
Duong, Diep; Swanson, Norman

Working Paper

Density and conditional distribution based specification
analysis

Working Paper, No. 2013-12

Provided in Cooperation with:
Department of Economics, Rutgers University

Suggested Citation: Duong, Diep; Swanson, Norman (2013) : Density and conditional distribution
based specification analysis, Working Paper, No. 2013-12, Rutgers University, Department of
Economics, New Brunswick, NJ

This Version is available at:
https://hdl.handle.net/10419/94238

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/94238
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Density and Conditional Distribution Based
Specification Analysis∗

Diep Duong and Norman R. Swanson∗

Rutgers University

February 2012

The technique of using densities and conditional distributions to carry out consistent specification testing and

model selection amongst multiple diffusion processes have received considerable attention from both financial theoreti-

cians and empirical econometricians over the last two decades. One reason for this interest is that correct specification

of diffusion models describing dynamics of financial assets is crucial for many areas in finance including equity and

option pricing, term structure modeling, and risk management, for example. In this paper, we discuss advances to this

literature introduced by Corradi and Swanson (2005), who compare the cumulative distribution (marginal or joint)

implied by a hypothesized null model with corresponding empirical distributions of observed data. We also outline

and expand upon further testing results from Bhardwaj, Corradi and Swanson (BCS: 2008) and Corradi and Swan-

son (2011). In particular, parametric specification tests in the spirit of the conditional Kolmogorov test of Andrews

(1997) that rely on block bootstrap resampling methods in order to construct test critical values are first discussed.

Thereafter, extensions due to BCS (2008) for cases where the functional form of the conditional density is unknown

are introduced, and related continuous time simulation methods are introduced. Finally, we broaden our discussion

from single process specification testing to multiple process model selection by discussing how to construct predictive

densities and how to compare the accuracy of predictive densities derived from alternative (possibly misspecified)

diffusion models. In particular, we generalize simulation Steps outlined in Cai and Swanson (2011) to multifactor

models where the number of latent variables is larger than three. These final tests can be thought of as continuous

time generalizations of the discrete time “reality check” test statistics of White (2000), which are widely used in

empirical finance (see e.g. Sullivan, Timmermann and White (1999, 2001)). We finish the chapter with an empirical

illustration of model selection amongst alternative short term interest rate models.
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1 Introduction

The last three decades have provided a unique opportunity to observe numerous interesting de-

velopments in finance, financial econometrics and statistics. For example, although starting as a

narrow sub-field, financial econometrics has recently transformed itself into an important discipline,

equipping financial economic researchers and industry practitioners with immensely helpful tools

for estimation, testing and forecasting. One of these developments has involved the development of

“state of the art” consistent specification tests for continuous time models, including not only the

geometric Brownian motion process used to describe the dynamics of asset returns (Merton (1973)),

but also a myriad of other diffusion models used in finance, such as the Ornstein-Uhlenbeck process

introduced by Vacisek (1977), the constant elastic volatility process applied by Beckers (1980), the

square root process due to Cox, Ingersoll and Ross (CIR: 1985), the so called CKLS model by

Chan, Karolyi, Longstaff and Sanders (CKLS: 1992), various three factor models proposed Chen

(1996), stochastic volatility processes such as generalized CIR of Andersen and Lund (1997), and

the generic class of affine jump diffusion processes discussed in Duffie, Pan and Singleton (2000).1

The plethora of available diffusion models allow decision makers to be flexible when choosing a

specification to be subsequently used in contexts ranging from equity and option pricing, to term

structure modeling and risk management. Moreover, the use of high frequency data when estimating

such models, in continuous time contexts, allows investors to continuously update their dynamic

trading strategies in real-time.2 However, for statisticians and econometricians, the vast number

of available models has important implications for formalizing model selection and specification

testing methods. This has led to several key papers that have recently been published in the

area of parametric and non-parametric specification testing. Most of the papers focus on the

ongoing “search” for correct Markov and stationary models that “fit” historical data and associated

dynamics. In this literature, it is important to note that correct specification of a joint distribution

is not the same as that of a conditional distribution, and hence the recent focus on conditional

distributions, given that most models have an interpretation as conditional models. In summary, the

key issue in the construction of model selection and specification tests of conditional distributions

is the fact that knowledge of the transition density (or conditional distribution) in general cannot

be inferred from knowledge of the drift and variance terms of a diffusion model. If the functional

form of the density is available parametrically, though, one can test the hypothesis of correct

specification of a diffusion via the probability integral transform approach of Diebold, Gunther,

and Tay (1998); the cross-spectrum approach of Hong (2001), Hong and Li (2005) and Hong, Li,

and Zhao (2007); the martingalization-type Kolmogorov test of Bai (2003); or via the normality

1For complete details, see Section 2.2.
2For further discussion, see Duong and Swanson (2010, 2011).



transformation approaches of Bontemps and Meddahi (2005) and Duan (2003). Furthermore, if

the transition density is unknown, one can construct a non-parametric test by comparing a kernel

density estimator of the actual and simulated data, for example, as in Altissimo and Mele (2009)

and Thompson (2008); or by comparing the conditional distribution of the simulated and the

historical data, as in Bhardwaj, Corradi, and Swanson (BCS: 2008). One can also use the methods

of Aït-Sahalia (2002) and Aït-Sahalia, Fan, and Peng (2009), in which they compare closed form

approximations of conditional densities under the null, using data-driven kernel density estimates.

For clarity and ease of presentation, we categorize the above literature into two areas. The

first area, initiated by the seminal work of Aït-Sahalia (1996) and later followed by Pritsker (1998)

and Jiang (1998), breaks new ground in the continuous time specification testing literature by

comparing marginal densities implied by hypothesized null models with nonparametric estimates

thereof. These sorts of tests examine one factor specifications. The second area of testing, as

initiated in Corradi and Swanson (CS: 2005) does not look at densities. Instead, they compare

cumulative distributions (marginal, joint, or conditional) implied by a hypothesized null model

with corresponding empirical distributions. A natural extension of these sorts of tests involves

model selection amongst alternative predictive densities associated with competing models. While

CS (2005) focus on cases where the functional form of the conditional density is known, BCS (2008)

use simulation methods to examine testing in cases where the functional form of the conditional

density is unknown. Corradi and Swanson (CS: 2011) and Cai and Swanson (2011) take the analysis

of BCS (2008) on Step further, and focus on the comparison of out of sample predictive accuracy of

possibly misspecified diffusion models, when the conditional distribution is not known in closed form

(i.e., they “choose” amongst competing models based on predictive density model performance).

The “best” model is selected by constructing tests that compare both predictive densities and/or

predictive conditional confidence intervals associated with alternative models

In this paper, we primarily focus our attention on the second area of the model selection and

testing literature.3 One feature of all of the tests that we shall discuss is that, given that they are

based on the comparison of CDFs, they obtain parametric rates. Moreover, the tests can be used

to evaluate single and multiple factor and dimensional models, regardless of whether or not the

functional form of the conditional distribution is known.

In addition to discussing simple diffusion process specification tests of CS (2005), we discuss

tests discussed in BCS (2008) and CS (2011), and provide some generalizations and additional

results. In particular, parametric specification tests in the spirit of the conditional Kolmogorov

test of Andrews (1997) that rely on block bootstrap resampling methods in order to construct test

critical values are first discussed. Thereafter, extensions due to BCS (2008) for cases where the

3For a recent survey on results in the first area of this literature, see Aït-Sahalia (2007).



functional form of the conditional density is unknown are introduced, and related continuous time

simulation methods are introduced. Finally, we broaden our discussion from single dimensional

specification testing to multiple dimensional selection by discussing how to construct predictive

densities and how to compare the accuracy of predictive densities derived from alternative (possibly

misspecified) diffusion models as in CS (2011). In addition, we generalize simulation and testing

procedures introduced in Cai and Swanson (2011) to more complicated multi-factor and multi-

dimensional models where the number of latent variables larger than three. These final tests can

be thought of as continuous time generalizations of the discrete time “reality check” test statistics

of White (2000), which are widely used in empirical finance (see e.g. Sullivan, Timmermann

and White (1999, 2001)). We finish the chapter with an empirical illustration of model selection

amongst alternative short term interest rate models, drawing on BCS (2008), CS (2011) and Cai

and Swanson (2011).

Of the final note is that the test statistics discussed here are implemented via use of simple

bootstrap methods for critical value simulation. We use the bootstrap because the covariance

kernels of the (Gaussian) asymptotic limiting distributions of the test statistics are shown to contain

terms deriving from both the contribution of recursive parameter estimation error (PEE) and the

time dependence of data. Asymptotic critical value thus cannot be tabulated in a usual way.

Several methods can easily be implemented in this context. First one can use block bootstrapping

procedures, as discussed below. Second one can use the conditional p-value approach of Corradi

and Swanson (2002) which extends the work of Hansen (1996) and Inoue (2001) to the case of

non vanishing parameter estimation error. Third is the subsampling method of Politis, Romano

and Wolf (1999), which has clear efficiency “costs”, but is easy implement. Use of the latter two

methods yields simulated (or subsample based) critical values that diverge at rate equivalent to the

blocksize length under the alternative. This is the main drawback to their use in our context. We

therefore focus on use of a block bootstrap that mimics the contribution of parameter estimation

error in a recursive setting and in the context of time series data. In general, use of the block

bootstrap approach is made feasible by establishing consistency and asymptotic normality of both

simulated generalized method of moments (SGMM) and nonparametric simulated quasi maximum

likelihood (NPSQML) estimators of (possibly misspecified) diffusion models, in a recursive setting,

and by establishing the first-order validity of their bootstrap analogs.

The rest of the paper is organized as follows. In Section 2, we present our setup, and discuss

various diffusion models used in finance and financial econometrics. Section 3 outlines the specifica-

tion testing hypotheses, presents the cumulative distribution based test statistics for one factor and

multiple factor models, discusses relevant procedures for simulation and estimation, and outlines

bootstrap techniques that can be used for critical value tabulation. In Section 4, we present a small



empirical illustration. Section 5 summarizes and concludes.

2 Setup

2.1 Diffusion Models in Finance and Financial Econometrics

For the past two decades, continuous time models have taken center stage in the field of financial

econometrics, particularly in the context of structural modeling, option pricing, risk management,

and volatility forecasting. One key advantage of continuous time models is that they allow financial

econometricians to use the full information set that is available. With the availability of high

frequency data and current computation capability, one can update information, model estimates,

and predictions in milliseconds. In this Section we will summarize some of the standard models

that have been used in asset pricing as well as term structure modelling. Generally, assume that

financial asset returns follow Ito-semimartingale processes with jumps, which are the solution to

the following stochastic differential equation system.

