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Abstract

Since John Taylor’s (1993) seminal paper, a large literature has argued
that active interest rate feedback rules, that is, rules that respond to in-
creases in inflation with a more than one-for-one increase in the nominal
interest rate, are stabilizing. In this paper, we argue that once the zero
bound on nominal interest rates is taken into account, active interest-rate
feedback rules can easily lead to unexpected consequences. Specifically,
in the context of a sticky-price model, we show that even if the steady
state at which monetary policy is active is locally the unique equilib-
rium, typically there exists an infinite number of equilibrium trajectories
originating arbitrarily close to that steady state that converge either to
another steady state at which monetary policy is passive or to a stable
limit cycle around the active steady state. We conclude that the use of
local techniques for monetary policy evaluation might lead to spurious
policy recommendations.
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1 Introduction

Since John Taylor’s (1993) seminal paper describing Federal Reserve policy,
there has been a resurgence of interest in monetary policies that target the
nominal rate. Much of the literature has explored the efficiency and dynamic
effects of such policies, with particular attention to their stabilization properties.
A central policy recommendation that has emerged from this body of research
is that “active monetary policy,” that is, a policy that strongly responds to
the rate of inflation in setting the nominal interest rate, is stabilizing.! In an
earlier paper (Benhabib, Schmitt-Grohé and Uribe, 1998) we argue that such
result depends very much on the specification of the model, and that indeed
often active monetary feedback policies lead to multiple equilibria under stan-
dard specifications, assumptions and calibrations, including models with sticky
prices, Taylor rules that allow for leads or lags, and Ricardian and non-Ricardian
monetary/fiscal regimes. In this paper, we take an even stronger position and
argue that active monetary policy generally leads to indeterminacy and multi-
ple equilibria, and that pursuing such a policy can easily lead to unexpected
consequences even in the simplest and most innocuous monetary models, using
the simplest and most standard assumptions.

Our method of analysis departs from the conventional local approach to
study multiple equilibria that proceeds by linearizing around a steady state. The
reason for this departure stems from the observation that the nominal rate must
be constrained to be non-negative, since negative nominal rates are impossible.
It immediately follows from this observation, as we illustrate below, that if
there is a steady state with an active monetary policy, there must necessarily
exist another steady state with a passive policy. As a result, local analysis is
inadequate because paths of the economy diverging from one steady state can
converge to the other steady state or to another attracting set, thus qualifying as
equilibrium trajectories. We show these results in the context of a sticky-price
model both theoretically and through simulations of calibrated economies.

To intuitively illustrate the source of multiplicity, consider the Fisher equa-
tion

R(m)=r+m,

where R () is a simplified Taylor rule that sets the nominal rate, R(), as a non-
decreasing function of inflation, r is the discount rate, and 7 is the inflation rate.
This steady-state relation is common to a wide range of monetary models with
representative agents and an infinite horizon and holds irrespective of whether
prices are flexible or sticky or of whether money enters the model through the
utility function, the production function or a cash-in-advance constraint. If
there exists a steady state with active monetary policy, that is, a value of w

LFor papers arriving at this conclusion in the context of non-optimizing models, see Levin,
Wieland, and Williams (1998) and Taylor (1998a, 1998b); for optimizing models with flexible
prices, see Leeper (1991); and for optimizing models with nominal frictions see Rotemberg and

Woodford (1997, 1998), Christiano and Gust (1998), and Clarida, Gali, and Gertler (1997).



Figure 1: Taylor Rules, zero-bound on nominal rates, and multiple steady states
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that solves the Fisher equation and satisfies R'(w) > 1, then if R(7) > 0 and
continuous, there must exist another steady state with R/(7) < 1 (figure 1).2

Since the inflation rate 7 is a jump variable whose initial value is not exoge-
nously given, the existence of a steady state with active policies immediately
establishes the possibility of the existence of at least two steady state equilibria.
Clearly, the existence of multiple solutions to the steady-state Fisher equation
need not imply the existence of multiple steady-state equilibria, for in general
the equilibrium conditions will involve other equations. However, in this paper
we show, in the context of a standard model with nominal rigidities, that in
general the presence of a steady state equilibrium at which monetary policy is
active gives rise to at least one other steady-state equilibrium at which monetary
policy is passive.

But it would be naive to conclude that active interest-rate rules are desta-
bilizing solely because they give rise to multiple steady-state equilibria. After
all, the observed inflation dynamics do not seem to be consistent with an econ-
omy in which inflation constantly jumps from a level at which monetary policy

2Note that for the existence of two solutions to the steady-state Fisher equation it is not
crucial that the Taylor rule be continuous. Tt is sufficient that the Taylor rule is non-negative,
non-decreasing and that one solution occurs at a value of 7 for which R/(w) > 1. The bottom
right panel of figure 1 displays a case in which there is a unique solution to the Fisher equation
even though at that solution R/(n) > 1. The absence of a second solution results not because
the Taylor rule is discontinuous but because it is non-monotonic. We will not explore the
macroeconomic consequences of Taylor rules of this type because we believe that they are
irrelevant for it is implausible that the central bank will implement a discrete increase in the
nominal interest rate in the context of declining inflation.



is active to another at which monetary policy is passive. The main result of
this paper is that active Taylor rules are destabilizing because the multiplicity
of steady-equilibria that they induce opens the door to a much larger class of
equilibria. Specifically, we show that in general there exists an infinite number
of equilibrium trajectories originating in the vicinity of the active steady state
that converge either to the steady state at which monetary policy is passive
(a saddle connection) or to a stable limit cycle around the active steady state.
Interestingly, along both the saddle connection and the limit cycle, the inflation
rate fluctuates for long periods of time around the steady state at which mone-
tary policy is active. Thus, an econometrician using data generated from such
equilibria to estimate the slope of the Taylor rule may very well conclude that
monetary policy has always been active.

