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Abstract

In this chapter, we discuss the use of mixed frequency models and diffusion index approximation methods in

the context of prediction. In particular, select recent specification and estimation methods are outlined, and

an empirical illustration is provided wherein U.S. unemployment forecasts are constructed using both classical

principal components based diffusion indexes as well as using a combination of diffusion indexes and factors formed

using small mixed frequency datasets. Preliminary evidence that mixed frequency based forecasting models yield

improvements over standard fixed frequency models is presented.
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1 Introduction

Economic time series datasets containing variables measured at varying frequencies have recently been in-

creased usage amongst macroeconometricians. Two key approaches to specification and estimation of models

incorporating variables of mixed frequency include the so-called MIxed DAta Sampling (MIDAS) regression ap-

proach, as discussed in Ghysels, Santa-Clara and Valkanov (2006) and Ghysels, Sinko and Valkanov (2006), and

the references cited therein; and methods based on the classical state space representation proposed by Mariano

and Murasawa (2003), which is refined and implemented in Aruoba, Diebold and Scotti (2009) and Aruoba and

Diebold (2010). One interesting use for such models involves the estimation of factors that are subsequently

used for constructing measures of “current economic activity”or for forecasting. An alternative to extracting

common factors from mixed frequency datasets is to extract common factors (often called diffusion indexes) from

largescale datasets, wherein all variables are measured at the same frequency, is discussed in Stock and Watson

(2002a, 2006). The idea here is to extract a small number of “common” factors assumed to drive the dynamics

associated with different policy-relevant and key forecasting variables. For example, applied practitioners, after

estimating factor models, can subsequently use “key” diffusion indexes in the specification and estimation of fore-

casting models. Indeed, these sorts of “factor augmented forecasting models” have been found in the literature

to yield predictions that often outperform those based on the specification of standard econometric models that

do not include factors (see e.g. Armah and Swanson 2010, 2011, Kim and Swanson 2011, Stock and Watson

2002a,b, 2005, 2006, and the references cited therein). However, all of the above papers based on common factor

methods focus on estimation, specification, and forecasting using datasets where all variables are of a single fre-

quency. Given that the mixed frequency specification and estimation methods that are discussed above (and also

discussed in detail in the sequel) allow for the convenient construction of diffusion indexes (i.e., factors) formed

using variables of multiple different frequencies, a natural question is whether the combination of diffusion indexes

based on both approaches yields improved prediction models. In this paper we review the extant literature in

this area, and discuss simple approaches for addressing this question.

In order to illustrate the ideas discussed in this chapter, we also empirically examine a largescale dataset
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and a small mixed frequency dataset in order to construct diffusion indexes to be used for forecasting U.S.

unemployment.

In addition to the authors mentioned above, a number of researchers have recently made important contri-

butions to the study of both dynamic and static common factor models specified with variables characterized

by a common data measurement frequency. In these contexts, diffusion indexes are estimated using a variety of

estimation techniques ranging from maximum likelihood to the Kalman filter. Key papers include Bai (2003), Bai

and Ng (2002, 2006, 2010), Forni, Hallin, Lippi and Reichlin (2000, 2005), Hallin and Liska (2007), Onatski (2009,

2010) and Stock and Watson (2002b). Additionally, the properties of estimators based on generalized least squares

are also discussed in Breitung and Tenhofen (2011), Doz and Reichlin (2011a) and Jungbacker and Koopman

(2008). Doz and Reichlin (2011b) suggest a two step estimator by combining principal component and maximum

likelihood methods. In order to evaluate the empirical usefulness of diffusion indexes in empirical applications,

Stock and Watson (2009) examine diffusion index stability in regression contexts. Armah and Swanson (2010,

2011), Kim and Swanson (2011), and Stock and Watson (2002a, 2006) evaluate the usefulness of factor models

in forecasting contexts, and Bernanke and Boivin (2003) use diffusion indexes to extract information useful for

monetary policy evaluation.

