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Abstract

Many recent modelling advances in �nance topics ranging from the pricing of volatility-based derivative products

to asset management are predicated on the importance of jumps, or discontinuous movements in asset returns. In light

of this, a number of recent papers have addressed volatility predictability, some from the perspective of the usefulness

of jumps in forecasting volatility. Key papers in this area include Andersen, Bollerslev, Diebold and Labys (2003),

Corsi (2004), Andersen, Bollerslev and Diebold (2007), Corsi, Pirino and Reno (2008), Barndor¤, Kinnebrock, and

Shephard (2010), Patton and Shephard (2011), and the references cited therein. In this paper, we review the extant

literature and then present new empirical evidence on the predictive content of realized measures of jump power

variations (including upside and downside risk, jump asymmetry, and truncated jump variables), constructed using

instantaneous returns, i.e., jrtjq; 0 � q � 6, in the spirit of Ding, Granger and Engle (1993) and Ding and Granger
(1996). Our prediction experiments use high frequency price returns constructed using S&P500 futures data as well

as stocks in the Dow 30; and our empirical implementation involves estimating linear and nonlinear heterogeneous

autoregressive realized volatility (HAR-RV) type models. We �nd that past "large" jump power variations help

less in the prediction of future realized volatility, than past "small" jump power variations. Additionally, we �nd

evidence that past realized signed jump power variations, which have not previously been examined in this literature,

are strongly correlated with future volatility, and that past downside jump variations matter in prediction. Finally,

incorporation of downside and upside jump power variations does improve predictability, albeit to a limited extent.
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1 Introduction

Many recent modelling advances in asset pricing and management are predicated on the importance

of jumps, or discontinuous movements in asset returns. Indeed, if jumps are found to be present in

the data, the economic implications of including jump processes in dynamic asset pricing exercises

are substantial. For example, the incorporation of jumps leads to break-downs in typical market

completeness conditions needed for portfolio replication strategies in derivatives valuations. Addi-

tionally, jumps complicate the implementation of "state of the art" change of risk measure in risk

neutral pricing. As a result, asset allocation and risk management, which heavily depend on risk

measures and underlying asset return dynamics, are a¤ected. In volatility measurement, it is neces-

sary to separate out the volatility due to jumps or construct variables that appropriately summarize

information generated by jumps. The above considerations are of particular importance, given the

evidence presented in Huang and Tauchen (2005), suggesting that there are discrete large jumps

in 7% of daily S&P500 cash and future (log) returns, during the period 1997 to 2002. In a related

paper, Andersen, Bollerslev and Diebold (ABD: 2007) �nd that separating out the volatility jump

component results in improved out-of-sample volatility forecasting, and �nd that jumps are closely

related to macroeconomic announcements. Aït-Sahalia and Jacod (2009b) consider "small" instead

of "large" jumps, and develop methods for testing for "in�nite activity jumps" - those jumps that

are tiny and look similar to continuous movements, but whose contribution to the jump risk of

the process is not negligible. Cont and Mancini (2007) implement their method of testing for the

existence of in�nite activity jumps using foreign exchange rate data, and �nd no evidence of such

jumps. Aït-Sahalia and Jacod (2009b), on the other hand, estimate that the degree of activity of

jumps in Intel and Microsoft log returns is approximately 1.6, which implies evidence of in�nite

activity jumps for these, and possibly many other stocks. In summary, it is now generally accepted

that many return processes contain jumps.1

In this paper, we add to the empirical literature on volatility prediction with jumps, building on

key papers including Andersen, Bollerslev, Diebold and Labys (2003), Corsi (2004), ABD (2007),

Corsi, Pirino and Reno (2008), Barndor¤, Kinnebrock, and Shephard (BKS: 2010), Patton and

Shephard (2011), and the references cited therein. We begin with a review of the literature and in

particular of key recent theoretical advances in the areas of jump testing and the characterization

of continuous time processes useful for isolating and examining jumps with magnitudes larger than

a �xed level, 
. This examination is based on methodology developed by Huang and Tauchen

