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by
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Abstract

Using duration analysis and CAPM, this paper seeks to estimate the length of time

performance measures affect the probability of a mutual fund liquidating.  Data was

collected on small cap growth funds from 1980-Nov. 2000 using the Sharpe Ratio to

estimate the probability that a mutual fund closes due to poor performance.  Using a

parametric approach the results show that a fund with a lower Sharpe ratio as well as

overall strong performance by the market increases the probability of a fund’s failure.

The results also show the existence of positive duration implying older funds face a

higher probability of failure.  The results are then compared to other models to test the

appropriateness of the model.
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I.  Introduction

The existence of performance persistence in mutual funds has recently emerged as a

popular field of study in finance.  Several articles have been written suggesting evidence

of positive performance persistence, implying that a fund earning excess returns in one

period will also perform well in later periods.  As Malkiel states, “good performing funds

tend to continue to perform well, at least over the near term” (Malkiel 1995).  For mutual

funds that underperform the market, there is even stronger evidence to suggest that they

will continue to underperform (Peterson 1998).  These results are surprising because it

implies that investors do not punish poorly performing mutual funds.

It has been suggested that investors tend to over-emphasize the importance of recent

performance when weighing investment decisions.  They tend to chase past performance

and flock to top rated mutual funds.  If that were the case, however, one might also

conclude that there would be a significant drain away from underperforming mutual

funds as people shift their portfolios to chase the winners.  Barber and Odean (2000) find,

however, that investors appear to be loss averse and often unwilling to realize any losses.

This suggests they will continue to hold losing mutual funds even in the face of poor

performance persistence.

Investors are not willing to hold a losing portfolio indefinitely, however, and will

eventually adjust his or her portfolio to weed out the worst performing mutual fund.

Therefore, there needs to be a better understanding of how quickly investors process
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information regarding a mutual fund’s returns, and the length of time to react to the

returns.  As Lunde, Timmerman, and Blake (1998) write, “If poorly performing funds

tend to close down after only a short period, this suggests that investors possess good

information about the fund performance, whereas a longer average time before closure

might indicate that performance signals are weak, so that investors need more time before

they can identify a fund’s genuine performance.”

There are several reasons why a mutual fund may close, including managerial changes or

deciding that two of a firm’s mutual funds are too closely related.  Or, as Brown (1995)

states, “Fund disappearance is a management decision which is presumable based upon

the funds profitability and ultimately on consumer demand.”

Using duration analysis and portfolio choice theory, this paper seeks to estimate the

length of time performance measures affect the probability of a mutual fund liquidating.

The paper is organized as follows: the next section describes recent literature, followed

by the dataset, then a layout of the model in section four.  In section five, the model is

estimated and the results are discussed, and section six concludes.

II. Related Literature

While much has been written about the performance of mutual funds (Sharpe 1966), and

the performance persistence in mutual fund returns Carpenter (1999), Carhart (1997),
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Hendricks, et al (1993), Brown (1992), and Grinnblatt (1992) and whether mutual funds

persist for several periods; less has been written about investor behavior in response to

poor performance.  Harless and Peterson construct two models to compare investor

behavior by estimating growth in assets.  In one model the investor chooses funds on the

basis of risk adjusted returns and another assumes a representativeness heuristic investor

who responds only to the most recently available returns, not taking into account the risk

adjusted return or the validity or recent returns with respect to future performance.  They

find “that investors do not combine returns with risk in accord with this [Jensen’s alpha]

performance measure.  Rather intuitive judgements about fund performance are overly

influenced by extreme recent returns unadjusted for differential risk” (Peterson 1998).

Additionally they find that investors ignore differences in expense ratios between funds

that tend to have a high predictive power for future returns.  Although the Peterson paper

discusses the flow of assets into a mutual fund, it does not analyze the life of the mutual

fund as to whether it stays in operation.

Continuing with the representativeness heuristic model, Barber and Odean (2000) state

that investor’s response to recent poor performance is “more than offset by investors’

reluctance to realize losses (disposition effect).”   In this model they will hold losing

mutual funds too long and sell winners too quickly.  Again this implies that fund survival

does not depend of the return a fund generates (at least in the immediate future).

Brown and Goetzmann (1995), on the other hand, estimate the probability of a mutual

fund closing.  They estimate a probit on fund disappearance using relative return that year
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(fund’s return that year minus average fund return), relative size, expense ratio, and age

to explain the probability of a fund closing.  Their results return consistent coefficients

with respect to previous research.  Low relative returns and higher expense ratios increase

the probability of fund closure.  The larger the fund, and the older the fund, the lower the

probability of closing, although they state that it is difficult to separate size from past

performance because well-performing funds tend to attract customers.  An interesting

observation about the model set-up is that even though there was a negative coefficient

on relative return, the returns were not estimated on a risk-adjusted basis.  In this case one

could not distinguish between a mutual fund with a historically greater variance (riskier

investment) and a mutual fund with a one-year aberration.  Although Brown’s estimation

highlights the importance of returns in the attrition process, it treats all returns as equal.