As mentioned above, econometric researchers have recently been refining and further developing methods useful

for extraction of common factors in mixed frequency datasets, with an eye to forecasting, nowcasting, and the

use of so-called real-time data, whereby multiple revisions for each calendar dated observation are simultaneously

modelled. , especially for nowcasting and forecasting. The MIxed DAta Sampling (MIDAS) regression approach

(see e.g., Ghysels, Santa-Clara and Valkanov (2006) and Ghysels, Sinko and Valcanov (2006)), offers a complete

methodology for estimation and inference using mixed frequency data. In earlier research, Mariano and Murasawa

(2003) specify and estimate state space models in the same context. Recently, more general assumptions on factor

dynamics (such as specification of generic ARMA processes) have been extensively examined by Mariano and

Murasawa (2010), and Markov switching assumptions have been implemented in models discussed in Camacho,

Pérez-Quirós and Poncela (2012). As discussed above, key recent papers include those by Aruoba, Diebold and

Scotti (2009, henceforth ADS), Aruoba and Diebold (2010). Unlike contexts in which principal components are

2



extracted from largescale datasets, ADS (2009) assume that the latent process underlying their so-called “business

conditions” index follows a simple process, such as an AR(1) process. In this context, ADS (2009) show that

the business condition index constructed using a small but mixed frequency dataset mimics market fluctuations

particularly well, especially during recession periods as announced by NBER.

To summarize, in this chapter we discussed fixed frequency and mixed frequency modeling, and present the

results of a small empirical illustration in which U.S. unemployment is modeled using each approach, and using

a combination of the two approaches. Interestingly, simple combination approaches, wherein mixed frequency

diffusion indexes are combined with fixed frequency indexes, yield the mean square forecast error “best” predic-

tions. The rest of the chapter is organized as follows. In section 2, we present our two dynamic factor modelling

frameworks. In Section 3, we outline the empirical methodology used in our empirical illustration. Section 4

gathers the results of our empirical analysis, and concluding remarks are in Section 5.

2 The Modelling Framework

In this section, we recap a small subset of the factor modelling approaches discussed in a number of key papers,

including Stock and Watson (1999, 2002a,b), Connor and Korajczyk (1986, 1988), and Forni, Hallin, Lippi and

Reichlin (2000, 2005). The first is the dynamic factor modeling approach wherein principal components is used

to estimate latent factors. These factors are called diffusion indexes in Stock and Watson (2002a). Thereafter,

we discuss a mixed frequency dynamic factor model, which is estimated by maximum likelihood estimation in

the spirit of ADS (2009) and Aruoba and Diebold (2010). For further review of dynamic factor models, see, for

example, Armah and Swanson (2010) and Stock and Watson (2006, 2011).
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2.1 Dynamic Factor Model

Following Stock and Watson (2006), suppose  has a dynamic factor model (henceforth DFM) representation

with  common dynamic factors, .

 = ()
0 +  (1)

for i = 1,2,..., , and t = 1,2,..., , where  is a single datum,  is the  × 1 vector of unobserved factors,

() are  × 1 vector lag polynomials in nonnegative powers of , and  is an idiosyncratic shock. That is, 

series of data are assumed to be composed of two parts, common components, ()and idiosyncratic errors

,    Furthermore,

() = 0      (2)

and

() = 0        6=  (3)

That is, the factors and idiosyncratic errors are assumed to be uncorrelated at all leads and lags and the idio-

syncratic error terms are taken to be mutually uncorrelated at all leads and lags. Under this assumption, we call

the DFM the exact DFM, which can be weakened by allowing some degree of serial correlation (the approximate

DFM). Note that we do not impose parametric assumptions on idiosyncratic disturbances. In this nonparametric

case, we can use the principal components method to estimate the factors and factor loadings after assuming

identifying assumptions, as discussed in detail in the above papers.

Although maximum likelihood estimation is used with small datasets (see e.g., Stock and Watson 1989 and

Quah and Sargent 1993), we are faced with an increasing number of parameters in large dataset environments.

In such contexts, a simple way to proceed is to use principal component (see Stock and Watson 2006).

From equation (1), under the assumption that the lag polynomials has finite dimension, , we can transform

4



the exact DFM into the static DFM as follows.