Simulations of calibrated versions of the model indicate that saddle connec-
tions from the active steady state to the passive steady state exist for empirically
plausible parameterizations and are indeed the most typical pattern as they are
robust to wide parameter perturbations. This type of equilibrium is of particu-
lar interest because it sheds light on the precise way in which economies may fall
into liquidity traps. The results suggest that central banks that maintain an ac-
tive monetary policy stance near a given inflation target are more likely to lead
the economy into a deflationary spiral—like the one currently observed in Japan
and, as some may argue, in the United States—than central banks that main-
tain a globally passive monetary stance such as an interest- or exchange-rate

peg.

2 A Sticky-Price Model

The economy is assumed to be populated by a continuum of household firm
units indexed by j cach of which produces a differentiated good Y7. Firms have
market power and set prices so as to maximize profits. The demand faced by
firm j is given by Y¢d(P7/P), where Y¢ denotes the level of aggregate demand,
PJ the price firm j charges for the good it produces, and P the aggregate price
level. Such a demand function can be derived by assuming that households
have preferences over a composite good that is produced from differentiated
intermediate goods via a Dixit-Stiglitz production function. The function d(-)
is assumed to satisfy d(1) = 1 and d’(1) < —1. The restriction imposed on d’(1)
is necessary for the firm’s problem to be well defined in a symmetric equilibrium.
The production of good j uses labor 7/ provided by the household j as the only
input:

Y7 =y(h?)

where y(-) is positive, strictly increasing, strictly concave and satisfies the Inada
conditions.

We introduce nominal price rigidity, following Rotemberg (1982), by as-
suming that households face convex costs of adjusting prices. Specifically, the



household’s lifetime utility function is assumed to be of the form
o) Pj 2
i -t I (R L g
U 7/0 e u(c?,m’) — z(h') 2<Pj 7r> dt (1)

where ¢/ denotes consumption of the composite good by household j, m/ =
M7 /P denotes real money balances held by household j, and M7 denotes nom-
inal money balances. The utility function u(-,-) is assumed to be strictly in-
creasing and strictly concave, and satisfies tee — Uemtc/Um < 0 and U, —
UemUm /U < 0, which ensures that both real balances and consumption are
normal goods. The function z(-) measures the disutility of labor and is assumed
to be convex. The parameter v measures the degree to which household firm
units dislike to deviate in their price-setting behavior from the constant rate of
inflation 7* > —r.

The household’s instant budget constraint and no-Ponzi-game restriction are

: : R 4 v v
@ =(R—m)e) — Rm’ + ?y(h]) —d -7 (2)
and
Jim e~ JoR()=m()lds g3 (1) > 0, (3)

where a denotes the real value of the household’s financial assets which consist
of money holdings and government bonds, R denotes the nominal interest rate,
7 the rate of change in the aggregate price level, and 7 denotes real lump-sum
taxes. In addition, firms are subject to the constraint that given the price they
charge, their sales are demand-determined

y(h) = Ydd<%j> . (4)

The household chooses sequences for ¢/, m?, P7 > 0, and o’/ so as to maxi-
mize (1) subject to (2)-(4) taking as given a?(0), P’(0), and the time paths
of 7, R, Y, and P. The first-order conditions associated with the household’s
optimization problem are

ue(c?,m?) = N (5)

U (F,m?) = MR (6)

2 (W) = N 2y w) - ) )
N=XN(@r+r1-R) (8)
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where 7/ = Pj/Pj.

Monetary and Fiscal Policy

The monetary authority is assumed to set the nominal interest rate as an in-
creasing function of the inflation rate. Specifically, it conducts open market
operations so as to ensure that

R — R(,ﬂ_) = R*e%(ﬂ'—ﬁ*) (11>

where R*, A, and 7* are positive constants.® This specification of the feed-
back rule implies that the nominal interest rate is strictly positive and strictly
increasing in the inflation rate. We will refer to monetary policy as active
(passive) if the monetary authority raises the nominal interest rate by more
(less) than one-for-one in response to an increase in the inflation rate, that is,
if R/(m) > (<)1.

The instant budget constraint of the government is given by

4= (R—m)a—Rm—rT, (12)

where a denotes the real value of aggregate per capita government liabilities,
which consist of real balances and bonds. The monetary-fiscal regime is assumed
to be Ricardian in the sense of Benhabib, Schmitt-Grohé and Uribe (1998). That
is, the monetary-fiscal regime ensures that total government liabilities converge
to zero in present discounted value for all (equilibrium or off-equilibrium) paths
of the price level or other endogenous variables:*

lim e~ fJ[R(S)*”(S)]dS(J,(t) = 0. (13)

t—o0

Equilibrium

In a symmetric equilibrium all household firm units choose identical sequences
for consumption, asset holdings, and prices. Thus, we can drop the superscript
j. In addition, the goods market must clear, that is,

c=y(h). (14)

3Note that we assume that the constant 7* appearing in the interest rate feedback rule is
the same constant that plays a role in the household’s cost of adjusting prices. We make this
assumption for analytical convenience.

