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On Equilibrium Refinement in Supermodular
Games

Oriol Carbonell-Nicolau∗ Richard P. McLean†

February 2012

Abstract

We show that supermodular games satisfying sequential better-reply
security possess a pure strategy perfect equilibrium and a strategically
stable set of pure strategies. We illustrate that, in continuous super-
modular games, perfect equilibria may contain weakly dominated ac-
tions. Moreover, in discontinuous supermodular games, perfect equi-
libria may involve play of actions in the interior of the set of weakly
dominated actions. We prove that when the set of undominated ac-
tions is a sublattice, supermodular games satisfying sequential better-
reply security possess pure strategy perfect equilibria that can be ob-
tained as limits of undominated actions.

Keywords: supermodular game, weakly dominated strategy, trembling-
hand perfect equilibrium, strategically stable set.

JEL classification: C72.

1 Introduction

As pointed out in Carbonell-Nicolau [3], the existence of a perfect equilibrium
in a normal form game depends crucially on the existence of Nash equilibria
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in the game’s Selten perturbations (i.e., perturbations in which all players
choose a completely mixed strategy with small but positive probability). In
this paper, we show that the properties of supermodular games (cf. Topkis
[16], Vives [17], Milgrom and Roberts [11], and Milgrom and Shannon [12])
are inherited by their Selten perturbations. Using this fact, and assuming
sequential better-reply security (Carbonell-Nicolau and McLean [5]), a prop-
erty of a game that guarantees that the Nash equilibrium correspondence of
perturbed games has a closed graph, we prove the existence of a pure strat-
egy perfect equilibrium (Theorem 1). A similar argument can be used to
establish the existence of strategically stable sets (Kohlberg and Mertens [8])
of pure action profiles in supermodular games (Theorem 2). The set of pure
strategy perfect equilibria (resp. any stable set) is shown to be compact in
the set of Nash equilibria (resp. in the set of pure strategy perfect equilibria).

The fact that infinite-action, continuous games may exhibit unique Nash
and perfect equilibria in weakly dominated actions (e.g., Simon and Stinch-
combe [14], Example 2.1) fails to be true if one confines attention to the class
of supermodular games. In fact, Kultti and Salonen [9] show that the set
of Nash equilibria (and hence the set of perfect equilibria) in supermodular
games cannot consist only of weakly dominated strategy profiles: at least
one Nash equilibrium must be weakly undominated. However, pure strat-
egy perfect equilibria in continuous, supermodular games may involve play
of weakly dominated actions (Example 1). Moreover, in discontinuous su-
permodular games, perfect equilibria may select pure strategy profiles in the
interior of the set of weakly dominated actions for some player (Example 2).
When the set of weakly undominated actions is a sublattice, supermodular
games satisfying sequential better-reply security have pure strategy perfect
equilibria that do not involve play of actions in the interior of the set of
weakly dominated actions (Theorem 3).

2 Preliminaries

2.1 Supermodular games

A normal form game (or simply a game) is a collection G = (Xi, ui)
N
i=1,

where N is a finite number of players, Xi is a nonempty set of actions for
player i, and ui ∈ B(X), where B(X) denotes the space of bounded, real-
valued functions defined on X := ×Ni=1Xi. We view B(X) as a metric space
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with associated metric defined by

ρ(f, g) := sup
x∈X
|f(x)− g(x)|.

Let U(X) denote cartesian product of N copies of B(X). We also view U(X)
as a metric space, and denote, by a slight abuse of notation, the associated
metric again by ρ, i.e.,

ρ((f1, ..., fN), (g1, ..., gN)) := max
i∈{1,...,N}

[
sup
x∈X
|fi(x)− gi(x)|

]
.

Consequently, a net (uα) in U(X) is convergent with limit u if and only if
for each i, the net (uαi ) is uniformly convergent with limit ui.

A lattice is a pair (A,≤), where A is a nonempty set and ≤ is a partial
order (i.e., a reflexive, antisymmetric, and transitive binary relation) in A×A
such that for every {a, b} ⊆ A, the infimum of {a, b} (denoted inf{a, b}) and
the supremum of {a, b} (denoted sup{a, b}) exist in A. A lattice (A,≤) is
lattice complete if inf B ∈ A and supB ∈ A for every ∅ 6= B ⊆ A. If
G = (Xi, ui)

N
i=1 is a game and if each Xi is partially ordered by ≤i, so that

(Xi,≤i) is a lattice, then G is a lattice game.
If G = (Xi, ui)

N
i=1 is a game and Yi ⊆ Xi for each i, we will write

(Yi, ui|Yi)Ni=1 simply as (Yi, ui)
N
i=1. If each Xi is a nonempty metric (resp.

compact) space, G is said to be a metric (resp. compact) game. If G is
a metric game and if ui is Borel measurable for each i, we say that G is a
metric, Borel game.

A compact, metric, lattice, Borel game is a lattice game (Xi, ui)
N
i=1

such that each Xi is a compact, metric lattice (cf. Birkhoff [2], Chapter X)
and ui is Borel measurable for each i.

Given a compact, metric, lattice, Borel game G = (Xi, ui)
N
i=1, the pair

(X,≤) is a lattice, where ≤ is the relation in X ×X defined as follows:

x ≤ y ⇔ [xj ≤j yj, for all j ∈ {1, ..., N}].

In addition, (X,≤), endowed with the product topology, is a compact, metric
lattice.

Given i, the product lattice (X−i,≤−i) is defined similarly.
The following lemma will be useful.

Lemma 1 (Ellis [7]). Every compact, metric lattice is lattice complete.
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Definition 1. A compact, metric, lattice, Borel game (Xi, ui)
N
i=1 is super-

modular if the following is satisfied:

• For each i and every x−i ∈ X−i, ui(·, x−i) is upper semicontinuous on
Xi.

• For each i and every x−i ∈ X−i, ui(·, x−i) is supermodular, i.e., for each
i, x−i ∈ X−i, and {xi, yi} ⊆ Xi,

ui(sup{xi, yi}, x−i) + ui(inf{xi, yi}, x−i) ≥ ui(xi, x−i) + ui(yi, x−i).

• For each i, ui exhibits increasing differences in Xi and X−i, i.e., ui(xi, y−i)−
ui(xi, x−i) is increasing in xi for all y−i ≥−i x−i.

Definition 2. A strategy profile x = (xi, x−i) in X is a Nash equilibrium
of G = (Xi, ui)

N
i=1 if ui(yi, x−i) ≤ ui(x) for each yi ∈ Xi and every i.

Given a game G = (Xi, ui)
N
i=1, the vector (u1(x), ..., uN(x)) is denoted as

u(x). Given ε ≥ 0, define a correspondence N ε
X : U(X) ⇒ X that assigns

to each profile u = (u1, .., uN) ∈ U(X) the set of ε-Nash equilibria N ε
X(u)

of (Xi, ui). The set of Nash equilibria (Xi, ui) (i.e., ε = 0) will be denoted
simply as NX(u)

If (Sν) is a sequence of subsets of a topological space S, define the
(Kuratowski-Painlevé) topological limit superior of (Sν), denoted Ls(Sν),
to be the set of y ∈ S such that there exist a subsequence (Sn) and a sequence
(yn) satisfying yn ∈ Sn for each n and yn → y.

2.2 Sequential better-reply security

The following definitions are taken from Carbonell-Nicolau and McLean [5].

