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Abstract

This paper explores how to incorporate banks’ capital structure and risk-taking into models of
production. In doing so, the paper bridges the gulf between (1) the banking literature that studies moral
hazard effects of bankgelation without considering the underlying microeconomics of production and
(2) the literature that uses dual profit and cost functions to study the microeconomics of bank production
without explicitly considering how banks’ production decisions influence their riskiness.

Various production models that differ in how they account for capital structure and in the objectives
they impute to bank managers—cost minimization versus value maximizatierestimated irgg U.S. data
on highest-level bank holding companies. Modeling the bank’s objective as value maximization conveniently
incorporates both market-priced risk and expected cash flow into managers’ ranking and choice of production
plans.

Estimated scale economies are found to depend critically on how banks’ capital structure and risk-
taking is modeled. In particular, when equity capital, in addition to debt, is included in the production model
and cost is computed from the value-maximizing expansion path rather than the cost-minimizing path, banks
are found to have large scale economies that increase with size. Moreover, better diversification is associated
with larger scale economies while increased risk-taking and inefficient risk-taking are associated with smaller

scale economies.



Introduction

Textbooks usually claim that monercial baking enjoys scale economies that result from such
phenomena as spreading the overhead and better diversification. \Wimeercial banks merge, their
managers usually cite these scale economies as a justification for the merger, and the current wave of bank
mergers, which is creating eginely large banks, lends credence to their claims. However, most academic
studies of bank production fail to find evidence of these scale economies. This raises a fundamental question:
are scale economies inmamercial baking elusive or illusive?

We demonstrate that scale economies exist but thejusiwe and we show that they elude the
standard analysis of production because it fails to account for risk and, in particular, the endogeneity of risk.

If, for example, a larger scale of operations leads to better diversification that reduces liquidity risk and credit
risk, it is also likely to reduce the marginal cost of risk manantceteris paribus But, other things do not
necessarily remain equal. In particular, risk-taking is endogenous, and the reduced marginal cost of managing
risk may give banks the incentive to engage in more risk-taking. While scale-related diversification reduces
cost,ceteris paribus-thediversification effect—additional risk-taking may increase cost if banks have to
spend more to manage increased risk—ritietaking effect. Does the risk-taking effect mask scale

economies that result from better diversification? Using estimates of scale economies from a standard
model, we identify a diversification effect in a second-stage regression and provide evidence that, controlling
for risk-taking, better diversification alone can uncover the elusive scale economies. Thus, uncovering banks’
scale economies requires incorporating risk into the analysis of production.

Risk is an essential ingredient in bank production. Banks specialize in risk assessment, risk
monitoring, and risk diversification. The theory of financial intermediation hypothesizes that banks’ unique
capital structure gives rise to their cangtive advantage in assiegsand monitoring risk, which allows
banks to produce a variety of information-intensive assets and financial sérvices. Banks lever their equity
capital with demandable debt (demand deposits) that participates in the payments system. Access to the
deposit information of their customers gives banks a cost advantage over nonbank lenders in evaluating credit
and monitoring loans while it reduces the debt contract’s inherent naaaichproblem of risk-shiftg.* In
addition, banks’ unique capital structure occasiobstsuntial rgulation that produces well-documented,

contrasting incentives for risk-taking. On the one hand, the potential for costly episodes of financial distress,

'For a review of the scale economies literature, see HugjBe94).

2t is possible that a bank taking on more risk engages in less credit assessment and less monitoring, in which
case costs need not rise. In this case, the effect of taking on more risk would not offset the diversification effect and so
not obscure potential scale economies.

3See Bhattacharya and Thakor (1993) for a review ofitbiature.

“Calomiris and Kahn (1991) and Flannery (1994) analyze the incentive advantage of demandable debt, and
Mester, Nakamura, and Renault (1998) offer empirical evidence of the informational advantage of bardbavdr
lenders.
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which might involve liquidity crises, regulatory intervention, and, inemrir cases, revodan of the valuable
charter, gives banks an incentive to reduce risk-taking. On the other hand, mispriced safety-net protections,
such as underpriced deposit insurance and discount-window borrowing, provide an incentive to increase risk-
taking®

While many investigations have linked banks’ market value to their capital structure and to their
responses to the opposing incentives for risk-taking, they have generally ignored how risk-taking is linked to
production decisions. In contrast, investigations that have employed dual profit and cost functions to study
production decisions and scale economies have generally ignored capital structure and endogenous risk, which
has left them unable to analyze such risk-related phenomena as diversification andraodahihd to detect
the alleged scale economies that follow from better diversification.

We attempt to bridge these two literatures by incorporaimtpgenous risk-takinginto a model of
bank production, and we ask how incorporating aiff&cts the model’s estimates of scale economies.
Incorporating capital structure is a key component of this strategy, but an equally important component
generalizes the managerial objective function. There is an extensive literature on the contrasting incentives
for risk-taking created by banking’s unusual distrestscand by its safety net-sidies. To study how
banks’ capital structure and, in general, their production decisions are influenced by these contrasting risk-
taking incentives, models of banks’ decision-making must be sufficiently general to account for managers’
attitudes toward risk. Thus, we incorporate endogenous risk-taking into a model of production by
incorporating capital structure and bygeneralizing managerial objectivego include value maximization
as well as profit maximization. As Modigliani and Mill&r968) have noted, value maximiiat is a more
appropriate goal to attribute to managers when productiomiaaterized by uncertainty, because profit
maximization does not account for production risk or the appropriate discount rate that is applied to the profit
stream.

The rest of the paper is organized as follows. In section I, we explore how to incorporate capital
structure in models of bank production. To resolve a persistent question in modeling bank production, we
empirically test whether deposits are a net input or output. Then we estimate a minimum cost function that
accounts for banks’ mix of debt and equity. Using this minimum cost function, we compute a shadow price
for equity, and using this shadow price, we compute the cost of equity capital. Most studies of bank cost

functions exclude the cost of equity capital from their measurestd.célence, they model cash-flow costs

See, for example Demsetz, Saidenberg, and Strahan (1996), Keeley (1990), Grossman (1992), Marcus
(1984), and Merton (1977).

5See Hughesl@99a) for an extensive review of thiterature.



rather than economic sts’

In section Il we compute a standard cost function that omits equity capital, and we compare its
estimated cash-flow scale economies with those of the model that incorporates capital structure and the cost
of capital. Both formulations yield essentially constant returns to scale.

In sectionlll we ask if these two models’ estimates of constant returns to scale reflect «ingk-ta
effect that masks cost economies due to better diversification. To distinguish the effects of risk-taking and
diversification on scale economies, we regress banks’ scale economies on variables that control for their asset
size, sources of risk-taking, and their diversification. We show that better diversification is related to larger
scale economies while increased risk-taking is related to smaller scale economies. Most important, we
demonstrate that a proportional variation in size and diversification, controlling for sources of risk-taking,
yields a statistically and economically significant increase in scale economies.

In section IV we ask whether the objective of cost minimization is sufficiently general to model the
behavior of banks. We test whether the first-order conditieosssary for cost minimization are satisfied by
the data. We find that many larger banks tend to underemploy equity capital relative to their cost-minimizing
levels while most smaller banks tend to overemploy capital. This result is consistent with the tefaibig-to
incentive of larger banks to exploit safety-net subsidies and the incentive of smaller banks to protect their
generally higher ratio of charter value to book value by taking on less risk.

In section V, we model risk as an explicit component of banks’ production decisions by allowing
banks to be value maximizers rather than profit maximizers. That is, bank managers rank production plans
not just by their expected profitability, but also by their riskiness—by higher moments of the plans’ implied,
subjective probability distributions of profit. Although agency problems might mean utility-maximizing
managers might not choose value-maximizing plans, we show that the choices of efficient risk-takers in our
sample will approximate value-maximizing choices. We then measure scale economies alalugthe
maximizing expansion pathand compare this measure to those obtained from different formulations of the
cost-minimizing path in previous sections. By explicitly allowing managers to choose production plans that
do not necessarily maximize current expected profitability, we find the largest measured scale economies of
all the formulations. Moreover, these economies increase with bank size—a result tretsshggeven
megamergers are exploiting scale economies. In a second-stage regression, we show that higher scale
economies are associated with better diversification and lower scale economies are associated with increased

risk-taking and inefficient risk-taking. In short,jamercial baking’s alleged scale economies are not elusive

Studies that employ economic costs include McAllister and McMdr83) and Clark (1996).

SWhile the FDIC Improvement Act of 1991 makes it more difficult for regulatonsvinkie too-big-to-fail to
keep an ailing bank open, it does not close off this possibility for banks that would pose a systemic risk if allowed to fail.
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when production models include risk in banks’ production decisions.

l. Incor porating Capital Structure

The theory of financial intermediation identifies banks’ unique capital structure (levering equity
capital with demandable debt that is part of the economy’s payments system) as the source of their
comparative advantage inqaucing information-intensive loans and financial services. As noted above,
commercial banks’ congrative advantagavolves both an informational advantage and an incentive
advantage over nonbank lenders. As a source of loanable funds, debt resembles an input in the production of
loans and financial services. As a payments service, demandable debt resembles an output, although all debt
involves issuance and redemption activities. In either case, debt clearly is a component of banks’ technology.

In contrast to the debate over debt’s status in bank technology, equity capital’s status is often ignored
in models of bank technology even though the risk-incentives literature gives equity capital a prominent role
in banks’ decision-making. Banks’ equity capital serves as a source of loanable funds, as a cushion to protect
banks from loan losses and financial distress, and as a credible signal to less informed outside creditors of
asset quality and the resources allocated to maintaining their quality. Banks that fund assets with a lower
capital-to-asset ratio need more debt financing and have a higher risk of insate¢idyg, paribus Equity
capital is, thus, an important component of banks’ technology, too.

Incorporating debt and equity in models of bank technology raises two important questions: are
demand deposits to be modeled as an input or an output and how is the cost of equity capital to be taken into
account? The first question’s answer is often treated as a matter of taste, but the data can provide a
theoretically reliable answer. We implement an empirical testiaddHat deposits’ empirical influence on
cost is theoretically consistent with that of an input. We formulate the second question’s answer by
conditioning the minimum cost on the level of equity capital and computing equity capital's shadow price
from this conditional optimum.

Let bank technology be represented by the transformation funtfigmn, k) < 0, wherey denotes
information-intensive loans and financial servidegquity capitalx,, demandable debt and other types of
debt;x,, labor and physical capital; and= (x,, X, . Representing the price of the i-th type of inpuy
the economic cost of producing the output vegtisrgiven byw,x,+ wyX4+ W,k; omitting the cost of equity

capital, the cash-flow cosC¢;) is represented by, x, + w,X,.