(−) =
Z 

0

((−) 0)− 0

Z


() +

Z 

0

((−) 0) () +

X
=1

  (1)

where(−) is a cadlag process (right continuous with left limit) for  ∈ <+ and is an dimensional

vector of variables,  () is an −dimensional Brownian motion, (·) is −dimensional function
of (−) and (·) is an x matrix-valued function of (−) where 0 is an unknown true

parameter.  is a Poisson process with intensity parameter 0 0 finite, and the −dimensional
jump size,  , is  with marginal distribution given by  Both  and  are assumed to be

independent of the driving Brownian motion,  ().4Also, note that
R

() denotes the mean

jump size, hereafter denoted by 0. Over a unit time interval, there are on average 0 jumps; so

that over the time span [0 ] there are on average 0 jumps. The dynamics of (−) is then given

by:

() =
¡
((−) 0)− 00

¢
+ ((−) 0) () +

Z


( ) (2)

where ( ) is a random Poisson measure giving point mass at  if a jump occurs in the interval

, and (·) (·) are the “drift" and “volatility" functions defining the parametric specification of
the model. Hereafter, the same (or similar) notation is used throughout when models are specified.

Though not an exhaustive list, we review some popular models. Models are presented with the

"true" parameters.

Diffusion Models Without Jumps:

4Hereafter, (−) denotes the cadlag, while  denotes discrete skeleton for  = 1 2  .



Geometric Brownian Motion (log normal model). In this set-up, ((−) 0) = 0() and

((−) 0) = 0()

() = 0()+ 0() ()

where 0 and 0 are constants and and  () is a one dimensional standard Brownian motion. (Be-

low, other constants such as 0 , 0 0 0 0 0, 0, and Ω0 are also used in model specifications.)

This model is popular in the asset pricing literature. For example, one can model equity prices

according to this process, especially in the Black-Scholes option set-up or in structured corporate

finance.5 The main drawback of this model is that the return process (log(price)) has constant

volatility, and is not time varying. However, it is widely used as a convenient “first" econometric

model.

Vasicek (1977) and Ornstein-Uhlenbeck process. The process is used to model asset prices,

specifically in term structure modelling, and the specification is:

() = (0 + 0())+ 0 ()

where  () is a standard Brownian motion, and 0, 0 and 0 are constants. 0 is negative to

ensure the mean reversion of ().

Cox, Ingersoll and Ross (1995) use the following square root process to model the term structure

of interest rates:

() = (0 −())+ 0
p
() ()

where  () is a standard Brownian motion, 0 is the long-run mean of ()  measures the speed

of mean-reversion, and 0 is a standard deviation parameter and is assumed to be fixed. Also,

non-negativity of the process is imposed, as 20  20

Wong (1964) points out that in the CIR model, () with the dynamics evolving according to:

() = ((0 − 0)−())+
p
0() () 0  0 and 0 − 0  0 (3)

belongs to the linear exponential (or Pearson) family with a closed form cumulative distribution.

0 and 0 are fixed parameters of the model.

The Constant Elasticity of Variance, or CEV model is specified as follows:

() = 0()+ 0()
02 ()

where  () is a standard Brownian motion and 0 0 and 0 are fixed constants.

Of note is that the interpretation of this model depends on 0 i.e. in the case of stock prices,

if 0 = 2, then the price process () follows a lognormal diffusion; if 0  2 , then the model

captures exactly the leverage effect as price and volatility are inversely correlated.

5See Black and Scholes (1973) for details.



Among other authors, Beckers (1980) uses this CEV model for stocks, Marsha and Rosenfeld

(1983) apply a CEV parametrization to interest rates and Emanuel and Macbeth (1982) utilize this

set-up for option pricing.

The Generalized constant elasticity of variance model is defined as follows:

() = (0()
−(1−0) + 0())+ 0()

02 ()

where the notation follows the CEV case. 0 is another parameter of the model. This process nests

log diffusion when 0 = 2 and nests square root diffusion when 0 = 1

Brennan and Schwartz (1979) and Courtadon (1982) analyze the model:

() = (0 + 0())+ 0()
2 ()

where 0 0 0 are fixed constants and  () is a standard Brownian motion.

Duffie and Kan (1993) study the specification:

() = (0 −())+
p
0 + 0() ()

where  () is a standard Brownian motion and 0 0 and 0 are fixed parameters.

Aït-Sahalia (1996) looks at a general case with general drift and CEV diffusion:

() = (0 + 0() + 0()
2 + 0())+ 0()

02 ()

In the above expression, 0 0 0 0 0 and 0 are fixed constants and  () is again a standard

Brownian motion.

Diffusion Models with Jumps:

For term structure modeling in empirical finance, the most widely studied class of models is the

family of affine processes, including diffusion processes that incorporate jumps.

Affine Jump Diffusion Model : (−) is defined to follow an affine jump diffusion if

() = 0(0 −())+Ω0
p
() () + ()

where (−) is an −dimensional vector of variables of interest and is a cadlag process,  () is an

−dimensional independent standard Brownian motion, 0 and Ω0 are square  ×  matrices,

0 is a fixed long-run mean, () is a diagonal matrix with  diagonal element given by

() = 0 + 00()

In the above expressions, 0 and 00 are constants. The jump intensity is assumed to be a

positive, affine function of () and the jump size distribution is assumed to be determined by it’s

conditional characteristic function. The attractive feature of this class of affine jump diffusions is



that, as shown in Duffie, Pan and Singleton (2000), it has an exponential affine structure that can

be derived in closed form, i.e.

Φ(()) = exp(() + ()0())

where the functions () and () can be derived from Riccati equations.6 Given a known

characteristic function, one can use either GMM to estimate the parameters of this jump diffusion,

or one can use quasi-maximum likelihood (QML), once the first two moments are obtained. In the

univariate case without jumps, as a special case, this corresponds to the above general CIR model

with jumps.

Multifactor and Stochastic Volatility Model: Multifactor models have been widely used

in the literature; particularly in option pricing, term structure, and asset pricing. One general set-

up has (()  ())0 =
¡
()  1()   ()

¢0
where only the first element, the diffusion process

 is observed while  () = (
1()   ())0x1 is latent. In addition, () can be dependent on

 () For instance, in empirical finance, the most well-known class of the multifactor models is the

stochastic volatility model expressed as:µ
()

 ()

¶
=

µ
1(() 0)

2( () 0)

¶
+

µ
11( () 0)

0

¶
1() +

µ
12( () 0)

22( () 0)

¶
2() (4)

where1()1x1 and2()1x1 are independent standard Brownian motions and  () is latent volatil-

ity process. 1(·) is a function of () and 2(·) 11(·) 22(·) and 22(·) are general functions of
 () such that system of equations (4) is well-defined. Popular specifications are the square-root

model of Heston (1993), the GARCH diffusion model of Nelson (1990), lognormal model of Hull

and White (1987) and the eigenfunction models of Meddahi (2001). Note that in this stochastic

volatility case, the dimension of volatility is  = 1 More general set-up can involve  driving

Brownian motions in  () equation.

As an example, Andersen and Lund (1997) study the generalized CIR model with stochastic

volatility, specifically

() = 0(0 −())+
p
 ()1()

 () = 0(0 −  ())+ 0
p
 ()2()

where() and  () are price and volatility processes, respectively, 0 0  0 to ensure stationar-

ity, 0 is the long-run mean of (log) price process, and 0 and 0 are constants. 1() and2() are

scalar Brownian motions. However, 1() and 2() are correlated such that 1()2() = 

where the correlation  is some constant  ∈ [−1 1]. Finally, note that volatility is a square-root
diffusion process, which requires that 00  20

6For details, see Singleton (2006), page 102.



Stochastic Volatility Model with Jumps (SVJ): A standard specification is:

 () = 0 (0 −()) +
p
 ()1 () +  − 

 () = 0 (0 −  ()) + 0
p
 ()2 () 

where  and  are Poisson processes with jump intensity parameters  and  respectively, and

are independent of the Brownian motions 1 () and 2 ()  In particular,  is the probability of

a jump up, Pr ( () = 1) =  and  is the probability of a jump down, Pr ( () = 1) =  

and  are jump up and jump down sizes and have exponential distributions:  () =
1

exp

³
−



´
and  () =

1

exp

³
−



´
 where    0 are the jump magnitudes, which are the means of

the jumps,  and 

Three Factor Model (CHEN): The three factor model combines various features of the above

models, by considering a version of the oft examined 3-factor model due to Chan, Karolyi, Longstaff

and Sanders (1992), which is discussed in detail in Dai and Singleton (2000). In particular,

 () = 0 ( ()− ()) +
p
 ()1 () 

 () = 0 ( −  ()) + 0
p
 ()2 ()  (5)

 () = 0
¡
0 −  ()

¢
+ 0

p
 ()3 () 

where1 ()  2 () and3 () are independent Brownian motions, and  and  are the stochastic

volatility and stochastic mean of (), respectively. 0 0 0 0 0 0 0 are constants. As

discussed above, non-negativity for  () and  () requires that 200  20 and 200  20

Three Factor Jump Diffusion Model (CHENJ): Andersen, Benzoni and Lund (2004) extend the

three factor Chen (1996) model by incorporating jumps in the short rate process, hence improving

the ability of the model to capture the effect of outliers, and to address the finding by Piazzesi

(2004, 2005) that violent discontinuous movements in underlying measures may arise from monetary

policy regime changes. The model is defined as follows:

 () = 0 ( ()− ()) +
p
 ()1 () +  −  (6)

 () = 0 (0 −  ()) + 0
p
 ()2 () 

 () = 0
¡
0 −  ()

¢
+ 0

p
 ()3 () (7)

where all parameters are similar as in (5), 1 ()  2 () and 3 () are independent Brownian

motions,  and  are Poisson processes with jump intensities 0 and 0 respectively, and are

independent of the Brownian motions (), () and ()  In particular, 0 is the probability

of a jump up, Pr ( () = 1) = 0 and 0 is the probability of a jump down, Pr ( () = 1) =

0  and  are jump up and jump down sizes and have exponential distributions  () =

1
0
exp

³
− 

0

´
and  () =

1
0
exp

³
− 

0

´
 where 0 0  0 are the jump magnitudes, which

are the means of the jumps  and 



2.2 Overview on Specification Tests and Model Selection

The focus in this paper is specification testing and model selection. The “tools” used in this litera-

ture have been long established. Several key classical contributions include the Kolmogorov-Smirnov

test (see e.g. Kolmogorov (1933) and Smirnov (1939)), various results on empirical processes (see

e.g. Andrews (1993) and the discussion in chapter 19 of van der Vaart (1998) on the contributions of

Glivenko, Cantelli, Doob, Donsker and others), the probability integral transform (see e.g. Rosen-

blatt (1952)), and the Kullback-Leibler Information Criterion (see e.g. White (1982) and Vuong

(1989)). For illustration, the empirical distribution mentioned above is crucial in our discussion of

predictive densities because it is useful in estimation, testing, and model evaluation. Let  is a

variable of interest with distribution  and parameter 0. The theory of empirical distributions

provides a result that

1√


X
=1

(1 { ≤ }−  (|0))

satisfies a central limit theorem (with a parametric rate) if  is large (i.e., asymptotically). In the

above expression, 1 { ≤ } is the indicator function which takes value 1 if  ≤  and 0 otherwise.