Definition 3. Let G = (Xi, ui)
N
i=1 be a metric game. Suppose that (uνi ) is a

sequence in U(X). The game G satisfies sequential better-reply security
with respect to (uν) if the following condition is satisfied for each i: if (uni )
is a subsequence of (uνi ), if (xn, un(xn)) ∈ X × RN is a convergent sequence
with limit (x, γ) ∈ X × RN satisfying xn ∈ X for each n, and if x is not a
Nash equilibrium of G, then there exist an i, an η > γi, a subsequence (xk) of
(xn), and a sequence (yki ) such that for each k, yki ∈ Xi and uki (y

k
i , x

k
−i) ≥ η.
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Definition 4. A metric game G = (Xi, ui)
N
i=1 is sequentially better-reply

secure if the following condition is satisfied: if (xn, u(xn)) ∈ X × RN is
a convergent sequence with limit (x, γ) ∈ X × RN and if x is not a Nash
equilibrium of G, then there exist an i, an η > γi, a subsequence (xk) of (xn),
and a sequence (yki ) such that for each k, yki ∈ Xi and ui(y

k
i , x

k
−i) ≥ η.

Remark 1. Within the class of compact, metric, lattice, Borel games, the
class of sequentially better-reply secure, supermodular games subsumes the
class of supermodular games as defined in Milgrom and Roberts [11].

Remark 2. Sequential better-reply security is weaker than several condi-
tions introduced in the literature on the existence of Nash equilibrium. See
Carbonell-Nicolau and McLean [6].

We next state a result characterizing sequential better-reply security with
respect to a sequence (uνi ).

Proposition 1 (Carbonell-Nicolau and McLean [5], Theorem 2). Suppose
that G = (Xi, ui)

N
i=1 is a metric game and suppose suppose that (uν) is con-

vergent in U(X) with limit u. The following are equivalent:

(1) G satisfies sequential better-reply security with respect to (uνi ).

(2) If εν → 0, then Ls(N εν

X (uν)) ⊆ NX(u).

The following lemma will be useful.

Lemma 2. Suppose that G = (Xi, ui)
N
i=1 is a metric game satisfying se-

quential better-reply security. Furthermore, suppose that (uν) is convergent
in U(X) with limit u. Then G satisfies sequential better-reply security with
respect to (uν).

Proof. Suppose that (uni ) is a subsequence of (uνi ), (xn, un(xn)) is a convergent
sequence with limit (x, γ) ∈ X × RN satisfying xn ∈ X for each n, and x
is not a Nash equilibrium of G = (Xi, ui)

N
i=1. Since G satisfies sequential

better-reply security, there exist an i, an η′ > γi, a subsequence (xk) of (xn)
and a sequence (yki ) such that, for each k, yki ∈ X and ui(y

k
i , x

k
−i) ≥ η′.

Next, choose ε > 0 satisfying 0 < ε < η′ − γi, and index k′ so that for
each k > k′, we have ρ(ui(·, xk

′
−i), u

k′
i (·, xk′−i)) < ε. Then k > k′ implies that

uk
′

i (yk
′

i , x
k′

−i) > ui(y
k′

i , x
k′

−i)− ε
≥ η′ − ε
> γi.
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Defining η = η′−ε, we conclude that there exist an i, an η > γi, a subsequence
(xk) of (xn) and a net (yki ) such that, for each k, yki ∈ Xi and uki (y

k
i , x

k
−i) ≥ η.

This shows that G satisfies sequential better-reply security with respect to
(uν). �

Remark 3. From Proposition 1, we conclude that a metric game G =
(Xi, ui)

N
i=1 satisfies sequential better-reply security if and only if εν → 0

implies that Ls(N εν

X (u)) ⊆ NX(u). In particular, NX(u) is a closed set if G
satisfies sequential better-reply security.

2.3 Perfect equilibria and stable sets

Given a compact, metric game G = (Xi, ui)
N
i=1, the mixed extension of G

is the game
G = (∆(Xi), ui)

N
i=1,

where each ∆(Xi) represents the set of regular Borel probability measures
on Xi, endowed with the weak* topology, and, abusing notation, we let
ui : ∆(X)→ R be defined by

ui(µ) :=

∫
X

uidµ,

where (abusing notation) ∆(X) := ×Ni=1∆(Xi).
As usual, a mixed strategy Nash equilibrium of G is a Nash equilibrium

of G. To distinguish equilibria in G from equilibria in G, we sometimes refer
to a Nash equilibrium of G as a pure strategy Nash equilibrium of G.

A probability measure µi ∈ ∆(Xi) is said to be strictly positive if
µi(O) > 0 for every nonempty open set O in Xi.

For each i, let ∆̂(Xi) denote the set of all strictly positive members of
∆(Xi). The set of regular Borel measures on Xi is denoted as M(Xi), and
the subset consisting of the members ηi of M(Xi) such that ηi(Xi) < 1 and

ηi(O) > 0 for every nonempty open set O in Xi is represented as M̂(Xi). Let

∆̂(X) := ×Ni=1∆̂(Xi) and M̂(X) := ×Ni=1M̂(Xi).

For (η1, .., ηN) ∈ M̂(X), let

∆(Xi, ηi) := {νi ∈ ∆(Xi) : νi ≥ ηi}
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and define the Selten perturbation of G as

Gη = (∆(Xi, ηi), ui)
N
i=1 .

For µ = (µ1, ..., µN) ∈ ∆̂(X) and δ = (δ1, ..., δN) ∈ [0, 1)N , define the special
Selten perturbation Gδ∗µ as

Gδ∗µ = (∆(Xi, δiµi), ui)
N
i=1 .

We sometimes abuse notation and represent the Selten perturbationG(δ1,...,δN )∗µ
in which δ1 = · · · = δN = δ simply as Gδ∗µ.

Definition 5. A strategy profile µ ∈ ∆(X) is a trembling-hand perfect
profile in G = (Xi, ui)

N
i=1 if there are sequences (δn), (νn), and (µn) such

that δn ∈ (0, 1)N and νn ∈ ∆̂(X) for each n, δn → 0, µn → µ, and each µn

is a Nash equilibrium of Gδn∗νn .

Remark 4. The following definition of trembling-hand perfection is equiv-
alent to Definition 5 (see Carbonell-Nicolau and McLean [5]): A strategy
profile µ ∈ ∆(X) is a trembling-hand perfect profile in G = (Xi, ui)

N
i=1 if

there are sequences (ηn) and (µn) such that ηn ∈ M̂(X) for each n, ηn → 0,
µn → µ, and each µn is a Nash equilibrium of Gηn .

The reader is referred to Carbonell-Nicolau [4] for additional, alternative
formulations of trembling-hand perfection.

Given a compact, metric game G = (Xi, ui)
N
i=1, we will endow ∆(X) with

the product topology induced by the Prokhorov metric on ∆(Xi).
1 If %i

denotes the Prokhorov metric on ∆(Xi), then given {µ, ν} ⊆ ∆(Xi),

%i(µ, ν) := inf {ε > 0 : µ(B) ≤ ν(Bε) + ε and ν(B) ≤ µ(Bε) + ε, for all B} ,

where
Bε := {x ∈ Xi : di(x, y) < ε for some y ∈ B},

and di denotes the metric associated with Xi. The product metric induced
by (%1, ..., %N) on ∆(X) is denoted by %.

For ε > 0 and ∅ 6= E ⊆ ∆(X), a profile µ ∈ ∆(X) is said to be ε-close to
E if

%(µ,E) := inf{%(µ, ν) : ν ∈ E} < ε.

1For compact metric games, this product topology coincides with the product topology
induced by the weak* topology on ∆(Xi).
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Let SG be the family of all nonempty closed sets E of Nash equilibria of
G satisfying the following: for each ε > 0, there exists α ∈ (0, 1] such that

for each δ ∈ (0, α)N and every ν ∈ ∆̂(X) the perturbed game Gδ∗ν has a
Nash equilibrium ε-close to E.