4As discussed in Benhabib, Schmitt-Grohé and Uribe (1998), an example of a Ricardian
monetary-fiscal regime is an interest-rate feedback rule like (11) in combination with the fiscal
rule 7+ Rm = aa; a > 0. In the case in which o = R, this fiscal rule corresponds to a
balanced-budget requirement.




Combining equations (5) and (6) yields a liquidity preference function of the
form

m =m(c, R). (15)

Given our maintained assumption about the normality of consumption and real
balances, the demand for money is increasing in consumption and decreasing in
the nominal interest rate. Using (11), (14), and (15) to eliminate R, ¢, and m
from (5) yields the following expression for h:

h = h(\, ), (16)

where hy < 0, hrtiem < 0 if Uem # 0, and by = 0 if uem = 0.5

Let n = d'(1) < —1 denote the equilibrium price elasticity of the demand
function faced by the individual firm. Using (7), (11), and (16) to eliminate pu,
R, and h from equations (8) and (9) yields

A = Ar+7-R(n) (17)

yOA [, 0 ()

AT T) (18)

T o= rim—7")—
A perfect-foresight equilibrium is a pair of sequences {\, 7} satisfying (17)
and (18). Given the equilibrium sequences {A, 7}, the corresponding equilib-
rium sequences {h,c, R,m} are uniquely determined by (16), (14), (11), and
(15), respectively. The assumed Ricardian nature of the monetary-fiscal regime
requires that the fiscal authority sets taxes in such a way that, given paths for
R, w, and m and an initial condition a(0), the path for a implied by equation
(12) satisfies the transversality condition (13).

3 Steady-state equilibria

A steady-state equilibrium is defined as a pair of constant sequences {A, 7}
satisfying equations (17) and (18); that is,

0 r 47— Rrere(mm) (19)

0 — T(Wﬂ*)w<l+nn%> (20)

Recalling that R* = r 4 7*, it is clear from (19) that in general there exist two
steady-state levels of inflation, 7* and 7, with 7 < (>)7* if A > (<)1. If A =1,
then 7* is the unique steady-state level of inflation. Note that if A > 1, then
monetary policy is active at 7* and passive at 7. Conversely, if A < 1, monetary
policy is passive at m* and active at 7.

5To see this, note that hAx = [Umm — (Wm /uc)tem]/[y (Vectimm — u2,,)]. The assumed
concavity of the instant utility function and normality of consumption imply, respectively,
that the denominator of this expression is positive and that the numerator is negative. Also,
he = —hatuemmpR/ (1), which is of the opposite sign of wem.



The steady-state level of A associated with 7*, A\*, is given by the solution
to

L, _ Z(AT)
n Y (h(A, 7))

Because the right-hand side of this expression is positive and decreasing in A,
A* exists and is unique. The steady-state value of A associated with 7 is the
solution to

L+n, _ Z(A7) ry (7 —7)
n y'(h(\7) 1 oy(h(\ 7))

If A <1, then 7* — 7 < 0 and hence the right-hand side of this expression is
decreasing in A. Therefore, if a steady-state value of A exists, it is unique. On
the other hand, if A > 1, then 7* — 7 > 0 and the right-hand side of the above
expression may not be monotone in A. Thus, multiple steady-state values of A
may exist.

4 Local equilibria

We now consider perfect-foresight equilibria in which A and 7 remain bounded
in a small neighborhood around the steady state (A*,7*) and converge asymp-
totically to it.

Linearizing equations (17) and (18) around (A*,7*), we obtain the system:

(4)-(%)

where

Jo1 Ja2
Z/ 74 ZI
I
(. 2y
Joo = r+=—12" ——— | hg
yry Yy

The sign of the coefficient Jas depends on the sign of h;, which in turn de-
pends on whether consumption and real halances are Edgeworth substitutes or
complements. Specifically, .Joo is positive if ug, > 0, and may be negative if
Uer < 0.5

6 An aggregate supply schedule like the one given by the second row of (21) also arises in the
context of a staggered price setting model with optimizing firms like Yun’s (1996) extension
of Calvo (1983). In Calvo’s original model, firms change prices according to a rule of thumb
that results in an aggregate supply function in which 7 is only a function of aggregate demand

(J22 = 0).



If monetary policy is active at 7* (A > 1), then the determinant of J is
positive, so that the real part of the roots of J have the same sign. Since
both A and 7 are jump variables, the equilibrium is locally determinate if and
only if the trace of J is positive. It follows that if w¢,, > 0, the equilibrium
is locally determinate. If uey, < 0, the equilibrium may be locally determinate
or indeterminate.” If monetary policy is passive at 7*, (A < 1), then the
determinant of .J is negative, so that the real part of the roots of J are of
opposite sign. In this case, the equilibrium is locally indeterminate.

One may be tempted to conclude from the above analysis that if u.,, > 0,
there is no indeterminacy problem under active monetary policy. This conclu-
sion is incorrect, however, because globally the picture may be quite different.

5 Global equilibria

In order to characterize global equilibrium dynamics, in this section, we assume

particular functional forms for preferences and technology. We assume that the

instant utility function displays constant relative risk aversion in a composite

good, which in turn is produced with consumption goods and real balances via
a CES aggregator. Formally,

17 W

(xc? 4 (1 — x)m9)« pltv

u(e,m) — z(h) = " — 1+7}; gw<luv>0 (22)

The restrictions imposed on ¢ and w ensure that u(-,-) is concave, ¢ and m are
normal goods, and the interest elasticity of money demand is strictly negative.®
The production function takes the form

y(h)y=h% 0O0<a<l

In the recent related literature on determinacy of equilibrium under alter-
native specifications of Taylor rules, it is typically assumed that preferences are
separable in consumption and real balances (e.g., Woodford, 1996; Bernanke
and Woodford, 1997; Clarida, Gali, and Gertler, 1997). We therefore charac-
terize the equilibrium under this preference specification first, before turning to
the more general case.