°For a discussion of the signaling literature and how commercial banks signal their safety, see Lucas and
McDonald (1992) and tghes and Mestefl§98).
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A. Technguesfor Conditioning Cost on the Cpital Structure

The minimumoperating cost functionis defined by
1) Co(y, W, Xg, k) =min(w,x,) S.L.T(y, X, k) < 0,x,=x, andk = K°.
X
p
The operating cost function accounts for capital structure by conditioning cost on the levels of debt and
equity while excluding their expense from the cost function.
A cash-flow measure of cost includes the cost of debt but excludes the cost of equity capital. The

minimumcash-flow cost functionis defined by

2) Cerly, Wy, Wy, k) = min (w, x,+ W, X4) S.t.T(y, X, k) < 0 andk= K°.

pd
The level of debt minimizes cost while cost is conditioned on the level of equity capital. Hence, the level of
equity capital does not have to minimize cost. This formulation accounts for capitalization but does not
require a price for equity capital.

In contrast, the minimumconomic cost functioris conditioned on the price of equity capital rather
than the quantity and, hence, the level of equity capital minimizes cost:

3 C(Y, W, Wy, W )= min (W, X, + Wy X+ WK) s.t.T(Y, X, k) < 0.

Xp1xd1
While these three formulations of cost incorporate equity capital’s influence on production, many

bank cost studies omit any role for equity capital in defining cash-flow cost:

4 Cer (¥, Wy, Wq) = min (w, X, + Wy X4) S.L.T(y,x) < 0.
X, X
pr”d

The differences among these four formulations of cost are important. In the cash-flow cost functions
(2) and (4), (2) controls for the level of equity capital while (4) does not. The formulation in (4) is
misspecified because a change in equity capital affects the cash-flow measure of cost. Consider two banks
that differ only in their capital-to-asset ratio. The less capitalized banksstsing debt for equity, and
consequently, its cash-flow cost willaed that of the more capitalized bank. By not adlittg for the level
of capitalization, the cost function (4) makes the less capitalized bank’s production appear more costly. Of
course, the level of capitalization alsiects risk and, hence, the resources required to manage risk and the

required return on debt.

B. Are Demand Dposits Inputs or Ouputs?

Many studies of bank cost functions classify demand deposits as an “output” without testing whether
they are in fact an output. The intuition is that deposits involve transactions “services” that are costly to
produce. Of course, all leveraged firms incur debt issuance and redemptmn@aly comercial banks

rely heavily oordemandabl@ebt and are willing to assume its addests®f frequent issuance and
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redemption. When these studies treat deposits as an output, they include the quantity of deposits in the cost
function. But there is a complication: as debt, deposits involve a direct expense—the interest paid to
depositors. Hence, some of these studies include the interest expense in the meastsraraf titide the
interest rate on deposits in the cost function. Téeposits enter the cost function as a quantity (output)
and as a price (an expense) while the measure of costs includes the interest expense of dépesits
guantity as well as the price of demand deposits is included in the cost function, the cost function is defined
by
(5) Cere (s Wy, Wy, %) =[min (wx ) 1 +wixg s.tT(y,x) < O,w =w 7, andx &x g,

XP
but the solutionx(y, w,, X4), is not influenced by the price of deposits, since the quantity of deposits is
fixed. Hence, this cost function is equivalent to the sum of the minimum operating cost function (1) and the
fixed costs of depositsy,’ x,°.

The question of whether deposits are to be modeled as an output, an input, or as both an output and
an input is not a matter of taste. It is a technological question that can be answered by testing whether the
data are consistent with the different technological roles of outputs and inputs. Since the cost functions (2) -
(4) are conditioned on th@rices of depositand, hence, imply that the levels of deposits minimize cost, they
implicitly classify deposits as inputs. On the other hand, since the operating cost function (1) is conditioned
on thelevels of depositst is consistent with either role for deposits. In fact, it affords an empirical test of
the status of deposits. This test asks how an increase in the level of deposits affects the vanigfs cost,
of producing the output levelg, If deposits are outputs, then more variable inputs and, hence, variable
expenditure will be required to produgand the increaseq, which implies thabCy/ox, > 0. If deposits are
inputs, an increase in their level allows a reduction in the expenditure on variable inputs needed tg,produce
which implies thatC,/ox,< 0.1

We implement this test by estinmag a modified version of the operating cost function (1) using
1994 data on thieighest-level bank holding companies (BHCs) in the United States. These are holding
companies that are not owned by other companies. The sources of data and the definitions and constructions
of the variables are discussed in Appendix 1. We amend the operating cost function described in (1) to
account forasset quality, since asset quality influences risk and the cost of managing it. We use two
proxies: arex antemeasure, the average contractual interest rate on fmamsich, given the risfree
interest rater, captures an average risk-premium, andxapostmeasure, the amount of nonperforming
loans,n. Hence, the transformation function amended to account for asset quality b&¢gmep,X, k) <

0. In addition, we allow one type of debt, other borrowed funds, designatgd toybe a variable input

“See Hughes and Mestdr903) for the first application of this test to bank costs.
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while we control for the levels of the other two types of debt, insured and uninsured deposits, designated by
Xq4~- The resulting operating cost function includes the pyvjceand the quantities, . andk:

(6) Coly, N, PW, Wye, Xy, K) = min (W, X, + WyXy.) S.LT(Y, N, p.X, K) < 0,X40 = X%, andk = K°.
% Xgr

We estimate (6) using the translog specificationf; #, + Y e Inz + (%2 Y, & InzIn z, wherez = (y, n,
P, Wy, Wyr, Xgs K) and its associated share equations. We impose the usual restrictions. The test for input or
output status is conducted on both insured and uninsured deposits.

Table 1 reports the results of these tests for five subsamples,dishidgnthe sample by asset size.
The mean derivative®C,/0x,-) with respect to uninsured and insured deposits are significantly negative with
the exception of the largest group’s insured deposits. If the influence of three outliers is removed, this
group’s mean is also negative. Thilg data strongly imply that deposits function as inputs in
production. In the analysis that follows, we shall model them as inputs. Having identified the role of
deposits in production as that of inputs, we specify the cost function in terms of the operating cost function
(1), which includes the levels but not the prices of deposits, or in terms of the cash-flow function (2), which
includes the prices of deposits but not the levels. Appendix 2 explains why trying to include the price of
deposits, representing deposits’ role as an input, and the level of deposits, proxying for the transactions

services output, can lead to biased estimates of scale economies.

C. The Shadow Pricefdequity Capital

Having determined that deposits behave as inputs in our sample, we estimate the cash-flow cost
function (2), which conditions cost on the prices of deposits rather than their levels. This assumes the levels
of insured and uninsured deposits minimize cost. As in the estimation of the operating cost function, we
include controls for asset quality:

(7 Ceey, N, p.W,, Wy, k)= min (w, x,+ W, X3) s.t.T(y, n, p,x, k) < 0 andk= k°.
Xp Xg

This cash-flow cost function excludes the cost of equity capital but accounts for its level. If its level
minimizes economic cost at the market price of capitalt solves the minimization problem that defines

economic cost,

(8) o n, p,wp,wd,vw)=mli(n Cory, N, PW,, Wy, K) + WK,
and, hence, satisfies the first-order condition,
€) For
W, = -
K ok

“Note that the reported mean derivatives are computed as the mean of the derivatives calculated at each
observation rather than the derivative evaluated at the mean of the data.



Thus,-6C./ck gives the shadow price of equity capital; it equals the market price when the level of equity
capital minimizes cost.

Table 2 reports the estimated mean shadow price for equity capi@l-(ck) for each of the five
size groups and shows that it increases with asset size. If the level of equity capital is cost-minimizing—that
is, the shadow price equals the market price—the positive relationship between asset size and the estimated
shadow price suggts that larger banks hakigher levels of market-priced risk, which increase their
required return on equity.

But there are good reasons to believe that a bank’s capitalization does not minimize cost, and the
range of estimated shadow prices seems to confirm these reasons. In particular, the low shadow prices for
smaller banks relative to plausible market prices imply that their shadow prices are less than their market
prices, while the relatively high shadow prices for larger banks suggest that their shadow geiee $heir
market prices. By the criterion of cost minimizatiemaller banks appear to overutize capital while
larger banks seem to underdutize it. This pattern is consistent with smaller banks protecting their charter
values by holding extra capital and larger banks taking extra risk to exploit safety-net subsidies. We shall
return to this issue in section I\ the next section, we use the shadow price of capital to compute economic

cost economies.

lI. Calculatin g Scale Economies from Minimum Cost Functions

The standard analysis that omits any role for equity capital in bank production typically finds
constant returns to scale when measuring cost economies. Using the same definitions of inputs and outputs
as above (described in Appendix 1), we estimate the cash-flow cost function (4), which omits equity capital.
As shown in Table 3, we also find essentially constant returns to scale. We measure scale economies by the

inverse cost elasticity of output,

1
dinCc’

i alnyi
so thatscale economies 1 implies increasing returns to scale. The average scale economies for the full

(20) scale economies

sample is slightly greater than 1 but not statistically different from 1 for large banks.
We turn next to the alternative formulation of cash-flow cost (7) that accounts for the level of equity
capital. Including equity capital raises the question of whether scale economies are to be measured from

cash-flow cost or from economic cost. Very few studies use economic cost, since it is difficult to obtain a
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measure of the cost of capitdl. We calculate scale economies from the economic cost function by using the
shadow price as a substitute for the market price of equity capital; scatevees are calculated at each
observation’s observed level of equity capital. Since the shadowit€e,/ck, may in fact differ from

the market pricew,, we call the price we obtain from the cost derivatipseudo pricew,*. Thus,w* =

-0Cc/0k, the derivative of cash-flow cost (i.e., “short-run” cost) with respect to the conditioning level of
capital,k. Note that the observed levellominimizes economic (“long-run”) cost at* (see (8-9)):

(11 Cl, n, p Wy, Wy, W*) = Ceely, N, p, Wi, W K) + Wik

Hence, the measure of scale economies from the economic-cost function is

: . 1
(12) economiecost economies

8C(Y, N, P, Wy, Wy, Wit)
oy

y
C(y, n, p, W, W, W *)

To measure these scale economies, we need measures of total economic cost and marginal economic cost.
These can be obtained from the conditional cash-flow cost function. First, since the level of equitk,capital,
minimizes economic cost, the marginal cash-flow (“short-run”) cost equals the marginal economic (“long-

run”) cost

aC(y, n, p, W W, wex)  9C(y, n,p, W W, K)
dy dy '

(13)

Second, total economic cost, which is given by (11), is obtained by adding the shadow cost of equity,
(-aC-/oK)-k, to the cash-flow cost. Thus, subsiitgt(11) and (13) into (12), we obtain a measure of

economic-cost economies in terms of the cash-flow cost function:

2McAllister and McManus1993) arbitrarily pick a required return, which they assume is identical across all
banks. Clark (1996) uses the Capital-Asset-Pricing Model to determine a market-based, required returnwgn equity,

3This procedure is adapted from Braeutigam and Daugh@88(, who show how to computenb-run scale
economies from a short-run (variable) cost function. The application of their technique to measure the cost of capital
was proposed by Hughek999a).