Given xi ∈ Xi, let θxi represent the Dirac measure on Xi with support
{xi}. Similarly, for x ∈ X, θx denotes the Dirac measure on X with support
{x}. The map xi 7→ θxi (resp. x 7→ θx) is an embedding, so Xi (resp. X)
can be topologically identified with a subspace of ∆(Xi) (resp. ∆(X)). We
sometimes abuse notation and refer to θxi ∈ ∆(Xi) (resp. θx ∈ ∆(X)) simply
as xi (resp. x).

Definition 6. A set of pure strategy profiles in X is a stable set of G if it
is a minimal element of the set SG ordered by set inclusion.

Given (δ, µ) ∈ [0, 1)N × ∆̂(X), let G(δ,µ) be a normal form game defined
as

G(δ,µ) := (Xi, u
(δ,µ)
i )Ni=1,

where u
(δ,µ)
i : X → R is given by

u
(δ,µ)
i (x) := ui ((1− δ1)x1 + δ1µ1, ..., (1− δN)xN + δNµN) .

Here, (1− δi)xi + δiµi represents the measure σi in ∆(Xi) such that

σi(B) = (1− δi)θxi + δiµi(B).

By a slight abuse of notation, we sometimes represent the gameG((δ1,...,δN ),µ)

in which δ1 = · · · = δN = δ simply as G(δ,µ).
Finally, given ε > 0 and a nonempty subsetE of ∆(X), the ε-neighborhood

of E is denoted by Nε(E):

Nε(E) :=
⋃
µ∈E

{ν ∈ ∆(X) : %(µ, ν) < ε} = {ν ∈ ∆(X) : %(µ,E) < ε}.

3 Equilibrium refinement in supermodular games

Lemma 3. Suppose that G is a compact, metric Borel game satisfying se-
quential better-reply security. Then the set of pure strategy trembling-hand
perfect equilibria of G is closed in the set of pure strategy Nash equilibria of
G.
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Proof. Fix a compact, metric Borel game G = (Xi, ui)
N
i=1 satisfying sequential

better-reply security. Let (xn) be a sequence of pure strategy trembling-hand
perfect equilibria of G such that xn → x. To see that x is a trembling-hand
perfect profile, note that for each n, there exist νn ∈ ∆̂(X) and δn ∈ (0, 1)N

such that δn < 1
n

and the game Gδn∗νn has a Nash equilibrium µn with
%(µn, xn) < 1

n
. Hence, since xn → x and for each n,

%(µn, x) ≤ %(µn, xn) + %(xn, x),

x is a trembling-hand perfect profile.
It remains to show that x is a Nash equilibrium of G. But this flows from

the following observations. First, each xn is a Nash equilibrium of G, and
xn → x. Second, the set of Nash equilibria in G is closed as consequence of
Remark 3. �

Lemma 4. Suppose that G = (Xi, ui)
N
i=1 is a compact, metric, Borel game

satisfying sequential better-reply security. Suppose that there are sequences
(δn) and (µn) satisfying the following: δn → 0, and, for each n, δn ∈ (0, 1)N ,

µn ∈ ∆̂(X), and G(δn,µn) has a Nash equilibrium. Then G has a pure strategy
trembling-hand perfect equilibrium, and the set of pure strategy trembling-
hand perfect equilibria of G is a compact subset of the set of Nash equilibria
of G.

Proof. Suppose that there are sequences (δn) and (µn) satisfying the follow-

ing: δn → 0, and, for each n, δn ∈ (0, 1)N , µn ∈ ∆̂(X), and G(δn,µn) has a
Nash equilibrium xn. Since xn ∈ X for each n, and because X is sequentially
compact, we may write (passing to a subsequence if necessary) xn → x for
some x ∈ X. Because xn is a Nash equilibrium of G(δn,µn) for each n, for
each n the strategy profile

(1− δn)xn + δnµn := ((1− δn1 )xn1 + δn1µ
n
1 , ..., (1− δnN)xnN + δnNµ

n
N)

is a Nash equilibrium of Gδn∗µn . Hence, since xn → x and δn → 0, we have

(1− δn)xn + δnµn → x,

and it follows that x is a trembling-hand perfect profile. In addition, since
u

(δn,µn)
i → ui for each i, and because xn is a Nash equilibrium of G(δn,µn) for

each n and xn → x, it follows from Lemma 2 and Proposition 1 that x is a
Nash equilibrium of G.
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It remains to show that the set of pure strategy trembling-hand perfect
equilibria of G is a compact subset of the set of Nash equilibria of G. Because
G satisfies sequential better-reply security, the set of pure strategy Nash
equilibria of G is closed (hence compact) in X as consequence of Remark 3.
Furthermore, by Lemma 3, the set of pure strategy trembling-hand perfect
equilibria of G is closed in the set of pure strategy Nash equilibria of G.
Therefore, the set of pure strategy trembling-hand perfect equilibria of G is
a compact subset of the set of Nash equilibria of G. �

Lemma 5. Suppose that G = (Xi, ui)
N
i=1 is a compact, metric, Borel game

satisfying sequential better-reply security. Suppose that there exists α ∈ (0, 1)

such that for every (δ, µ) ∈ (0, α]N × ∆̂(X), G(δ,µ) has a Nash equilibrium.
Then G has a stable set of pure strategy profiles. Furthermore, any stable set
of G is a compact subset of the set of Nash equilibria of G containing only
pure strategy trembling-hand perfect equilibria of G.

Proof. We first show that the set of Nash equilibria in G, EG, belongs to SG.
First, this set is nonempty (by Lemma 4) and closed (Remark 3). Since EG
is closed in the compact set X, EG is itself compact, and therefore EG can
be viewed as a closed subset of ∆(X). Next, we show that for each ε > 0,

there exists α ∈ (0, 1] such that for each δ ∈ (0, α)N and every µ ∈ ∆̂(X),
Gδ∗µ has a Nash equilibrium ε-close to EG. Suppose that this is not true, i.e.,
suppose that there exists ε∗ > 0 such that for every α ∈ (0, 1], there exist

δ ∈ (0, α)N and µ ∈ ∆̂(X) such that no Nash equilibrium of Gδ∗µ is ε∗-close
to EG. Then there are sequences (δn) and (µn) satisfying the following: for

each n, δn ∈
(
0, 1

n

)N
, µn ∈ ∆̂(X), and

EGδn∗µn ∩Nε∗(EG) = ∅, (1)

where EGδn∗µn represents the set of Nash equilibria in Gδn∗µn . For each n,
let xn be a Nash equilibrium of G(δn,µn). Because xn ∈ X for each n, and
since X is sequentially compact, we may write (passing to a subsequence if

necessary) xn → x for some x ∈ X. Hence, since u
(δn,µn)
i → ui for each i,

and because xn is a Nash equilibrium of G(δn,µn) for each n, it follows from
Lemma 2 and Proposition 1 that x is a Nash equilibrium of G, i.e., x ∈ EG.
In addition, because each xn is a Nash equilibrium of G(δn,µn), for each n the
strategy profile

(1− δn)xn + δnµn := ((1− δn)xn1 + δnµn1 , ..., (1− δn)xnN + δnµnN)
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is a Nash equilibrium of Gδn∗µn . Consequently, because

(1− δnk)xnk + δnkµnk → x ∈ EG,

(1) cannot hold for every n. This gives the desired contradiction.
We conclude that EG ⊆ SG. Next, consider the collection S∗G of E in SG

such that E ⊆ EG. The collection S∗G can be ordered by set inclusion. We
show that every decreasing chain (Eα) in S∗G (ordered by set inclusion) has
a lower bound. Fix a decreasing chain (Eα) in S∗G. Since the collection (Eα)
has the finite intersection property, and since ∆(X) is compact, we have

E∗ :=
⋂
α

Eα 6= ∅.