5.1 Separable preferences

The case of separable preferences arises when the intra- and intertemporal elas-
ticities of substitution take the same value, that is, when ¢ = w. In this case

"Benhabib, Schmitt-Grohé and Uribe (1998) show that the economy with wem < 0is similar
to one without money in the utility function but money entering the production function.
8Note that the sign of uem equals the sign of w — q.



the equilibrium conditions (17) and (18) become
A = A|r+7m— Rrem (™) (23)
1
i = 7“(7'(' _ 71'*> _ + 77>\w1_a9 + i)\[ﬁm(1+v)9 (24>
2 ay

where = (1 +v)/(a(w—1)) <0, w = w/(w —1), and § = 1/{a(l — w)).
Throughout this subsection we assume that

R =r+4+7".

This expression implies that 7* solves (23) when A =0. Evaluating (24) at
=0 and 7 = 7*, it follows that A* must satisfy

1
LMy wwgat — J1 \eB, (14000 — g < 0.
Y ary

Evaluating (24) at 7 = 7 and setting 7 = 0 yields the following expression

defining the steady-state value of A, A, associated with 7
r(T — 1) = M(A¥ — \P).

Because T < 7* for A > 1 and w > 0 for w < 0, it follows from this expression
that if A > 1 and w < 0, then X exists and is unique.® Thus, in this subsection
we assume that w < 0; that is, the intertemporal elasticity of substitution does
not exceed unity.

The main result of this subsection is that in the economy described above
there exists an infinite number of equilibrium trajectories originating arbitrarily
close to the steady state at which monetary policy is active that converge either
to the steady state at which monetary policy is passive or to a limit cycle. In
section 4, we showed that if one restricts the analysis to equilibria in which n
and A remain forever bounded in an arbitrarily small neighborhood of the active
steady state, then the unique perfect-foresight equilibrium is the steady state
itself. Thus, the picture that arises from a local analysis might wrongly lead
one to conclude that active monetary policy is stabilizing when in fact it is not.
The following proposition formalizes this result.

Proposition 1 (Global indeterminacy under active monetary policy
and separable preferences) Suppose preferences are separable in consumption
and real balances (q = w). Then, for r and A—1 positive and sufficiently small,
the equilibrium exhibits indeterminacy as follows: trajectories originating in the
neighborhood of the steady state (A, ) = (A\*,7*), at which monetary policy is
active, converge either to the other steady state, (\, ), at which monetary policy
is passive or to a limit cycle around (N*,7*). In the first case, there erists a
saddle connection and the dimension of indeterminacy is one, whereas in the
latter case the dimension of indeterminacy is two.

9Tf w = 0, A may not exist for all parameterizations of the model. For r sufficiently close
to zero or A sufficiently close to one (or both), X always exists.



Proof: See the Appendix.m

This result is likely to also arise in models with alternative specifications
of the source of nominal rigidities. For example, in a model with staggered
price setting like Yun's (1996) extension of Calvo (1983), the aggregate supply
schedule takes a form that is qualitatively similar to (24). Thus, we conjecture
that the Calvo-Yun model exhibits global indeterminacy of the kind described
in Proposition 1 as well.!°

Figure 2 illustrates the existence of a saddle connection from the steady state
at which monetary policy is active to the steady state at which monetary policy
is passive. In computing the equilibrium dynamics of 7 and A, the assumed time
unit is a quarter. The parameters R*, 7%, and r were set at .06/4, .042/4, and
.018/4, respectively. The parameter A was set at 1.5, so that at the active steady
state the Taylor rule has the slope suggested by Taylor (1993). These parameter
values imply that at the active steady state the nominal interest rate is 6 percent
per year, which equals the average three-months Treasury Bill rate in the period
1960:1-1998:9, the inflation rate is 4.2 percent per year, which is consistent the
average US inflation rate over the period 1960:Q1-1998:Q3 as measured by the
GDP deflator, and the real discount rate is 1.8 percent per year. In addition, we
set w = ¢ = —1 so that the instant utility function is separable in consumption
and real balances, and the intertemporal elasticity of substitution equals 1/2.
The parameter © was set at a value consistent with an annual consumption
velocity of money of 3. The labor share, a, was set at .7, and the labor supply
elasticity at 1. The value of n was chosen so that the implied markup of prices
over marginal cost at the active steady state is 5 percent, which is consistent
with the evidence presented by Basu and Fernald (1997). Finally, following
Sbordone (1998), we set ~, the parameter governing the disutility of deviating
from the inflation target, at —17.5(1 4+ n). Table 1 summarizes the calibration.
The inflation rate at the passive steady state is 0.7 percent per year, and the

Table 1: Calibration

i T* r A w o q ¢/m o v & 9

06/4 .042/4 .018/4 15 -1 -1 3/4 .7 1 105 350

Notes: (1) The time unit is one quarter. (2) x/(1 — ) = (¢/m)'~?/R".

sensitivity of the Taylor rule with respect to inflation is .63. The active steady

10Tn Calvo’s (1983) original sticky-price model, the aggregate supply function takes the form
7 = f(A). In this case, the equilibrium conditions (23)-(24) form a conservative Hamiltonian
system whose Jacobian has a zero trace and a positive determinant under active monetary
policy. Such a system gives rise to a continuum of cycles surrounding the active steady state.
These cycles are enclosed by a homoclinic orbit formed by the connection of the stable and
unstable manifolds of the passive steady state. The period of the cycles approaches infinity
as the cycles get closer to the homoclinic orbit.