 = Λ +   (4)

where  = (
0

0
−1

0
−+1)

0 is  × 1where  ≤ . Here  is the number of static factors. Λ is a factor loading

matrix on the r static factors consisting of zeros and the coefficients of (). Since  consists of r static factors,

we call equation (4) static DFM representation (Stock and Watson 2006). The static factors can be estimated as

the principal components of the normalized data 

Let us outline the estimation procedure. Following Stock and Watson (2006), let  (  min{}) be an

arbitrary number of factors,    , Λ be the  × matrix of factor loadings, (Λ1Λ2 Λ )
0 and  be a  ×

matrix of factors (1 2   ) From equation (4), estimates of Λ and  are obtained by solving the following

optimization problem :

 = min
Λ

1



X
=1

( − Λ)
0
( − Λ) (5)

 Λ0Λ = 

We treat 1   as fixed parameters to be estimated after normalizing Λ. Given bΛ the solution to equation
(5) satisfy that b = (bΛ0bΛ)−1bΛ0 Substituting this into equation (5) yields

 = min
1



X
=1

 0
( − Λ(Λ0Λ)−1Λ0)  Λ0Λ = 

= max ((Λ0Λ)−
1
2Λ0

P
 Λ(Λ

0Λ)−
1
2  Λ0Λ = 

= max Λ0
P

 Λ  Λ0Λ = 

where
P

 = −1
P

=1
0
. This optimization is solved by setting

bΛ to the eigenvectors of matrix  0

corresponding to its  largest eigenvalues. The estimator of factors is b = bΛ0.
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For choosing the number of factors, we follow Bai and Ng (2002). After estimating bΛ and b, let ̂ () =
−1

P
=1( − bΛ b)0( − bΛ b) be the sum of squared residuals from regressions of  on the  factors and

() = log(̂ ())+(+


) log(2 ) be the information criterion where  = min{
√

√
} The consistent

estimates of the true number of factors is then ̂ = argmin0≤≤ () where  is the maximum number of

factors.

2.2 Mixed Frequency Factor Model

Unlike the above case wherein principal components is used to estimate the latent factors, now assume that

the latent dynamics of a factor, , from a mixed dataset, follows a zero-mean () process. ADS (2009) and

Aruoba and Diebold (2010) show that this seemingly simple latent factor captures the business cycle very well.

The difference between the model outlined below and that specified in ADS (2009) is that we only use monthly

data and quarterly data, unlike ADS (2009), where daily, weekly, and monthly series are exploited to construct

. Namely, we assume that the latent factor is updated every month. Let

 = 1−1 + · · ·+ − +  (6)

where  is white noise with unit variance. Here, we assume that there is a single factor in the economy. Thus,

 is a scalar. This assumption can be generalized to include more factors or to allow for other models, including

 and Markov switching models

Let  denote the th monthly economic or financial variable at month , which depends linearly on  and

possibly also on various exogenous variables 1      

 and/or lags of 


, so the general measurement equation

bridging  and latent factors is

 =  +  + 1
1
 + · · ·+ 




+1

−1 + · · ·+ 


− +  (7)
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where the 
 s are exogenous variables and the 


 are contemporaneously and serially uncorrelated innovations.

The variable  can be observed, or not. That is, if 

 is quarterly observed real GDP, say, then for the other two

months  is not observed directly. To handle this problem systematically, following ADS (2009), we distinguish

between stock and flow variables, observed data, and missing data.

Suppose that e denotes a stock variable observed at a lower (quarterly) frequency. At any time , if  is
observed, then e = . And if it is not observed, then e =  Thus, the stock variable at time t is

e =
⎧⎪⎪⎨⎪⎪⎩

     

  

(8)

Combining equations (6) and equation (8), the measurement equation for a stock variable is

e =
⎧⎪⎪⎨⎪⎪⎩

 + − + 1e− + · · ·+ e− +      

  

(9)

Unlike a stock variable, a flow variable is observed at quarterly frequencies (e.g. real GDP), and can be

interpreted as an intraperiod sum of the corresponding monthly values, so that a flow variable is defined as

e =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

2X
=0

−     

  

(10)

Combining equations (6) and equation (10), the measurement equation for a flow variable is

e =
⎧⎪⎪⎨⎪⎪⎩

∗ + 
P2

=0 + 1e−1 + · · ·+ e− + ∗     

  

(11)

Here, equation (6) is the state equation and equations (9) and (11) are the measurement equations. Together,
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these equations constitute a state-space system. Given this fact, we can estimate mixed frequency factors via

maximum likelihood using Kalman filtering and prediction error decomposition (see ADS (2009) for further

details).