In addition, E∗ is a lower bound for (Eα). This follows from the fact that
E∗ is a member of (Eα). To see that E∗ is a member of (Eα), note first
that E∗ 6= ∅ and that E∗ is closed, since each Eα is closed. Moreover, for
each ε > 0, there exists a ∈ (0, 1] such that for each δ ∈ (0, a)N and every

ν ∈ ∆̂(X), Gδ∗ν has a Nash equilibrium ε-close to E∗. In fact, given ε > 0,
there exists an element Eβ of (Eα) such that

Eβ ⊆ N ε
2
(E∗). (2)

If that were not the case,
(
Eα \N ε

2
(E∗)

)
would be a collection of closed

subsets of the compact set ∆(X) with the finite intersection property, and
one would have

E∗ \N ε
2
(E∗) ⊇

⋂
α

(
Eα \N ε

2
(E∗)

)
6= ∅,

a contradiction. Because Eβ is a member of SG, there exists b ∈ (0, 1] such

that for each δ ∈ (0, b)N and every ν ∈ ∆̂(X), Gδ∗ν has a Nash equilibrium
ε
2
-close to Eβ. In light of (2), therefore, for each δ ∈ (0, b)N and every

ν ∈ ∆̂(X), Gδ∗ν has a Nash equilibrium ε-close to E∗.
We conclude that E∗ is a member of (Eα), and therefore E∗ is a lower

bound for (Eα). We have shown that every decreasing chain (Eα) in S∗G has
a lower bound. Consequently, since EG ∈ SG, Zorn’s lemma gives a minimal
element of S∗G, i.e., a stable set of G.

Next, we show that each element of a stable set is a trembling-hand
perfect equilibrium. Let y ∈ S, where S is a stable set of G. Since S ∈ SG,
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S is by definition a set of Nash equilibria of G, so it suffices to show that y
is a trembling-hand perfect profile. Pick any ε > 0 such that S \Nε(y) 6= ∅.
Since S is stable and S \ Nε(y) is nonempty and closed, S \ Nε(y) is not
stable. Consequently, there exists ε∗ > 0 such that for each n, there exist

δn ∈
(
0, 1

n

)N
and µn ∈ ∆̂(X) such that the set of Nash equilibria of Gδn∗µn ,

EGδn∗µn , satisfies

EGδn∗µn ∩Nε∗(S \Nε(y)) = ∅. (3)

Since S ⊆ Nε∗(S \Nε(y)) ∪Nε(y), there exists γ > 0 such that

S ⊆ Nγ(S) ⊆ Nε∗(S \Nε(y)) ∪Nε(y). (4)

Therefore, since S is stable, there exists α∗ ∈ (0, 1] such that for each δ ∈
(0, α∗)N and every µ ∈ ∆̂(X), the set of Nash equilibria of Gδ∗µ, EGδ∗µ ,
satisfies

EGδ∗µ ∩Nγ(S) 6= ∅.
In particular, for every large enough n,

EGδn∗µn ∩Nγ(S) 6= ∅.

This, combined with (4), gives

EGδn∗µn ∩ (Nε∗(S \Nε(y)) ∪Nε(y)) 6= ∅

for any sufficiently large n. In light of (3), therefore, EGδn∗µn ∩Nε(y) 6= ∅ for
any sufficiently large n.

We conclude that for any ε > 0 such that S \ Nε(y) 6= ∅, there exist

δ ∈ (0, ε)N and µ ∈ ∆̂(X) such that Gδ∗µ has a Nash equilibrium in Nε(y).
This implies that y is a trembling-hand perfect profile.

Finally, stable sets are by definition closed in the set of Nash equilibria
of G, and the set of Nash equilibria of G is closed (hence compact) in X
(Remark 3). �

Lemma 6. Let f : X → R be a bounded Borel measurable function on
X = ×Ni=1Xi, where each Xi is a compact metric space. Given i, if f(·, x−i)
is upper semicontinuous on Xi for every x−i ∈ X−i, then for each µ−i ∈
∆(X−i), the map

µi 7→
∫
X−i

∫
Xi

f(xi, x−i)µi(dxi)µ−i(dx−i)

defined on ∆(Xi) is upper semicontinuous.

12



Proof. Fix i. Because f(·, x−i) is upper semicontinuous on Xi for every
x−i ∈ X−i, f(·, x−i) is upper semicontinuous on ∆(Xi) for every x−i ∈ X−i
(e.g., Aliprantis and Border [1], Theorem 15.5). Therefore, given x−i ∈ X−i,
if (νni ) is a sequence in ∆(Xi) with νni → νi, then

lim sup
n→∞

∫
Xi

f(xi, x−i)ν
n
i (dxi) ≤

∫
Xi

f(xi, x−i)νi(dxi).

Consequently, for every ν−i ∈ ∆(X−i),∫
X−i

[
lim sup
n→∞

∫
Xi

f(xi, x−i)ν
n
i (dxi)

]
ν−i(dx−i)

≤
∫
X−i

∫
Xi

f(xi, x−i)νi(dxi)ν−i(dx−i).

(5)

Fix a sequence (νni ) in ∆(Xi) with νni → νi. For each n, define φni :
X−i → R by

φni (x−i) :=

∫
Xi

f(xi, x−i)ν
n
i (dxi).

Given ν−i ∈ ∆(X−i), we have, by Fatou’s lemma,

lim sup
n→∞

∫
Xi

∫
X−i

f(xi, x−i)ν−i(dx−i)ν
n
i (dxi)

= lim sup
n→∞

∫
X−i

φni (x−i)ν−i(dx−i)

≤
∫
X−i

[
lim sup
n→∞

φni (x−i)

]
ν−i(x−i).

This, combined with (5), gives

lim sup
n→∞

∫
Xi

∫
X−i

f(xi, x−i)ν−i(dx−i)ν
n
i (dxi)

≤
∫
X−i

∫
Xi

f(xi, x−i)νi(dxi)ν−i(dx−i).

This establishes the result. �

Lemma 7. If G is supermodular, then G(δ,µ) is supermodular for every (δ, µ).
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Proof. Suppose that G = (Xi, ui)
N
i=1 is supermodular. Fix

((δ1, ..., δN), µ) ∈ [0, 1)N × ∆̂(X).

Since G is a compact lattice game, it is clear that G(δ,µ) is a compact lattice
game. Because ui(·, x−i) is upper semicontinuous on Xi for each i and every
x−i ∈ X−i, Lemma 6 implies that ui(·, ν−i) is upper semicontinuous on ∆(Xi)
for each i and every ν−i ∈ ∆(X−i). Consequently, for each i and every

x−i ∈ X−i, u(δ,µ)
i (·, x−i) is upper semicontinuous on Xi.

Next, we show that u
(δ,µ)
i (·, x−i) is supermodular for each i and every

x−i ∈ X−i. Fix i, and {xi, yi} ⊆ Xi. Define

ν−i := ⊗
j 6=i

[(1− δj)xj + δ1µj] .

Since

ui(sup{xi, yi}, z−i) + ui(inf{xi, yi}, z−i) ≥ ui(xi, z−i) + ui(yi, z−i)

for each z−i ∈ X−i, it follows that

ui(sup{xi, yi}, ν−i) + ui(inf{xi, yi}, ν−i) ≥ ui(xi, ν−i) + ui(yi, ν−i).

Therefore,

u
(δ,µ)
i (sup{xi, yi}, x−i) + u

(δ,µ)
i (inf{xi, yi}, x−i)

= (1− δi) [ui(sup{xi, yi}, ν−i) + ui(inf{xi, yi}, ν−i)]
+ δi [ui(µi, ν−i) + ui(µi, ν−i)]

≥ (1− δi) [ui(xi, ν−i) + ui(yi, ν−i)] + δi [ui(µi, ν−i) + ui(µi, ν−i)]

= u
(δ,µ)
i (xi, x−i) + u

(δ,µ)
i (yi, x−i).

