a linear technology:

y(hj) = hj.

Following Rotemberg (1982), we assume that households face convex costs of adjusting

prices. Specifically, the household’s lifetime utility function is assumed to be of the form

U j =

∫ ∞

0

e−rt

u(cj, mj) − z(hj) − θ

2

(
Ṗ j

P j
− π∗

)2
 dt (27)

where cj denotes consumption of the composite good by household j, mj ≡ M j/P denotes

real money balances held by household j, and M j denotes nominal money balances. The

utility function u(·, ·) is assumed to be increasing, twice continuously differentiable, weakly

concave, and to satisfy ucm > 0 and assumptions (2) and (3). The function z(·) measures

the disutility of labor and is assumed to be twice continuously differentiable, increasing, and

strictly convex. The parameter θ measures the degree to which household–firm units dislike

to deviate in their price-setting behavior from the target rate of inflation π∗.

Let aj denote the real value of the household j’s financial wealth which consists of the sum

of real money holdings and government bonds. Then aj evolves according to the following

13The restriction imposed on d′(1) is necessary for the firm’s problem to be well defined in a symmetric
equilibrium.
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law of motion:

ȧj = (R − π)aj − Rmj +
P j

P
y(hj) − τ − cj. (28)

Households are also subject to the following borrowing constraint that prevents them from

engaging in Ponzi-type schemes:

lim
t→∞

e−
∫ t
0 [R(s)−π(s)]dsaj(t) ≥ 0. (29)

Given the price firm j charges for the good it produces, its sales are demand determined and

equal to:

y(hj) = Y dd

(
P j

P

)
. (30)

Household j chooses nonnegative functions of time for the control variables cj , mj , and

hj and functions of time for the state variables P j and aj so as to maximize (27) subject

to (28)–(30) taking as given aj(0), P j(0), and the time paths of τ , R, Y d, and P . If the

household’s problem has an interior solution, then there exist functions of time λj and µj

such that the following conditions are satisfied:

uc(c
j, mj) = λj (31)

um(cj , mj) = λjR (32)

z′
(
hj
)

= λj P
j

P
y′(hj) − µjy′(hj) (33)

λ̇j = λj (r + π − R) (34)

λj P j

P
y(hj) + µj P j

P
Y dd′

(
P j

P

)
= θr(πj − π∗) − θπ̇j (35)

lim
t→∞

e−
∫ t
0
[R(s)−π(s)]dsaj(t) = 0 (36)

17



where πj ≡ Ṗ j/P j.

4.1 Equilibrium

We assume that the government follows a globally active interest-rate feedback rule and a

Ricardian fiscal policy as described in section 2.2. In a symmetric equilibrium all household–

firm units choose identical functions for consumption, asset holdings, and prices. Thus, we

can drop the superscript j. In addition, the goods market must clear, that is,

c = y(h). (37)

Combining equations (31) and (32) yields a liquidity preference function of the form

m = m(c, R). (38)

Given our maintained assumption about the form of the instant utility index over consump-

tion and real balances, the liquidity preference function (38) is increasing in consumption

and decreasing in the nominal interest rate.

If u(·, ·) is strictly concave, then using (37) and (38) to eliminate c and m from (31) yields

the following expression for h:

h = h(λ, R), (39)

where hλ < 0, hR < 0.14 Let η ≡ d′(1) < −1 denote the equilibrium price elasticity of

the demand function faced by an individual firm. Using (10), (33), and (39) to eliminate

µ, π, and h from equations (34) and (35) yields the following vector differential equation

describing the equilibrium dynamics of (λ, R):

λ̇ = λ (γ−1 − 1)(R − R∗) (40)

Ṙ = r(R − R∗) − h(λ, R)λ

θγ

[
1 + η − ηz′(h(λ, R))

λ

]
(41)

A perfect-foresight equilibrium is a pair of functions {λ, R} satisfying (40) and (41).

Given the equilibrium functions {λ, R}, the corresponding equilibrium functions {h, c, π, m}
are uniquely determined by (39), (37), (10), and (38), respectively. The assumed Ricardian

nature of the monetary-fiscal regime requires that the fiscal authority sets taxes in such a

way that, given paths for R, π, and m and an initial condition a(0), the path for a implied

14To see this, note that hλ = [umm − (um/uc)ucm]/[(uccumm − u2
cm)] and that hR = −hλucmmR.
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by equation (19) satisfies the transversality condition (20).