In the case where there is parameter estimation error, we can use more general results in chapter

19 of van der Vaart (1998). Define

 () =
1



X
=1

() and  () =

Z


where  is a probability measure associated with  Here, () converges to  () almost

surely for all the measurable functions  for which  () is defined . Suppose one wants to test

the null hypothesis that  belongs to a certain family {0 : 0 ∈ Θ} where 0 is unknown; it is
natural to use a measure of the discrepancy between  and  for a reasonable estimator b of
0 In particular, if b converges to 0 at a root- rate, 1√


( − ) has been shown to satisfy a

central limit theorem.7

With regard to dynamic misspecification and parameter estimation error, the approach dis-

cussed for the class of tests in this paper allows for the construction of statistics that admit for

dynamic misspecification under both hypotheses. This differs from other classes of tests such as the

framework used by Diebold, Gunther and Tay (DGT: 1998), Hong (2001), and Bai (2003) in which

correction dynamic specification under the null hypothesis is assumed. In particular, DGT use the

probability integral transform to show that (|=−1 0) =
R 
−∞ (|=−1 0) is identically

and independently distributed as a uniform random variable on [0; 1], where (·) and  (·) are a
parametric distribution and density with underlying parameter 0,  is again our random variable

7See Theorem 19.23 in van der Vaart (1998) for details.



of interest, and = is the information set containing all “relevant” past information. They thus sug-

gest using the difference between the empirical distribution of (|=−1b) and the 45◦ - degree
line as a measure of “goodness of fit”, where b is some estimator of 0. This approach has been
shown to be very useful for financial risk management (see e.g. Diebold, Hahnand, Tay (1999)),

as well as for macroeconomic forecasting (see e.g. Diebold, Tay and Wallis (1998) and Clements

and Smith (2000,2002)). Similarly, Bai (2003) develops a Kolmogorov type test of (|=−1 0)

on the basis of the discrepancy between (|=−1b) and the CDF of a uniform on [0; 1]. As

the test involves estimator b, the limiting distribution reflects the contribution of parameter esti-
mation error and is not nuisance parameter free. To overcome this problem, Bai (2003) proposes

a novel approach based on a martingalization argument to construct a modified Kolmogorov test

which has a nuisance parameter free limiting distribution. This test has power against violations

of uniformity but not against violations of independence. Hong (2001) proposes another related

interesting test, based on the generalized spectrum, which has power against both uniformity and

independence violations, for the case in which the contribution of parameter estimation error van-

ishes asymptotically. If the null is rejected, Hong (2001) also proposes a test for uniformity robust

to non independence, which is based on the comparison between a kernel density estimator and the

uniform density. Two features differentiate the tests surveyed in this paper from the tests outlined

in the other papers mentioned above. First, the tests discussed here assume strict stationarity.

Second, they allow for dynamic misspecification under the null hypothesis. The second feature

allows us to obtain asymptotically valid critical values even when the conditioning information set

does not contain all of the relevant past history. More precisely, assume that we are interested in

testing for correct specification, given a particular information set which may or may not contain

all of the relevant past information. This is important when a Kolmogorov test is constructed, as

one is generally faced with the problem of defining =−1 If enough history is not included, then

there may be dynamic misspecification. Additionally, finding out how much information (e.g. how

many lags) to include may involve pre-testing, hence leading to a form of sequential test bias.

By allowing for dynamic misspecification, such pre-testing is not required. Also note that critical

values derived under correct specification given =−1 are not in general valid in the case of correct

specification given a subset of =−1. Consider the following example. Assume that we are interested

in testing whether the conditional distribution of |−1 follows normal distribution (1−1 1).
Suppose also that in actual fact the “relevant” information set has =−1 including both −1and

−2, so that the true conditional model is |=−1 = |−1 −2 = (1−1 + 2−2 2) In

this case, correct specification holds with respect to the information contained in −1; but there is

dynamic misspecification with respect to −1and −2. Even without taking account of parameter

estimation error, the critical values obtained assuming correct dynamic specification are invalid,



thus leading to invalid inference. Stated differently, tests that are designed to have power against

both uniformity and independence violations (i.e. tests that assume correct dynamic specification

under the null) will reject; an inference which is incorrect, at least in the sense that the “normal-

ity” assumption is not false. In summary, if one is interested in the particular problem of testing

for correct specification for a given information set, then the approach of tests in this paper is

appropriate

3 Consistent Distribution-Based Specification Tests and Predic-

tive Density Type Model Selection for Diffusion Processes

3.1 One Factor Models

In this Section we outline the set-up for the general class of one factor jump diffusion specifications.

All analysis carry through to the more complicated case of multi-factor stochastic volatility models

which we will elaborate upon in the next Subsection. In the presentation of the tests, we follow a

view that all candidate models, either single or multiple dimensional ones, are approximations of

reality, and can thus be misspecified. The issue of correct specification (or misspecification) of a

single model and the model selection test for choosing amongst multiple competing models allow

for this feature.

To begin, fix the time interval [0  ] consider a given single one factor candidate model the

same as (1), with the true parameters 0 0 0 to be replaced by it’s the pseudo true analogs

†   respectively and 0 ≤  ≤  :

(−) =
Z 

0

((−) †)− 

Z


() +

Z 

0

((−) †) () +

X
=1

 

or

(−) =
³
((−) †)− 

´
+ ((−) †) () +

Z


( ) (8)

where variables are defined the same as in (1) and (2). Note that as the above model is the one

factor version of (1) and (2) where the dimension of (−) is 1x1,  () is a one-dimensional

standard Brownian motion and jump size, and  is one dimensional variable for all . Also note

that both  and  are assumed to be independent of the driving Brownian motion.

If the single model is correctly specified, then ((−) †) = 0((−) 0), ((−) †) =
0((−) 0)  = 0  = 0 and  = 0 where 0((−) 0) 0((−) 0) 0 0  0 are un-
known and belong to the true specification.

Now consider a different case (not a single model) where  candidate models are involved. For

model  with 1 ≤  ≤  denote it’s corresponding specification to be (((−) 
†
) ((−) 

†
)



  ) Two scenarios immediate arise. Firstly, if the model  is correctly specified, then

((−) 
†
) = 0((−) 0) ((−) 

†
) = 0((−) 0)  = 0  = 0 and  = 0

which are similar to the case of a single model. In the second scenario, all the models are likely to

be misspecified and modelers are faced with the choice of selecting the "best" one. This type of

problem is well-fitted into the class of accuracy assessment tests initiated earlier by Diebold and

Mariano (1995) or White (2000).

The tests discussed hereafter are Kolomogorov type tests based on the construction of cumula-

tive distribution functions (CDFs). In a few cases, the CDF is known in closed form. For instance,

for the simplified version of the CIR model as in (3), () belongs to the linear exponential (or

Pearson) family with the gamma CDF of the form:8

 ( ) =

R 
0
(
2
)−2(1−)−1 exp(−(

2
))

Γ(2(1− ))
 where Γ() =

Z ∞

0

 exp(−) (9)

and   are constants.

Furthermore, if we look at the pure diffusion process without jumps:

() = (() †)+ (() †) () (10)

where (·) and  = (·) are drift and volatility functions, it is known that the stationary density,
say ( †) associated with the invariant probability measure can be expressed explicitly as:9

( †) =
(†)

2( †)
exp

ÃZ  2( †)
2( †)



!

where (†) is a constant ensuring that  integrates to one. The CDF, say  ( †) =
R 

( †)

can then be obtained using available numerical integration procedures.

However, in most cases, it is impossible to derive the CDFs in closed form. To obtain a CDF in

such cases, a more general approach is to use simulation. Instead of estimating the CDF directly,

simulation techniques estimates the CDF indirectly utilizing it’s generated sample paths and the

theory of empirical distributions. The specification of a specific diffusion process will dictate the

sample paths and thereby corresponding test outcomes.

Note that in the historical context, many early papers in this literature are probability density-

based. For example, in a seminal paper, Ait-Sahalia (1996) compares the marginal densities implied

by hypothesized null models with nonparametric estimates thereof. Following the same framework

of correct specification tests, CS(2005) and BCS (2008), however, do not look at densities. Instead,

they compare the cumulative distribution (marginal or joint) implied by a hypothesized null model

with the corresponding empirical distribution. While CS (2005) focus on the known unconditional

8See Wong (1964) for details.
9See Karlin and Taylor (1981) for details.



distribution, BCS (2008) look at the conditional simulated distributions. CS (2011) make extensions

to multiple models in the context of out of sample accuracy assessment tests. This approach is

somewhat novel to this continuous time model testing literature.

Now suppose we observe a discrete sample path 12  (also referred as skeletons).
10

The corresponding hypotheses can be set up as follows:

Hypothesis 1: Unconditional Distribution Specification Test of a Single Model

0 :  ( 
†) = 0( 0) for all  a.s.

 : Pr
¡
 ( †)− 0( 0) 6= 0

¢
 0, for some  ∈  with non-zero Lebesgue measure.

where 0( 0) is the true cumulative distribution implied by the above density, i.e. 0( 0) =

Pr( ≤ ).  ( †) = Pr
³
†
 ≤ 

´
is the cumulative distribution of the proposed model. †



is a skeleton implied by model (8).

Hypothesis 2: Conditional Distribution Specification Test of A Single Model

0 :  (| 
†) = 0 (| 0) for all  a.s.

 : Pr
¡
 (| 

†)− 0 (| 0) 6= 0
¢
 0, for some  ∈  with non-zero Lebesgue mea-

sure.

where  (| 
†) = Pr

³
†
+ ≤ |†

 = 

´
is  -Step ahead conditional distributions and

 = 1   −  . 0 (| 0) is  -Step ahead true conditional distributions .

Hypothesis 3: Predictive Density Test for Choosing Amongst Multiple Competing

Models

The null hypothesis is that no model can outperform model 1 which is the benchmark model.11

0 : max=2

ÃÃ



†
1
1+ ()

(2)− 


†
1
1+ ()

(1)

!
− (0(2|)− 0(1|))

!2

−

⎛⎝⎛⎝


†


+
()

(2)− 


†


+
()

(1)

⎞⎠− (0(2|)− 0(1|))

⎞⎠2
 : negation of 

0
0

where 


†


+
()

() =  
 (| 

†
) =  


†


µ



†


+ ≤ |
†


 = 

¶
 which is the conditional

distribution of +  given , and evaluated at  under the probability law generated by model 



†


+ () with 1 ≤  ≤  −  is the skeleton implied by model , parameter 
†
 and initial value

 Analogously, define 

0 (| 0) =  

0
(+ ≤ |) to be the “true” conditional distribution.

Note that the three hypotheses expressed above apply exactly the same to the case of multifactor

10As mentioned earlier, we follow CS (2005) by using notation (·) when defining continuous time processes and
 for a skeleton.
11See White (2000) for a discussion of a discrete time series analog to this case, whereby point rather than density-

based loss is considered; Corradi and Swanson (2007b) for an extension of White (2000) that allows for parameter

estimation error; and Corradi and Swanson (2006a) for an extension of Corradi and Swanson (2007b) that allows for

the comparison of conditional distributions and densities in a discrete time series context.



diffusions. Now, before moving to the statistics description Section, we briefly explain the intuitions

in facilitating construction of the tests:

In the first case (Hypothesis 1), CS (2005) construct a Kolomogorov type test based on com-

parison of the empirical distribution and the unconditional CDF implied by the specification of the

drift, variance and jumps. Specifically, one can look at the scaled difference between

 ( †) = Pr
³
†
 ≤ 

´
=

Z 

( †)

and estimator of the true 0(| 0) the empirical distribution of  defined as:

1



X
=1

1 { ≤ }

where 1 { ≤ } is indicator function which takes value 1 if  ≤  and 0 otherwise.