Finally, we show that u
(δ,µ)
i exhibits increasing differences in Xi and X−i

for each i. Fix i and {y−i, x−i} ⊆ X−i with y−i ≥−i x−i. Choose {xi, yi} ⊆ Xi

with yi ≥i xi. We must show that

u
(δ,µ)
i (yi, y−i)− u(δ,µ)

i (yi, x−i) ≥ u
(δ,µ)
i (xi, y−i)− u(δ,µ)

i (xi, x−i).

Given I ⊆ {1, ..., N} and i, the action profile

(a1, ..., ai−1, ai+1, ..., aN)
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in X−i such that

aj =

{
xj if j ∈ I \ {i},
zj if j ∈ {1, ..., N} \ (I ∪ {i}),

is denoted by (xI\i, z−I∪i). Similarly, The action profile

(ν1, ..., νi−1, νi+1, ..., νN)

in ∆(X−i) such that

νj =

{
xj if j ∈ I \ {i},
µj if j ∈ {1, ..., N} \ (I ∪ {i}),

is denoted by (xI\i, µ−I∪i).
For each I ⊆ {1, ..., N} and every z−I ∈ X−I := ×

j∈{1,...,N}\I
Xj, we have

ui(yi, (yI\i, z−I∪i))− ui(yi, (xI\i,z−I∪i))
≥ ui(xi, (yI\i, z−I∪i))− ui(xi, (xI\i, z−I∪i)).

Therefore, for each I ⊆ {1, ..., N} and every ρ−I ∈ ∆(X−I) := ×
j∈{1,...,N}\I

∆(Xj),

ui(yi, (yI\i, ρ−I∪i))− ui(yi, (xI\i,ρ−I∪i))
≥ ui(xi, (yI\i, ρ−I∪i))− ui(xi, (xI\i, ρ−I∪i)).

This implies that[
u

(δ,µ)
i (yi, y−i)− u(δ,µ)

i (yi, x−i)
]
−
[
u

(δ,µ)
i (xi, y−i)− u(δ,µ)

i (xi, x−i)
]

=
∑
∅6=I⊆N

:N\I 6={i}

∏
j∈I

(1− δj)
∏
j∈N\I

δj

 [ui(yi, (yI\i, µ−I∪i))− ui(yi, (xI\i, µ−I∪i))]

−

 ∑
∅6=I⊆N

:N\I 6={i}

∏
j∈I

(1− δj)
∏
j∈N\I

δj

 [ui(xi, (yI\i, µ−I∪i))− ui(xi, (xI\i, µ−I∪i))]


≥ 0,

where N := {1, ..., N}.
We conclude that G(δ,µ) is supermodular. �

15



Lemma 8. If G is supermodular, then G(δ,µ) has a Nash equilibrium for every
(δ, µ).

Proof. If G = (Xi, ui)
N
i=1 is supermodular, G(δ,µ) is supermodular for every

(δ, µ) (Lemma 7). Moreover, since Xi is a compact metric lattice for each i,
Xi is lattice complete for each i (Lemma 1). Consequently, for each i, the
topology induced by the metric on Xi is finer than the interval topology (e.g.,
Lawson [10], Proposition 4). It follows from Theorem 4.2 in Vives [17] that
G(δ,µ) has a pure strategy Nash equilibrium. �

Theorem 1. Any supermodular game G satisfying sequential better-reply
security has a pure strategy trembling-hand perfect equilibrium, and the set
of pure strategy trembling-hand perfect equilibria of G is a compact subset of
the set of Nash equilibria of G.

Proof. Fix a supermodular game G = (Xi, ui)
N
i=1 satisfying sequential better-

reply security. Take sequences (δn) and (µn) such that for each n,

δn ∈ (0, 1)N and µn ∈ ∆̂(X),

and δn → 0. Each G(δn,µn) has a Nash equilibrium (Lemma 8). Apply Lemma
4. �

Theorem 2. Any supermodular game G satisfying sequential better-reply
security has a stable set. Furthermore, any stable set of G is a compact subset
of the set of Nash equilibria of G containing only pure strategy trembling-hand
perfect equilibria of G.

Proof. Fix a supermodular game G = (Xi, ui)
N
i=1 satisfying sequential better-

reply security. Take any δ ∈ (0, 1)N and any µn ∈ ∆̂(X). Then G(δ,µ) has a
Nash equilibrium (Lemma 8). Apply Lemma 5. �

Definition 7. A strategy xi ∈ Xi is weakly dominated for i if there exists
a strategy µi ∈ ∆(Xi) such that ui(µi, x−i) ≥ ui(xi, x−i) for all x−i ∈ X−i,
with strict inequality for some x−i.

Definition 8. A strategy profile µ ∈ ∆(X) is admissible if µi(Di) = 0 for
all i, where Di denotes the set of strategies weakly dominated for i.

Definition 9. A strategy profile µ ∈ ∆(X) is limit admissible if µi(Oi) =
0 for all i, where Oi denotes the interior of the set of strategies weakly
dominated for i.
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Example 2.1 in Simon and Stinchcombe [14] demonstrates there are con-
tinuous games whose unique Nash and trembling-hand perfect equilibrium is
not admissible. While supermodular games must have at least one admissi-
ble Nash equilibrium (Kultti and Salonen [9], Theorem 1 and Proposition 1),
the following example illustrates that continuous supermodular games may
have trembling-hand perfect equilibria that are not admissible.

Example 1. Let (αn) be a sequence in (0, 1
2
) with αn ↗ 1

2
. Let (γn) be a

sequence in (1
4
, 1), such that γn ↘ 1

4
and 1− 2γ2(n+1) > 0 for each n.

Consider the game

G := (Xi, ui)
2
i=1 = ((∪nαn) ∪ {1

2
, 1},∪nγn ∪ {1

8
, 1

4
}, u1, u2),

where u2 is identically zero and

u1(x1, x2) :=


−1 + x2−γ2n

(1−2γ2n)n
if x1 = αn, n = 1, ...,

−1 if x1 = 1
2
,

−1 if x1 = 1 and x2 ∈ (1
4
, 1],

−4x2 if x1 = 1 and x2 ∈ [0, 1
4
].

It is easy to see that G is continuous (i.e., each ui is continuous). To see
that G is supermodular, note that since G is continuous the first bullet point
in Definition 1 is satisfied. Let ≤1 be the usual order on R, and define ≤2 as
follows:

a ≤2 b⇔ a ≥ b.

If, for each i, player i’s action space is endowed with the order ≤i, the
resulting lattice game G clearly satisfies the second bullet point in Definition
1. In addition, it is routine to verify that u1 has increasing differences in X1

and X2 with respect to ≤1 and ≤2 (u2 clearly has increasing differences in
X2 and X1 with respect to ≤1 and ≤2).

The strategy profile (1
2
, 1

4
) is a Nash equilibrium of G. This follows from

the fact that u2 is identically zero and

u1

(
1
2
, 1

4

)
= −1 = u1

(
1, 1

4

)
≥ u1

(
αn, 1

4

)
, for all n.

On the other hand,

u1(1
2
, x2) ≤ u1(1, x2), for all x2,
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with strict inequality if x2 = 1
8
, so the action 1

2
is weakly dominated for player

1.
We next show that (1

2
, 1

4
) is trembling-hand perfect. Given l ∈ N, choose

βl > 1 such that (
1− 1

βl

)
Al >

1
βl

2B, (6)

where
Al := γ2l+1−γ2l+2

(1−2γ2(l+1))(l+1)

and |u1(x1, x2)| ≤ B for all (x1, x2) ∈ X1 ×X2. Take a sequence of trembles

(µl2) in ∆̂(X2) satisfying the following for each l:

µl2({1
4
}) + µl2({1

8
}) +

∑
k 6=2l+1

µl2({γk}) = 1
βl
,

µl2({γ2l+1}) = 1− 1
βl
.