10



Figure 2: Separable preferences: Saddle connection from the active to the pas-

sive steady state
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-0.01 1 1 1 1 I I
1.205 121 1.215 122 1.225 123 1.235 124
A

state is a source and the passive steady state is a saddle. Thus, the active steady
state is locally the unique rational expectations equilibrium whereas around the
passive steady state the equilibrium is indeterminate. The solid line in figure 2
displays the saddle path converging to the passive steady state. The dashed line
corresponds to the unstable manifold diverging from the passive steady state.
Three features of figure 2 are noteworthy. First, the indeterminacy result
established in Proposition 1 seems to hold not only for pairs (r, A) close to
(0,1) but also for empirically relevant values. Second, the saddle connection
is not inconsistent with the observation that the inflation rate fluctuates for
long periods of time in a region in which monetary policy is active, as has been
argued is the case of the U.S. economy since the Volker era (see Clarida, et
al., 1997; and Rotemberg and Woodford, 1997). In our calibrated economy
monetary policy is active for all inflation rates exceeding 2.6 percent per year.
Third, one argument for restricting attention to local dynamics is that observed
inflation fluctuations at business-cycle frequencies are relatively small. The
global dynamics illustrated in figure 2 suggest that the short-term fluctuations
in the inflation rate along the saddle connection are empirically plausible, with
a maximum annual inflation rate of 5.7 percent and a minimum of 0.7 percent.
The dynamics are robust to wide variations in parameter values. Figure
3 illustrates that the saddle path connecting the steady state at which mone-
tary policy is active with the steady state at which policy is passive does not,
disappear if: (a) A, the slope of the Taylor rule at 7 = 7*, is increased from
the baseline value of 1.5 to a value of 2, which, as some authors may argue,

11
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Figure 3: Separable preferences: Sensitivity analysis
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reflects more closely the stance of U.S. monetary policy in the post-Volker era
(see, again, Clarida, et al., 1997; and Rotemberg and Woodford, 1997); (b) 7*,
the inflation rate associated with the active steady state, is set at 3 percent per
year. This case illustrates that the global indeterminacy result does not hinge
in any important way on the inflation rate being high at the active steady state.
(Note that the inflation rate at the passive steady state is negative.); (c) v, the
parameter governing the cost of deviating from the inflation target, is reduced
from its baseline value of 350 to 35. Although not noticeable in the figure, for
such a low value of ~, the economy converges from the vicinity of the active
steady state to the passive steady state at a much higher speed than under the
baseline calibration; (d) the annual consumption velocity of money is increased
from 3 to 20. This result is of particular interest in light of the view that as a re-
sult of financial innovation agents are increasingly able to perform transactions
without money; (e) The discount rate, r, takes a value of 4, a value commonly
used in the real-business-cycle literature (Prescott, 1986); and (f) a markup of
prices over marginal cost of 20 percent is assumed. This number reflects the
upper range of available empirical estimates (Basu and Fernald, 1997).

5.2 Non-separable preferences

In this subsection, we consider preference specifications for which the intra- and
intertemporal elasticities of substitution are different from each other (¢ # w).
In this case, the equilibrium conditions (17) and (18) can be written as

A= A T+7T—R*€%(ﬂ_ﬂ*)} (25)

_ ag
1—a2\'7X .
R () el )

1
- +77:ro¢0)\w
~y

(14v)¢
L tveys
ay

1-x

where 3 and w are defined as in the previous subsection and x = ¢/(¢g — 1),
&= (w—q)/lag(l—w)] #0, and 0 = w/[ag(1 —w)]. Let A* be the steady-state
value of A associated with 7 =7*, A= 1, r = r°, and R* = 7* 4+ r° (with r¢ to
be determined below). Then, by equation (26) A* is implicitly defined by

L a0y <(R*)X <1 _ m>1_x 4 1)

Y xr

1— 2 1—x £(1+v)
im(1+v)0<)\*)ﬂ <(R*)X < > + 1)

ag

M.

oy T

The parameter ¢ is defined as the value of 7 that makes the trace of the Jacobian
of the system (25)-(26) equal to zero for A = 1. That is, r° is implicitly given
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1
C=_Bf| ——— M (1 -« 27
" §<rc+7r*>x (v =2, 27)
where

() (152)' ™

€T

B= ="
14 (R )x (L=2)

Inspection of (27) reveals that the existence of a positive r¢ depends on pa-
rameter values. For example, one can show that a positive r¢ always exists if
g € (0,1) and ¢ — w,n* > 0. Throughout this subsection, we assume that R*
is fixed and equal to r¢ 4+ 7*. When (r, A) = (r°, 1), the point (A, 7) = (\*,7*)
is the unique steady state of the system (25)-(26). At that point, monetary
policy is neither active nor passive (R/(7*) = 1). For parameter configurations
in which (r, A) # (r¢,1), the economy displays in general either none or two
steady-state values of m. When two steady-state values of 7 exist, the larger of
them corresponds to an active monetary policy stance and the smaller one to
a passive stance. In addition, each steady-state value of 7 is associated with
one or two steady-state values of A. The following lemma shows that under
the assumption that the intertemporal elasticity of substitution is less than one
(w < 0), each steady-state value of 7 is associated with a unique steady-state
value of A. For this reason and because it is clearly the case of greatest empirical
relevance, in what follows we assume that w < 0. The lemma also shows that
the steady state at which monetary policy is active is either a sink or a source,
while the steady state at which monetary policy is passive is always a saddle.