Similarly for the second case of conditional distribution (Hypothesis 2), the test statistic  can

be a measure of the distance between the  −  ahead conditional distribution of †
+  given

†
 =  as:

 (| 
†) = Pr

³
†
+ ≤ |†

 = 

´


to an estimator of the true 0 (| 0) the conditional empirical distribution of + conditional

on the initial value  defined as:

1

 − 

−X
=1

1 {+ ≤ } 

In the third case (Hypothesis 3), model accuracy is measured in terms of a distributional analog

of mean square error. As is commonplace in the out-of-sample evaluation literature, the sample

of  observations is divided into two subsamples, such that  =  +  where only the last 

observations are used for predictive evaluation. A −Step ahead prediction error under model  is
1{1 ≤ + ≤ 2}−

³
 
 (2| 

†
)−  

 (1| 
†
)
´
where 2 ≤  ≤  and similarly for model 1

by replacing index  with index 1 Suppose we can simulate − paths of −Step ahead skeleton12

using  as starting values where  =    +  −   from which we can construct a sample of

 −  prediction errors. Then, these prediction errors can be used to construct a test statistic for

model comparison. In particular, model 1 is defined to be more accurate than model  if:



µ³
( 
1 (2| 

†
1)−  

1 (1| 
†
1))− ( 

0 (2| 0)−  
0 (1| 0))

´2¶
 

µ³
( 

 (

2| 

†
)−  

 (

1| 

†
))− ( 

0 (2| 0)−  
0 (1| 0))

´2¶


where(·) is an expectation operator and (1{1 ≤ + ≤ 2}|) =  
0 (2| 0)− 

0 (1| 0)

Concretely, model  is worse than model 1 if on average −Step ahead prediction errors under model
 is larger than that of model 1.

12See Section 3.3.1 for model simulation details.



Finally, it is important to point out some main features characterized by all the three test

statistics. Processes () hereafter is required to satisfy the regular conditions, i.e. assumptions

A1-A8 in CS (2011). Regarding model estimation (in Section 3.3), † and 
†
 are unobserved and

need to be estimated. While CS (2005), BCS (2008) utilize (recursive) Simulated General Method

of Moments (SGMM), CS (2011) make extension to (recursive) Nonparametric Simulated Quasi

Maximum Likelihood (NPSQML). For the unknown distribution and conditional distribution, it

will be pointed out in Section 3.3.2 that  ( †),  (| 
†) and 



†


+
()

() can be replaced

by their simulated counterparts using the (recursive) SGMM and NPSQML parameter estimators.

In addition, test statistics converge to functional of Gaussian processes with covariance kernels that

reflect time dependence of the data and the contribution of parameter estimation error (PEE). Lim-

iting distributions are not nuisance parameter free and critical values thereby cannot be tabulated

by the standard approach. All the tests discussed in this paper rely on the bootstrap procedures

for obtaining the asymptotically valid critical values, which we will describe in Section 3.4.

3.1.1 Unconditional Distribution Tests

For one-factor diffusions, we outline the construction of unconditional test statistics in the context

where CDF is known in closed form. In order to test the Hypothesis 1, consider the following

statistic:

 2 =

Z


 2()()

where

 =
1√


X
=1

³
1{ ≤ }−  (b)

´

In the above expression,  is a compact interval and

Z


() = 1 1{ ≤ } is again the indicator

function which returns value 1 if  ≤  and 0 otherwise. Further, as defined in Section 3.3, b

hereafter is a simulated estimator where  is sample size and  is the discretization interval used

in simulation. In addition, with the abuse of notation,  is a generic notation throughout this

paper, i.e.  = , the length of each simulation path for (recursive) SGMM and  =  the

number of random draws (simulated paths) for (recursive) NPQML estimator.13 Also note in our

notation that as the above test is in sample specification test, the estimator and the statistics are

constructed using the entire sample, i.e. b.

It has been shown in CS (2005) that under regular conditions and if the estimator is estimated

by SGMM, the above statistics converges to a functional of Gaussian process.14 In particular, pick

13 is often chosen to coincide with  the number of simulated paths used when simulating distributions.
14For details and the proof, see Theorem 1 in CS (2005).



the choice  →∞ → 0  → 0 and 2 → 0

Under the null,

 2 →
Z


2()()

where  is a Gaussian process with covariance kernel. Hence, the limiting distribution of  2 is

a functional of a Gaussian process with a covariance kernel that reflects both PEE and the time

series nature of the data. As b is root-T consistent, PEE does not disappear in the asymptotic

covariance kernel.

Under , there exists an   0 such that

lim
→∞

Pr(
1


 2  ) = 1

For the asymptotic critical value tabulation, we use the bootstrap procedure. In order to

establish validity of the block bootstrap under SGMM with the presence of PEE, the simulated

sample size should be chosen to grow at a faster rate than the historical sample, i.e.  → 0

Thus, we can follow Steps in appropriate bootstrap procedure in Section 3.4. For instance, if

the SGMM estimator is used, the bootstrap statistic is

 2∗ =

Z


 2∗()()

where

 ∗ =
1√


X
=1

³
(1{∗

 ≤ }− 1{ ≤ })− ( (b∗)−  (b))
´


In the above expression, b∗ is the bootstrap analog of
b and is estimated by the bootstrap

sample ∗
1  

∗
 (see Section 3.4) With appropriate conditions, CS (2005) show that under the

null,  2∗ has a well defined limiting distribution which coincides with that of 
2
We then can

straightforwardly derive the bootstrap critical value by following Step 1-5 Section 3.4. In particular,

in Step 5, the idea is to perform  bootstrap replications ( large) and compute the percentiles

of the empirical distribution of the  bootstrap statistics. Reject 0 if 
2
 is greater than the

(1− )−percentile of this empirical distribution. Otherwise, do not reject 0

3.1.2 Conditional Distribution Tests

Hypothesis 2 tests correct specification of the conditional distribution, implied by a proposed

diffusion model. In practice, the difficulty arises from the fact that the functional form of neither

 -Step ahead conditional distributions  (| 
†) nor 0 (| 0) is unknown in most cases.

Therefore, BCS (2008) develop bootstrap specification test on the basis of simulated distribution



using the SGMM estimator.15 With the important inputs leading to the test such as simulated

estimator, distribution simulation and bootstrap procedures to be presented in the next Section16,

the test statistic is defined as:

 = sup
×∈×

| ( )|

where

 ( ) =
1√

 − 

−X
=1

Ã
1



X
=1

1

½


+ ≤ 

¾
− 1{+ ≤ }

!
1 { ≤ } 

with  and  compact sets on the real line. b is the simulated estimator using entire sample

1 and  is the number of simulated replications used in the estimation of conditional

distributions as described in Section 3.3. If SGMM estimator is used (similar to unconditional

distribution case and the same as in BCS (2008)), then  = , where  is the simulation length

used in parameter estimation.

The above statistic is a simulation-based version of the conditional Kolmogorov test of Andrews

(1997), which compare the joint empirical distribution

1

 − 

−X
=1

1{+ ≤ }1 { ≤ }

with its semi-empirical/semi-parametric analog given by the product of

1

 − 

−X
=1

0 (| 0)1 { ≤ } 

Intuitively, if the null is not rejected, the metric distance between the two should asymptotically

disappear. In the simulation context with parameter estimation error, the asymptotic limit of

 however is a nontrivial one. BCS (2008) show that with the proper choice of   , i.e.

   2 →∞ and    2 → 0 then


→ sup

×∈×
|( )|

where ( ) is a Gaussian process with a covariance kernel that characterizes: 1) long-run variance

we would have if we knew 0 (|1 0); 2) the contribution of parameter estimation error; 3) The
correlation between the first two.

Furthermore, under  there exists some   0 such that:

lim
→∞

Pr

µ
1√

  

¶
= 1

15 In this paper, we assume that (·) satisfies the regularity conditions stated in CS (2011), i.e. assuptions A1-A8.
Those conditions also reflect requirements A1-A2 in BCS (2008). Note that, the SGMM estimator used in BCS (2008)

satisfies the root-N consistency condition that CS (2011) impose on their parameter estimator (See Assumption 4).

16See Sections 3.3 and 3.4 for further details.



As  → 0 the contribution of simulation error is asymptotically negligible. The limiting distri-

bution is not nuisance parameter free and hence critical values cannot be tabulated directly from

it. The appropriate bootstrap statistic in this context is:

∗ = sup
×∈×

|∗ ( )| 

where

∗ ( ) =
1√

 − 

−X
=1

Ã
1



X
=1

1

½

∗
+ ≤ 

¾
− 1{∗

+ ≤ }
!
1 {∗

 ≤ }

− 1√
 − 

−X
=1

Ã
1



X
=1

1

½


+ ≤ 

¾
− 1{+ ≤ }

!
1 { ≤ }

In the above expression, b∗ is the bootstrap parameter estimated using the resampled data

∗
 for  = 1   −  . 

∗
+   = 1   and  = 1   −  is the simulated data underb∗ and ∗

   = 1   −  is a resampled series constructed using standard block-bootstrap

methods as described in 3.4. Note that in the original paper, BCS (2008) propose bootstrap SGMM

estimator for conditional distribution of diffusion processes. CS (2011) extend the test to the case of

simulated recursive NPSQML estimator. Regarding the generation of the empirical distribution of

∗ (asthmatically the same as  ) follow Step 1-5 in the bootstrap procedure in Section 3.4. This

yields  bootstrap replications ( large) of ∗ . One can then compare  with the percentiles

of the empirical distribution of ∗  and reject 0 if  is greater than the (1 − )-percentile.

Otherwise, do not reject 0. Tests carried out in this manner are correctly asymptotically sized,

and have unit asymptotic power.

3.1.3 Predictive Density Tests for Multiple Competing Models

In many circumstances, one might want to compare one (benchmark) model (model 1) against

multiple competing models (models  2 ≤  ≤ ). In this case, recall in the null in Hypothesis

3 is that no model can outperform the benchmark model. In testing the null, we first choose a

particular interval i.e., (1 2) ∈ x where  is a compact set so that the objective is evaluation

of predictive densities for a given range of values. In addition, in the recursive setting (not full

sample is used to estimate parameters), if we use the recursive NPSQML estimator, say b1

and b for models 1 and , respectively, then the test statistic is defined as


(1 2) = max

=2
(1 2)

where

(1 2)

=
1√


−X
=

⎛⎝" 1


X
=1

1

½
1 ≤ 

1
1+ () ≤ 2

¾
−1{1 ≤ + ≤ 2}

#2



−
"
1



X
=1

1

½
1 ≤ 


+ () ≤ 2

¾
−1{1 ≤ + ≤ 2}

#2⎞⎠ 

All notation is consistent with previous Sections where  is the number of simulated replications

used in the estimation of conditional distributions. 
1
1+ () and 


+ ,  = 1    =

1  −  are the  simulated path under b1 and b If models 1 and  are nonnested for

at least one  = 2 . Under regular conditions and if    are chosen such as  →∞
and   2 → 0, →  where  is finite then

max
=2

((1 2)− (1 2))
→ max

=2
(1 2)

where, with an abuse of notation, (1 2) = 1(1 2)− (1 2) and

(1 2) = 

⎛⎝ÃÃ


†


+ ()

(2)− 


†


+ ()

(1)

!
− (0(2|)− 0(1|))

!2⎞⎠ 

for  = 1  and where (1(1 2)  (1 2)) is an −dimensional Gaussian random
variable the covariance kernels that involves error in parameter estimation. Bootstrap statistics are

therefore required to reflect this parameter estimation error issue.17

In the implementation, we can obtain the asymptotic critical value using a recursive version

of the block bootstrap. The idea is that when forming block bootstrap samples in the recursive

setting, observations at the beginning of the sample are used more frequently than observations

at the end of the sample. We can replicate the Step 1-5 in bootstrap procedure in Section 3.4.