For each l, we have

u1(αl+1, µl2)− u1(1, µl2)

= µl2({1
8
})
(
−1

2
+

1
8
−γ2(l+1)

(1−2γ2(l+1))(l+1)

)
+

∑
x2∈{ 14}∪

⋃
k 6=2l+1{γk}

µl2({x2})
(

x2−γ2(l+1)

(1−2γ2(l+1))(l+1)

)
+
(

1− 1
βl

)(
γ2l+1−γ2(l+1)

(1−2γ2(l+1))(l+1)

)
≥
(

1− 1
βl

)
Al − 1

βl
2B

> 0,

where the last inequality follows from (6). Therefore, given a sequence (δl)

in (0, 1) such that δl → 0 and given µ1 ∈ ∆̂(X1), we have, for each l,

u1((1− δl)αl+1 + δlµ1, (1− δl)γ2(l+1) + δlµl2)

− u1((1− δl)1 + δlµ1, (1− δl)γ2(l+1) + δlµl2)

= (1− δl)
(
u1(αl+1, µl2)− u1(1, µl2)

)
> 0.
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Hence, if for each l and every n ∈ {1, ..., l} we have

u1((1− δl)αl+1 + δlµ1, (1− δl)γ2(l+1) + δlµl2)

− u1((1− δl)αn + δlµ1, (1− δl)γ2(l+1) + δlµl2)

= (1− δl)
(
u1(αl+1, µl2)− u1(αn, µl2)

)
> 0,

(7)

then, for each l,

arg max
x1

u
(δl,(µ1,µl2))
1 (x1, γ

2(l+1)) ∈ {αl+1, αl+2, ...} ∪
{

1
2

}
.

This means that, given l, if player 2 plays γ2(l+1) in the game G(δl,(µ1,µl2)),
player 1 best responds by choosing a member of the set

{αl+1, αl+2, ...} ∪
{

1
2

}
.

Consequently, since γ2(l+1) is always optimal for player 2 in G(δl,(µ1,µl2)) (recall
that u2 is identically zero), it follows that G(δl,(µ1,µl2)) has an equilibrium

(xl1, γ
2(l+1)) for some

xl1 ∈ {αl+1, αl+2, ...} ∪
{

1
2

}
.

But then the sequence(
(1− δl)xl1 + δlµ1, (1− δl)γ2(l+1) + δlµl2

)
converges to (1

2
, 1

4
), and for each l,(

(1− δl)xl1 + δlµ1, (1− δl)γ2(l+1) + δlµl2
)

is a Nash equilibrium of Gδl∗(µ1,µl2), so (1
2
, 1

4
) is trembling-hand perfect.

We conclude that if (7) holds for each l and every n ∈ {1, ..., l}, then
(1

2
, 1

4
) is a trembling-hand perfect equilibrium of G. Hence, it suffices to

show that u1(αl+1, µl2) − u1(αn, µl2) > 0 for each l and every n ∈ {1, ..., l}.
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Fix l and n ∈ {1, ..., l}. Then

u1(αl+1,µl2)− u1(αn, µl2)

=
∑

x2∈{ 14 ,
1
8
}

∪
⋃
k 6=2l+1{γk}

µl2({x2})
(

x2−γ2(l+1)

(1−2γ2(l+1))(l+1)
− x2−γ2n

(1−2γ2n)n

)

+
(

1− 1
βl

)(
γ2l+1−γ2(l+1)

(1−2γ2(l+1))(l+1)
− γ2l+1−γ2n

(1−2γ2n)n

)
≥
(

1− 1
βl

)
Al − 1

βl
2B

> 0,

where the last inequality uses (6).

While continuous supermodular games may have trembling-hand perfect
equilibria that fail admissibility, continuity ensures that perfect equilibria are
always limit admissible. In fact, as shown in Carbonell-Nicolau [4], the follow-
ing property suffices for a compact, metric normal form game G = (Xi, ui)

N
i=1

to have only limit admissible trembling-hand perfect equilibria: for each i, if
xi ∈ Xi is weakly dominated in G for player i, then for some µi ∈ ∆(Xi) that
weakly dominates xi, there exists y−i ∈ X−i with ui(µi, z−i) > ui(xi, z−i) for
all z−i in some neighborhood Vy−i of y−i. If this condition is not fulfilled,
trembling-hand perfect equilibria in supermodular games may fail limit ad-
missibility. This is illustrated in the following example, which presents a
supermodular, sequentially better-reply secure game with a trembling-hand
perfect equilibrium that is not limit admissible.

Example 2. Consider the two-player game G := (X1, X2, u1, u2), where
X1 = X2 = [0, 1],

u1(x1, x2) :=

{
−1 if x1 ∈

[
0, 1

2

)
and x2 = 0,

x2 elsewhere,

and

u2(x1, x2) :=

{
1 if x2 = 1,

0 elsewhere.

Let ≤2 be the usual order on R, and define ≤1 as follows:

a ≤1 b⇔ a ≥ b.
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It is routine to verify that the game G endowed with ≤1 and ≤2 is super-
modular.

We next show that G satisfies sequential better-reply security. Suppose
that (xn, u(xn)) ∈ X×R2 is a convergent sequence with limit (x, γ) ∈ X×R2.
Suppose that x is not a Nash equilibrium of G. We must show that there
exist an i, an η > γi, a subsequence (xk) of (xn), and a sequence (yki ) such
that for each k, yki ∈ Xi and ui(y

k
i , x

k
−i) ≥ η. This is clearly satisfied if x is

a point of continuity of u. Suppose that x is a point of discontinuity of u.
Then x must be a member of the set

Z :=
{

(z1, z2) ∈ X : z2 = 0 and z1 ∈
[
0, 1

2

)}
∪ {(z1, z2) ∈ X : z2 = 1}.

The set of pure strategy Nash equilibria of G in Z is {(z1, z2) ∈ X : z2 = 1}.
Consequently, since x is not a Nash equilibrium of G, and because x ∈ Z,
we must have x2 = 0. Since x2 = 0, and because (xn, u(xn)) → (x, γ), the
definition of u2 entails γ2 = 0. But then, for each n we have

u2(xn1 , 1) = 1 > 0 = γ2.

Next, observe that the strategy profile (0, 1) is not limit admissible. In
fact, any action in

[
0, 1

2

)
is weakly dominated by any action in

[
1
2
, 1
]

for player
1. In addition, the point (0, 1) is a trembling-hand perfect equilibrium. To

see this, take µ2 ∈ ∆̂(X2) with µ2({0}) = 0. From the definition of u2 it is

clear that for any (δ, µ1) ∈ [0, 1)× ∆̂(X1), 1 is a best response for player 2 to
any x1 ∈ X1 in the game G(δ,(µ1,µ2)). Moreover, since u1(0, x2) = u1(x1, x2)
for all (x1, x2) ∈ [0, 1]× (0, 1] and µ2({0}) = 0, we have

u1((1− δ)0 + δµ1, (1− δ)1 + δµ2) ≥ u1((1− δ)x1 + δµ1, (1− δ)1 + δµ2)

for all x1 ∈ [0, 1]. Hence (0, 1) is a Nash equilibrium of G(δ,µ), and so (0, 1)
is a trembling-hand perfect equilibrium of G.

Next, we show that for supermodular games satisfying sequential better-
reply security, there are limit admissible, trembling-hand perfect equilibria.
We first prove an intermediate result for a larger class of games.