(2005), Barndor¤-Nielsen and Shephard (BNS: 2006), Jacod (2007), and Aït-Sahalia and Jacod

(2009a). The idea underlying their methods is to measure the di¤erence between the variation of

the continuous component and the overall quadratic variation of a given log return process. Of

1For other examples of work in this area, see Aït-Sahalia (2002), Carr, Geman, Madan, Yor (2002), Carr and Wu
(2003), Barndor¤-Nielsen and Shephard, Woerner (2006), Jacod (2008), Jiang and Oomen (2008), Lee and Mykland
(2008), Tauchen and Todorov (2009), Aït-Sahalia and Jacod (2009a) and the references cited therein.
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note is that BNS (2006) develop methodology appropriate for processes with �nite activity jumps.

In our analysis, we also allow for in�nite activity jumps, as we take advantage of the limit theory

developed for this purpose in Jacod (2008) and Aït-Sahalia and Jacod (2009b). Once jumps are

found, we truncate the process in order to isolate those jumps with size larger than 
; and construct

realized measures of the variational contribution of large and small jumps to total variation.

One potential use of our jump decomposition approach is in jump risk assessment and man-

agement. For example, �nancial managers may be interested in knowing not only the probability

of jumps, but also the probability that jumps of certain pre-de�ned "large" magnitudes will oc-

cur. This is an important distinction, particularly given that, as shown by Aït-Sahalia and Jacod

(2009b, 2012), in�nite activity jumps are present in the dynamics of some asset returns. However,

such jumps, when of small magnitude, may not only be di¢ cult to distinguish (in practice) from

the continuous component of the process, but may not be of as serious concern to �nancial planners

as "large" jumps. In this sense, it is empirical interest not only to test for jumps in general, but

also to check for jumps of varying magnitudes, and to characterize the contribution of such jumps

to total variation. In particular, the partitioning of jumps into those that are "small" and "large"

allows us to uncover empirical evidence concerning what type of jumps are contributing to overall

jump variation. This is also potentially of interest in macroeconomics, for example, as it may turn

out that larger but less frequent jumps characterize periods of economic recession, while smaller

jumps characterize expansionary periods, say. More generally, jump frequency and magnitude (i.e.

jump risk) may play an important role in dating business cycle turning points. Moreover, it is

already known from ABD (2007) that many signi�cant jumps are associated with speci�c macro-

economic news announcements, and our approach provides a simple framework from within which

this �nding can be further explored.

In volatility forecasting, once jumps are detected, understanding the role of variables that

capture jump information is potentially important for applied practitioners, especially in the con-

struction of hedging strategies.2 In general, volatility predictability is important in numerous areas

ranging from the pricing of volatility-based derivative products to asset management. In light of

this, a number of recent papers (see above) have addressed volatility predictability, some from the

perspective of the usefulness of jumps in forecasting volatility. However, although there is strong

evidence of the importance of jumps in pricing, investment and risk management, there is mixed

evidence concerning whether information extracted from jumps is useful for volatility forecasting.

In an important paper, ABD (2007) show that almost all of the predictability in daily, weekly,

and monthly return volatilities comes from the non-jump component for DM/$ exchange rates, the

S&P500 market index, and the 30-year U.S. Treasury bond yield. Corsi, Pirino and Reno (2008)

�nd that jumps are positively correlated with, and have a signi�cant impact on future volatility of

the S&P500 index, various individual stocks and U.S. bond yields. Patton and Shephard (2011)

2See ABD (2007) and Aït-Sahalia and Jacod (2011) for further discussion.
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point out that the impact of a jump on future volatility critically depends on the sign of the jump,

for both the S&P500 index, as well as 105 individual stocks. In this paper we add to the empir-

ical literature on this topic by providing results on volatility forecasting using a variety of "new"

variables that capture information generated by jumps.

There are two ingredients used in the experiments that we carry out to examine the usefulness

of jumps in volatility prediction. The �rst ingredient involves the choice of volatility estimator.