More specifically, the assumption on the factor dynamics and on the relation between the factor and the data

can be represented by the following transition and measurement equations.

⎡⎢⎢⎢⎢⎢⎢⎣
+1



−1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

 0 0

1 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣


−1

−2

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ []

+1 =  + 

(12)

⎡⎢⎢⎣ e1
e2
⎤⎥⎥⎦ =

⎡⎢⎢⎣ 1 0 0

2 2 2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣



−1

−2

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎣ 1 1 0

2 0 2

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

1

e1−
e2−

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎣ 1

∗2

⎤⎥⎥⎦
 =  + Γ + 

 (13)

where

⎡⎢⎢⎢⎢⎢⎢⎣


1

∗2

⎤⎥⎥⎥⎥⎥⎥⎦ ∼ 

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦ 

⎡⎢⎢⎢⎢⎢⎢⎣
2 0 0

0 21 0

0 0 ∗22

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ 

and ∗2 and 
∗2
2 signify, respectively, the measurement error and the variance thereof, in the case of flow variables.

Also, in our simple setup, e1 represents a monthly stock variable and e2 represents a quarterly flow variable, so
that e2 is empty (that is, NA in equations (9) or (11)) if the data was not released at time ). Let us now turn
to the estimation of this system.
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2.2.1 Kalman Filter and Signal Extraction

In order to illustrate the use of the Kalman filter, let us write the above two equations as follows:

 =  + Γ + 

 = −1 + 

where  ∼ (0 ) and  ∼ (0)  is a vector of observed variables,  is the latent state vector, which

follows an AR(1) process, and  is a vector of exogenous variables. Under error normality, the Kalman filter can be

used to estimate this system (see e.g., Anderson and Moore 1979, Harvey 1989, Kim and Nelson 1998). Following

Kim and Nelson (1998),  ≡ [12 ] |−1 = [|−1] |−1 =  − |−1 |−1 = [|−1] | =

(|) | = (|) |−1 ≡ (|−1) and |−1 = (|−1) If both variables are observed in

month , then we can use equation (12) and equation (13). Then, the Kalman filter consists of following six

equations: For  = 1 

|−1 =  (14)

|−1 = 
0 +0 (15)

|−1 =  − |−1 =  − |−1 − Γ (16)

|−1 = |−1
0 + (17)

| = |−1 + |−1
0−1

|−1|−1 (18)

| = |−1 − |−1
0−1

|−1|−1 (19)

If missing data exists in , we only use monthly data as follows

∗ = ∗ + Γ
∗
 + ∗  (20)

∗ ∼  (0∗) (21)
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where ∗ =  ∗ =  Γ∗ = Γ ∗ =  and ∗ =  0 for  =[1 0]. Note that ∗ is a single

datum. The vector  is defined to “choose” the equation relating observed data e1 from equation (13). In

this case, the Kalman filter works the same as described above, after substituting   Γ and  for ∗  
∗Γ∗

and ∗.

The above Gaussian state space model can be estimated using the Kalman filter. Moreover, maximum likeli-

hood estimation can be carried out using the so-called prediction error decomposition method. Specifically, when

two variables are observed at any time , the (log) likelihood is incrementally increased by the following amount,

 = −1
2

X


[log 2 + (log ||−1| + 0|−1
−1
|−1|−1)] (22)

When quarterly data is missing at time , the likelihood is updated by

 = −1
2

X


[log 2 + (log | ∗|−1| + 0|−1
∗−1
|−1|−1)] (23)

where  ∗|−1 = ∗|−1∗0 +∗ ∗ = and ∗ = for  = [1 0].

We need to estimate the vector of factors, , and the hyper-parameters,  1 2 1 2 1 2 
2
1, 

∗2
2.