Lemma 1 Suppose w < 0. Then, the steady states of the system (25) and (26)
satisfy: (i) for each steady-state value of 7w there exists a unique steady-state
value of X; and (ii) the steady state at which monetary policy is active is either
a sink or a source and the steady state at which monetary policy is passive is
always a saddle.

Proof: See the appendix.m

The next proposition contains the main result of this subsection. Namely,
that if the steady state at which monetary policy is active is locally the unique
equilibrium (i.e., the steady state is a source), then the equilibrium is globally
indeterminate. Specifically, there exist equilibrium trajectories originating arbi-
trarily close to the steady state at which monetary policy is active that converge
either to a limit cycle or to the other steady state, at which monetary policy is
passive.

Proposition 2 (Global indeterminacy under active monetary policy
and non-separable preferences) For parameter specifications (r, A) suffi-
ciently close to (r°, 1), the economy with non-separable preferences exhibits in-
determinacy as follows: There always exist an infinite number of equilibrium

14



Figure 4: Non-separable preferences, w > ¢: Saddle connection from the active
to the passive steady state
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trajectories originating arbitrarily close to the steady state at which monetary
policy is active that converge either to: (i) that steady state; (ii) a limit cycle;
or (iii) the other steady state at which monetary policy is passive. In cases (i)
and (ii) the dimension of indeterminacy is two, whereas in case (iii) it is one.

Proof: See the appendix.m

The following corollary establishes parameter restrictions under which at-

tracting limit cycles exist around the steady state at which monetary policy is
active.

Corollary 1 (Periodic equilibria) If — B(1+v+a) < &€ < 0, then there exists
a region in the neighborhood of (r, A) = (r¢,1) for which the active steady state

s a source surrounded by a stable limit cycle. On the other hand, if £ > 0 or
&< m then stable limil cycles do not exist.

Proof: See the appendix.m

It is important to recall that the equilibrium remains globally indeterminate
even if limit cycles do not exist. This is because in that case there always exists
an equilibrium trajectory connecting the active steady state with the passive
one. In fact, as shown in figures 4 and 5, a saddle connection is the typical
pattern that arises under plausible parameterizations of the model with non-
separable preferences. In both figures, the calibration is the same as the one
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Figure 5: Non-separable preferences, w < ¢: Saddle connection from the active
to the passive steady state
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used in the economy with separable preferences, summarized in table 1, ex-
cept, of course, that now the intratemporal elasticity of substitution between
consumption and real balances, 1/(1 — ¢), is assumed to be different from the
intertemporal elasticity of substitution, 1/(1—w). In both figures, the intertem-
poral elasticity of substitution takes its baseline value of .5. In figure 4, ¢ is set at
-9, a value consistent with an interest elasticity of money demand of -.1. In this
case, w > ¢, which implies that consumption and real balances are Edgeworth
complements (Ug, > 0).'" In figure 5, q is set at —0.975, which corresponds
to a log-log interest elasticity of money demand of 1/2. In this case, w < g,
so consumption and money are Edgeworth substitutes (U, < 0). Under both
parameterizations, the active steady state is locally the unique perfect-foresight
equilibrium (i.e., the active steady state is a source). However, as the figures
suggest, from a global perspective it is clear that an infinite number of trajec-
tories originating arbitrarily close to the active steady state and on the saddle
connection can be supported as equilibrium outcomes because they converge to
the passive steady state.

The pattern illustrated in figures 4 and 5 is unchanged for values of ¢ between
-.975 and -9, the two values assumed in the figures. As ¢ is increased above -
975, the active steady state becomes a sink and thus the equilibrium is locally
indeterminate. If w > ¢ (U, > 0), the simulation results are, as in the case

HWhen Uesm > 0, the economy is equivalent to a cash-in-advance economy with cash and
credit goods like the one developed by Lucas and Stokey (1987).
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of separable preferences, robust to wide variations in other parameter values.
In particular, a saddle path connecting the active steady state with the passive
one continues to exist for more aggressive Taylor rules (A > 2) and lower costs
of price adjustment (for example, v = 35). In the case that ¢ > w (Uem < 0),
parameter variations may or may not eliminate the saddle connection. However,
when the saddle connection disappears, it is typically replaced by a situation in
which the active steady state is a sink, which is locally a more severe case of
indeterminacy.

6 Final Remarks

This paper shows that in a sticky-price model when a global analysis is under-
taken, the existence of a steady state with active monetary policy generically
leads to global indeterminacy. Although the prepositions above are proven for
specific functional forms to facilitate checking for non-degeneracies, it is clear
from the general structure of the equilibrium conditions that generically alterna-
tive specifications for smooth preferences and the interest rate feedback rule will
give rise to similar results, as long as the feedback rule assures the existence of a
steady state with an active monetary policy. The main results of the paper also
obtain in flexible-price versions of the model (Schmitt-Grohé and Uribe, 1998).
In this case, equilibrium dynamics are described by a scalar system where again
a continuous feedback rule generating a steady state with active monetary pol-
icy implies the existence of a passive steady state, with all the implications for
global indeterminacy, quite independently of the structure of preferences and
production.
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Appendix

Proof of Proposition 1
Preliminaries

To prove Proposition 1 we apply the following theorem due to Kopell and
Howard (1975):

Theorem (Kopell and Howard, 1975, Theorem 7.1): Let X = Fu.,(X)
be a two-parameter family of ordinary differential equations on R?, I smooth

in all of its four arguments, such that F, ,(0) = 0. Also assume:

1. dFy0(0) = A has a double zero eigenvalue and a single eigenvector e.