1“See Braeutigam and Daughet@83) for a proof of this weknown proposition.
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(14) economiecost economies: 1
IC.Hy, n, p, W, W, K) . y
ay ac
CF
Corlys 1 Py Wy, Wy K+ ( ok )k
1 dInCqp
_ dink
¥ oINCeqr
i 8Inyi

Table 4 reports our estimates of economic-cost economies using (14) and the shadow prices of equity
capital derived from the estimated cash-flow cost function (7). For the sample average and for all but the
largest BHCs, production is atacterized bylightly decreasing returns to scale. For the largest BHCs,
returns to scale are not significantly different from 1. In general, these results are quite similar to the cash-
flow cost economies measured from the cost function that excludes equity capital and asset quality. They
suggest that simply accounting for asset quality and capital structure in the cost function is not a sufficient
control to identify a diversification effect and any resulting scale economies. In the next section, we ask if the

risk-taking effect masks scale economies and leads to these results.

lll. Risk-Takin g and Diversification Effects

To isolate the effects of risk-taking and diversification on scale economies, we regress the measure of
economic-cost economies reported in Table 4 on variables that control for sources of risk-taking and
diversification. We gauge a bank’s diversification by its exposure to macroeconomic risk. Banks that
operate a geographically diverse network of branches are more likely to reduce their exposure to
macroeconomic risk than banks operating in only one state or region. To construct a proxy for BHC
diversification, we begin by computing a variance-covariance matrisf state unemployment rates over the
period1985-94. The macroenomic risk a BHC faces is proxied by the standard deviation of its weighted-
average unemployment rate in the states in which it operated in 1994, where the BHC'’s deposit shares in each
state in 1994s, serve as the weights. The inverse of this measusgy 8/ is our measure of

macroeconomic diversification. A reduction in the weighted variance of unemployment rates increases our
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measure of diversificatioh.

We also control for a bank’s total assets and the asset growth rate from 1993 to 1994. To control for
sources of risk, we use the capital-to-asset ratio, the loan-to-asset ratio, measugeg@fsset quality (the
average contractual interest rate on loans)exnubstguality (the ratio of nonperforming loans to total
assets). In addition, we control for the average cost of other borrowed money (uninsured funds).

Using GMM, we regress the measure of economic-cost economies on these vardahtsriting
sources of risk and diversificatiéh.  The results, reported in Table 5, show that

(i) controlling for size and sources of risk, an increase in diversification is associated with larger
scale economies;

(i) controlling for diversification and sources of risk, an increase in asset size is associated with
larger scale economies;

(iii) controlling for sources of risk, a 1 percent increase in diversification and asset size is associated
with a statistically significant increase 00@084 in scale @momies:’ at the mean level of scale economies
this represents a 1.1 percent increase in scale economies; and

(iv) the effect of an increase in diversification and asset size on scale economies appears to be
economically significant, too, since controlling for sources of risk, an increase from the minimum levels of
diversification and asset-size in the samplé3010 and $32 itfion) to the maximum levels in the sample
(2.0957 and $249ilbon) would yield a (statistically significant) increase 008307 in scale enomies.

Risk-taking effects on scale economies are surprisingly varied: (i) the statistically significant,
positive coefficients on the average contractual return on assets and the ratio of nhonperforming loans to total
assets indicate that an increase in risk due to a reduction in asset quality is associated with larger scale
economies (possibly reflecting BHCs devoting few resources to risk srapagwhen theyhoose to make
riskier loans.); (ii) the statistically significant, negative coefficient on the average interest rate on uninsured
funds suggsts that the positive effect of a decrease in asset quddiht be partially offset if the increase in
risk also caused an increase in the interest rate on uninsured funds; (iii) the significant, negative coefficient
on the loan-to-asset ratio indicates that an increase in risk-taking that takes the fdrstitnfieg loans for
securities and liquid assets is associated with lower scale economies; and (iv) the large, significantly positive

coefficient on the capital-to-asset ratio implies that an increase in risk due to a lower capital ratio is

5This measure was used in Hughes, Lang, Mester, and M08 to study the benefits of bank
consolidation. They find that it is an important variable explaining how consolidation can improve banks’ efficiency
and market value.

®*Some variables are entered in logs to make it easier to compute the effect of a proportionate increase in the
variable on scale economies.

This is calculated by summing the coefficients on the log of diversification and log of assets.
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associated with lower scale economies.

In summary, this evidence demonstrates that banks’ diversification and risk-taking have statistically
and economically significant effects on their scale economies. Better diversification is associated with larger
scale economies whilelsstituing loans for securities and liquid assets and increasing the leverage ratio are
associated with lower scale economies. This evidence points to the need to incorporate risk into the analysis

of production if the elusive scale economies are to be uncovered.

V. Is Cost Minimization Consistent with the Data?

The theory of financial intermediation focuses on banks’ eratjve advantage in assiess
monitoring, and taking risk. Risk, then, is an important factor in bank managers’ consideration of potential
production plans. Production plans’ profitability must then be evaluated not just by their expected
profitability, but also by higher moments of their implied conditional probability distributions of profit. If
managers simply rank production plans by their first moments, they choose the plan that has the highest
expected profit, which implies that cost is minimized for the resulting output vector. But if risk is also an
important consideration in production decisions, managers’ rankings of production plans must account for
higher moments. Hence, they may trade expected profitability for lower risk to incredsethmted value
of profitand to lower the probability of costly financial distress. When risk influences production decisions,
managers may choose more costly but less risky production plans to produce any given output vector.

The risk-incentives literature in banking emphasizes two contrasting incentives that motivate risk-
taking. On the one hand, safety-net subsidies, such as mispriced deposit insurance, give banks the incentive
to increase risk to exploit the put-option value of the insurance. On the other hand, the potential for costly
episodes of financial distress entailing liquidity crises, regulatory intervention in a bank’s operations, and
even forfeiture of the valuable charter gives banks the incentive to reduce risk. Since the value-maximizing
production plan must account for this risk trade-off, it may poegsarily maximize current expected profit.
Value maximization, then, is a more general objective than profit maximization because it ranks production
plans not just by the first moment of their implied subjective conditional distributions of profit, but also by

higher moments that ahacterize risk.

A. Testirg the Assunption of Cost Minimization

Most studies of bank technology do not test their assumption of cost minimization or profit
maximization. However, there are several notable exceptions. For example, English, Grosskopf, Hayes, and
Yaisawarng (1993)ifid that an important source of bank inefficiency results from overutilization of

resources. Evanoff (1998) and Evanoff, Israilevich, and Merris (1990) estimate barnkdgyg by using a
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shadow cost function and find that the shadow prices at which cost is minimized are not equal to market
prices. They interpret their data’s failure to satisfy the conditions for cost minimization at market prices as
evidence of regulatory distortions. MestE®89) tests forvddence of expense-preference behavior, a
particular form of overutilization of resources, in savings and loan associations. N@8StErtests for

agency problems leading to deviations from cost-minimizing behavior in savings and loans.

Using the estimated model of operatingtsodefined in (6), we test our data to see if BHCs'
production decisions are consistent with cost minimizing behavior. In particular, we focus on the capital
structure and ask if it minimizes cost. The minimum operating cost function in (6) is conditioned on the
levels of insured and uninsured deposits and equity. Then, the minimum economic cost function is the sum of
minimum operating cost and the cost of equity and deposits when their levels are optimal. Thus, the cost-
minimizing capital structure solves

(15) min C.(y, n, p,W,,W,-, X4, K) + W, Xq- + WK S.t.T(y, n, p,X, K) < 0.
Hy i bWy s Xy 47 Xg k

The first-order conditions of this minimization problem are

aC aC
(15a) —P 4w =0 and £+ wy = 0.
ok aXd//

When these conditions fail to hold, say for capital, they imply the following:

oC
(15b) a_kp +w, >0 = overutilization of capital,
oC L ,
(15¢) a—kp + W, < 0 = underutilization of capital.

Using the estimated operating cost function, we test whether the first-order conditions (15a) hold for
each BHC in our sample. In other words, do BHCs use the cost-minimizing capital and deposit structure?
For the uninsured and insured deposissstey, . is proxied by the BHC's average interest rate paid to each of
these two types of deposits (see Appendix 1). For the financial capital test, since we do not have a price for
equity in our data and since many of the BHCs in our sample are not publicly traded, it is difficult to obtain
market prices for them. So we evaluate optimality for a range of prices betweénl4 andv, = 0.18,
which are chosen as a plausible range of market return for banks’ equity. That is, we ask if the level of equity
capital minimizes cost at a market return on capital between 0.14 and 0.18. (See footnote 19 for more about
this range.)

As shown in Table 6, our data overwhelmingly reject the hypothesis of cost minimization. The

nature of the violations of the first-order conditions depends on the size of the bank. In the range of asset
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sizes up to $10illion, most bankverutilize both types of deposits and equity capital (relative to all other

types of borrowed funds) while many banks at®i# hllion underutilize deposits and capit&t!®

B. Implications d the Violation d Cost Minimization

Overutilization of capital implies that the capital-to-asset ratio is too large to minimize
cost—although a larger ratio reduces the risk of insolvency and protects charter value. Underutilization
implies that it is too small—although a smaller ratio increases risk and the value of safety-net subsidies. If
this difference between larger and smaller banks reflects different incentives to take risk, it represents a value-
enhancing capital allocation even though it fails to minimize cost. If risk matters in production decisions,
why model scale economies along the cost-minimizing expansion path?