Given , the iteration from equation (14) to equation (19) in the Kalman filter is used to calculate the additional

likelihood increment. Given initial conditions, the likelihood is built iteratively, from period  = 1 to  . Hyper-

parameters are chosen to maximize the likelihood. For the initial choice, 0|0 and 0|0, assuming that factors are

stationary, one can use the unconditional mean and covariance matrix of . For complete details, see Kim and

Nelson (1998). After estimation of the hyper-parameters, one simply plugs the estimates into the system and

constructs estimates of the latent factor(s).
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3 Empirical Methodology

3.1 Data

We construct real-time forecasts for the U.S. unemployment rate. We construct two kinds of factors, Diffusion

Indexes (DI) and Mixed Frequency factors (MF). To construct diffusion indexes, we use the Stock and Watson

(2005) dataset, which is extended through September 2009 by Kim and Swanson (2011). Specifically, the version

used here has 143 monthly U.S. variables, from 1959:12 through 2009:9. To make all variables stationary, the series

are transformed by taking logarithms and/or differencing, following the approach of Stock and Watson (2005). A

description of the series and specific transformations used is given in the Appendix in Stock and Watson (2005).

Constructed DIs and MFs are monthly frequency. In our forecasting experiments, we use the “first” and “second”

DIs, defined by the magnitude of the eigenvalue associated with them.

We construct our mixed frequency factor using log differenced quarterly real GDP ( from Federal Reserve

Economics Data, Real Gross Domestic Product, 1 Decimal, ranging from first quarter of 1960 to second quarter

of 2011) and log differenced monthly total nonfarm employment ( from U.S. Bureau of Labor Statistics, National

Current Employment Statistics ,ranging from January of 1960 to August of 2011). The mixed frequency factor

is estimated using the dynamic factor model discussed above.

The release dates of real GDP and of total nonfarm employment are different. For example, the first release

of real GDP in the first quarter 2011 was April 28, 2011, and it was revised several times. In case of employment

data, BLS reports its preliminary estimates on the first Friday of the month. For the purpose of modelling

parsimoniously, we assume that the release date of the data is the same as the first day of the month and of

the quarter. However, note that if we specify a mixed frequency factor model based on daily data, we can

rigorously match the release date and update information in real-time. In the literature, studies constructing

real-time indexes, or nowcasting, in a timely manner include Giannone, Reichlin, and Small (2008), Aruoba,

Diebold and Scotti (2009), Altissimo, Cristadoro, Forni, Lippi and Veronese (2010), Camacho and Pérez-Quirós
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(2010), Mariano and Murasawa (2010) and Angelini, Camba-Mendéz, Giannone, Rünstler and Reichlin (2011).

3.2 Forecasting Methods

Before discussing our forecast models, we outline some details of our experiments. We divide the data set into

two subsamples. The first subsample has 1 observations, and the second subsample has 2 observations, for a

total of  = 1 + 2 Using first subsample, DIs and MF are estimated using the above models. In all cases, the

number of AR lags is estimated using the SIC. Then, via OLS, we estimate a forecasting model that makes use of

the estimated factors, and we construct an -step ahead forecast. At 1 + 1, we use 1 + 1 observations to again

construct the DIs and the MF. These are then in turn used to construct a forecasting model and to subsequently

construct a new  step-ahead forecast. This procedure is continued, resulting in a sequence of 2 ex-ante −step

ahead predictions. These predictions are then compared for various specifications, using RMSFEs (Root Mean

Square Forecast Errors). In particular, predictions from a variety of models are compared with predictions from

a benchmark AR() model (see Table 3).

The models considered are an AR() model, with lags selected using the SIC, and various factor augmented

AR models in Table 3. We set  = 1. Note that the number of autoregressive lags can change according to the

various different factors augmented models that are specified. Specifications of this type are suggested in Stock

and Watson (2002a).