Lastly, Lunde, Timmermann, and Blake (1998) estimate a semi-parametic Cox

proportional hazards model1 to capture the probability of a fund closing using monthly

data from UK open-ended mutual funds from 1973-1995.   Their sample contains 973

mutual funds that die and 1402 surviving mutual funds (59% of the mutual funds).  They

model both relative fund return and risk adjusted fund return as covariates finding an

inverse U-shape hazard rate.  Negative performance by the mutual fund relative to its

peergroup leads to a higher hazard rate in 19 out of the 20 sectors of funds analyzed (8

were significant).  They also find performance over the long-term (using three year

performance) matters for survival.  The reason given for the shape of the hazard rate is

that investors need time to analyze a start-up mutual fund and allow the fund to establish

a track record.  Once a fund clears the initial hurdle, however, then performance seems to
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dictate which of the funds survive.  Eventually, those funds with a proven track record,

given the performance persistence of the mutual funds, face a decreasing probability of

failure.  As Lunde (1998) states:

[The] estimates imply that the cumulative effect of a one- percent abnormal
underperformance in a given month is to more than double a fund’s hazard rate
relative to a scenario of zero relative underperformance2.  Similarly, the
cumulative effect of a decrease in the return on UK equities of one percent in a
given month is to increase the hazard rate by 17 percent.  These estimates suggest
that both relative and absolute performance are important determinants of the UK
equity funds’ hazard rate, with relative performance being particularly important.

In most of the current literature available, the existence of performance persistence of the

fund raises questions regarding what measure of performance the investor is using when

deciding to sell a mutual fund.

III. Data

The data for this paper was taken from the tradeline.com mutual fund database3.  There

are approximately 13,096 currently active mutual funds that fall into 44 categories.

Additionally, data is maintained on about 3,897 closed mutual funds4 (about 22.9% of all

mutual funds) from 1973 to the present (the database contains all frequencies; monthly

data is used in this paper).  From the mutual fund universe, this paper focuses on funds

                                                                                                                                                                        
1 Please see Appendix for description of Cox proportional hazards model.
2 Abnormal return in the paper is defined as the funds average return relative to the average return of the
fund’s sector during the same period.
3  The author is extremely grateful to Brian Tietje at tradeline.com for providing the data as well as
technical support.
4 Closed mutual funds in this paper refer to liquidated mutual funds rather than close-ended mutual funds.
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that fall under the small-cap growth category according to the Wall Street Journal.  Small

cap growth funds are described as:

Funds that invest in small companies with long-term earnings that are expected to
grow significantly faster than the earnings of stocks in major indexes.  Funds
normally have above-average price-to-earnings ratio, price-to-book ratio, and
three year earnings growth (WSJ 12/04/00).

There are several reasons for singling out a particular group, such as small-cap growth

funds.  Most importantly, looking at funds within the same category with similar

investment goals removes the need to estimate a fund’s “beta” and use risk adjusted

returns when looking at performance.  A priori, as a fund enters the market at t=0, funds

operating with similar selection criteria have the same probability of success or failure.

Only after the portfolio has been selected, and the fund manager takes an active role in

the performance of the fund, do the mutual funds begin to distinguish themselves.  Within

the category, one cannot say that any particular fund or group of funds is biased towards

success or failure over any other.  Second, small cap growth funds have consistently

underperformed standard benchmarks like the S&P 500 for the past several years.  While

the underperformance as a group continues, many individual funds persist and thrive,

while others fail.  Narrowing the focus to a group of underperforming funds could shed

some light on the importance relative or absolute benchmarks returns play in the survival

of the fund.
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Table 1 shows the births and deaths of funds contained in the sample.  The sample

contains 255 currently active mutual funds and 81 liquidated funds (24.1% of all funds).

It is obvious that growth in the small-cap market did not accelerate until the mid-to-late

1990’s, and it is not

until most recently that

there appears to be a

large increase in the

failure rate.  The

growth in the number

of small-cap funds is

actually a bit of a

surprise as over the

last five years the

performance of these

types of funds has lagged significantly behind the S&P 500 which large and mid-cap

mutual funds usually track more closely.

There are several reasons for the increase in the number of small-cap funds in the 1990’s.