It should be stressed the re-sampling in the Step 1 is the recursive one. Specifically, begin by

resampling  blocks of length  from the full sample, with  =  For any given   it is necessary to

jointly resample +1 +  More precisely, let 
 = (+1 + )  = 1   −  

Now, resample  overlapping blocks of length  from   This yields ∗ = (∗
 

∗
+1 

∗
+ )

 = 1   −   Use these data to construct bootstrap estimator b∗. Recall that  is chosen

in CS (2011) as the number of simulated series used to estimate the parameters ( = = ) and

such as  → ∞ Under this condition, simulation error vanishes and there is no need to

resample the simulated series.

CS (2011) show that

1√


X
=

³b∗ − b

´
has the same limiting distribution as

1√


X
=

³b − 
†


´


17See CS (2011) for further discussion.



conditional on all samples except a set with probability measure approaching zero. Given this, the

appropriate bootstrap statistic is:

∗(1 2)

=
1√


−X
=

⎧⎨⎩
⎛⎝" 1



X
=1

1

½
1 ≤ 

∗1
1+ (

∗
 ) ≤ 2

¾
− 1{1 ≤ ∗

+ ≤ 2}
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−
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"
1
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1

½
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1
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X
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1

½
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∗
+ (

∗
 ) ≤ 2

¾
− 1{1 ≤ ∗

+ ≤ 2}
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−
⎛⎝ 1


X
=1

"
1



X
=1

1

½
1 ≤ 


+ () ≤ 2

¾
− 1{1 ≤ + ≤ 2}

#2⎞⎠⎞⎠⎫⎬⎭ 

As the bootstrap statistic is calculated from the last  resampled observations, it is necessary to

have each bootstrap term recentered around the (full) sample mean. This is true even in the case

there is no need to mimic PEE, i.e. the choice of  is such that → 0 In such a case, above

statistic can be formed using b rather than b∗

For any bootstrap replication, repeat  times ( large) ) bootstrap replications which yield

 bootstrap statistics ∗. Reject 0 if  is greater than the (1 − )-percentile of the

bootstrap empirical distribution. For numerical implementation, it is of importance to note that in

the case where  → 0   → ∞ there is no need to re-estimate b∗1 (
b∗) Namely,b

1
(b


) can be used in all bootstrap experiments.

Of course, the above framework can also be applied using entire simulated distributions rather

than predictive densities, by simply estimating parameters once, using the entire sample, as opposed

to using recursive estimation techniques, say, as when forming predictions and associated predictive

densities.

3.2 Multifactor Models

Now, let us turn our attention to multifactor diffusion models of the form (()  ())0 =
¡
()  1()   ()

¢0


where only the first element, the diffusion process  is observed while  () = (
1()   ())0

is latent. The most popular class of the multifactor models is stochastic volatility model expressed

as below:µ
()

 ()

¶
=

µ
1(() 

†)
2( () 

†)

¶
+

µ
11( () 

†)
0

¶
1() +

µ
12( () 

†)
22( () 

†)

¶
2() (11)



where1()1x1 and2()1x1 are independent Brownian Motions.
18 For instance, many term struc-

ture models require the multifactor specification of the above form (see Dai and Singleton (2000)).

In a more complicated case, the drift function can also be specified to be a stochastic process which

poses even more challenges to testing. As mentioned earlier, the hypotheses (Hypothesis 1,2,3)

and the test construction strategy for multifactor models are the same as for one factor model. All

theory essentially applies immediately to multifactor cases. In implementation, the key difference

is in the simulated approximation scheme facilitating parameter and CDF estimation. () cannot

simply be expressed as a function of +1 driving Brownian motions but instead involves a function

of (
R 
0
 ),   = 1  +1 (see e.g. Pardoux and Talay (1985) p.30-32 and CS(2005)).

For illustration, we hereafter focus on the analysis of a stochastic volatility model (11) where

drift and diffusion coefficients can be written as

 =

µ
1(() 

†))
2( () 

†))

¶
  =

µ
11( () 

†) 12( () 
†)

0 22( () 
†)

¶
We also examine a three factor model (i.e., the Chen Model as in (5)) and a three factor model

with jumps, (i.e., CHENJ as in (6)). By presenting two and three factor models as an extension

of our above discussion, we make it clear that specification tests of multiple factor diffusions with

 ≥ 3 can be easily constructed in similar manner.
In distribution estimation, the important challenge for multifactor models lies in the missing

variable issue. In particular, for simulation of , one needs initial values of the latent processes

1  which are unobserved. To overcome this problem, it suffices to simulate the process using

different random initial values for the volatility process, then construct the simulated distribution

using those initial values and average them out. This allows one to integrate out the effect of a

particular choice of volatility initial value.

For clarity of exposition, we sketch out a simulation strategy for a general model of  latent

variables in Section 3.3. This generalizes the simulation scheme of three factor models in the Cai

and Swanson (2011). As a final remark before moving to the statistic presentation, note that the

class of multifactor diffusion processes considered in this paper is required to match the regular

conditions as in previous Section (assumption from A1-A8 in CS (2011) with A4 being replaced by

A4’).

18Note that the dimension of (·) can be higher and we can add jumps to the above specification such that it
satisfies the regularity conditions outlined in the one factor case. In addition, CS (2005), provide a detailed discussion

of approximation schemes in the context of stochastic volatility models.



3.2.1 Unconditional Distribution Tests

Following the above discussion on test construction, we specialize to the case of two-factor stochastic

volatility models. Extension to general multidimensional and multifactor models follows similarly.

As the CDF is rarely known in closed form for stochastic volatility models, we rely on simulation

technique. With the simulation scheme, estimators, simulated distributed and bootstrap procedures

to be presented in the next sections (see Section 3.3 and 3.4), the test statistics for Hypothesis 1

turns out to be:

 =
1√


X
=1

Ã
1{ ≤ }− 1



X
=1

1(

 ≤ )

!

In the above expression, recall that  is the number of simulation paths used in distribution

simulation, b is a simulated estimator (see Section 3.3).  is a generic notation throughout

this paper, i.e.  = , the length of each simulation path for SGMM and  =  the number

of random draws (simulated paths) for NPQML estimator.  is the discretization interval used in

simulation. Note that b is chosen in CS (2005) to be SGMM estimator using full sample and

therefore  =  = .19 To put it simply, one can write b = b.

Under the null, choose   to satisfy   →∞ → 0  → 0 then:

 2 →
Z


 2()()

where  is a Gaussian process with covariance kernel that reflects both PEE and the time dependent

nature of the data. The relevant bootstrap statistic is:

 2∗ =
1√


X
=1

Ã
(1{∗

 ≤ }− 1{ ≤ })− 1

(

X
=1

1(
∗
 ≤ )− 1(

 ≤ ))

!

where b∗ is the bootstrap analogue of b. Repeat the Step 1-5 in the bootstrap procedure
in Section 3.4 to obtain critical value which are the percentiles of the empirical distribution of ∗ .

Compare  with the percentiles of the empirical distribution of the bootstrap statistic and

reject 0 if  is greater than the (1− )-percentile thereof. Otherwise, do not reject 0.

3.2.2 Conditional Distribution Tests

To test Hypothesis 2 for the multifactor models, first we present the test statistic for the case of

the stochastic volatility model ( ) in (11), (i.e., for two factor diffusion), and then we discuss

testing with the three factor model ( 
1
  

2
 ) as in (5). Other multiple factor models can be tested

analogously. Note that for illustration, we again assume use of the SGMM estimator b as in

19As seen in assumption A4’ in CS (2011) and Section 3.3 of this paper,  can be other estimators such as
the NPSQML estimator. Importantly,  satisfies condition A4’ in CS (2011).



the original work of BCS (2008) (namely, b is the simulated estimator described in Section

3.3). Specifically,  is chosen as the length of sample path  used in parameter estimation. The

associated test statistic is:

 = sup
×∈×

| ( )|

 ( ) =
1√

 − 

−X
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⎛⎝ 1



X
=1

X
=1

1

½


+ ≤ 
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where 

+ is is  - Step ahead simulated skeleton obtained by simulation procedure for multi-

factor model in Subsection 3.4.1.

In a similar manner, the bootstrap statistic analogous to  is

∗ = sup
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where b∗ is the bootstrap estimator described in Section 3.4. For the three factor model, the

test statistic is defined as

 = sup
×∈×

| ( )| 

 ( ) =
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and bootstrap statistics is:

∗ ( ) =
1√
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where

+ =


+ ( 

1
  

2
 ) and

∗
+ = 

∗
+ ( 

1∗
  

2∗
 )

The first order asymptotic validity of inference carried out using bootstrap statistics formed

as outlined above follows immediately from BCS (2008). For testing decisions, one compares the

test statistics  and  with the percentiles or the empirical distributions of 
∗
 and

∗ respectively. Then, reject 0 if the actual statistic is greater than the (1−)-percentile
of the empirical distribution of the bootstrap statistic, as in Section 3.4. Otherwise, do not reject

0.



3.2.3 Predictive Density Tests for Multiple Competing Models

For illustration, we present the test for the stochastic volatility model (two factor model). Again,

note that extension to other multi-factor models follows immediately. In particular, all steps in the

construction of the test in the one factor model case carry through immediately to the stochastic

volatility case with the statistic defined as:

 = max
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(1 2)
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Critical values for these tests can be obtained using a recursive version of the block bootstrap. The

corresponding bootstrap test statistic is:
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Of note is that we follow CS (2011) by adopting the recursive NPSQML estimator b1 andb for model 1 and , respectively, as introduced in Section 3.3.4 with the choice  = = b∗1 and
b∗ are bootstrap analogs of

b1 and b respectively (see Section 3.4).

In addition, we do not need to resample the volatility process, although volatility is simulated under

both b and b∗  = 1 



Repeat Steps 1-5 in the bootstrap procedure in Section 3.4 to obtain critical values. Compare

 with the percentiles of the empirical distribution of  ∗  and reject 0 if  is

greater than the (1−)-percentile. Otherwise, do not reject 0 Again, in implementation, there

is no need to re-estimate b∗ for each bootstrap replications if  → 0   → ∞, ass
parameter estimation error vanishes asymptotically in this case

3.3 Model Simulation and Estimation

3.3.1 Simulating Data

Approximation schemes are used to obtain simulated distributions and simulated parameter esti-

mators, which are needed in order to construct the tests statistics outlined in previous sections.