2. The mapping (p,v) — (det dF, ,(0),tr dF, ,(0)) has a nonzero Jacobian
at (p,v) = (070)

3. Let Q(X,X) be the 2 x 1 vector containing the terms quadratic in the x;
and independent of (j1,v) in a Taylor series expansion of F, ,(X) around
0. Then [dF0,0)(0),Q(e,e)] has rank 2.

Then: There is a curve f(u,v) = 0 such that if f(po, o) = 0, then X =
Flo vo(X) has a homoclinic orbit. This one-parameter family of homoclinic or-
bits (in (X, p,v) space) is on the boundary of a two-parameter family of periodic
solutions. For all ||, |v| sufficiently small, if X = F,,(X) has neither a ho-
moclinic orbit nor a periodic solution, there is a unique trajectory joining the
critical points.

To apply this theorem, we must first perform several changes of variables
and a Taylor series expansion of the equilibrium conditions around the steady
state. Let p=m — 7* and n = In(A/A*). Then the equilibrium conditions (23)
and (24) can be expressed as

= R*—I—p—R*e(Eﬁ)p (28)
po= rp— Tt () (W) e
_’_Ofl,yﬂn ()\*),8 &P 0(14v) (29>
Defining y = p/[M (8 — w)] and s = R*n, we have
§ = R4+ M(B—wRYy— R2emMB-w)y
§o= oy (T = e ) /(- w)

We now take a Taylor series expansion of these two equations around (s,y) =
(0,0), which yields

) ﬁZ _ u/,2 ﬁ3 _ u/,3 ‘
y = m’l—‘_%_'_ﬂ—w((y%*? >32+(3!R*3>s3+...> (31)
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with Jacobian

J:[ 0 R*(lA)M(Bw)}

which reduces to

0 0
1/R* 0
when r = (1 — A) = 0. We are now ready prove Proposition 1.

Proof of Proposition 1:

We prove the proposition by showing that for (r, 1— A) small enough, the system
of differential equations (30)-(31) satisfies the hypotheses of the Kopell-Howard
Theorem stated above. Let p =r, v =1 — A, and X = [s; y]. Then, the
system (30)-(31) can be expressed as X = F, ,(X). We have that dFpo(0) =
[00;1/R* 0]. Clearly, dFp o has a double zero eigenvalue and a single eigenvec-
tor e = [0; 1]. The Jacobian of the mapping (i, v) — (det dF, ., (0),tr dF, ., (0))
at (p,v) = (0,0) is given by [0 —M(F—w); 1 0] and is different from zero.
Note that neither A* nor M depend on i or v. The vector Q(e,e) is given by
[—M?(3 —w)?/2; 0]. Tt follows that [dFp0(0) Q(e,e)] has rank 2. The propo-
sition follows from the facts that the active steady state is a source, the passive
steady state is a saddle, and both s and y are jump variables.m

Proof of Lemma 1

(i) w < 0 implies that w > 0. Given a steady-state value 7 the uniqueness of the
associated steady-state value of A follows directly from evaluating (26) at # =0
and m = 7 and recalling that 5,1 +7n < 0. (ii) By definition, monetary policy is
active (passive) at a given steady state (A, 7) if and only if AelFe)m=m 5 (<)L
Let J denote the Jacobian of (25)-(26). Then .J;; = 0. Therefore, the deter-
(fm*)}

which is negative (positive) if monetary policy is active (passive). The element
Jo1 is given by

minant of J is given by —.Jo1.Ji2. The element Ji5 equals A {1 — AeFr

af

1 _
J21 — _wﬂxoﬁ)\wfl

gl

1-x

(1+v)¢€

4L p+meys-t
ay

s
T

1—x
(R")X <1 P x) R X 4

which is clearly positive. Therefore, the determinant of .J is positive (negative)
if and only if monetary policy is active (passive). m
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Proof of Proposition 2

We prove the proposition by applying a theorem and a lemma from Kuznetsov
(1995) that together allow us to transform the system of equilibrium conditions
into a simpler, topologically equivalent planar system of differential equations
with known bifurcation diagram. Technically, we show that the system (25)-(26)
exhibits a Bogdanov-Takens (double-zero) bifurcation at (r, A) = (r¢, 1).

Preliminaries

Let n = In(A/A*) and y = (v — 7*)/[M( — w)]. Then, equilibrium conditions
(25) and (26) can be written as

wn af
Bn v
n <ﬂew> (Be%xM(ﬂfw)y 41— B>(1+ )<
W= Tt MG w)y — R eR M-, (33)

Taking a Taylor series expansion of the right-hand side of this system around
(y,m) = (0,0) yields

g = {r—kB{%x]W(l—Fva)} y+n+ (34)
1 A 2 2 27,2
535(5 —w) <§XM’> [(1 +ov—a)(1=B)+ B((1+v)° — )} Y-+

Bf%x]\l[ﬂ(l—i—v)fwa}yn_F%(ﬂ_«_w)nQ_«_“.
ho= (r+a =R+ MB-w)(1-Ay-

1. (A ? .
ekl <§M(ﬁw)> Y. (35)

The Jacobian of this system is

r+BEAYM(1+v—a) 1
M3 —w)(1— A) 0]’

At (r, A) = (r¢, 1) this Jacobian collapses to

0 1
0 0]
which has two zero eigenvalues (the Bogdanov-Takens condition). We now state

the aforementioned theorem and lemma from Kuznetsov (1995).