The small-cap market has several characteristics that make it unique.  First, given the

business cycles in the economy, small-cap stocks tend to be counter-cyclical.  That is,

when the U.S. economy is weakest, small cap stocks perform best.  A quick glance at

Table 2 shows that four of the five years that the small-cap funds out-performed the S&P

500 are years in or immediately following a recession.  This is the main reason that there

Active Average
Funds Births Deaths Age 1/

< 1980 9 9 0 6.5
1981 9 0 0 18.5
1982 9 0 0 30.5
1983 10 2 1 36.9
1984 14 4 0 36.1
1985 15 2 1 40.8
1986 22 7 0 40.8
1987 27 6 1 42.9
1988 30 3 0 46.5
1989 32 4 2 54.8
1990 38 7 1 52.7
1991 47 9 0 56.4
1992 58 13 2 55.0
1993 78 24 1 49.8
1994 109 35 4 45.3
1995 138 30 1 44.3
1996 160 29 7 46.0
1997 171 16 5 51.2
1998 201 43 12 53.8
1999 221 40 21 55.3
2000 255 56 22 54.4

Source: Tradeline.com
1/  In months.

Table 1:  Small Cap Growth Mutual Funds, 1980 - Nov. 2000
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has been a large surge in the births of small-cap mutual funds in the early 90’s.  Coming

out of the 1990-91 recession, investors saw the returns being generated by small-cap

growth funds at the same time the whole mutual fund industry was beginning to grow.

Due to superior performance of the small-caps and the growth of the mutual fund

industry as a whole, the small-cap growth mutual funds grew quickly during 1991-93.

Growth in the small caps slowed considerably in the mid 1990’s as the economy boomed

and the larger capitalized stocks generated higher returns.

Another reason for an increase in the births of small-cap mutual funds is the nature of the

investment.  According to Morningstar, a stock is considered a small-cap if the firm has a

market capitalization of less that $1bn (stock price multiplied by shares outstanding).

This creates an interesting issue for the fund manager to consider.  First, the firm (and

therefore the mutual fund that holds that stock in its portfolio) that generates fast growth

finds its market capitalization rising quickly as interest in the company grows.  A mutual

fund manager must decide whether to keep that company in the portfolio and reclassify

the fund, or divest from that company5. Second, as the mutual fund generates high returns

because of the high growth stock assets, will quickly flow into that mutual fund.  A

substantial increase in the fund’s assets impedes the fund’s ability to invest in small-cap

companies, as the fund’s assets are too big.  In this situation the mutual fund would have

to decide whether to keep that fund open to new investors or to close it to new investors.

In both cases there would likely be the launch of a new mutual fund with the same asset

                                                        
5 In this paper mutual funds that are re-classified are not included in the sample as they have not died, nor
have they had consistent investment criteria.
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Figure 1.  Performance vs. S&P 500
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classification as the previous one.  One would therefore expect increased small-cap

growth mutual fund births.

Figure 1 shows two mutual funds’ relative performance against the S&P 500.  Both of the

mutual funds began in the same month, and show relatively dismal performance against

the market.

But the First

American

Mutual Funds

continues to

attract new

money and

currently has

assets over

$330 million

(the average

for active

small-cap funds is about $260 million in assets), whereas Aetnea ceased operation in

April 2000.

The similar performance of these two funds against the S&P suggest that investors do not

strictly analyze the return of the mutual fund or create absolute benchmarks when

deciding divest from a fund.
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Finally, Table 2 highlights the returns of the mutual funds over the sample period.  The

return of a mutual fund is calculated according to Brown (1995) as:

Ret =NAVt – NAVt-1        +        Divt

  NAVt-1 NAVt-1

The Net Asset Value (NAV) is the mutual fund’s equivalent to a stock price6.  Dividend

disbursements, however, come infrequently and can cause large swings in one month’s

returns.  In order to smooth the return data, average monthly returns are used in the model

rather than total returns or annualized returns.  The data is broken out into active and

inactive mutual funds to highlight the

differences in performance.  Only in 1983

and 1984 are the returns of the mutual funds

that will eventually liquidate above the

returns of active funds.

One question that naturally follows after

looking at Table 2 is why have small-cap

growth funds underperformed the market so

frequently.  In fact, in only five of the

twenty-one years in the sample did small

                                                        
6  “A mutual fund calculates its NAV by adding up the current value of all the stocks, bonds, and other
securities (including cash) in its portfolio, adjusting for expenses, and then dividing that figure by the fund's
total number of shares” (morningstar.com). There are differences between a company’s stock price and the
NAV.  For example while there is only a certain amount of stock for a given company, there are not limits
on the number of shares available in a mutual fund.  Additionally, while one can only buy shares of stock in
units, there is no restriction to owning fractions of shares of mutual funds.