We therefore devote the first part of this section to a discussion of the Milstein approximation

schemes that have been used in CS (2005), BCS (2008) and CS (2011). Let  be the length of

each simulation path and  be the discretization interval,  =  and  be a generic parameter in

simulation expression. We consider three cases:

The pure diffusion process as in (10):


 −

(−1) = (
(−1) )+ (

(−1) )
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2
(

(−1) )
0(
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+
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2
(
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where ¡
 −(−1)

¢
= 

∼ (0 )

 = 1      with 
∼ (0 ); and where 0 is the derivative of (·) with respect to its first

argument. Hereafter, 
 denotes the values of the diffusion at time  simulated under generic

 and with a discrete interval equal to  and so is a fine grain analog of 
.

The pure jump diffusion process without stochastic volatility as in (??):
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 )+ (

 )(+1) −
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2
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+
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2
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 )
0(

 )
2
(+1) − +

JX
=1

1 { ≤ U ≤ ( + 1)}  (12)

The only difference between this approximation and that used for the pure diffusion is the jump

part. Note that the last term on the right-hand-side (RHS) of (12) is nonzero whenever we have one

(or more) jump realization(s) in the interval [(−1) ]Moreover, as neither the intensity nor the
jump size is state dependent, the jump component can be simulated without any discretization error,



as follows. Begin by making a draw from a Poisson distribution with intensity parameter b say
J . This gives a realization for the number of jumps over the simulation time span. Then, draw J
uniform random variables over [0 ] and sort them in ascending order so that U1 ≤ U2 ≤  ≤ UJ 
These provide realizations for the J jump times. Then, make J independent draws from  say

1  J .

SV models without jumps as in (4) (using a generalized Milstein scheme):
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where −12 ∼ (0 1)  = 1 2, (120) = 0 for all  6= 0 and
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The last terms on the RHS of (13) involve stochastic integrals and cannot be explicitly computed.

However, they can be approximated, up to an error of order () by (see, for example, equation

(3.7), pp. 347 in Kloeden and Platen (1999)):Z (+1)
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where for  = 1 2      are  (0 1) random variables,  =
1
12
− 1

22

P
=1

1
2
 and 

is such that as → 0 →∞

Stochastic Volatility with Jumps

Simulation of sample paths of diffusion processes with stochastic volatility and jumps follows

straightforwardly from the previous two cases. Whenever both intensity and jump size are not

state dependent, a jump component can be simulated and added to either () and/or the  ()

in the same manner as above. Extension to general multidimensional and multifactor models both

with and without jumps also follows directly.



3.3.2 Simulating Distributions

In this section we sketch out methods used to construct −step ahead simulated conditional distrib-
utions using simulated data. In applications, simulation techniques are needed when the functional

form conditional distribution is unknown. We first illustrate the technique for one factor models

and then discuss multifactor models.

One factor models:

Consider the one factor model as in (8). To estimate the simulated CDFs,

Step 1: Obtain b (using the entire sample) or b (recursive estimator) where b

and b are estimators as discussed in Section 3.3.3 and 3.3.4.

Step 2: Under b or b
20, simulate  paths of length   all having the same starting

value,  In particular, for each path  = 1  of length   generate 

+ () according to

a Milstein schemes detailed in previous section, with  = b or b The errors used in

simulation are 
∼ (0 ), and  =  .  is assumed to be independent across simulations,

so that () = 0for all  6=  and () =  for any   In addition, as the simulated

diffusion is ergodic, the effect of the starting value approaches zero at an exponential rate, as

 →∞.
Step 3: If b (b) is used, an estimate for the distribution at time +   conditional on

 with estimator b(b), is defined as:

b (|b) =
1



X
=1

1

½


+ () ≤ 

¾

BCS (2008) show that if the model is correctly specified, then 1


P
=1 1

½


+ () ≤ 

¾
provides

a consistent estimate of the conditional distribution  (| 
†) = Pr

³
†
+ ≤ |†

 = 

´


Specifically, assume that   → ∞ Then, for the case of SGMM estimator, if  → 0

 → 0 and 2 → 0  2 →∞ the following result holds for any   ≥ 1 uniformly in 

b (|b)−  (| 
†)

→ 0

In addition, if the model is correctly specified (i.e. if (· ·) = 0(· ·) and (· ·) = 0(· ·)) then:

b (|b)− 0 (| 0)
→ 0

Step 4: Repeat Steps 1-3 for  = 1   −   This yields  −  conditional distributions that are

−Steps ahead which will be used in the construction of the specification tests.

The CDF simulation in the case selection test of multiple models with recursive estimator is

similar. For model  let b be the recursive estimator of "pseudo true" 
†
 computed using all

20Note that  =  for the SGMM estimator while  = =  for NSQML estimator.



observations up to varying time  Then, 

+ () is generated according to a Milstein schemes

as in Section 3.3.1, with  = b and the initial value   =  . The corresponding empirical

distribution of the simulated series 

+ () can then be constructed Under some regularity

conditions,

1



X
=1

1

½
1 ≤ 


+ () ≤ 2

¾
→ 



†


+
()

(2)− 


†


+
()

(1)  =    −  

where 


†


+
()

() is the marginal distribution of 

†


+ () implied by  model (i.e., by the

model used to simulate the series), conditional on the (simulation) starting value  Furthermore,

the marginal distribution of †
+ () is the distribution of + conditional on the values observed

at time  Thus, 


†


+
()

() =  
 (| 

†
)

Of important note is that in the simulation of 

+ ()  = 1  , for each   =   −

  we must use the same set of randomly drawn errors and similarly the same draws for numbers

of jumps, jump times and jump sizes. Thus, we only allow for the starting value to change. In

particular, for each  = 1   we generate 

+ () 

−
 (− ) This yields an

x matrix of simulated values, where  =  −−  +1 refers to the length of the out-of-sample

period. 
+
++ (+) (at time + + ) can be seen as  periods ahead value "predicted" by

model  using all available information up to time  + + ,  = 1   (the initial value +

and b+ estimated using 1 +) The key feature of this setup is that it enables us to

compare "predicted "  periods ahead values (i.e. 
+
++ (+)) with actual values that are 

periods ahead (i.e., ++ ), for  = 1   . In this manner, simulation based tests under ex-ante

predictive density comparison framework can be constructed.

Multifactor model:

Consider the multi-factor model with a skeleton
¡
 

1
   




¢0
(e.g. stochastic mean, sto-

chastic volatility models, stochastic volatility of volatility, etc.) where only the first element  is

observed. For simulation of the CDF the difficulty arises as we do not know the initial values of

latent variables ( 1   

 )
0 at each point in timeWe generalize the simulation plan of BCS (2008)

and Cai and Swanson (2011) to the case of  dimensions. Specifically, to overcome the initial value

difficulty, a natural strategy is to simulate a long path of length  for each latent variable  1   



, use them to construct + and the corresponding simulated CDF of + ; and finally, we average

out the volatility values. Note that there are  combinations of the initial values  1   

  For

illustration, consider the case of stochastic volatility ( = 1) and the Chen three factor model as in

(5) ( = 2) using recursive estimators.

For the case of stochastic volatility ( = 1), i.e. ( )
0 the steps are as follows:

Step 1: Estimate b using recursive SGMM or NSQML estimation methods.



Step 2. Using the scheme in (14) with  = b generate the path 

 for  =

1   with  =  and hence obtain 

  = 1 .

Step 3: Using schemes in (13), (14), simulate x paths of length  , setting the initial value for

the observable state variable to be  For the initial values of unobserved volatility, use 

 

 = 1  as retrieved in Step 2. Also, keep the simulated random innovations (i.e.1.1R (+1)


³R 

1

´
2) to be constant across each  and . Hence, for each replication using

initial values  and 

  we obtain 


+ () which is a  - step ahead simulated value.

Step 4: Now the estimator of  (| 
†) is defined as:

b (|b) =
1
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½


+ () ≤ 

¾
Note that, by averaging over the initial value of the volatility process, we have integrated out

it’s effect. In other words, 1


P
=1 1

½


+ () ≤ 

¾
is an estimate of  (| 


  †)

Step 5: Repeat the Steps 1-4 for  = 1   −   This yields  −  conditional distributions

that are −steps ahead which will be used in the construction of the specification tests.

For three factor model ( = 2), i.e., ( 
1
  

2
 ), consider model (5), where =

¡
 1

 
2
 

3


¢
are mutually independent standard Brownian motions.

Step 1: Estimate b using SGMM or NSQML estimation methods.

Step 2: Given the estimated parameter b


 generate the path 
1
 and 

2
 for

  = 1   with  =  and hence obtain 
1
 ,

2
   = 1  .

Step 3: Given the observable and the × simulated latent paths ( 1


 and 
2


  = 1  ) as the start values , we simulate  -Step ahead 

+ ( 

1
  

2
 ).

Since the start values for the two latent variables are  ×  length, so for each  we have 
2

path. Now to integrate out the initial effect of latent variables, form the estimate of conditional

distribution as

b(|b) = 1

2

X
=1

X
=1

1

½


+ ( 

1
  

2
 ) ≤ 

¾


where  denotes the  simulation.

Step 4: Simulate 

+ S times, that is, repeat Step 3  times i.e.  = 1  . The estimate

of  (| 
†) is

b (|b) = 1



X
=1

b(|b)

Step 5: Repeat the Steps 1-4 for  = 1   −   This yields  −  conditional distributions

that are −steps ahead which will be used in the construction of the specification tests.



As a final remark, for the case of multiple competing models, we can proceed similarly. In

addition, in the next two subsections, we present the exactly identified simulated (recursive) general

method of moments and recursive nonparametric simulated quasi-maximum likelihood estimators

that can be used in simulating distributions as well as constructing test statistics described in

Section 3.2. The bootstrap analogs of those estimators will be discussed in Section 3.4.

3.3.3 Estimation: (Recursive) Simulated General Method of Moments (SGMM) Es-

timators

Suppose that we observe a discrete sample (skeleton) of  observations, say (12  )
0 from

the underlying diffusion in (8). The (recursive) SGMM estimator b with 1 ≤  ≤  is specified

as:

b = argmin
∈Θ

⎛⎝1
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()− 1



X
=1

(
)

⎞⎠0−1
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(
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(15)

= argmin
∈Θ

()
0() (16)

where  is a vector of  moment conditions, Θ ⊂ < (so that we have as many moment conditions

as parameters), and 
 = 

[]
 with  =  is the simulated path under generic parameter

 and with discrete interval . 
 is simulated using the Milstein schemes.

Note that in the above expression, in the context of the specification test b is estimated
using the whole sample, i.e.  =  . In the out of sample context, the recursive SGMM estimatorb is estimated recursively using the using sample from 1 up to 

Typically, the  moment conditions are based on the difference between sample moments of

historical and simulated data or, between sample moments and model implied moments, whenever

the latter are known in closed form. Finally, is the heteroskedasticity and autocorrelation (HAC)

robust covariance matrix estimator, defined as

−1
 =

1



X
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−X
=+1+
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X
=1

()

⎞⎠⎛⎝(−)− 1


X
=1

()
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where  = 1− ( + 1) Further, the pseudo true value, 
†, is defined to be:

† = argmin
∈Θ

∞()00∞()

where

∞()00∞() =  lim
→∞→0

()
0();

and where † = 0 if the model is correctly specified.