One available estimator is based on "backing out" volatility from parametric ARCH, GARCH,

stochastic volatility, or derivatives pricing models. Another estimator, which we use, is "model free".

Examples include realized volatility (RV) (see the seminal work of Andersen, Bollerslev, Diebold

and Laby (2001)), and variants thereof such as bipower variation, tripower variation, multipower

variation, semivariance, and various others.3 One reason for the use of these "model free" realized

measures (RMs), is that they allow us to treat volatility as if it is observed, when we subsequently

�t regressions in order to assess jump predictability. Modeling and forecasting RMs is important

not only because RMs are a natural proxy for volatility, but also because of the many practical

applications and uses of RMs in constructing synthetic measures of risk in the �nancial markets.

For example, since shortly after the inception in 1993 of the VIX (index of implied volatility), a

variety of volatility-based derivative products have been engineered using RV as an input. These

include variance swaps, caps on variance swaps, corridor variance swaps, covariance swaps, options

on RV overshooters, and up and downcrossers. The key here is that investors worry about future

volatility risk, and hence often opt for this type of contract in order to hedge against risk, adding to

the traditional volatility "vega".4 In light of the above uses of RV, several authors have advocated

forecasting RV (and more generally RMs) using extensions of ARMA models (see e.g., Andersen,

Bollerslev, Diebold and Labys (2003), Corsi (2004), and ABD (2007)). In related work, Corradi,

Distaso and Swanson (2009, 2011) develop model-free conditional predictive density estimators and

con�dence intervals for integrated volatility.

The second ingredient involves which variables we use to measure jumps. Our approach is to

examine various di¤erent realized measures of jump power variations, all formed on the basis of

power transformation of the instantaneous return, i.e., jrtjq. The analysis of power transformations
of returns is not new. Ding, Granger and Engle (1993) and Ding and Granger (1996) develop

long memory Asymmetric Power ARCH models based on power transformations of daily absolute

returns. They �nd that the autocorrelations of power transformations of S&P500 returns are the

strongest for q < 1. In the context of high frequency data, Liu and Maheu (2005) and Ghysels

and Sohn (2009) study the predictability of future realized volatility using past absolute power

3See e.g., Barndor¤-Nielsen and Shephard (2004), Aït-Sahalia, Mykland and Zhang (2005), Zhang (2006),
Barndorf-Nielsen, Hansen, Lunde, and Shephard (2008), Jacod (2008), BKS (2010), and the references cited therein.

4Volatility and variance swaps are newer hedging instruments, adding to the traditional volatility "vega", which
is derived from options data. See Hull (1997, pp. 328) for a de�nition of vega. For example, as noted in Carr and
Lee (2008), the UBS book was short many millions of vega in 1993, and they were the �rst to use variance swaps and
options on realized volatility to hedge against volatility risk. See Duong and Swanson (2011) for further discussion.
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variations and multipower variations. Ghysels and Sohn (2009) �nd that the optimal value of q is

approximately unity. However, their empirical evidence considers the continuous class of models,

and does not account for jumps. ABD (2007) develop an interesting framework for separating jump

and continuous components of RV, and carry out predictability experiments indicating that jumps

play a small but notable role in forecasting volatility. In related recent work, BKS (2010) construct

new estimators of downside (and upside) risk (i.e., so-called realized semivariances), using square

transformations of positive and negative intra-daily return, and �nd that downside risk measures

are important when attempting to model and understand risk: They note, as quoted from Granger

(2008), that: �It was understood that risk relates to an unfortunate event occurring, so for an

investment this corresponds to a low, or even negative, return. Thus getting returns in the lower

tail of the return distribution constitutes this �downside risk.� However, it is not easy to get a

simple measure of this risk.� This point is noteworthy, since it is argued in the literature (see e.g.,

Ang, Chen and Xing (2006)), that investors treat downside losses di¤erently than upside gains.