S & P
A l i v e D e a d

<  1 9 8 0 2 . 5 0 3 . 2 2 0 . 7 8
1 9 8 1 - 0 . 3 6 - 0 . 4 7 0 . 0 3
1 9 8 2 1 . 7 7 1 . 6 3 - 0 . 2 5
1 9 8 3 1 . 7 5 1 . 1 8 1 . 3 0
1 9 8 4 0 . 5 8 - 1 . 5 1 - 1 . 3 7
1 9 8 5 2 . 3 8 1 . 5 9 1 . 5 5
1 9 8 6 1 . 5 6 - 0 . 1 0 - 0 . 3 0
1 9 8 7 0 . 0 4 - 1 . 4 4 - 0 . 9 4
1 9 8 8 1 . 3 3 1 . 1 0 1 . 0 6
1 9 8 9 2 . 3 8 1 . 6 4 1 . 4 7
1 9 9 0 - 0 . 1 3 - 0 . 6 0 - 0 . 8 3
1 9 9 1 2 . 3 3 3 . 6 3 2 . 6 6
1 9 9 2 0 . 6 3 0 . 6 5 0 . 1 8
1 9 9 3 0 . 8 2 1 . 0 5 0 . 8 7
1 9 9 4 0 . 1 5 - 0 . 2 8 - 0 . 4 1
1 9 9 5 2 . 7 0 2 . 2 2 1 . 6 7
1 9 9 6 1 . 7 8 0 . 9 5 0 . 7 5
1 9 9 7 2 . 5 2 0 . 8 1 0 . 5 9
1 9 9 8 2 . 3 0 0 . 4 9 - 0 . 8 0
1 9 9 9 1 . 6 7 3 . 5 3 1 . 2 5
2 0 0 0 - 0 . 7 9 - 1 . 0 4 …

S o u r c e :   T r a d e l i n e . c o m

A v e r a g e  M o n t h l y  R e t u r n

M u t u a l  F u n d s

T a b l e  2 :

( 1 9 8 0  -  N o v .  2 0 0 0 )
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caps outperform the S&P 500.  There are three major reasons why small-cap growth

funds have been among the lowest performers in the mutual fund universe.  First, small-

cap growth funds face two liquidity issues.  The small-cap market itself is illiquid

because of the nature of the stocks, which creates disincentives to invest in the small-cap

funds.  As Robert Markam explains, “If [an institutional investor] has $10 million to

invest, he’s not going to put that money into an illiquid sector.  Instead you are probably

going to buy larger companies . . . .At least he knows he can get out if he has to.  In a

small-cap market that’s not so liquid, that puts tremendous pressure on the sector.”

So in the small-cap market fewer, individuals can cause larger swings in performance of

the market due to liquidity issues.  Additionally, small-cap managers have devoted more

of their holdings to cash than their large-cap competitors because of the liquidity issues in

that market.  Since larger firms are more liquid, managers are able to invest a higher

percent of their assets in the market increasing the return of the fund over the long term.

Second, small-cap stocks underperform because they are counter-cyclical.  The sample

time period contains only one recession, when small-caps are expected to perform best.

Given the record expansion of the economy over the last decade, it is perhaps not

surprising that small-caps have suffered by comparison.  The implication is that the larger

companies stocks are hurt more during a recession as they are forced to go through a

painful cost-cutting and restructuring as profits tank.  The stocks will then rebound as the

economy starts to grow, and the larger companies emerge more efficient and profitable

and see large increases in the stock price.
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Finally small cap growth have performed poorly due to “losers bias”.  Growth stocks are

expected to have a high P/E ratio that suggests high future growth and profits.  A

successful company will not remain a small-cap stock for long.  As the company grows,

the mutual fund must be reclassified if it is going to hold that particular stock or the

portfolio must be rebalanced.  What remains are either poorly performing portfolios that

are still considered small cap or a mutual fund that is now a mid or large cap fund and not

contained in the sample.  As the selection of small-cap growth funds become slimmer

there is a downward bias on the performance, of those funds, because of the investment

criteria.

When comparing the returns to the S&P 500, it is important to note the survivorship bias

in existence when comparing returns.  Historical estimates of sectoral returns often

calculate only the returns of those mutual funds that are currently active, thereby

overstating the true performance of the sector.  Brown and Goetzman (1995) calculate the

survivorship bias for mutual funds and found that equal-weighting the funds, including

funds that closed, lowered the performance by about 0.8% in 1988, while value-

weighting the mutual funds lowered the performance by only 0.2%.  This suggests, of

course, that larger funds are less likely to close, and therefore stay within the sample.  In

this sample, equal-weighting the returns lowers the overall return for small cap mutual

funds by about .25% in 1999.  Using returns to measure a fund’s performance one can

estimate how that performance influences a fund’s survival.
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IV. The Model

While there may be several reasons why a fund may liquidate, the most interesting

analysis comes from investors rebalancing non-efficient portfolios in an effort to seek

higher returns.  This model seeks to draw a link between the utility maximizing investor

who responds to the performance of any particular mutual fund by adjusting his/her

mutual fund.  If the mutual fund is underperforming by some measure, theory would state

that investors would pull money away from the asset and as money left the asset, the

probability of the asset liquidating would increase.