In the above set up, the exactly identified case is considered rather than the overidentified

(S)GMM. This choice guarantees that ∞(†) = 0 even under misspecification, in the sense that

the model differs from the underlying DGP. As pointed out by Hall and Inoue (2003), the root-N

consistency does not hold for overidentified (S)GMM estimators of misspecified models. In addition,

∇∞(†)0
†
∞(†) = 0

However, in the case for which the number of parameters and the number of moment conditions is

the same, ∇∞(†)0
†
is invertible, and so the first order conditions also imply that ∞(†) = 0

Also note that other available estimation methods using moments include the efficient method

of moments (EMM) estimator as proposed by Gallant and Tauchen (1996, 1997), which calculates

moment functions by simulating the expected value of the score implied by an auxiliary model. In

their setup, parameters are then computed by minimizing a chi-square criterion function.

3.3.4 Estimation: Recursive Nonparametric Simulated Quasi Maximum Likelihood

Estimators

In this section we outline a recursive version of the NPSQML estimator of Fermanian and Salani´e

(2004), proposed by CS (2011). The bootstrap counterpart of the recursive NPSQML estimator

will be presented in the next section.

One factor models:

Hereafter, let 
¡
|−1 †

¢
be the conditional density associated with the above jump diffusion

If  is known in closed form, we can just estimate † recursively, using standard QML as:21

b = argmax
∈Θ

1



X
=2

ln  ( |−1 )   =   +  − 1 (18)

Note that, similarly to the case of SGMM, the pseudo true value † is optimal in the sense:

† = argmax
∈Θ

 (ln  (|−1 ))  (19)

for the case  is not known in closed form, we can follow Kristensen and Shin (2008) and CS (2011)

to construct the simulated analog b of  and then use it to estimate †. b is estimated as function
of the simulated sample paths 

(−1) for  = 2   − 1  = 1  First, generate  − 1
paths of length one for each simulation replication, using −1 with  = 1  as starting values.

Hence, at time  and simulation replication  we obtain skeletons 
(−1) for  = 2   − 1

 = 1  where  is the number of simulation paths (number of random draws or 
(−1)

21Note that as model  is, in general, misspecified,
−1

=1
 (|−1 ) is a quasi-likelihood and




|−1 

†



is not necessarily a martingale difference sequence.



and 
(−1) are i.i.d.) for each simulation replication.  is fixed across all initial values. Then

the recursive NPSQML estimator is defined as follows:

b = argmax
∈Θ

1



X
=2

ln b (|−1 ) 
³ b (|−1 )

´
  ≥ 

where b (|−1 ) =
1



X
=1



Ã

(−1)−



!


Note that with abuse of notation, we define b for SGMM and b for NPSQML estimators

where  and  have different interpretations ( is the length of each simulation path and  is

number of random draws).

The function 

³ b (|−1 )
´
is a trimming function. It has some characteristics such

as positive and increasing, 

³ b (−1 )
´
= 0 if b (−1 )    and



³ b (−1 )
´
= 1 if b (−1 )  2  for some   0.22 Note that when the log

density is close to zero, the derivative tends to infinity and thus even very tiny simulation errors

can have a large impact on the likelihood. The introduction of the trimming parameter into the

optimization function ensures the impact of this case to be minimal asymptotically.

Multifactor Models:

Since volatility is not observable, we cannot proceed as in the single factor case when estimating

the SV model using NPSQML estimator. Instead, let  
 be generated according to (14), setting

 =  and  = 1   The idea is to simulate  different starting values for unobservable

volatility, construct the simulated likelihood functions accordingly and then average them out. For

each simulation replication at time , we simulate  different values of  (−1  
 ) by generating

 paths of length one, using fixed observable −1 and unobservable  
 ,  = 1   as starting

values Repeat this procedure for any  = 1   − 1, and for any set   = 1   of random

errors 1+(+1) and 2+(+1)   = 1  1 Note that it is important to use the same set of

random errors 1+(+1) and 2+(+1) across different initial values for volatility. Denote the

simulated value at time  simulation replication  under generic parameter  using −1  
 as

starting values as 
(−1  

 ) Then:

b (|−1 ) =
1



X
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1
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22Fermanian and Salanie (2004) suggest using the following triming function:

 () =
4(−  )

3

3
− 3(−  )4
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for  ≤  ≤ 2 



and note that by averaging over the initial values for the unobservable volatility, its effect is inte-

grated out. Finally, define:23

b = argmin
∈Θ

1



X
=2

ln b (|−1 ) 
³ b (|−1 )

´
  ≥ 

Note that in this case,  is no longer Markov (i.e.,  and  are jointly Markovian, but 

is not). Therefore, even in the case of true data generating process, the joint likelihood cannot be

expressed as the product of the conditional and marginal distributions Thus, b is necessarily

a QML estimator. Furthermore, note that ∇(|−1 †) is no longer a martingale difference

sequence; therefore, we need to use HAC robust covariance matrix estimators, regardless of whether

the model is the “correct” model or not.

3.4 Bootstrap Critical Value Procedures

The test statistics presented in Section 3.1 and 3.2 are implemented using critical values constructed

via the bootstrap. As mentioned earlier, motivation for using the bootstrap is clear. The covariance

kernel of the statistics limiting distributions contain both parameter estimation error and the data

related time dependence components. Asymptotic critical value cannot thus be tabulated in a

usual way. Several methods have been proposed to tackle this issue. One is the block bootstrap

procedures which we discuss. Others have been mentioned above.

With regarding to the validity of the bootstrap, note that, in the case of dependent observations

without PEE, we can tabulate valid critical value using a simple empirical version of the Künsch

(1989) block bootstrap. Now, the difficulty in our context lies in accounting for parameter estima-

tion error. Goncalves and White (2002) establish the first order validity of the block bootstrap for

QMLE (or m-estimator) for dependent and heterogeneous data. This is an important result for the

class of SGMM and NSQML estimators surveyed in this paper, and allows Corradi and Swanson

in CS (2011) and elsewhere to develop asymptotically valid version of the bootstrap that can be

applied under generic model misspecification, as assumed throughout this paper.

For the SGMM estimator, as shown in CS (2005) the first order validity of the block bootstrap

is valid in the exact identification case, and when  → 0. In this case, SGMM is asymptotically

equivalent to GMM, and consequently there is no need to bootstrap the simulated series. In

addition, in the exact identification case, GMM estimators can be treated the same way that

QMLE estimators are treated. For the NSQML estimator, CS (2011) point out that the NPSQML

estimator is asymptotically equivalent to the QML estimator. Thus, we do not need to resample

the simulated observations as the negligible contribution of simulation errors.

23For discussion of asymptotic properties of  as well as of regularity conditions, see CS(2011).



Also note that critical values for these tests can be obtained using a recursive version of the

block bootstrap. When forming block bootstrap samples in the recursive case, observations at

the beginning of the sample are used more frequently than observations at the end of the sample.

This introduces a location bias to the usual block bootstrap, as under standard resampling with

replacement, all blocks from the original sample have the same probability of being selected. Also,

the bias term varies across samples and can be either positive or negative, depending on the specific

sample. A first-order valid bootstrap procedure for non simulation based−estimators constructed
using a recursive estimation scheme is outlined in Corradi and Swanson (2007a). Here we extend

the results of Corradi and Swanson (2007a) by establishing asymptotic results for cases in which

simulation-based estimators are bootstrapped in a recursive setting.

Now the details of bootstrap procedure for critical value tabulation can be outlined in 5 steps

as follows:

Step 1: Let  =  where  denotes the number of blocks and  denotes the length of each

block. We first draw a discrete uniform random variable, 1 that can take values 0 1   −  with

probability 1( − +1) The first block is given by 1+1  1+We then draw another discrete

uniform random variable, say 2 and a second block of length  is formed, say 2+1 2+

Continue in the same manner, until you draw the last discrete uniform say  and so the last block is

+1 + Let’s call the 
∗
 the resampled series, and note that 

∗
1 

∗
2  

∗
 corresponds to

1+11+2 + Thus, conditional on the sample, the only random element is the beginning

of each block. In particular

∗
1  

∗
 

∗
+1 

∗
2

∗
−+1 

∗
 

conditional on the sample, can be treated as   blocks of discrete uniform random variables. For

a simple illustration the link between the bootstrap sample and the original sample. Note that it

can be shown that except a set of probability measure approaching zero,
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where ∗ and  ∗ denotes the expectation and the variance operators with respect to  ∗ (the

probability law governing the resampled series or the probability law governing the  uniform

random variables, conditional on the sample), and where ∗( ) ( ∗(
2 )) denotes a term

converging in probability  ∗ to zero, as  → 0 (2 → 0)



In the case of recursive estimators, we proceed the bootstrap similarly as follows. Begin by

resampling  blocks of length  from the full sample, with  =  For any given   it is necessary to

jointly resample +1 +  More precisely, let 
 = (+1 + )  = 1   −  

Now, resample  overlapping blocks of length  from   This yields ∗ = (∗
 

∗
+1 

∗
+ )

 = 1   −  

Step 2: Re-estimate b∗(
b∗) using the bootstrap sample 

∗ = (∗
 

∗
+1 

∗
+ )

 = 1   −  (or full sample ∗
1 

∗
2  

∗
 ). Recall that if we use the entire sample for the

estimation, as the specification test in CS(2005) and BCS(2008), then b∗ is denoted as
b∗

The bootstrap estimators for SGMM and NPSQML are presented below:

Bootstrap (recursive) SGMM Estimators

If the full sample is used in the specification test as in CS (2005) and BCS(2008), the bootstrap

estimator is constructed straightforward as

b∗ = argmin
∈Θ
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where −1
 and () are defined in (17) and  is the length of each simulation path.

Note that it is convenient not to resample the simulated series as the simulation error vanishes

asymptotically. In implementation, we do not have mimic its contribution to the covariate kernel.

In the case of predictive density type model selection where recursive estimators are needed,

define the bootstrap analog as

b∗ = argmin
∈Θ
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Note that each bootstrap term is recentered around the (full) sample mean. The intuition

behind the particular recentering in bootstrap recursive SGMM estimator is that it ensures that

the mean of the bootstrap moment conditions, evaluated at b is zero, up to a negligible term.
Specifically, we have
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where the ( ) term is due to the end block effect (see Corradi and Swanson (2007b) for

further discussion).

Bootstrap Recursive NPSQML Estimators

Let ∗ = (∗
 

∗
+1 

∗
+ )  = 1   −  . For each simulation replication, generate

 − 1 paths of length one, using ∗
1  

∗
−1 as starting values, and so obtaining 
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where  0(·) denotes the derivative of (·) with respect to its argument. Note that each term
in the simulated likelihood is recentered around the (full) sample mean of the score, evaluated

at b This ensures that the bootstrap score has mean zero, conditional on the sample. The

recentering term requires computation of ∇
b

³
0 |0−1b

´
 which is not known in closed

form. Nevertheless, it can be computed numerically, by simply taking the numerical derivative of

the simulated likelihood.