4.2 Steady-state equilibria

A steady-state equilibrium is defined as a pair of constant functions {λ, R} satisfying equa-

tions (40) and (41); that is,

R = R∗ (42)
1 + η

η
λ = z′(h(λ, R∗)) (43)

Recalling that z(·) is strictly convex, it follows from (42) and (43) that there exists a unique

steady-state equilibrium (λ∗, R∗). At the steady-state equilibrium the nominal interest rate

takes its target value R∗. Aggregate output is such that firms equate marginal cost, given

by z′(h)/λ, to marginal revenue, (1 + η)/η.15 As in the flexible price case, the uniqueness of

the steady-state equilibrium is a consequence of the assumption that the Taylor criterion is

globally valid. Benhabib, Schmitt-Grohé, and Uribe (2000b) show that if the interest rate

rule is restricted to be nonnegative, then at least two steady-state equilibria exist.

4.3 Local equilibria

We now consider perfect-foresight equilibria in which λ and R remain bounded in a small

neighborhood around the steady state (λ∗, R∗) and converge asymptotically to it. Linearizing

equations (40) and (41) around (λ∗, R∗), we obtain the system:(
λ̇

Ṙ

)
= J

(
λ − λ∗

R − R∗

)
(44)

where

J =

[
0 uc(γ

−1 − 1)

J21 J22

]

J21 =
yη

θγ

[
z′′hλ − z′

λ

]
> 0

J22 = r +
yη

γθ
z′′hR > 0

15Note that since η is the elasticity of demand, η/(1+ η) represents the steady-state markup of prices over
marginal cost. Because all firms set identical prices in equilibrium, the relative price of each good j in terms
of the composite consumption good (the numeraire) is unity.
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Because monetary policy is active (γ > 1), the trace and the determinant of J are positive.

This implies that both eigenvalues of J have positive real parts. It then follows from the

fact that both λ and R are jump variables that the equilibrium is locally determinate.

This result reproduces that basic message of a number of recent papers advocating the

stabilizing properties of Taylor rules in the context of neo-Keynesian models like the one

developed in this section (e.g., Clarida, Gaĺı, and Gertler, 1997; Rotemberg and Woodford,

1997 and 1999, among others). However, by construction, this result is valid only if one

restricts attention to equilibria in which endogenous variables remain forever bounded in an

arbitrarily small neighborhood around the intended steady state. Benhabib, Schmitt-Grohé

and Uribe (2000b) demonstrate that if the interest-rate rule is bounded below by zero, then

a second steady state emerges. This second steady state is locally indeterminate and, as they

argue, has all the essential characteristics of a liquidity trap. More importantly, there exist

equilibrium trajectories emerging arbitrarily close to the intended steady-state that converge

to the liquidity trap. When the monetary authority is assumed to be able to credibly commit

to a globally active interest-rate rule, then the second, unintended steady state disappears.

However, such commitment does not eliminate the risk of falling into a self-fulfilling liquidity

trap. We turn to this issue next.

4.4 Global equilibria

To illustrate the existence of liquidity traps, we limit attention to a particular preference

specification that implies interest rate dynamics identical to those arising in the flexible-price

economy. Specifically, assume that u(·, ·) is homogeneous of degree one in c and m.16 In this

case, equations (37), (38), and (31) taken together imply that in equilibrium the marginal

utility of consumption is a decreasing function of the nominal interest rate alone. Thus, a

relationship like (16) holds.17 The equilibrium dynamics are represented by the following

planar system in h and R:

Ṙ =
L(R)

L′(R)
(γ−1 − 1)(R − R∗) (45)

[
r − L(R)

L′(R)
(γ−1 − 1)

]
(R − R∗) =

hL(R)

θγ

[
1 + η − ηz′(h)

L(R)

]
(46)

16The family of utility functions given in (4) belongs to this class if σ = 0.
17To see why, note that in this case uc is homogeneous of degree zero in c and m, and the liquidity

preference function is linear in consumption.
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Figure 6: The liquidity trap in the sticky-price model
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If L(·) satisfies assumption (21), then the scalar system (45) has a phase diagram like the one

depicted in figure 3. In this case, there exists a continuum of trajectories for the nominal

interest rate that satisfy equation (45) and converge to 0. These trajectories represent

equilibrium allocations if they imply, by the static equation (46), trajectories for h that are

feasible.