Lemma 9. Suppose that G = (Xi, ui)
N
i=1 is a compact, metric, Borel game

satisfying sequential better-reply security. Suppose that for each µ ∈ ∆̂(X),
there is a sequence (δn) in (0, 1)N with δn → 0 such that the game

Ĝ(δn,µ) := (Xi \Oi, u
(δn,µ)
i )Ni=1
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has a Nash equilibrium for each n. Then G has a limit admissible, pure strat-
egy trembling-hand perfect equilibrium. Moreover, the set of limit admissible,
pure strategy trembling-hand perfect equilibria of G is a compact subset of the
set pure strategy trembling-hand perfect equilibria of G.

Proof. Since each Xi is separable, there exists, for each i, a countable dense
subset Qi of Xi. For each i, define φ(i) : Qi ∩Oi → X−i as follows:

φ(i)(xi) = (φ1(i)(xi), ..., φi−1(i)(xi), φi+1(i)(xi), ..., φN(i)(xi)) = y−i,

where y−i is such that, for some pi ∈ ∆(Xi),

ui(pi, x−i) ≥ ui(xi, x−i), for all x−i ∈ X−i,

and ui(pi, y−i) > ui(xi, y−i). For each i and every j, let ρj(i) be a measure
in ∆(Xj) such that if j 6= i, then

ρj(i)({xj}) > 0, for all xj ∈ φj(i)(Oi ∩Qi).

For each i, let ρ(i) be the member of ∆(X) defined by

ρ(i) := (ρ1(i), ..., ρN(i)).

Note that for each i we have

ρ−i(i)({φ(i)(xi)}) > 0, for all xi ∈ Qi ∩Oi.

Define

µ := 1
2
σ + 1

2

N∑
i=1

1
N
ρ(i), (8)

where σ ∈ ∆̂(X). It is clear that µ ∈ ∆̂(X).
By assumption, there is a sequence (δn) in (0, 1)N with δn → 0 such that

the game
Ĝ(δn,µ) := (Xi \Oi, u

(δn,µ)
i )Ni=1

has a Nash equilibrium xn for each n. We show that xn is also a Nash
equilibrium of G(δn,µ) for each n.

Fix n. We first note that for each i, the map u
(δn,µ)
i (·, xn−i) is upper semi-

continuous on Xi. Because ui(·, x−i) is upper semicontinuous on Xi for every
x−i ∈ X−i, it follows from Lemma 6 that ui(·, p−i) is upper semicontinuous
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on ∆(Xi) for every p−i ∈ ∆(X−i). Therefore, the map u
(δn,µ)
i (·, x−i) is upper

semicontinuous on Xi for every x−i ∈ X−i.
To see that xn is a Nash equilibrium of G(δn,µ), suppose not. Then, there

exist i and %i ∈ ∆(Xi) such that∫
X

u
(δn,µ)
i (·, xn−i)d%i > u

(δn,µ)
i (xn). (9)

Assume that

%i ∈ arg max
νi∈∆(Xi)

∫
Xi

u
(δn,µ)
i (·, xn−i)dνi. (10)

If that were not the case, one could always choose a member of

arg max
νi∈∆(Xi)

∫
Xi

u
(δn,µ)
i (·, xn−i)dνi,

since this set is nonempty by compactness of ∆(Xi) and upper semicontinuity

of u
(δn,µ)
i (·, xn−i) on Xi.
There is no loss of generality in assuming that no member of ∆(Xi) weakly

dominates %i. To see this, suppose that νi ∈ ∆(Xi) weakly dominates %i.
Then, since ui(·, x−i) is upper semicontinuous on Xi for every x−i ∈ X−i,
the map ui(·, p−i) is upper semicontinuous on ∆(Xi) for every p−i ∈ ∆(X−i)
(Lemma 6). Consequently, by Corollary 1 of Salonen [13], there exists a
strategy %∗i ∈ ∆(Xi) that is not weakly dominated by any member of ∆(Xi)
and that weakly dominates %i. By (10), it is clear that

%∗i ∈ arg max
νi∈∆(Xi)

∫
Xi

u
(δn,µ)
i (·, xn−i)dνi.

If %i(Oi) = 0, (9) clearly contradicts the fact that xn is a Nash equilibrium

of Ĝ(δn,µ). Suppose that %i(Oi) > 0. It is convenient to analyze two subcases
separately: (i) the case when %i has atoms in Oi (i.e., %i({xi}) > 0 for some
xi ∈ Oi); (ii) and the case when %i has no atoms in Oi.

Suppose that %i(Oi) > 0 and that %i({xi}) > 0 for some xi ∈ Oi. Because
xi ∈ Oi, there exists νi ∈ ∆(Xi) such that

ui(νi, x−i) ≥ ui(xi, x−i), for all x−i ∈ X−i,

and ui(νi, y−i) > ui(xi, y−i) for some y−i ∈ X−i. Define pi ∈ ∆(Xi) by

pi(B) := %i(B \ {xi}) + νi(B)%i({xi}).

23



It is easy to see that pi weakly dominates %i, contradicting that no member
of ∆(Xi) weakly dominates %i.

Suppose that %i(Oi) > 0 and that %i has no atoms in Oi. Then, since
Qi∩Oi is dense in Oi, there exists zi ∈ Qi∩Oi∩ supp(%i). To see this, define
the measure %∗i on cl(Oi) by

%∗i (B) := %i(B∩Oi)
%i(Oi)

.

Since %i has no atoms in Oi, cl(Oi) is uncountable and %∗i has no atoms in
cl(Oi). Therefore, there exists a one-to-one map ϕ : cl(Oi)→ [a, b] such that
(i) %∗i (B) = m(ϕ(B)) for every Borel set B ⊆ cl(Oi), where m represents
Lebesgue measure on [0, 1], and (ii) the set of discontinuity points of ϕ (resp.
ϕ−1) is contained in some Borel set Bϕ ⊆ cl(Oi) (resp. Bϕ−1 ⊆ [0, 1]) such
that %∗i (Bϕ) = 0 (resp. m(Bϕ−1) = 0) (cf. Sun [15], Theorem 1). Choose
zi ∈ Qi ∩ Oi. Fix any ε > 0. Let Nε(zi) be the ε-neighborhood of zi in Xi.
Note that

%∗i (Nε(zi) ∩ cl(Oi)) > 0 (11)

implies that %i(Nε(zi)) > 0, so to show that zi ∈ supp(%i) it suffices to
establish (11). Because ϕ−1 is continuous on [0, 1] \Bϕ−1 , there exists β > 0
such that

ϕ−1 (((ϕ(zi)− β, ϕ(zi) + β) ∩ [0, 1]) \Bϕ−1) ⊆ Nε(zi) ∩ cl(Oi).

Consequently, since

m (((ϕ(zi)− β, ϕ(zi) + β) ∩ [0, 1]) \Bϕ−1) = m ((ϕ(zi)− β, ϕ(zi) + β) ∩ [0, 1])

> 0,

we have

%∗i (Nε(zi) ∩ cl(Oi)) ≥ %∗i
(
ϕ−1 (((ϕ(zi)− β, ϕ(zi) + β) ∩ [0, 1]) \Bϕ−1)

)
= m (((ϕ(zi)− β, ϕ(zi) + β) ∩ [0, 1]) \Bϕ−1)

> 0,

as we sought.
We conclude that there exists zi ∈ Qi ∩Oi ∩ supp(%i). Since zi ∈ Qi ∩Oi,

there exists νi ∈ ∆(Xi) such that

ui(νi, x−i) ≥ ui(zi, x−i), for all x−i ∈ X−i, (12)
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and
ui(νi, φ(i)(zi)) > ui(zi, φ(i)(zi)). (13)

Let (εk) be a sequence in (0, 1) with εk ↘ 0. Define %ki ∈ ∆(Xi) by

%ki (Bi) := %i(Bi \Nεk(zi)) + νi(Bi)%i(Nεk(zi))

(where Nεk(zi) denotes the εk-neighborhood of zi in Xi). Observe that %i
satisfies, for every Borel set Bi ⊆ Xi, and for each k,

%i(Bi) = %i(Bi \Nεk(zi)) + νki (Bi)%i(Nεk(zi)), (14)

where νki ∈ ∆(Xi) is defined as

νki (Bi) :=
%i(Bi∩Nεk (zi))

%i(Nεk (zi))
.