Bootstrap Estimators for Multifactor Model

The SGMM and the bootstrap SGMM estimators in the case of multifactor model are similar

as in one factor model. The difference is that the simulation scheme (13) and (14) are used instead

of (12).

For recursive NPSQML estimators, to construct the bootstrap counterpart b∗


of b

since  →∞ and  →∞ the contribution of simulation error is asymptotically negligible.

Hence, there is no need to resample the simulated observations or the simulated initial values for

volatility. Define:
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where  0(·) denotes the derivative with respect to its argument.
Of note is that each bootstrap term is recentered around the (full) sample mean. This is

necessary because the bootstrap statistic is constructed using the last  resampled observations,

which in turn have been resampled from the full sample. In particular, this is necessary regardless

of the ratio, . In addition, in the case → 0, so that there is no need to mimic parameter

estimation error, the bootstrap statistics can be constructed using b


instead of b∗

Step 3: Using the same set of random variables used in the construction of the actual statistics,

construct 
∗
+∗ or 

∗
+∗  = 1   and  = 1   −   Note that we do not need resample

the simulated series (as  →∞simulation error is asymptotically negligible). Instead, simulate

the series using bootstrap estimators and using bootstrapped values as starting values.

Step 4: Corresponding bootstrap statistics  2∗ (or 
∗
 

∗
  

2∗
 

∗
 

∗


depending on the types of tests) which are built on b∗ (
b∗) then are followed correspondingly

For the numerical implementation, again, of importance note is that in the case where we pick the

choice  → 0   → ∞ there is no need to re-estimate b∗(
b∗)

b


(b∗) can

be used in all the bootstrap replications.

Step 5: Repeat the bootstrap Steps 1-4  times, and generate the empirical distribution of

the  bootstrap statistics.

4 Summary of Empirical Applications of the Tests

In this section, we briefly review some empirical applications of the methods discussed above. We

start with unconditional distribution test, as in CS (2005), then give a specific empirical example

using the conditional distribution test from BCS (2008). Finally, we briefly discuss on conditional

distribution specification test applied to multiple competing models. The list of the diffusion models

considered are provided in Table 1.

Table 1: Specification Test Hypotheses of Continuous Time Spot Rate Process24

24Note that the 3rd column, "Reference & Data" provides the referenced papers and data used in empirical



Model Specification Reference & Data Hypothesis

Wong25 () = (− − ())+
p
() ()

CS (2005)

Simulated Data
H1

CIR () =  ( − ()) +
p
 () ()

BCS (2008)

Eurodollar Rate

(1971-2005)

Cai & Swanson (2011)

Eurodollar Rate

(1971-2008)

H2

H2,H3

CEV () =  ( − ()) + ()
 ()

Cai & Swanson (2011)

Eurodollar Rate

(1971-2008)

H2,H3

SV26
() =  ( − ()) +

p
 () ()

 () =  ( −  ()) + 
p
 () ()

BCS (2008)

Cai & Swanson (2011)

H2

H2,H3

SVJ27
() =  ( − ()) +

p
 () () + −

 () =  ( −  ()) + 
p
 ()  () 

BCS (2008)

Cai & Swanson (2011)

H2

H2,H3

CHEN

 ()=  ( ()−  ()) +
p
 () 

 ()=  ( −  ()) + 
p
 ()  () 

 ()= 
¡
− ()¢ + 

p
 ()  () 

Cai & Swanson (2011)

Euro Dollar Rate

(1971-2008)

H2, H3

CHENJ

 ()=  ( ()−  ()) +
p
 ()  ()+−

 ()=  ( −  ()) + 
p
 ()  () 

 ()= 
¡
− ()¢ + 

p
 ()  () 

Cai & Swanson (2011

Euro Dollar Rate

(1971-2008)

H2, H3

Note that specification testing of the first model - a simplified version of the CIR model (we refer

to this model as Wong) is carried out using the unconditional distribution test. With the cumulative

distribution function known in closed form as in (9), the test statistic can be straightforwardly

calculated. It is also convenient to use GMM estimation in this case as the first two moments are

known in closed form, i.e.  −  and 2( − ) respectively. CS (2005) examine Hypothesis

1 using simulated data. Their Monte Carlo experiments suggest that the test is useful, even for

samples as small as 400 observations.

Hypothesis 2 is tested in BCS (2008) and Cai and Swanson (2011). For illustration, we focus

on the results in BCS (2008) where CIR, SV and SVJ models are empirically tested using the one-

month Eurodollar deposit rate (as a proxy for short rate) for the sample period January 6, 1971

- September 30, 2005, which yields 1,813 weekly observations. Note that one might apply these

tests to other datasets including the monthly federal funds rate, the weekly 3-month T-bill rate,

the weekly US dollar swap rate, the monthly yield on zero-coupon bonds with different maturities,

applications. In the 4th column, H1, H2 and H3 denote Hypothesis 1, Hypothesis 2 and Hypothesis 3, respectively.

The hypotheses are presented corresponding to the references in the third column. For example, for CIR model, H2

corresponds to BCS (2008) and H2, H3 correspond to Cai and Swanson (2011).
25This model is a simplified version of the CIR model. For convenience, we refer to this model as Wong.
26Data used for Stochatic Volatility (SV) model is the same as in CIR Model.
27Data used for Stochatic Volatility and Jump (SVJ) model is the same as in CIR Model.



and the 6-month LIBOR. Some of these variables have been examined elsewhere, for example in

Ait-Sahalia (1999), Andersen, Benzoni and Lund (2004), Dai and Singleton (2000), Diebold and Li

(2006, 2007), and Piazzesi (2001).

The statistic needed to apply the test discussed in Section 3.1.2 is:
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For the case of stochastic volatility models, similarly we have:
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and its bootstrap analog
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BCS (2008) carry out these tests using  −  ahead confidence intervals. They set  =

{1 2 4 12} which corresponds to one week, two week, one month, and one quarter ahead intervals
and set ( ) = ( ± 05   ± ) covering 46.3% and 72.4% coverage, respectively.  and

 are the mean and variance of an initial sample of data. In addition,  = {10 20} and
 = {5 10 20 50}



For illustrative purposes, we report one case from BCS (2008). The test is implemented by

setting  = 10 and  = 25 for the calculation of both  and   In the Table 2, single, double,

and triple starred entries represent rejection using 20% 10% and 5% size tests, respectively. Not

surprisingly, the findings are consistent with some other papers in the specification test literature

such as such as Aït-Sahalia (1996) and Bandi (2002). Namely, the CIR model is rejected using 5%

size tests in almost all cases. When considering SV and SVJ models, smaller confidence intervals

appear to lead to more model rejections. Moreover, results are somewhat mixed when evaluating

the SVJ model, with a slightly higher frequency of rejection than in the case of SV models.

Table 2: Empirical Illustration of Specification Testing - ,    Models

( )    

 5% CV 10% CV SZ 5% CV 10% CV S 5% CV 10% CV

 = 25

1  ± 05 0.5274*** 0.2906 0.3545 0.9841*** 0.8729 0.9031 1.1319 1.8468 2.1957

 ±  0.4289*** 0.2658 0.3178 0.6870 0.6954 0.7254 1.2272* 1.1203 1.3031

2  ± 05 0.6824*** 0.4291 0.4911 0.4113 1.3751 1.4900 0.9615* 0.8146 1.1334

 ±  0.4897* 0.4264 0.5182 0.3682 1.1933 1.2243 1.2571 1.3316 1.4096

4  ± 05 0.8662** 0.7111 0.8491 1.2840 2.3297 2.6109 1.5012* 1.1188 1.6856

 ±  0.8539* 0.7521 0.9389 1.0472 2.2549 2.2745 0.9901* 0.9793 1.0507

12  ± 05 1.1631* 1.0087 1.3009 1.7687 4.9298 5.2832 2.4237* 2.0818 3.0640

 ±  1.0429 1.4767 2.0222 1.7017 5.2601 5.6522 1.4522 1.7400 2.1684

(∗) Notes: Tabulated entries are test statistics and 5%, 10% and 20% level critical values. Test intervals are given

in the second column of the table, for  =1 2 4 12. All tests are carried out using historical one-month Eurodollar

deposit rate data for the period January 1971 - September 2005, measured at a weekly frequency. Single, double,

and triple starred entries denote rejection at the 20%,10%, and 5% levels, respectively. Additionally,  and  are

the mean and standard deviation of the historical data. See above for complete details.

Finally, turning to Hypothesis 3, Cai and Swanson (2011) use an extended version of the

above dataset, i.e. the one-month Eurodollar deposit rate from January 1971 to April 2008 (1,996

weekly observations). Specifically, they examine whether the CHEN model is the “best” model

amongst multiple alternative models including those outlined in Table 1. The answer is "yes".

In this example, the test was implemented using (1 2) as described in Sections 3.1 and

3.2, where  = 2 and predictions are constructed using recursively estimated models and the

simulation sample length used to address latent variable initial values is set at  = 10 . The choice

of other inputs to the test such as  and interval ( ) are the same as in BCS (2008). The number

of replications  the block length  and number of bootstrap replications are  = 10  = 20 and

 = 100.



Cai and Swanson (2011) also compare the Chen model with the so called Smooth Transition

Autoregression Model (STAR) model defined as follows:

 = (1 + 1−1)(  ) + (1 + 2−1)(1−(  )) + 

where  is a disturbance term, 1 1  , 2 and  are constants, (·) is the logistic CDF
(i.e. (  ) =

1
1+exp((−)) ), and the number of lags,  is selected via the use of Schwarz

information criterion. Test statistics and predictive density type “mean square forecast errors”

(MSFEs) values are again calculated as in Section 3.1 and 3.2.28 Their results indicate that at

a 90% level of confidence, one cannot reject the null hypothesis that the CHEN model generates

predictive densities at least as accurate as the STAR model, regardless of forecast horizon and

confidence interval width. Moreover, in almost all cases, the CHEN model has lower MSFE, and

the magnitude of the MSFE differential between the CHEN model and STAR model rises as the

forecast horizon increases. This confirms their in-sample findings that the CHEN model also wins

when carrying out in-sample tests.

5 Conclusion

This paper reviews a class of specification and model selection type tests developed by CS (2005),

BCS (2008) and CS (2011) for continuous time models. We begin with outlining the setup used

to specify the types of diffusion models considered in this paper. Thereafter, diffusion models in

finance are discussed, and testing procedures are outlined. Related testing procedures are also dis-

cussed, both in contexts where models are assumed to be either correctly specified under the null

hypothesis or generically misspecified under both the null and alternative test hypotheses. In addi-

tion to discussing tests of correct specification and test for selecting amongst alternative competing

models, using both in-sample methods and via comparison of predictive accuracy, methodology

is outlined allowing for parameter estimation, model and data simulation, and bootstrap critical

value construction.

Several extensions that are left to future research are as follows. First, it remains to construct

specification tests that do not integrate out the effects of latent factors. Additionally, it remains

to examine the finite sample properties of the estimators and bootstrap methods discussed in this

paper.

28See Table 6 in Cai and Swanson (2011) for complete details.
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