Consider the special case that u(c, m) takes the Cobb-Douglas form c1−bmb. Then

L(R)/L′(R) = −R/b, which converges to zero as R vanishes. Equation (45) becomes

Ṙ = R(R − R∗)(1 − γ−1)/b. The solution to this differential equation is R(t) = [1/R∗ +

exp[R∗(γ−1 − 1)/b](1/R(0)− 1/R∗)]−1. It is easy to verify that for any 0 < R(0) < R∗, R(t)

is strictly positive and converges asymptotically to zero. In general it is difficult to establish

that given a function R that solves (45), the function h implied by (46) is well defined.

Here we limit our discussion to a parameterized example in which z(h) = ρ ln(1 − h), with

h ∈ [0, 1). Under this assumption, (46) is a second-order polynomial in h, whose coefficients

are functions of R (and are therefore time varying). Figure 6 depicts the equilibrium dynam-

ics of the nominal interest rate and hours associated with an initial value of R less than the

intended steady state R∗.18 The graph shows that a liquidity trap exists, that is, there exist

equilibrium trajectories in which the nominal interest rate converges to zero. In addition,

inflation keeps falling despite the central bank’s efforts to stimulate the economy through

low real rates. In the parameterized example, leisure converges to zero as the economy ap-

proaches the liquidity trap. The reason for this lies in the behavior of the representative

household’s labor supply schedule. With the decline in nominal rates, real balances increase.

18The parameter values used to compute the equilibrium dynamics are as follows: The time unit is one
quarter. The intended nominal interest rate is 6 percent per year, which corresponds to the average yield
on 3-month T-bills over the period 1960:Q1 to 1998:Q3. We set the target rate of inflation at 4.2 percent
per year. This number matches the average growth rate of the U.S. GDP deflator during 1960:Q1-1998:Q3.
Following Taylor (1993), we set the slope of the interest rate rule at the intended steady state equal to 1.5.
To calibrate b, we use the liquidity preference function given by (38), which in the Cobb-Douglas case takes
the form m = b/(1 − b)y/R, to express b as the following function of the nominal interest rate and money
velocity: b = R/(R + y/m). In the U.S. economy, average annual M1 velocity over the period 1960:Q1-
1999:Q4 was 5.8. This figure together with the assumed value for R∗ implies b = 0.0102. We assign a value
to the preference parameter ρ such that in steady state households spend one third of their time working.
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The increase in real balances is so strong that it increases the marginal utility of income and

in this way shifts the household’s labor supply schedule out.

5 Conclusion

This paper contributes to a recent literature that evaluates the consequences of active

interest-rate feedback rules from a global perspective. Specifically, the paper builds on a

key result derived by Benhabib, Schmitt-Grohé, and Uribe (2000b). Namely, that Taylor

rules in combination with a zero bound on nominal interest rates give room to unintended de-

flationary spirals. The present study shows that the zero bound itself is not at the root of the

problem. For a number of standard model specifications, liquidity traps emerge even if the

government can commit to a globally active interest rate rule; that is, even if the government

can credibly threaten to set a negative interest rate at low enough rates of inflation.

An important immediate issue that arises from the results of this paper is how to avoid

liquidity traps while maintaining the desirable local properties of Taylor rules. Benhabib,

Schmitt-Grohé, and Uribe (2000c) and Woodford (1999, 2000) provide examples of policies

capable of eliminating liquidity traps when the Taylor rule is assumed to satisfy the zero

bound. The essence of their proposals is to build a fiscal regime whereby the government

embarks in aggressive fiscal expansions in the event that the economy slips into a liquidity

trap. This emergency fiscal policy must be aggressive enough so that near the unintended

steady state total government liabilities grow at a rate larger than the nominal interest rate.

It follows that under such fiscal policy, in the event of a liquidity trap, total government

liabilities grow without bounds in present discounted value. Equivalently, private agents

would find themselves holding long-run asset positions of positive present discounted value,

which is inconsistent with optimizing behavior if consumption and real money holdings are

to be finite at each point in time. Because such a situation can not be supported as an

equilibrium outcome, the suggested policies effectively rule out self-fulfilling liquidity traps.

Clearly, the proposals for avoiding liquidity traps contained in Benhabib, Schmitt-Grohé

and Uribe (2000c) and in Woodford (1999, 2000) will also be effective when the Taylor rule is

globally active. Specifically, any fiscal policy that guarantees that total government liabilities

grow at all times at a rate lower than the target nominal rate and bounded away from zero

will eliminate self-fulfilling liquidity traps and ensure the global uniqueness of the intended

equilibrium.
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