Given (12) and (13), and since the construction of µ in (8) entails µ−i({φ(i)(zi)}) >
0, we have

ui(νi, (1− δn)xn−i + δnµ−i) > ui(zi, (1− δn)xn−i + δnµ−i).

Therefore, since ui(·, (1− δn)xn−i + δnµ−i) is upper semicontinuous at zi, for
large enough k we have

ui(νi, (1− δn)xn−i + δnµ−i) > η > ui(wi, (1− δn)xn−i + δnµ−i)

for some η ∈ R and all wi ∈ Nεk(zi). Consequently, for large enough k we
have

ui(νi, (1− δn)xn−i + δnµ−i) > ui(ν
k
i , (1− δn)xn−i + δnµ−i). (15)

We are now ready to reach the desired contradiction. For large enough k
we have

ui(%
k
i ,(1− δn)xn−i + δnµ−i)

=

∫
Xi\Nεk (zi)

ui(·, (1− δn)xn−i + δnµ−i)d%i

+ %i(Nεk(zi))ui(νi, (1− δn)xn−i + δnµ−i)

>

∫
Xi\Nεk (zi)

ui(·, (1− δn)xn−i + δnµ−i)d%i

+ %i(Nεk(zi))ui(ν
k
i , (1− δn)xn−i + δnµ−i)
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= ui(%i, (1− δn)xn−i + δnµ−i),

where the inequality uses (15) and the last equality follows from (14).
We have shown that for large enough k,

ui(%
k
i , (1− δn)xn−i + δnµ−i) > ui(%i, (1− δn)xn−i + δnµ−i).

But this contradicts (10).
We conclude that xn is a Nash equilibrium of G(δn,µ) for each n. Next,

since (xn) lies in X and X is sequentially compact, we may write (passing
to a subsequence if necessary) xn → x. In addition, since each xn is a Nash
equilibrium of G(δn,µ), each (1 − δn)xn + δnµ is a Nash equilibrium of Gδµ,
so, given that xn → x, we see that x is a pure strategy trembling-hand
perfect profile of G. Since u

(δn,µ)
i → ui for each i, and because xn is a Nash

equilibrium of G(δn,µ) for each n and xn → x, it follows from Lemma 2
and Proposition 1 that x is a Nash equilibrium of G. Furthermore, because
xn ∈ ×Nj=1(Xj \Oj) for each n, and since xn → x and ×Nj=1(Xj \Oj) is closed,
we have x ∈ ×Nj=1(Xj \Oj), so x is limit admissible.

Finally, the set of limit admissible, pure strategy trembling-hand perfect
equilibria of G can be written as the intersection of the set of pure strategy
trembling-hand perfect equilibria of G and the compact set ×Nj=1(Xj \ Oj).
Hence, since set of pure strategy trembling-hand perfect equilibria of G
is closed (hence compact) in the set of pure strategy Nash equilibria of
G (Lemma 3), it follows that the set of limit admissible, pure strategy
trembling-hand perfect equilibria of G is a compact subset of the set pure
strategy trembling-hand perfect equilibria of G. �

Theorem 3. Suppose that G = (Xi, ui)
N
i=1 is a supermodular game satisfying

sequential better-reply security. Suppose that for each i the set Xi \ Oi is a
sublattice of Xi. Then G possesses a limit admissible, pure strategy trembling-
hand perfect equilibrium. Moreover, the set of limit admissible, pure strategy
trembling-hand perfect equilibria of G is a compact subset of the set pure
strategy trembling-hand perfect equilibria of G.

Proof. In light of Lemma 9, it suffices to show that for each µ ∈ ∆̂(X), there
is a sequence (δn) in (0, 1)N with δn → 0 such that the game

Ĝ(δn,µ) := (Xi \Oi, u
(δn,µ)
i )Ni=1

has a Nash equilibrium for each n. Fix µ ∈ ∆̂(X) and a sequence (δn)
in (0, 1)N with δn → 0. Because G is supermodular, the game G(δn,µ) is
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supermodular for each n (Lemma 7). Because for each i the set Xi \ Oi

is a closed sublattice of Xi, and since G(δn,µ) is supermodular for each n,

the game Ĝ(δn,µ) is supermodular for each n. Since Xi \ Oi is a compact
metric lattice for each i, Xi \ Oi is lattice complete for each i (Lemma 1).
Consequently, for each i, the topology induced by the metric on Xi \ Oi is
finer than the interval topology (e.g., Lawson [10], Proposition 4). Hence,

since Ĝ(δn,µ) is supermodular for each n, it follows from Theorem 4.2 in Vives

[17] that Ĝ(δn,µ) has a pure strategy Nash equilibrium for each n. �

References

[1] Aliprantis C. D., and K. C. Border (2006), Infinite Dimensional Analy-
sis. Springer, Berlin.

[2] Birkhoff, G. (1967), Lattice Theory, American Mathematical Society
Colloquium Publications, Vol. XXV, third edition, Providence, RI.

[3] Carbonell-Nicolau, O. (2011), “On the existence of pure strategy perfect
equilibrium in discontinuous games,” Games and Economic Behavior,
71, 23-48.

[4] Carbonell-Nicolau, O. (2011), “Perfect and limit admissible perfect equi-
librium in discontinuous games,” Journal of Mathematical Economics,
47, 531-540.

[5] Carbonell-Nicolau, O., and R. P. McLean (2011), “Approximation re-
sults for discontinuous games with an application to equilibrium refine-
ment,” Economic Theory, to appear.

[6] Carbonell-Nicolau, O., and R. P. McLean (2011), “Approximation re-
sults for discontinuous games with an application to equilibrium refine-
ment,” Rutgers University WP No: 2011-25.

[7] Ellis, D. (1951), “On the metric characterization of metric lattices,”
Journal of the Indian Mathematical Society, 15, 152-154.

[8] Kohlberg, E., and J.-F. Mertens (1986), “On the strategic stability of
equilibria,” Econometrica, 54, 1003-1037.

27



[9] Kultti, K., and H. Salonen (1997), “Undominated equilibria in games
with strategic complementarities,” Games and Economic Behavior, 18,
98-115.

[10] Lawson, J. D. (1973), “Intrinsic topologies in topological lattices and
semilattices,” Pacific Journal of Mathematics, 4, 593-602.

[11] Milgrom, P., and J. Roberts (1990), “Rationalizability, learning, and
equilibrium in games with strategic complementarities,” Econometrica,
58, 1255-1277.

[12] Milgrom, P., and C. Shannon (1990), “Monotone comparative statics,”
Econometrica, 62, 157-180.

[13] Salonen, H. (1996), “On the existence of undominated nash equilibria
in normal form games,” Games and Economic Behavior, 14, 208-219.

[14] Simon, L. K., and M. B. Stinchcombe (1995), “Equilibrium refinement
for infinite normal-form games,” Econometrica, 63, 1421-1443.

[15] Sun, Y. N. (1995), “Isomorphisms for convergence structures,” Advances
in Mathematics, 116, 322-355.

[16] Topkis, D. (1979), “Equilibrium points in nonzero-sum n-person sub-
modular games,” SIAM Journal on Control and Optimization, 17, 773-
787.

[17] Vives, X. (1990), “Nash equilibrium with strategic complementarities,”
Journal of Mathematical Economics, 19, 305-321.

28