Of course, any production plan thatéshnically efficient can be made to minimize cost at the
appropriate shadow prices, and scale economies can be measured abaddiecost-minimizing
expansion path In section I, we adopted this strategy to measure economic-cost economies from the
conditional cash-flow cost function: we assumed that each bank’s observed level of capital minimizes shadow
cost, which does not equal cost measured at market prices. But this approach has two fundamental problems.

First, the measure of scale economies derived from shadow prices relies on prices that are not
observed to compute a cost that is not incurred. Although this measure of scale ecoravattsrizies the
cost-minimizing expansion path, it does ne¢mm necessarily useful in exjlimg the behavior of banks’
observed cash-flow costs as they expand.

Second, it requires production decisions to be technically efficient, which means that in the
production of any given output vector, banks cannot use extra resources to reduce risk: thegassestily
use the minimum resources required to produce the given output vector without consideration of risk. For
example, consider two banks that produce the same portfolio of loans and financial services. One uses extra
labor to assess and monitor credit risk and, hence, to reduce risk. The less risky bank is technically
inefficient, although it is also less risky.

The shadow-price technique of gauging technology is useful as long as risk does not matter. When
risk does not influence production decisions, production plans are ranked by the first moment of their implied
subjective, conditional probability distributions of profit. Profit and cost can be defined in terms of any set of

shadow prices so that any technically efficient production plan can be made to minimize cost at some set of

BWe also conduct the test for the optimality of capital with the estimated cash-flow cost function (7) and obtain
the same conclusion: most smaller banks overutilize capital while many larger banks underutilize it.

%As shown in Table 2, the mean shadow price is rather low for BHCs with less thaitli§dOnbassets and
rather high for those with more than $1ilidn. This spread in shadow prices implies that the pattern in over- and
underutilization of capital will hold for a much wider range of market prices than 0.14 to 0.18.
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shadow pricesBut when risk influences the ranking of production plans, higher moments of the
distributions matter in the rankings so that plans that are not technically efficient may nevertheless
maximize value—expected profit discounted by the risk-adjusted rate of interest less any expstieaif co
financial distress And there is no set of shadow prices at which a technically inefficient production

plan can be made to minimize shadow cost or maximize shadow profithis is the most compelling
reason that the assumptions of profit maximization and cost minimization are inadequate for the task of
modeling risky production.

Incorporating risk into the analysis of production requires nobsatiuion of shadow prices for
market prices when the data fail to satisfy the first-order conditions for cost minimization (and profit
maximization), but a dstituion of a different managerial objective function that is consistent with the data
at observed market priceH.bank production is modeled so that observed production decisions
represent an equlibrium at market prices, then the expansion path and the assodied measure of
scale economies that are derived from this model could incorporate value-maximizing production
decisions that incur extra cost for reduced risk.Thus, when risk influences production decisions, scale
economies should be measured along the value-maximizing expansion path rather than the cost-minimizing
path.

In the next section, we present a more general model of production that allows higher moments of
probability distributions of profit to influence managers’ rankings of production plans. In the absence of
agency problems between managers and outsider-owners, such rankings can be assumed to reflect the
owners’ objective of value maximization. In the presence of agency problems, such rankings may capture
managers’ private concerns for perquisites and risk—perhaps risk avoidance to protect their relatively
undiversified investment of human capital. As an empirical matter, we can expect agency problems.
Consequently, we include a technique that distinguishes efficient managers from inefficient ones to identify
the efficient expansion path. We then link the efficiency criterion to value maximization—the distinction
between efficient and inefficient firms can be used to bound the value-maximizing expansion path by the

efficient, utility-maximizing path.

V. Scale Economies Alog the Value-Maximizing Expansion Path

The value-maximizing expansion path differs from the cost-minimizing expansion path in that it
accounts for the market-priced risk of production decisions. A bank’s productionyplam &, k),

influences its market value of equitMVE, through its effect on the expected cash flBYGCFE), and the
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market-priced risk of the cash flow, which determines the discountuyatgplied to it°

A production plan’s risk influences not just the discount rate on cash flow (the required return on
equity), but also the expected cost of financial distress, which in the case of commercial banksvean
liquidity crises, regulatory intervention, and even revocation of the valuable charter. A plan that maximizes
profit (and minimizes cost) does naagssarily maximize market value, since profit maximization does not
take into account the plan’s effect on the discount rate, the required return on debt, and the expected distress

costs?!

A. Incorporating Risk into Manayers’ Rankings d Production Plans

If managers’ decision-making is modeled assuming that managers maximize profits (minimize cost),
their ranking of production plans depends only on the first moment of the plans’ subjective conditional
probability distributions of profit. If, instead, their decision-making is modeled assuming that managers
maximize value, their ranking of production plans must account for higher momentsatiaat@tize the
plans’ riskiness. To allow higher moments to influence rankings, we represent managers’ rankings with a
managerial utility function defined over production pléhs.

Hughes and Moonl©95) show that this represembatof the managerial utility function is a
generalization of the utility function defined over expected profit and profit risk or expected return and return
risk—the first two moments of the profit distribution. It is sufficiently general to incorporate profit
maximization where only the first moment influences the ranking and value maximization where higher
moments also affect the ranking. To rank production plans, managers must translate plans into subjective,
conditional probability distributions of profit. Their beliefs about the probability distribution of states of the

world, s, and about how plans interact with states to yield a realization of prcfig(y,, n., p, X K» ),

2Hence, the market value of a bank’s equity is given by the expectation conditional on information at time 1,
MVE, =27, E{[CFE(y, N, X, KV [ [1+wW, {y 4N P X KO)I}. The expected cash flow takes irtocount
solvent as well as insolvent states of the world and, consequently, includes payments to factors of production and to
stakeholders and payments to third parties during episodes of financial distress. Ignoring depreciation, after-tax net cash
flow is designated by, = (1-7) (p, Y, —~ W, X, ~ Wq.Xq ), Wherez is the tax rate on profit. Letting,= 1/(1-7) be the
price of a dollar of after-tax cash flow in terms of before-tax dollars, the before-tax cash flow is gifendyy, = p.y;
- W, X, ~ Wy X4, The expected cash flow consists of the expected after-tax profit less the expected costs of financial
distressCFD,: E(CFE )=E(z, - CFD,). The analysis of how a bank’s production plan influences its market value is
detailed in Hughes, Lang, Moon, and Pagdr@9{7) and in idghes, Lang, Mester, and Mod9@9).

2See Hughesl@99a) and (1999b) for a detailed discussion of this point. The most prefededtmn
system, described in sections V.A, B, and C, is analyzed in more detail in Hughes, Lang, Mester, ad@98oon (
1996, and 1999).

22This technique was first proposed by HugHe380) to model cost functions for hospitals and for education
(1990). It was developed in its current form for commercial banksugpés, Lang, Mester, and Modtb05, 1996,
1999) and by Hghes and MoorlQ95).
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imply a subjective distribution of profit that is conditional on the production flany;, n, p, X k). Under

certain restrictive conditions, this distribution can be represented by its first two mdsieptg, n., P, X,

k) andS(7; y,, n, Py, X, k). Rather than define a utility function over these two moments, we define it over
profit and the production plab)(z,; vy, ., p, X, k), which is equivalent to defining it over the conditional
probability distributiong(-). Thus, this generalized utility function can represent value maximization as well

as profit maximization. Of course, it can also represent rankings of production plans that reflect agency
problems—say, entrenched managers that avoid risk because their firm-based wealth is not well diversified or
less skilled managers who try to disguise thdissandard performance byiag excessive risk to earn a

better expected retufs.

We assume the path utility-maximizing BHCs take when they grow will correspond to the market-
value maximizing path of efficient BHCs in the sample. Efficiency is determined relative to an expected
market value versus risk frontier. This is equivalent to assuming capital market discipline is effective at these
firms. Said differently, for the most efficient banks in our sample, the highest ranked plans—their managers’

most preferred production plans—approximate the value-maximizing expansion path.

B. Managers’ Most Prderred Production Plagt

The managers’ most preferred production plan maximizes utility, subject to the definition of profit
((16b) below) and to the tlenology ((16c¢) below). We include the rilee rate of interest, in the utility
function andm, noninterest income in the definition of profit. The sum of interest ingaynand noninterest
income,m, gives total revenue. We condition the utility maximization problem on the output vector to
facilitate the calculation of scale economies and on the level of equity capital so that we can normalize profit

by capital to obtain a rate of return on equity. Hence, the most preferred production plan is the solution to the

problem
(16a) maxU(r, X; ¥, n, p, r, K)
T, X
(16b) StPm=py+m-w,X, - WXy
(16c) T, n, p, x, k) < 0.

The solution gives the most preferred profit functieh= z(y, n, v, m, k) and the most preferred input
demand functions¢* = x(y, n,v, m, k) wherev=(w, p, r, p, ) 7 is after-tax net cash flow,= 1/(1-7) is

the price of a dollar of after-tax cash flow in terms of before-tax dollarsz &nithe tax rate on profit.

#See Gorton and Rosen (1995).

ZMuch of the description of this model has appeared elsewhere (Hughes, Lang, Mester, arid®mon,
1996, 1999); itis included here as an aid to the reader.
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Note that the profit function is noeoessarily the maximum profit function. The most preferred
profit function and input demand functions define the highest ranked production plan or, equivalently, the
highestranked subjective conditional probability distribution of profit. They reflect managers’ assessment of
how the moments of this distribution influence market value and other goals that may arise from agency
problems.

Although the historical risk resulting from past production decisions is readily observalebe, the
anterisk that motivates current production decisions is not. Butridisectly observable in these demand
functions because they reveal thaekingsof production plans. We turn next to the question of how these

rankings can be recovered from production data and what can be inferred from them about risk.

C. Almost Ideal Demand (Production)yStem

Just as the estimation of consumers’ utility-maximizing demands recovers their preferences for goods
and services from their budget data, the estimation of the most preferred profit and input demand functions
recovers managers’ preferences for production plans or, equivalently, for subjective probability distributions
conditional on the production plan from their production data. We adapt the expenditure function of the
Almost Ideal Demand System (Deaton and Muellbauer, 1980) to represent generalized managerial
preferences and use it to derive the functional forms for the utility-maximizing demands for profit and the
production plan. These profit and input demand functions are expressed as shares of totapyevenue,
and sum to one. In addition to the share equations, we estimate the first order condition for the optimal level
of equity capitalk, which is a conditioning argument in the share equations. (See Appendix 4 and HLMM

1996 for details of the derivah.) Thus, the model to be estimated is:

(17a) PR3P Gy + m) - InPY
py + m dinp,
(17b) W5 NPy lin@y + m) - InP] Vi

py +m  Jdinw,

V) _ V() aink _

(17¢)
ok dlink ok

whereln P =, + Y, a;Inz + (%), Y, & Inz Inz,z=(y, n,v, K), and the indirect utility function/(:), of

the maximization problem (B-(16c) is
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In(py + m) - InP

(17d) V() =
Bo(HyiBi) (Hwivj) prK*
i i

The details of the derivation of these equations are found in Appendix 4 and in Hughes, Lang Mester, and
Moon (hereafter denoted HAM) (1996).