Theorem (Normal form representation [Kuznetsov, 1995, Theorem
8.4]): Suppose that a planar system

i = f(z,a), =€R*® «acR?
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with smooth f, has at & = 0 the equilibrium x = 0 with a double zero eigenvalue.
Via a Taylor series expansion around x = 0 and transformation of variables,
this system can be expressed as:

71 = Y2+ ago () +a(a)y +aor (@) y2
1 1
+§0/20 ()7 + a1 (@) y1y2 + 5702 (@) ys + P1 (y,q)
2 = boo (@) + b1o (@) y1 + bo1 (@) o

1 1
+§bzo (@) i + bi1 (@) yryn + §b02 (@) ys + Py (y, ),

where ay (@), by, (@), and Py o (y,o) = O(|| y ||)® are smooth functions of their
arguments. Assume that

a0 (0) = a10 (0) = a1 (0) = boo (0) = 10 (0) = bo1 (0) =0
and that the following nondegeneracy conditions are satisfied:
(BT.0) the Jacobian matriz A(0) = %5(0,0) #0;
(BT.1) a20(0) + b11(0) # 0;
(BT.2) by (0) # 0;
(BT.3) the map

(r.0) = (oo (L) o (200 )

is reqular at point (x,a) = (0,0).

Then there exist smooth invertible variable transformations smoothly depending
on the parameters, a direction-preserving time reparameterization, and smooth
inwertible parameter changes, which together reduce the system to

{ mo=
e = B+ P+ +smna +O([ 0 |1°) 7
where s = sign[bao(0) (a0 (0) + b11(0))] = +1.

The explicit steps of the transformation of variables is given in Kuznetsov
(1995). We note that 8; and 5 are functions of a satisfying /1 (a) = 2 () =0
for a = 0.

Lemma (Effect of higher-order terms [Kuznetsov, 1995, Lemma 8.8]):
The system

{771 = N
na = i+ Lo +ni £mne+O(|n )

is locally topologically equivalent near the origin to the system

m = M
na = Pi4 o +ni Emne

We are now ready to prove Proposition 2.
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Proof of proposition 2:

We first show that the system (25)-(26) of equilibrium conditions of the economy
with non-separable preferences is in general locally (i.e., near (r, A) = (r¢,1))
topologically equivalent near the steady state (A, m) = (A*,7*) to the system

mo= M .

{ n2 = i+ o + 0 £mne. (36)
The first step is to show that the conditions of Theorem 8.4 of Kuznetsov (1995)
are satisfied by the transformation of (25)-(26) given by (32)-(33). Let = =
(y, n) and o = (1 — A,r — r¢). Then the system (32)-(33) can be expressed as
& = f(z, ). We have shown above that (32)-(33) has at a = 0 the equilibrium
x = 0 with a non-zero Jacobian. Thus, BT.0 is satisfied. We have also shown
that at (r, @) = (0,0) the Jacobian has a double zero eigenvalue. Tt is clear from

(34)-(35) that

ano (0) = a10 (0) = an1 (0) = boo (0) = b10 (0) = bm (0) =0.

Also, az0(0) = BE(B — w) (7 X]W)Q [(14+v—a)(l-B)+B(1+v)? —a?)]
and bgo(0) = —R*[1/R*M (8 — w)]? are in general non-zero while b11(0) = 0.
Therefore, BT.1 and BT.2 are satisfied. The Jacobian of the mapping (z, a) —

(F@a).tr (2822) et (2L221)) at (2, ) = (0, 0) is given by:

0 1 0 0

0 0 0 1
az0(0) a11(0) ¢ 1 [

—bap(0) 0 -1 0

where a11(0) = BEXMR*7[B(1 + v) — wa]. The determinant of this Jacobian
is equal to —bg(0)r¢, which is in general different from zero, so that the map
is regular at (z, a) = (0, 0) and condition BT.3 is satisfied. The claim that
the equilibrium conditions have the normal form representation given by (36)
follows from the theorem and the lemma stated above. Proposition 2 then
follows directly from Lemma 1 and the properties of the the bifurcation diagram
of (36) (see Kuznetsov, 1995, section 8.4.2 for the case in which the coefficient
on mn2 is —1 and Guckenheimer and Holmes, 1983, section 7.3 for the case in
which the coefficient on 7112 is +1).m

Proof of Corollary 1

The existence of stable limit cycles depends on the sign of the coefficient of
mne in (36), which is equal to the sign of the parameter s defined in Theorem
8.4 of Kuznetsov (1995) stated above. As shown in Kuznetsov (1995), if s is
negative there exists a region in the vicinity of (r, A) = (v¢,1) for which stable
limit cycles emerge. If s is positive, then stable limit cycles do not exist. In
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the economy with non-separable preferences, s = —sign(a20(0)), where as(0)
is given in terms of the structural parameters of the economy in the proof of
Proposition 2.m
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