There are several current portfolio choice models available including Fama-French model

(1993) based on book-to-market factors, and  Daniel-Titman model (1997) based on the

characteristics of the firm to estimate excess returns.  One of the earliest advances in

modern portfolio theory, however, was the development of the CAPM model by Sharpe

(1964) and Lintner (1965) creating the link between expected utility maximizers and risk

and return.  Assume a pure risk free interest rate to which all investors have access, with

return R0.  Second, assume all investors have homogeneous expectations with respect to

return and variance of any asset and base their investment decision strictly on the

expected return and expected risk.  Lastly, assume there are no research or transactions

costs.  Given those assumptions, the investor maximizes his utility according to the

following constrained maximization problem (for computational ease, assume three

assets in the portfolio, although the results hold for the more general case)7.
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Max V(ERM, σ2(RM))
s.t. α0 + α1 + α2 = 1

ERM = α0R0 + α1ER1 + α2ER2

Var(RM) = α2
1var (R1) +  α2

2var(R2)  + 2α1α2cov(R1,R2).

Substituting α0= 1-α1-α2 and taking the derivative with respect to α1 and α2 yields

(ER1 – R0)V1 + 2(α1var(R1) + α2cov(R1, R2))V2 = 0
(ER2 – R0)V1 + 2(α1var(R2) + α2cov(R1, R2))V2 = 0

where the first equation can be multiplied by α1 and the second by α2 and summed to be

rewritten as

(ERM – R0)V1 + 2var(RM)V2 = 0, using the definitions of ERM and Var(RM).  Lastly using

the two equations above we can write

ERi – R0 = cov(Ri,RM)/Var(RM)(ERM – R0).

Where βi= Cov(Ri,RM)/Var(RM) is the standard OLS regression result of the above

equation.

Any portfolio that has the highest expected return for that given level of variance (risk) is

said to be on the mean-variance efficient frontier.  Additionally, although the RM is the

return for an individual investor’s wealth, defining RM as the market portfolio as the

weighted sum of all investor’s portfolios; then the market portfolio is mean-variance

efficient as well.  Lastly, the assumption of the ability to borrow at the risk free interest

rate implies that any investor can have an efficient portfolio regardless of the investors

                                                                                                                                                                        
7 The derivation of the CAPM follows the same derivation used by Jagannathan (1995).
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risk aversion, therefore we do not need to assume that all the investors have the same

expected utility function.

We have then created the link between the excess return of a particular asset (ERi – R0)

and the excess market return by βi, which completely captures the variation of cross

sectional returns.  For a given class of mutual funds (i.e. small cap funds) βi should be

identical, or near identical, as the whole class should have the same risk premium.  The

CAPM implies that any asset should have the same ratio of expected excess return (ERi –

R0) to risk (βi).

The Sharpe ratio is then defined as:

(ERi – R0)/σi

This ratio measures the amount of expected return per unit of risk.  This measure allows

comparisons between different asset’s performance.  The higher the Sharpe ratio the

closer the asset is to the mean-variance frontier.  One would expect that mutual funds

with low Sharpe ratios would have a shorter life then their more efficient partners.  While

the Sharpe ratio is intended to determine which assets to invest in, it should also be used

as an indicator of what assets to divest from.

While some aspects about the validity of the CAPM model have been questioned, the

idea that investors balance risk and return has become standard finance theory. The

question then becomes what is the probability that a mutual fund closes due to poor
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performance. In order to model the probability of a mutual fund closing over time, some

concepts over survival analysis must be introduced.

The key concept in understanding the probability of a mutual fund’s failure is the fund’s

hazard rate.  The hazard rate measures the probability that a fund will fail in the next

period (t+d) given that the fund has lasted until today (t).  Mathematically:

The first step in finding the hazard rate is to take the funds out of calendar time and

transpose them into duration time.  It is not of concern what caused the mutual fund to

begin, or even when it began, but rather after the mutual fund starts, what affects its

probability of closing.  By transforming the data one is able to compare the probability of

survival for a fund starting in January 1984 living for two years and a mutual fund

starting in May 1990 surviving until present.  Therefore, all the mutual funds in the

sample have the same birth date of t=0.

After calculating the hazard function to look at the rate of failure, the counterpart of the

hazard is the survival function. The survival function measures the probability that a

mutual fund has lived at least until age t.