Adding-up, homogeneity, andraynetry were imposed (see HLMMY95, 1996) for details of these
restrictions). Because preferences of managers represent their beliefs about the probabilities of future states
of the world and how those states interact with production plans to generate realizations of profit, we expect
managers’ preferences to change over time. To deal with this problem, cross-sectional data were used in
HLMM (1996) (the same data used to estimate theigue cost functions) to estimate the production system
with nonlinear two-stage least squares, which is a generalized method of moments.

HLMM (1995) show that when the com@tive-static restrigins implied by the assumption of
profit maximization are imposed on the AID Production System, it becomes identically equal to the standard
translog profit (cost) function and share equatidns. These restrictions allow a test for the consistency of the

data with profit maximization (cost minimization).

D. Measuring Scale Economiefrom the Most-Préerred Cost Function

Since the utility-maximizing demand for profit is conditioned on the output vector, the managers’
most preferred cost function can be readily computed from it:

(18) Cue(y, v, M, B = py+m- p.(y,nv, m,R.
Scale economies computed from the most preferred cost function are defined by

C - m -
(19) most-preferred cost economies MP = Py - PuT ,
oC dCyp 3k op,m P, T 3k
Z yi MP + MP R Z yi pi _ “Fm Pt OR
Y, ok oy, i y, dk oy,

whereok/oy, is computed from the first-order condition (17c).

Scale economies measured by the most-preferred cost function describe the elasticity of cost along
the utility-maximizing expansion path. This path is a generalization of &@st-minimizing path and can
accommodatgalue-maximizing production decisions Hence, it accounts for managers’ assessment of
how their production decisioradfect the bank’s exposure to market-priced risk. The theoretical relationship

between most-preferred cost economies and cost economies measured from the minimum cost function is

%The AID System does not require the translog form. It can nest any flexible functional form.
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discussed in Appendix 3. In particular, we show that just adding a contes! farstrisk into the traditional

cost function cannot adequately capture the idea that managers might use resources to manage risk.
Because the AID System is a flexible functional form, the estimate of scale economies in (19) varies

from BHC to BHC in the sample. Table 7 reports the mean of these estimates over the entire sample and for

BHCs in five asset-size groufs.

E. Scale Economies, Diveffgtation, and Risk-Takim

The mean measure of scale economies for the full sample is 1.14. For the smallest banks in the
sample the mean is 1.12; for the largest, 1.25. Soat®etes that are greater than one and that increase
with size represent a disequilibrium in U. S. banking that is the result of historical restrictions on both
intrastate and interstate branching. As states began relaxing these restrictioh9&0sha wave of
mergers ensued. Increasing scale economies are consistent with this wave, which has withessed mergers
among the largest banks that have created banks afagulented size where, again, scatmemies are
cited as one of the benefits of consolidation. The magnitude of these scale economies and their relationship to
size have been confirmed in other applications of the Most Preferred Production @4B8fe8) and by a
few other studied’

Following our procedure in sectidih, we next regress most-preferred costremmies on variables
charactering risk-taking and diversification; results are shown in Table 8. We again find that scale
economies increase with size when we control for sources of risk-taking. Although better diversification

increases scale economies, the effect is not statistically significant. However, controlling for sources of risk-

%The estimates differ slightly from those reported in HLMM (199&)ause the samples differ slightly.

ZDeYoung, Hughes, and Mooh998) estimated the MPPS for U.S. national banks in 1994 anoligit they
did not report the measures of scale economies, found an average measure of 1.12 that increased from 1.08 for banks
with less than $300 iffion in assets to 1.21 for banks whose assets exc&&detllion. HLMM (1995) use the
MPPS to estimate scaleagmmies fol286 U. S. banks that ezed $1 billion in assets. Using a cross sectidi®80
data, they obtained an average of 1.15 for the full sample. Scale economies increased from 1.10 for the smallest quartile
to 1.21 for the largest quartile. When they imposed the parameter restrictions implied by cost minimization, the measure
of scale economies fell to the usual range: 1.02 for the smallest quartile to 1.05 for the largest. This contrast between
scale economies measured along the utility-maximizing expansion path and along the cost-minimizing path suggests that
the behavioral assumption used to recover technological relationships is very important.

The few other studies that have found evidence of scale economies in banking have important differences with
the models that have found no such evidence. Berger and Mex3&) {nclude the level of equity capital and measures
of output quality and historical risk in their model of profit maximization, which is estimated as a frontier. The optimal
scale for banks in each of six asset-size groups is found to be two to three times larger than the average size bank in the
size group—a result that suggests no size group represents a long-run equilibrium199BYykreasures scale
economies from economic cost and accounts for risk by using the Capital Asset Pricing Model to compute the required
return on equity capital. He obtains evidence of scale economies from his model when he uses frontier estimation
techniques. Hughes and MestE998) include a measure of historical risk andount for the level of equity capital in
a model of cost minimization, but demand for capital maximizes utility and does not necessarily minimize cost. Hughes
(1999a) reviews these studies in greater detail.
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taking, a proportional increase in both diversification and assets is associated with higher scale economies,
and the effect, 0.03559, is statisticallgrsficant and three times larger than the effect of the same variation,
0.01084, measured by thénimum cost function (see Table 5). An increase from the minimum levels of
diversification and assets in the sample to the maximum |leetésjs paribusimplies an increase of 0.2015

in most-preferred cost economies. As expected, increased risk-taking is associated with lower scale
economies when we control for size: an increase in the average contractual return on assets, an increase in the

loans-to-assets ratio, and a decrease in the capital-to-assets ratio are associated with lower scale economies.

F. Defining Efficiency to Approximate the Value-Maximizig Expansion Path

As we discussed above, we assume that the utility-maximizing expansion path for the efficient BHCs
in the sample will correspond to a value-maximizing expansion path. Efficient BHCs are those that achieve
their highest potential market values.

To implement this concept of efficiencyinig the most preferred production plan, we must link the
estimated most preferred production plan to the moments of its implied distribution of profit and show that
these moments are relevant to observed market values. These steps are described in detail in HLMM (1999)
and in Hughes1(999a, 1999b). We briefly dirte them here.

To measure efficiency, we first derive the expected return on equity (ROE) from the estimated most
preferred production plan model. The expected ROE is readily obtained from the estimated profit share
equation (21a), since it is conditioned on equity capital:

(20) E(p,n/K) = [s,(Bl(py+ m)/K],

where sﬂ(fi) is the estimated profit share. Next we need to measure ROE risk, which is less

straightforward. We use the standard error of the predicted ROE—an econometric measure of prediction

risk, which is a function of the exogenous variables of the production sygteny,(m, B. So the ROE's

prediction risk depends on production decisions and the economic environment—the mix ofypaigaes

guality n, the price and interest rate environmentff-balance adtity m, and the level of equity capitial

The standard error of the predicted profit share is defined by

(21) S(p.a(py+m) = [X'var)X]*?

where [X 'vér(f}) X] is the estimated asymptotic variance of the predicted siqg{f’f) and
X:asﬂ(ﬁ)/a[s. Then the prediction risk of ROE is givertby

%Note, we use nonlinear two-stage least squares, a general method of moments, to estimate the share equations
so that we do not impose homoscedasticity on the error terms. Thus, the resulting variance-covariance matrix of

parameter estimatesvér(ﬁ), reflects non-constant error variance across banks and captures how the production plan

and economic environment of each bank influence the prediction risk attached to its expected return.
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(22) Sp,m/K) = [X var(B) X]¥2 [(py + m)/K.

Neither the production-based measure of expected return nor the econometric measure of prediction
risk is standard. Nevertheless, for our purpose of identifying BHCs that are relatoealgsful in achieving
their highest potential market value, we need only show that these measures can adequately explain market
value. Since market value is the discounted expected cash flow, the production-based expected profit must
account not only for the current-period expected profit, but also must proxy future expected profit. In
addition, profit risk must be a good proxy for the market-priced risk that establishes the discount rate. The
expected cash flow includes expected distrestsas well as expected profit. diesns lestikely that the
production model captures potential distresstsoWe turn to market-value data to assess the adequacy of
the production-based measures in explaining value.

Using thel90 BHCs that are publicly traded, we regresdritend-of-year 1994 market value) of
these banks on thdir(expected profitE,(p, 7)), andin(profit risk, S(p,7)).?* The resulting estimated
equation is as follows:
(23) In(market value of equity ) = -0.784+ 1.617In E(p,7) - 0.672In S(p,.7).

(0.379) (0.088) (0.086)
(standard errors in parentheses)

The coefficients on expected return and return risk have the theoretically correct signs and are significant at
the 1 percent level. The adjusted R-squared is 0.96, so our production-based measures of expected return and
return risk substantially explain market value. We can then use these to derive market return efficiency
measures based on a stochastic frontier (Jondrow, Lovell, Materov, and S&i@8R)}tdeveloped the
stochastic frontier methodology for measuring efficiency).

In particular, allowing the frontier to be nonlinear, we fit return as a quadratic function of risk:
(24) E (pn/k) =T, + 'S (p.n/k) + L[S (p,n/k)]* + €,
where the error terng, = v, - U, is composed of a two-sided component,distributed N(0p?), which
accounts for unmeasured randomness in the data generation process, and a one-sided agmiynent,
distributed half normally, N(62), which gauges inefficiency. A BHCigturn inefficiency is measured by
the conditional expectation of u given It represents the difference between a BHC's expected ROE and
the frontier value of ROE, for given level of risk, adjusted for noise.

To interpret this measure, note that if two BHCs have the same level @ tjskge is more return

efficient than the other if it has a higher expected return , i.e., its risk-return combination is closer to the

This result is also reported in HLMM (1999).
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efficient frontier. It also means that the more efficient BHC has a higher market-to-book value oPequity.