3.2.1 Diffusion Index Model

Following Stock and Watson (2002a), suppose that  is target variable to be forecasted. A DI forecasting

equation is

b+| = b + X
=1

b0 b−+1 + X
=1

b−+1 (24)

where b is a vector of  estimated DIs,  lags of the factors are included,  is the forecasting window, and  is

the number of autoregressive lags. This is our generic model for forecasting + at time  using DIs and AR
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terms, and is estimated using least squares. One can easily generalize this model to include a vector of exogenous

variables. For the sake of parsimony, we report forecasts based on model estimated using only the first two DIs,

as discussed above. In the Table 3, for example, models denoted by “DI” denote those estimated using first

two DIs with no lags, that is, letting  = 1  = 2 and b = 0 "1st DI” denotes forecasts using the first DI

and “2nd DI” denotes forecasts using only the second DI. “DI-AR” includes both DIs as well as autoregressive

terms with  lags chosen using the SIC, where 0 ≤  ≤ 12. As discussed in many papers,  can be also estimated

using the criterion outlined in Bai and Ng (2002). Forecasts using this model are constructed in the following

manner. At each recursive iteration, the panel dataset of stationary variables is standardized to have zero mean

and unit variance. Then, the number of factors is fixed at either one or two and DIs are estimated using principal

component method.

Suppose that 
 is a mixed frequency factor extracted using the mixed frequency dynamic factor model

discussed above. (For the MF factors, we use two stationary data series, as discussed above -both series are

log-differenced). In this case, we can simply generalize the above forecasting model as follows:

b+| = b + X
=1

c


0

b−+1 + X

=1

c0c−+1 +
X

=1

b−+1 (25)

where c is the vector of mixed frequency factors containing 
  for all , which is added to equation (24).

We will call c MF (Mixed Frequency) factors. The number of MF factors is predetermined. For example, the

number of mixed frequency factors is two, if we assume that there are two factors and VAR dynamics of the latent

factors. Of course, by using different datasets, we can extract different mixed frequency factors. For example,

Aruoba and Diebold (2010) constructs their real activity index and inflation index using different sets of data.

Forecasts using MF factors are constructed in the same way as in the case of pure DI and DI-AR models, except

that an additional recursive step, wherein the MF is estimated, is included in the estimation procedure discussed

above.
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4 Empirical Results

Before presenting our results, consider the graphs of MF and DI factors presented in Figures 1 and 2. Figure

1 plots the MF factor and Figure 2 present two DIs. The MF factor is assumed to follow an AR(1) process

and using quarterly real GDP (log-differences) and monthly nonfarm employment payroll (log-differences) from

February 1960 to August 2011, as discussed above. And, DIs are constructed using 143 series from December 1959

to September 2009. The first and second DIs are presented along-side the unemployment rate in Figure 2, for the

period February 1960 to September 2009. The first DI has qualitative properties that are very similar to the MF

factor (compare Figure 1 with Figure 2). Namely, severe drops in the 1st DI and the MF factor coincide with

the eight recession episodes over our sample period. This is particularly true for the first and second oil shock

episodes and the 2008 crisis. However, the graph of the second DI exhibits quite different properties. During

every recession, the second DI increases, which is consistent with unemployment movements during recessions.

To disentangle the components that make up our DI factors, we use the A(j) statistic in Bai and Ng (2006),

which is applied in Armah and Swanson (2010) in order to construct “observable proxies” for diffusion indexes.

This statistic can be used to “rank” variables in terms of their contribution to overall factor variation. We compare

the estimated factors, DIs, and the 143 variables in the large data set. Tables 1 and 2 gather the results of this

empirical exercise. Interestingly, the first DI depends crucially on real variables such as industrial production, as

well as on nonfarm payroll, and capacity utilization; while the second DI is more closely tied to nominal bond

yields and spreads.

The main results of our prediction experiment are summarized in Table 3, and although informative, should be

taken only as an illustration of the methods discussed herein. The first column contains the abbreviation used to

denote the prediction model. The models can be conveniently divided into two categories. First is our benchmark

AR() model. The second is our set of factor augmented AR models. Numerical entries in the second column

are relative RMSFEs (relative to the benchmark). Bold entries denote superior pointwise predictive performance,

as compared with the benchmark. Evidently, our factor augmented models perform better than the benchmark,

with the mixing model (i.e., the model that contains both a DI and a MF factor) performing best. Interestingly,
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this model does not contain an AR component, suggesting that the factors are adequately capturing not only

contemporaneous but also dynamic information useful for forecasting unemployment.