Figure 2 shows the non-parametric Kaplan-Meier estimate for the survivor function:

�(t)= Π(ni – hi)/ni  where hi is the number of failures at time i and ni is the risk set at time

lim λ(t) = Prob(t < T < t+d | T>t, xβ)
d→0 d

S(t) = Prob(T>t)  = exp-(∫0t λ(w)dw)
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i.  The risk set in this example is the existing funds in the previous period minus the

numbered of censored funds at i.  For example, if at time t=1 there were four funds in the

sample, and one fund fails at t=1 and there were no observations left for another (end of

sample), then the risk set for t=2 would be two.  The dashed line is a polynomial trend

line, creating monotonically decreasing survivor function.  The fact that the survivor

functions is decreasing at a decreasing rate suggests that if this model, estimated

parametrically, a Weibull distribution of the hazard function would be most appropriate.

The hypothesis is that

positive duration

dependence is

expected as the

probability of a

mutual fund failing

increases with its age.

A positive duration is

an upward sloping

hazard function, implying the probability of leaving any state increases with increases in

time.  If this were true, it would contradict Brown’s (95) results, which indicated older

funds have a higher probability of survival.

Figure 2.  Kaplan-Meier Esitmate of the Survivor Function
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ln L = Σuncensoredλ(t|xβ) + Σall observations lnS(t|x β)

The Weibull distributions hazard function is: λp(λt)p-1, and therefore any p>1 would

demonstrate positive duration dependence.  The survivor function of the Weibull is e-(λt)^p.

The log-likelihood function then is:

The covariates used in the model attempt to capture the degree to which investors shift

out of the portfolio given poor performance. Using the CAPM model as the baseline

assumption regarding rational investor behavior, any mutual fund with a low Sharpe

ratio, with respect to either the market portfolio or some other asset increase the

probability of the mutual fund closing.  Given the assumptions in the CAPM model

investors are assumed to care only about risk and expected return of an asset; and the

Sharpe ratio allows comparison among different assets.  One can construct the model to

explain the probability of a mutual fund closing using the assets Sharpe ratio against the

Sharpe ratio of alternative investments.  If the CAPM holds, then investors who are

keeping vigilant watch over the mutual fund will punish the fund not generating high

returns for a given level of riskiness.  As Sharpe (1966) states, “The only basis for

persistently inferior performance would be the continued expenditure of large amounts of

a fund’s assets on the relatively fruitless search for incorrectly valued securities.”  This

result is consistent with an efficient market that any fund that does not perform will

eventually be forced out of the market.

Therefore, a utility maximizing individual compares Sharpe ratios across

investments and sells the mutual fund.  Since all investors have the same beliefs about a
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ln L = Σuncensoredλ(t|xβ) + Σall observations lnS(t|x β)

ln L = Σuncensoredf (t|xβ) + ΣcensoredlnS(t|x β )

mutual fund’s expected return and risk, the length of time a poor performing mutual fund

stays in the market becomes a function of the fund’s Sharpe ratio and differences in the

amount of time it takes investors to process the information (time variable).  A fully

specified model is:

(λ(t|x)) = ptp-1 exp-(c + β
1
*(Sharpe Ratio Asset i) + β

2
*(Sharpe Ratio of market portfolio)+ Σβ

j
*(Sharpe Ratio asset j))

One difficulty that arises in the formulation of the likelihood function is the fact that with

time varying covariates the likelihood function is not a joint probability distribution as

the distribution of the covariates changes.   For example, the log likelihood is written:

where  λ(t|xβ) = f(t|xβ)/S(t|xβ), and can therefore be rewritten as:

Following Lancaster (90), define a covariate process {x(t)} as exogenous for T if and

only if:

Any covariate that is not exogenous is then endogenous.  The definition states that

information for mutual funds that have survived to t+dt does not aid to the path of the

Sharpe ratio from t to t+dt.  Since the Sharpe ratio is expected return over the variance,

theoretically these values should not change when evaluated at any point in time, given

P(x(t, t+dt)|T>t+dt, x(t)) = P(x(t, t+dt)|x(t))
for all t>0, dt>0
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the true distribution of expected returns.  Therefore we can state that the Sharpe ratio

does fit the definition above and can be considered time-invariant and exogenous.  As

Lancaster states:

The likelihood based on the joint density of the exit time and the covariate path . .

.. are valid probabilities, conditional on the covariate path, if the covariates are

exogenous in the sense of definition 1, but not otherwise.

V. Results

For the first model, only one alternative investment was considered.  The Legg Mason

Value fund has one of the highest 20 year total returns and falls into the large value

category is the proxy for other available investments.  In constructing the Sharpe ratios

for the market portfolio and the alternative investments, with respect to both currently

active and dead funds, the Sharpe ratio was calculated from fund inception until either

death of the fund or end of the data for the fund under consideration.  This was done in

order to allow varying Sharpe ratios for all funds.  This implies that investors only

consider the reward to variability ratio during the window they remained in the

investment.  They do not consider all data available for comparison.