We will assume that the production decisions of the most efficient banks, those whose risk-return
combinations are closest to the frontier, approximate value-maximizing decisions and compute mean scale
economies for the most return-efficient banks. There is one caveat: when we measure efficiency, the peer
group of any BHC is defined by risk, i.e., we compare BHCs with the same level of risk. Hence, the loss of
market value due to a suboptimal choice of risk is not taken into account. For a variety of reasons such as
differing charter values, there will be no unique optimal level of risk for all banks. It neigit slausible
that BHCs that achieve the highest expected returns at any given level of risk also choose risk efficiently. But
as a robustness check, we compute mean scale economies for efficient subsamples defined by two alternative
measures of efficiency derived directly from market values. These two measures include inefficiency due to
suboptimal levels of risk, and we can compare the consistency of these two market-value-based measures of
efficiency with the production-based measure.

The market-value-based measures of efficiency are those computed in HLMM (1999), which
followed the methods in Hughes, Lang, Moon, and Paged®7(). U@ng stochastic frontier estimation

techniques, we fit the following two frontiers:

(25) Market Value of Assets= ¥, + ¥ Adjusted Book Value of Assets
5
+ ¥ (Adjusted Book Value of Assef + &,

06 Market Value of Equity = ®, + ® ,Adjusted Book Value of Equity

(20 + @ (Adjusted Book Value of Equity? + EF,

where the adjusted book value of equity is the book value of equity minus goodwill and the adjusted book
value of assets is the book value of assets minus goaghwilly® - uf andg# = v/ - u? are composite error
terms, withv§ andv” normally distributed with zero means, affd u afid u positive and half-normally
distributed. Thenarket-value asset inefficiencyof a BHC is measured by the conditional mearfiof u given

A, and represents the amount by which the BHC could increase the market value of its assets if it were as

well positioned in the marketplace and as efficient as the best-practice BHCs. The relevant peer group is

*To see this, consider two BHCs with the same level of risk. Then by (24), the BHC that is more return-
efficient has higher expected ROE, thatf, 7/k) = E(p,7)/k. By estimated equation (23), the estimated numerator of
expected ROE, namely, expected préifp, ), is a function of the market value of equity and profit r&kp. 7). And
the denominator of expected ROE is the book value of eguifihus, when we compare two banks with the same level
of risk, we can conclude that the more return-efficient bank also has a higher market value-to-book value. Linking the
production-based measures of expected return and return risk to market value allows us to infer that the frontier defines
the highest potential market-to-book ratio for any given level of risk.
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BHCs with the same book-value of assets. This measure would include inefficiency due to suboptimal risk
decisions, but it excludes inefficiency due to a suboptimafPsize.  Similaripatket-value equity

inefficiency of a BHC is measured by the conditional mearfof u difeiThe relevant peer group is BHCs
with the same book-value of equity. So a more efficient BHC has a higher market-to-book value of equity
than its less efficient peer.

We now use our three different measures of efficiency to determine the efficient set of BHCs. These
efficient BHCs are assumed to maximize market value when they maximize their utility. The three efficiency
measures are the production-based measuetuwwh (ROE) inefficiency—the lost potential return at any
given risk evel themarket-value measure of asset inefficieney-the lost potential market value of assets
at any given investment in asseand thenarket-value measure of equity inefficiency—the lost potential
market value of equity at any given investment in equity. As noted above, the value-maximizing expansion
path controls for the investment in assets and asks, what is the highest potential market value—either of

assets or of equity?*

G. Measurirg Scale Economies alanthe Value-Maximizirg Expansion Path

Using each of our three measures of market-value efficiency, we identify the most efficient quarter
(and least efficient quarter) of BHCs in each of the five size groups and calculate the mean measure of scale
economies for each group. As shown in Table 9, in all size categories but the largest, the mean measure of
scale economies for the most efficient banks is larger than the mean for the least efficient banks and larger
than the mean of all banks in the grétip.

Comparing mean scale economies for efficient banks by size groups does not control for risk. To

*INevertheless, this is ideal because a value-maximizing expansion path concerns which plans maximize
expected market valis any given sizdt does not determine what the optimal size is. This is similar to the simple
scale economies measure, which says how minimum cost changes as output level changes, but does not determine the
optimal level of output.

%2Agency problems such as asset substitution imply that the asset-based measure is preferable to the equity-
based one.

*0ne could use the fitted relationship in (32) to convert each bank’s expectedg{mfit), and profit risk,
S(p,.7), into its expected market value and, dividing by book value, into its expected ratio of market-to-book value.
Then efficiency comparisons could be mddectly from this ratio, which eliminates the need to fit a frontier. But this
procedure has the important drawback of assuming that the marginal effect of expected risk on market value is constant
across all banks. If this were true, an optimal risk level would be given by the tangency of linear iso-market value lines
to the risk-return frontier in risk-return space. But banks’ market opportunities (growth prospects, market power, etc.),
their charter values, and their distress costs differ, so their optimal risk levels will also differ. The fitted relationship
(32) is not intended to capture these effects, i.e., it does not determine the tradeoff between expected return and risk from
the production model.

%Clark (1996) 6und a similar pattern: estimating the economic cost function (3) as an average relationship
gave significantly smaller measures of scale economies than estimating it as a frontier.
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investigate the effects of differences in efficiency on the measure of scale economies while also controlling for
sources of risk-taking, we repeat the regression reported in Table 8, but we add the production-based measure
of return inefficiency to the list of independent variables. The results are reported in Table 10. Comparing

the results in Table 8 with those in Table 10, it is clear that controlling for efficiency differences among banks
sharpens the precision of the estimation.

Quialitatively, the results remain the same. Controlling for return inefficiency, sources of risk-taking,
and macroeconomic diversification, an increase in size is associated with an increase in scale economies.
Similarly, an improvement in macra@womic diversification is also associated with an increase in scale
economies (although it is not statistically significant at the 10% level). A proportional increase in size and
diversification,ceteris paribusis associated with higher scale economies, and the magnitude is large and
similar to that obtained without controlling for efficiency. We also find that, controlling for the level of
macroeconomic diversification, asset size, and sources of risk-taking, more efficient banks operate with

higher levels of scale economies.

VI. Conclusion

Are scale economies in banking elusive or illusive? We have offered evidence obtained by
incorporating capital structure and risk-taking into models of bank production that stronglgtsuggethe
scale economies so often cited by merging banks do, indeed, exist, but are elusive. They are influenced by
banks’ risk-taking and can, in fact, be obscured by risk-taking. Hence, to uncover evidence of these elusive

scale economies requires incorporating capital structure and risk-taking into the analysis of production.
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Table 1

Derivative of Operating (Variable) Cost with Respect to Uninsured Deposits

Total Assets No.of BHCs  Mean Std. Dev. T-Stat. Prob.

< $300 nillion 109 -0.00108 * 0.00034 3.17605 0.00149

$300 nillion - 2 billion 215 -0.00389 * 0.00115 3.38380 0.00071

$2 billion - 10 billion 67 -0.03976 * 0.00890 4.46491 0.00001

$10 hllion - 50 billion 35 -0.57449 * 0.21573 2.66293 0.00775

> $50 bllion 15 -19.84262 ** 1 10.82535 1.83298 0.06681
Omitting 3 outliers 12 -3.74348 * 1.30563 2.86718 0.00414

Derivative of Operating (Variable) Cost with Respect to Insured Deposits

Total Assets Mean Std Dev. T-Stat. Prob.

< $300 nillion -0.00069 * 0.00010 6.85969 6.90092x%*0

$300 nillion - 2 billion -0.00302 * 0.00037 8.11544 4.44089%%0

$2 billion - 10 billion -0.02168 * 0.00266 8.15639 4.44089x¥0

$10 hllion - 50 billion -0.14229 * 0.03718 3.82757 0.00013

> $50 bllion 2.71844 **t 1.54489 1.75963 0.07847
Omitting 3 outliers -0.45571 0.31970 1.42544 0.15403

The means are calculated as the mean of the derivatives calculated at each observation rather than the derivative
evaluated at the mean of the data.

T Three outliers have distorted this mean. There are no outliers in other groups.

* Significantly different from zero at the 1 percent level.
** Significantly different from zero at the 10 percent level.

Number of observations: 441 total sample; 109 in the subsan$860 nillion; 215 in the subsample $300llion - 2
billion; 67 in the subsample $2 billion - 10 billion; 35 in the subsaplehllion - 50 billion; and 15 in the
subsample > $50ilbon.
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Table 2

Shadow Price of Equity Capital
) ACy, n, p, W W, K)

ok

Total Assets Mean Std. Dev. T-Stat. Prob.
full sample 014932 * 0.04055 3.68223 0.00012
< $300 nillion 0.00238 * 0.00058 4.09301 0.00002
$300 nillion - 2 billion 0.00788 * 0.00172 458840 2.23330%40
$2 billion - 10 billion 004953 * 0.01358 3.64634 0.00013
$10 hllion - 50 billion 034746 * 0.08322 4.17536 0.00001
> $50 hllion 3.22794 *} 0.96955 3.32933 0.00044

Omitting 3 outliers 77690 * 0.47452 3.74460 0.00018

The means are calculated as the mean of the derivatives calculated at each observation rather than the derivative
evaluated at the mean of the data.

T Three outliers have distorted this mean.

* Significantly different from zero at the 1 percent level.

Number of observations: 441 total sample; 109 in the subsan$860 nillion; 215 in the subsample $300llion - 2
billion; 67 in the subsample $2 billion - 10 billion; 35 in the subsaplekllion - 50 billion; and 15 in the
subsample > $50ilbon.
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Table 3

Estimated Cash-Flow Scale Emnomies
from the Cash-Flow Cost Function that Omits Equity Capital

Cer (¥, W, Wg) = min (W, X, + Wy X4) S.L.T(y, x) < 0.
A d

cash-flow scale economies

Z 8InCCF/
i 8Inyi
Total Assets Mean Std. Dev. T-Stat#0) T-Stat. (1)
full sample 101158 *, ¥ 0.00522 193.90549 2.22006
< $300 nillion 1.01190 * 0.00791 127.92744 1.50421
$300 nillion - 2 billion 1.01238 *t 0.00575 176.01769 2.15231
$2 billion - 10 billion 101137 *t 0.00583 173.54541 1.95111
$10 hllion - 50 billion 100769 * 0.00818 123.21237 0.93982
> $50 hllion 1.00789 * 0.01066 94.56706 0.73996

The means are calculated as the mean estimate of scale economies calculated at each observation rather than the scale
economies evaluated at the mean of the data.

* Significantly different from zero at the 1 percent level.

T Significantly different from one at the 5 percent level.