5 Concluding Remarks

We survey two varieties of latent factor model. The first is a convenient representation that allows for the use

of simple principle components method for extracting estimates of latent factors from largescale datasets. The

second type of model, estimated using the Kalman filter and smaller datasets, includes variables with differing

observational frequencies. We find preliminary evidence that using a combination of factors constructed both of

these ways as inputs into factor augmented forecasting equations yields improved predictions.
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Figure 1: Mixed Frequency Factor and the Unemployment Rate

(∗) Notes: The unemployment rate and a mixed frequency factor are plotted. Variables used to construct the MF factor include

monthly (log differenced) total employment payroll and quarterly (log differenced) real GDP for the period 1960:2 - 2011:8. The MF

factor has not been smoothed (see ADS (2009)). For further details, see Section 2.
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Figure 2: First and Second Diffusion Indexes

(∗) Notes: See notes to Figure 1.
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Table 1: Top Observational Proxies for the 1st DI based on the A(j) Statistic

Ranking 1st Diffusion Index

1. IP : Manufacturing

2. IP : Total

3. Nonfarm Payroll : Goods Pricing

4. Nonfarm Payroll : Total Private

5. Capacity Utilization : Manufacturing

6. Employees on Nonfarm Payrolls : Total Nonfarm

7. Employees on Nonfarm Payrolls : Manufacturing

8. Employees on Nonfarm Payrolls : Durable Goods

9. IP : Product

10. IP : Materials

(∗) Notes: This table ranks variables according to their contribution to the diffusion indexes used in the forecasting experiment
reported in Sections 3 and 4. The A(j) statistic is from Bai and Ng (2005), and is examined in Armah and Swanson (2010).

Table 2: Top Observational Proxies for the 2nd DI based on the A(j) Statistic

Ranking 2nd Diffusion Index

1. Spread : Moody’s baa Corporate (% per annum) and Federal Funds Rate

2. Spread : Moody’s a Corporate (% per annum) and Federal Funds Rate

3. Spread : Moody’s Aaa Corporate (% per annum) and Federal Funds Rate

4. Spread : Interest Rate on U.S. Treasury Constant Maturities, 10-year and Federal Funds Rate

5. Spread : Interest Rate on U.S. Treasury Constant Maturities, 5-year and Federal Funds Rate

6. Spread : Interest Rate on U.S. Treasury Bills, sec mkt, 3-month and Federal Funds Rate

7. Spread : Interest Rate on U.S. Treasury Bills, sec mkt, 6-month and Federal Funds Rate

8. Spread : Interest Rate on U.S. Treasury Constant Maturities, 1-year and Federal Funds Rate

9. IP : Automotive

10. Capital Utilization : Motor Vehicles and Parts

(∗) Notes: See notes to Table 1.
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Table 3: Out-of-Sample Forecasting Results*

Forecast Model Relative Root MSFE (RMSFE)

AR 1

DI 0.8724

1st DI 0.8693

2nd DI 1.0787

DI-AR 1.0614

MF 0.9199

MF-AR 1.0681

MF-DI 0.8710

MF-DI-AR 1.1080

RMSFE, AR Model 0.1475

(∗) Notes: Results of unemployment prediction experiments using various models both with and without latent factors are presented
for a 1-month ahead forecast horizon. Models are listed in the left hand column. All numerical entries are root mean square forecast

errors, relative to a benchmark AR(p), with lags selected using the Schwarz information criterion. Data used in model estimation and

prediction construction are from the period 1960:2 - 2009:9. Model “DI” is a model that uses only 2 diffusion indexes as predictors.

“1st DI” uses only the highest explanatory variance contributing diffusion index, while “2nd DI” uses only the the second highest

diffusion index. Model “DI-AR” combines 2 diffusion indexes with an AR specification. Model “MF” is a forecasting model wherein

only a single mixed frequncy factor is used as the explanatory variable. The rest of the models are permutations of those discussed

above. For prediction experiment details, refer to Sections 3 and 4.
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