The market portfolio was constructed creating an equal-weighted index for the NYSE and

NASDAQ composites base month December 1979.  One of the shortcomings of the
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CAPM is empirically finding the true market portfolio, creating this proxy, however,

accounts for the majority of publicly traded stocks available for investment.

The model returned:

ln(λ) = -8.38475 - 1.69874*(Own SR) + 5.1013*(Market SR) + .8412*(LMV SR)

(-12.22) (-1.922) (4.967)  (.722)

Where LMV SR is the Legg Mason Value Sharpe ratio.  The insignificance of the

alternative investment should not be surprising, because by definition the market

portfolio should be the most mean-variance efficient; and therefore and other single

investment should have a lower Sharpe ratio and be inferior to the market portfolio.

Taking out the Legg Mason Sharpe Ratio yields:

ln(λ) = -8.2357 – 2.02496*(Own SR) + 5.82926*(Market SR)
(-13.27) (-2.194) (9.261)

Or as a hazard function:

λ(t) = 1.35t.35exp(-8.2357 – 2.02496SR + 5.82926SM)

The t-statistics are in parenthesis.  In the second specification all coefficients are

significant at the 95 percent level.  P= 1.359545 suggests positive duration dependence

with respect to the failure of mutual funds. Positive duration dependence means that the

probability a mutual fund will close increase as the fund gets older.  The null H0 p=1 is
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004156 Figure 3.  Estimated Hazard, Weibull Regression

rejected with a t-statistic of 3.471.  The results appear to be consistent with CAPM

theory.  The coefficient on the fund’s Sharpe ratio states that a one percent lower Sharpe

ratio increases the probability of a mutual fund closing by about 2%.   Likewise if the

market portfolio generated a one- percent higher return given no change in risk the hazard

rate increases by almost six percent.  This implies that investors do in fact watch the risk

adjusted performance of the mutual fund and compare it to other investment opportunities

that offer a higher reward after adjusting for risk.  Given the relatively low coefficient on

the fund’s own Sharpe ratio it appears investors do not punish the mutual fund

immediately, however.  As Lunde (98) stated investors may have poor information about

the true characteristics causing them to more slowly readjust their portfolios.

Although the

model returns

positive

duration

dependence in

the hazard rate,

as shown in

Figure 3; the

numbers must

be interpreted

with caution.  Given the nature of the dataset and the heavy right censoring of the data

(all funds that are not liquidated are right censored), that may overstate the true nature of
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the duration dependence, as one cannot state the true duration dependence for 76% of the

mutual funds.  It is possible that a dataset with a higher percentage of failures could

change the shape of the hazard function.  The Lunde (1998) paper indicates that older

funds have a decreased probability of failure with an inverted U shaped hazard rate.  The

Lunde paper contains 2375 UK mutual funds where 41% of them fail.

After having run the regression and imposing a Weibull as the hazard rate, it is important

to test the appropriateness of that assumption.  Theoretically the justification of an

increasing hazard is: given the same Sharpe ratio for two funds, the older the fund the

higher the probability of closure of that mutual fund.  Its track record has already been

noted, and investors would then leave the funds in search of higher risk adjusted returns.

Therefore, one would expect (and finds) positive duration dependence.  Statistically,

however, it cannot be assumed that the Weibull distribution describes the true hazard.

Two tests were constructed to check the appropriateness of the Weibull assumption.  The

first was the nested Wald test.  A generalized log gamma regression, which is a three

parameter distribution (Weibull is a one parameter distribution), was estimated allowing

the highest flexibility for the shape of the hazard function.  The Weibull is a special case

of the generalized gamma, and the Wald test can be used to establish whether the

exponential, Weibull, or lognormal distributions can be rejected.  The first test on the

lognormal distribution with a χ2(1) had a test statistic of 12.48 and rejected the lognormal

at the 99.5% confidence level.  The second test statistic for the Weibull scored a 1.02 and

could not be rejected.  Lastly, testing the exponential hazard (memoryless process) with

χ2(2) scored a 13.32, which could also be rejected with 99.5% confidence.  Therefore as
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far as parametric modeling of the hazard, it appears as though a Weibull distribution is

the most appropriate form of the hazard8.

The second test conducted was for non-nested models concerning the proportional

hazards (Cox) model and a parametric Weibull model9.  The Akaike Information Criteria

allows for non-nested testing calculating AIC =  -2(log likelihood) + 2(c + p), where c is

the number of covariates and p the specific parameter distribution (the Weibull has 2 for

the constant and the time dependence, while a Cox model has 0).  The AIC for the

Weibull is 378.865, while for the Cox model it is 722.3929, suggesting the Weibull for a

better fit.