¥ Significantly different from one at the 10 percent level.
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Table 4

Estimated Economic-Cost Scale Eonomies
from the Cash-Flow Cost Function @Wnditioned on the Level of Equity Capital

Ceely, N, pw, Wy, k) = min(wp X+ Wy X4) S-L.T(y, n, p,x, k) < 0 andk= k°

X Xq
1 dInCqp
economiecost economies: A
y dInCqp
i 8Inyi

Total Assets Mean Std. Dev. T-Stat#0) T-Stat. (1)
full sample 098155 * 0.00755 130.08281 2.44449
< $300 nillion 0.97749 * 1 0.00871 112.19073 2.58349
$300 nillion - 2 billion 0.98364 *,1 0.00773 127.19727 2.11499
$2 billion - 10 billion 098197 * 0.00946 103.77513 1.90546
$10 Hllion - 50 billion 097817 * 0.01208 80.95614 1.80704
> $50 hllion 0.98719 * 0.01545 63.90000 0.82905

The means are calculated as the mean estimate of scale economies calculated at each observation rather than the scale
economies evaluated at the mean of the data.

* Significantly different from zero at the 1 percent level.

T Significantly different from one at the 5 percent level.

¥ Significantly different from one at the 10 percent level.
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Table 5
Isolating the Effects of Risk-Taking and Diversification on Scale Emnomies

Dependent Variable: Economic-Cost Economies

Independent Variable Parameter Estimate Standard Error T-Statistic
constant 1.20341 * 0.02754 43.69
In(index of diversification) 0.00866 0.00193 4.49
In(total assets) 0.00218 0.00045 4.83
In(average contractual asset return) 0.13348 * 0.01024 13.03
In(average uninsured funds interest rate) -0.03037 * 0.00187 -16.24
nonperforming loasytotal assets 0.27135 * 0.06788 4.00
loans/total assets -0.05866 * 0.00779 -7.53
equity/total assets 0.38953 * 0.03637 10.71
asset growth rate 0.01065 ** 0.00562 1.89

Estimated using GMM. Standard errors are computed from a heteroscedasticity-consistent covariance matrix estimate
(Robust-White).

Number of observations = 441

Adjusted R-squared = 0.568432

* Significantly different from zero at the 1 percent level.
**Significantly different from zero at the 10 percent level.

» change in scaaleS onomies due to a péos%a[tlonal increase in diversification and asset$gris paribus

_ Ale"economies € economies
ad In(diversification index) dIn(assets)

=0.00886 + 0.00218

=0.01084*

with standard error = 0.001985 and t-statistic = 5.462

» change in scale economies due to a increase in diversification and assets from their minimum levels
to their maximum levels in the sample (i.e., from 0.4311 to 2.06569 and from $32lion to $249
billion, respectively), ceteris paribus

=0.00866x[n(2.06569) In(0.4311)] + 0.00218%p(249)-In(0.032)]
=0.03307*
with standard error = 0.005043 and t-statistic = 6.557
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under:
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Table 6
Tests of First-Order Conditions

oC
ok
<,
ok
<,
ok

+w, >0 — overutilization of capital

+ W, < 0 — underutilization of capital

P +w, =0 = costminimizing level of capital

The values in the table below give the percentage of observations where the capital level is optimal, over, or undemutilized at
€ [0.14, 0.18] at significance levels 1% and 10%. The “over” column reports the proportion of observations where the
hypothesis thatC ok + 0.14< O is rejected at the 1% (10%) level of significance. The “under” column reports the proportion
where the hypothesiC /ok + 0.18> 0 is rejected at the 1% (10%) level of significance. The “optimal” column reports the
proportion of observations where the hypothesisafgtk + 0.14< 0 andoC Jok + 0.18> 0 cannot be rejected at the 1%

(10%) level of significance.

1% 10%
Total Assets optimal over under optimal over under
full sample 12.7 84.1 2.9 8.2 85.9 5.9
< $300 nillion 0.0 100.0 0.0 0.0 100.0 0.0
$300 nillion - 2 billion 1.8 98.2 0.0 14 98.6 0.0
$2 billion - 10 billion 26.9 73.1 0.0 26.9 82.1 0.0
$10 hllion - 50 billion 80.0 0.0 20.0 60.0 2.9 37.1
> $50 hllion 60.0 0.0 40.0 13.3 0.0 86.7

Tests of First-Order Conditions
for the Cost-Minimizing Level of Uninsured Deposits

1% 10%
Total Assets optimal over under optimal over under
full sample 18.1 78.0 3.9 9.0 81.2 9.8
< $300 nillion 0.0 100.0 0.0 0.0 100.0 0.0
$300 nillion - 2 billion 3.2 96.8 0.0 2.3 97.7 0.0
$2 billion - 10 billion 53.7 37.3 9.0 29.9 55.2 14.9
$10 hllion - 50 billion 82.9 0.0 17.1 37.1 0.0 62.9
> $50 hllion 66.7 0.0 33.3 26.7 0.0 73.3

Tests of First-Order Conditions
for the Cost-Minimizing Level of Insured Deposits

1% 10%
Total Assets optimal over under optimal over under
full sample 10.0 80.7 9.3 4.5 834 12.0
< $300 nillion 0.0 100.0 0.0 0.0 100.0 0.0
$300 nillion - 2 billion 4.1 95.9 0.0 2.7 96.8 0.5
$2 billion - 10 billion 29.9 58.2 11.9 10.4 70.2 19.4
$10 hllion - 50 billion 28.6 0.0 71.4 17.1 0.0 82.9
> $50 hllion 46.7 0.0 53.3 20.0 13.3 66.7
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Table 7

Estimated Cash-Flow Scale Emnomies from the Most-Preferred Production System

Total Assets Mean Std. Dev. T-Stat.«0) T-Stat. (1)

full sample 1144532 *,1 0.010111 113.194 14.294
< $300 nillion 1.117420 *,t 0.008658 129.069 13.562
$300 nillion - 2 billion 1125790 *t 0.009038 124.562 13.918
$2 billion - 10 billion 1171363 *,T 0.011877 98.628 14.428
$10 hllion - 50 billion 1247416 *,1 0.018151 68.725 13.631
> $50 bllion 1.250270 *,t 0.017810 70.199 14.052

The means are calculated as the mean estimate of scale economies rather than the scale economies evaluated at the mean of
data.

* Significantly different from zero at the 1 percent level.
T Significantly different from one at the 1 percent level.
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Table 8

Isolating the Effects of Risk-Taking and Diversification on Scale Emnomies
Measured by the Most-Preferred Poduction System

Dependent Variable: Cash-Flow Scale Economies

Independent Variable Parameter Estimate Standard Error  T-Statistic
constant 0.01468 0.17956 0.08176
In(index of diversification) 0.01584 0.01510 1.04929
In(total assets) 0.01975 0.00321 6.16064
In(average contractual asset return) -0.36906 * 0.06558 -5.62741
In(average uninsured funds interest rate) 02048 0.01388 1.54761
nonperforming loasytotal assets -0.41434 0.55267 -0.74970
loans/total assets -0.08970 * 0.05131 -1.74827
equity/total assets -0.00033 0.24533 -0.00136
asset growth rate -0.03877 0.03845 -1.00853

Number of observations = 441

Estimated using GMM. Standard errors are computed from a heteroscedasticity-consistent covariance matrix estimate
(Robust-White).

Adjusted R-squared = 0.237

* Significantly different from zero at the 1 percent level.
**Significantly different from zero at the 10 percent level.

» change in scale economies due to a proportional increase in diversification and assetseris paribus

J scale economies . Jd scale economies
ad In(diversification index) dIn(assets)
=0.01584 + 0.01975

= 0.03559**
with standard error = 0.015614 and t-statistic = 2.279

» change in scale economies due to a increase in diversification and assets from their minimum levels to their
maximum levels in the sample (i.e., from 0.4311 to 2.06569 and from $3Rlion to $249 hllion,
respectively),ceteris paribus

=0.01584xn(2.06569) In(0.4311)] + 0.01976%(249)-In(0.032)]
=0.20148*
with standard error = 0.037728 and t-statistic = 5.301
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Table 9

Estimated Cash-Flow Scale Emnomies from the Most-Preferred Production System

Total Assets

Utility-Max.
Expansion Path

Mean Scale Economies
for All Banks in the Group

Value-Max.
ROE
Efficiency

for the Value-Maximizing Expansion Path

Value-Max.
MV-Asset
Efficiency
Mean Scale Economies for the 25% Most Efficient
(Mean Scale Economies for the 25% Least Efficient)

Value-Max.

MV-Equity

Efficiency

full sample

< $300 nillion

$300 nillion - 2 billion
$2 billion - 10 billion
$10 hllion - 50 billion
> $50 hllion

1.145
1.117
1.126
1.171
1.247
1.250

1.188 (234)
1.165 (1095)
1.169 (D97)
1.226 (161)
1.280 (227)
1.220 (1344)

1.240
1.166
1.106
1.161
1.242
1.213

(1.139)
(1.079)
(1.079)
(1.130)
(1.192)
(1.343)

1.236
1.177
1.108
1.160
1.285
1.244

(1.110)
(1.079)
(1.112)
(1.149)
(1.196)
(1.343)
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Table 10

Isolating the Effects of Risk-Taking and Diversification on Scale Emnomies
Measured by the Most-Preferred Poduction System

Dependent Variable: Cash-Flow Scale Economies

Independent Variable Parameter Estimate Standard Error T-Statistic
constant -0.50384 * 0.16497 -3.05414
In(index of diversification) 0.02141 0.01332 1.60782
In(total assets) 0.01429% 0.00287 4.98175
In(average contractual asset return) -0.57349 * 0.06065 -9.45627
In(average uninsured funds interest rate) 03@46 * 0.01227 2.56358
nonperforming loasytotal assets 0.97651 ** 0.50291 1.94173
loans/total assets -0.22404 * 0.04681 -4.78630
equity/total assets 2.27000 * 0.29679 7.64849
asset growth rate -0.01421 0.03967 -0.41838
ROE inefficiency -19.5039 * 1.74594 -11.1710

Number of observations = 441

Estimated using GMM. Standard errors are computed from a heteroscedasticity-consistent covariance matrix estimate
(Robust-White).

Adjusted R-squared = 0.407

* Significantly different from zero at the 1 percent level.
**Significantly different from zero at the 10 percent level.