Lastly there is an

attempt to capture the

degree to which the

model is well specified

using a martingale

approach to the

residuals.  Following

the results in McCall

(94) we can apply

martingale theory to a parametric hazard model with time-varying covariates and right-

censoring.  The residuals should follow a martingale difference sequence where the one

                                                        
8 A Wald test was also rejected a model incorporating the interaction between age of the fund and
performance.
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step ahead forecast should have zero mean and uncorrelated with past prediction errors.

Therefore defining Xi(k) = N(k) – Pk(zi(1), zi(2), …) where N(k) is the actual event

outcome at k, and Pk() is the expected outcome at time k conditional on the covariates zi()

available at k-1, Xi(k) should be pure white noise.  As Figure 4 shows, a well-specified

model should show residual plots with mean zero and uncorrelated with other prediction

errors.

VI. Conclusion

Using the CAPM theory to determine how investors analyze mutual fund performance, a

duration model was constructed to determine the probability of closing for a poorly

performing mutual fund within a specific mutual fund category.  Investors do seem to

adjust their portfolios based on risk adjusted returns.  A mutual fund has a low Sharpe

Ratio increases the probability that the fund will close by two percent and higher

performance by the market as a whole raises the hazard by about six percent. Investors do

seem willing to divest in search of higher returns for a given level of risk.  As the

investment community engages in this activity, the probability of survival for the fund is

severely decreased.  Older funds also seem to have a lower probability of survival as

successful small-cap stocks will not remain available in their portfolio for long periods of

time.  This paper hopefully highlights some issues as to why and when a mutual fund

may fail.  Further areas of research include incorporating all equity funds for an overall

hazard rate of the mutual fund market and testing to see whether focusing on small cap

funds caused any sample selection bias.

                                                                                                                                                                        
9 See appendix for Cox proportional hazards model
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Appendix:  The Proportional Hazards Model

The proportional hazards (PH) model introduced by Cox (1972) was designed to be a

“representation of failure-time that is convenient, flexible, and yet entirely empirical.”

The basis for the PH model was the hazard function λ(t,x,β) = λ0(t)φ(xβ), where β is a

vector of unknown parameters and λ0(t) is some function giving a standard behavior for

condition x=0.  φ(xβ) is usually defined as exp(xβ) because of it’s non-negativity and

therefore imposes no constraints on β.  The first thing to understand about the PH model

is how it differs from parametric models.

Parametric models calculate Pr(subject j failed at tj|xjβ) and from that probability, one

can calculate a likelihood function and maximize it with respect to β.  The PH model, on

the other hand, makes comparisons at the time when failures happen to occur.  Therefore

each mutual fund has a probability of failure of:

where ℜ(t) is the risk set at time t. This reduced to

where each failure contributes that factor creating a conditional log-likelihood:

λ0(t)exp(xiβ)

Σl∈ℜ(t)λ0(t)exp(xlβ)

exp(xiβ)

Σl∈ℜ(t)exp(xlβ)

Ln L(β) = Σi=1
kxiβ - Σi=1

k(ln Σl∈ℜ(t)exp(xlβ))
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∧

¹

maximized to obtain the estimates of β.

The second important distinction about the PH model is understanding the role of λ0(t).

In parametric modeling λ0(t) is forced to take on a certain shape, while in the Cox model

no assumptions are made about its shape, and is treated more as a nuisance parameter.

In fact, “no information can be contributed about β by time intervals in which no failures

have occurred because the component λ0(t) might conceivably be identically equal to

zero in such intervals” (Cox 1972).  What Cox is also stating is that no information

about λ0(t) can help give more information about the probability of a specific mutual

fund failing or help produce better and more efficient estimates of β (in fact λ0(t) drops

out in the estimation procedure).

The effect of the explanatory variables, then, is to multiply λ0 by a factor that does not

depend on duration t.  β can, therefore, be interpreted as the proportional effect on x on

the conditional probability of completion of a spell (Kiefer, 1988).

After the MLE estimate of β is calculated the baseline hazard can be found by λ0(t) = 1-
ξ.  Where ξ solves

Σl∈D(t)

exp(βxl)

1 - ξexp(βx)

= Σl∈ℜexp(βx)
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and D(t) indexes the deaths at time t.  This is the estimation procedure used by Lunde (et

al, 1998) on U.K. mutual funds looking at excess returns and the hazard function..

Using the Cox PH model on the small-cap mutual funds the results are:

with the t-statistics in parentheses.  The baseline hazard is left undefined as it is relevant

only when x=0, which given this dataset is not a meaningful condition.

The overall fit of the model is worse than the parametric Weibull model noted from the

AIC test in the Results section.  There is no reason to believe that the failure of mutual

funds move proportionally, but one would expect increased probability of failure with

poorly performing and older mutual funds.  Therefore it seems that modeling the hazard

parametrically is the most appropriate format.

λ(t|xβ) = λ0(t)exp(-1.875225 SR + 5.8529 SM)
                                  (-1.95)               (8.50)