» change in scale economies due to a proportional increase in diversification and assetseris paribus

Jd scale economies . J scale economies
ad In(diversification index) dIn(assets)
=0.02141 + 0.01429

= 0.03570*
with standard error = 0.013766 and t-statistic = 2.594

» change in scale economies due to a increase in diversification and assets from their minimum levels to their
maximum levels in the sample (i.e., from 0.4311 to 2.06569 and from $3Rlion to $249 hllion,
respectively),ceteris paribus

=0.02141xn(2.06569) In(0.4311)] + 0.01429%h(249)-In(0.032)]
=0.16137*
with standard error = 0.03349 and t-statistic = 4.819
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Appendix 1
The Data

The various specifications of cost are estimated usd®g data obtained from the Y-9C Call Reports filed
guarterly by bank holding companies operating in the United States. Rather than focus on individual banks, we
examine the highest level bank holding companies. These are holding companies that are not owned by other
companies. They may own only one bank, but in many cases, they own multiple banks that operate in different
states. We focus on the highest level holding companies, since the investment strategies of individual banks reflect
the composite strategy of the top holding company and so arecessarily independent. There 4dd. companies,
which range in size from $33iltion to $250 bllion in consolidated assets.

Of these, 190 are publicly traded. We obtain the number of sharesdirtgthiom the Standard & Poor’s
Compustat database and end-of-year stock prices from the Center for Research in Securities Prices (CRSP).

The vectory consists of five outputs: lidd assets, short-term securities, long-term securities, loans and
leases net of unearned income, and other assets. Labor and physical capital constitute the physical Dghtts,

X4, includes insured deposits, uninsured deposits, and other borrowed money. Insured deposits are deposits in
domestic offices excluding time deposits o$#&00,000uninsured deposits are domestic time deposits over
$100,000; and other borrowed money comprisesgiorgeposits, federal funds purchased, securities sold under
agreement to repurchase, other borrowed$, subordinated debt, and mandatory convertible debt. Equity capital
is measured by the sum of shareholders’ equity, loan-loss reserves, and subordinated debt (Tier 1 and Tier 2
capital). With the exception of equity capital, input prices are computed by dividing the input expenditure by its
guantity. Ex postasset quality is measured by the amount of nonperforming assetscruing and nonaccruing
loans, leases, and other assets that are past due over 9&xlaygeasset quality is gauged by the average
contractual return on assets, which is the ratio of income accruing to assets divided by the quantity of accruing
assets. The variabheis measured by noninterest income. All these variables are computed as the average of their
values at the end of the four quarters of 1994.

The state tax rates are obtained frbine Book of the Statgsublished by the Council of State
Governments, and fro®ignificant Aspects of Fiscal Federalispublished by the U.S. Advisory Commission on

Intergovernmental Relations.
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Appendix 2
Can Demand Deposits Be Modeled Both as Inputs and Outputs?

Reasoning that deposits have tharelsteristics of both inputs and outputs, somdiss have included
both the price and the quantity of deposits in the cost function. We avoid this formulation since it adds nothing
theoretically to the specification of the operating cost function (1) in the text and can yield a misleading measure of
scale economies. If deposits are in fact inputs but are treated as outputs in computing scale economies, then their
“marginal cets” are used to compute their cost elasticities and these elasticities are added to the other output
elasticities to calculate scale economies. But the derivative of cost function (5) in the text, which includes both the
prices and quantities of deposits, is not really a marginal cost of depositstesiafwhether the level of deposits

minimizes cost. Taking the derivative of (5) with respect to deposits gives

OCE(Y: Wy Wy X9 Amin(wx )] W
(A2.1) X Ox, d

= 0 in cost-minimizing equilibrium.

That is, the partial derivative must equal zero when deposits are iapuis (w, x,)1/0x, < O=input) andtheir

levels minimize cash-flow codt.  If these studies find that the “marginal cost” of deposits is pe[sitiney,

X,))/0X4 + W, > 0, they have really found that the first-order condition of cost minimization is violated and that
deposits are overutilized. Hence, including the “marginal cost” of deposits in the scale economies calculation is not
justifiable when deposits function as inputs and do not minimize cost. If scale economies are measured by the
inversesum of output elasticities (see (9) in the text), the measure will be biased downward when deposits are

overutilized and upward when deposits are underutilized.

*See section I of the text for an explanation of this point.
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Appendix 3

Cost-Minimizing versus Utility-Maximizing Expansion Paths

Scale economies measured by the most-preferred cost function describe the elasticity of cost along the
utility-maximizing expansion path. This path is a generalization of the cost-minimizing path and can accommodate
value-maximizing production decisions. Hence, it accounts for managers’ assessment of how their production
decisionsaffect the bank’s exposure to market-priced risk.

The contrast between scale economies measured along the utility-maximizing expansion path and those
measured along the cost-minimizing path is apparent in the utility-maximizing first-order conditions derived from

(17a-c) in the text:

AGT()ox — pw, - JU/ox;
AST()ox,  pw - QUlax; |

(A3.1)

wherel andy are Lagrange multipliers. When managers rank production plans by the first-moment of their implied
probability distributions of profit, production plans influence utility only through their effect on profit. Thus, while
dUlor> 0, components of the production plan do not inherexfiiet utility so thabU/ox = 0. Moreover, in this

case production must be technically efficient so igt= 0 and. > 0. Thus, profit maximization (cost

minimization) implies the familiar equality between the marginal rates of technixsltaion and the input price

ratios:

aT()/ox

(A3.2) aT(-)/ox

Wi
W

When production is technically efficient, but managers have preferences for inputs apart from their
influence on profit, inputs affect utility so thel/ox, > 0. Such preferences could result from regulatory incentives,
as Evanoff (1998) and Evanoff, Israilevich, and Merris (1990) have emphasized. In this case the first-order
conditions take the form

oT()ox  pw, - JU/ox;

(A3.3) = .
aT()ox,  pw, - dUlox;

Note that this is the shadow-price formulation: the shadow prices are giyen byU/ox, = w*. Thus, marginal
rates of technical fistituion equal ratios of shadow prices.

In contrast, when managers consider how production decisions influence risk, they may use additional
resources to reduce the risk of producing any output vector. Hence, technical efficiency is no longer a meaningful

requirement since risk matters. Thus, the transfaom&tinction becomes an inequality T(-) < 0 so that the
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technology constraint is no longer binding, which implies that the associated Lagrange multiplier equals @ero:
In this case the utility-maximizing first-order conditions become
ouU/ox;

W
(A3.4) -
8U/8xj W,

which require the marginal rates obstituion in “consumption”to equal the input price ratios. This case
highlights the important difference between the assumptions of profit maximization and utility maximization and
their respective expansion paths. Not even the shadow price technique, whose first-order conditions are given by
(A3.3), can capture the essential feature of risky production, given by (A3.4), namely, that any given output vector
may require extra resources to manage risk.

Note that the idea that managers might use resources to manage risk cannarbertaglby merely
adding a control foex postrisk into the traditional cost function. The anteevel of risk that managers associate
with any given production plan is not directly observable, so the cost function would have to include a measure of
historical risk. Buex anterisk depends on expectationfafure states of the world and how those future states
interact with production plans to generate realizations of profit. And since expectations changs, aoteisk
assessments. Although managessessments ek anterisk cannot be directly measured and included in the cost
function, theirankingsof production plans, which reflect thewbjectiverisk assessments, can be inferred from
their choices which, by assumption, maximize utility. Only this assumption is sufficiently general to account for

profit-maximizing rankings as well as rankings that are influenced by risk.
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Appendix 4
Derivation of the Almost Ideal Demand (Production) System

The estimation of the most preferred profit and input demand functions recovers managers’ preferences for
production plans or, equivalently, for subjective probability distributions conditional on the production plan from
their production data. We use the Almost Ideal Demand System (Deaton and MuellB&Qgtp estimate these
equations.

Just as the cost function can be used to represent technology, the Almost Ideal Demand (AID) System
represents preferences with the expenditure function, which gives the minimum expenditure required to achieve a

given level of utility. Hence, it solves the problem,

(A4.1) minp .z +wX

T, X
(A4.2) st - U(r, x;y,n,p,r, k=0
(A4.3) T(y, n, p,x, k) < 0.

Its solution yields the constant-utility (expenditure-minimizing) demand functions for inxptitsx “(y, n, v, k,UfP),
and for profitz* =z*(y, n, v, k, U°). The minimum expenditure functioB,= E(y, n,v, k, P)is obtained by
substituing these demand functions into (A4.1). The indirect utility funchbnaV(y, n,v, m, k) follows from
inverting the expenditure function. Duality between utility maximization and expenditure minimization implies that
the expenditurgpy+m, that results in a maximum value of utility*, is also the minimum expenditure required to
achieve a utility level 0)°=U*. HenceE(y, n,v, k, )= py+m.

HLMM (1995, 1996, 1999) adapted the emgiture function of the AID System to represent generalized

managerial preferences:
(A4.4) INE() = InP + U-BO(HyiBi) (ijvi) prk*,
[ j

where InP =, +},a;Inz + (%2, }; o InzInz andz= (y, n,v, k). Inverting the expenditure function (A4.4)

gives the indirect utility function:

In(py + m) - InP
Bo(HyiB‘) (Hwiv") Pk

J

(A4.5) V() =

Applying Shephard’sdmma to (A4.4) yields the furichal forms for the profit demand constant-utility input

demand equations, andmstituing the indirect utility function (A4.5) into these constant-utility functions
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transforms them into the utility-maximizing demand equations that are to be estimated:

(A4.6) dnE _ P _9InP L innpy + m) - InP]
dinp,  py +m dinp_
W, X
(A4.7) dnE _ % _ dinP vi[In(py + m) - InP] vi.

dinw,  py +m dlnw,

In their logarithmic form, these demand equations take the form of shares of the expemdiiyrasd before-tax
net cash flowp_r, in revenue,py+ m. They sum to one.

As in HLMM, to derive the optimal level of equity capital, which is a conditioning argument in (A4.6) and
(A4.7), we use a first-order condition obtained by maximizing the conditional Lagrangean function for the utility

maximization problem (16a) - (16c) in the text, evaluated at the conditional optimum,
V(y1 q! n,V, m1 k) = U(TE()1 X() 1y1 q! n,V, k)

+ AC) [Py + m - wx() - pm()]

+ YO ITC);y. a0 K,

(A4.8)

with respect to the level of equity capital,

V() _ V) alnk _ 4

(A4.9)
ok dink ¢k

The system of equations estimated comprises the profit and input share equations, (A4.6) and (A4.7), and
the first-order condition for the optimal level of equity capital, (A4.9). Adding-up, homogeneity,rantegy
were imposed (see HLMM (1995, 1996) for details of these réstrit