As a result, agents who put higher weight on downside risk demand additional compensation for

holding stocks with high sensitivity to downside market movements. Most authors in this literature

pay attention to co-skewness as a measure of downside risk, and use daily data for estimation

thereof. Patton and Shephard (2011) build on this idea and use semivariance estimators to forecast

volatility. In the parametric framework, some authors also develop approaches to modeling time-

varying higher order conditional moments (see e.g. Hansen (1994), Harvey and Siddique (1999),

Timmermann (2000), Perez-Quiros and Timmermann (2001), and Premaratne and Bera (2001)).

Maheu and Curdy (2004) take this sort of analysis one step further and incorporate past jumps as

a new source of asymmetry; and �nd improved volatility forecastability.

In our experiments, we add to the work of the above authors, and in particular BKS (2010).

Our jump power variation type measures are constructed using power transformations of absolute

intra-daily returns, and are predicated on recent limit theory advances due to Jacod (2008) and

BKS (2010). Theoretically, our measures do not require the use of a jump test in order to "pre-

test" for jumps. Although construction of the measures is closely related to the work of GS (2009),

our approach di¤ers in that we focus on jump power variations with q > 2: Furthermore, the

limit theory that we adopt allows us to construct estimators of downside and upside jump power

variations using intra-daily positive and negative returns. These estimators are suggested by BKS

(2010) as alternatives to the semivariances implemented in Patton and Shephard (2011). We also

examine jump asymmetry (i.e., realized signed jump power variation). Of note is that the role

of the size of jumps that are most useful for forecasting can be inferred (to some extent) through

examination of the order of q: For this reason, we consider jump power variations with 0 � q � 6:
While previous authors have focused on q � 2;allowing for a wider range of values for q is sensible,
given that convergence to jump power variation occurs only when q > 2 (see e.g. Todorov and
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Tauchen (2010) and BKS (2010)). 5 Finally, our prediction experiments are designed to separately

analyze "large" and "small" jumps.

The dataset used in our empirical investigation includes high frequency price returns constructed

using S&P500 futures index data for the period 1993-2009, as well as stocks in the Dow 30, for

the period 1993-2008; and our empirical implementation involves estimating linear and nonlinear

extended heterogeneous autoregressive realized volatility (HAR-RV) type models. Our �ndings can

be summarized as follows. First, we �nd evidence that jumps characterize the structure of S&P500

futures and the individual stocks that we examine. Moreover, the prevalence of jumps is dependent

upon sample period; and is also dependent upon truncation level. This is consistent with "clus-

tering" occurring during "bad" times; but, just as importantly, it suggests that jump information

aggregation might be of relevance in �nancial applications, and in particular in forecasting exer-

cises. Second, our prediction experiments show improvements, both in- and out-of-sample, when

RMs of jump power variations are used as additional predictors in volatility forecasting. However,

past "large" jump power variations help less in the prediction of future realized volatility, than past

"small" jump power variations. This in turn suggests the "larger" jumps might help less in the

prediction than "smaller" jumps. In a related �nding, we note that seemingly rare and possibly

iid jumps do not help in prediction, while smaller, less rare and possibly serially correlated jumps

do help. Third, the continuous component dominates in all prediction experiments, which is con-

sistent with previous �ndings in the literature on volatility forecasting using high frequency data.

Fourth, incorporation of downside and upside jump power variations does improve predictability,

albeit to a limited extent. Fifth, comparing "no jump test" cases with "jump test" cases indicates

that �ndings do change, to some degree, when jump tests are used in the construction of jump

variation variables. Additionally, the power of q associated with our R2�"best" model is higher
when S&P500 index returns are predicted, than when individual DOW components are predicted.

This suggests that aggregation plays a crucial role in risk prediction. Finally, values of q less than

2 dominate under individual stocks, while values greater than 2 dominate under our index variable.

Taken together, these results suggest that what�s best for in-sample analysis is far from best for

out-of-sample analysis. Moreover, jumps do play a role, at least when modelling aggregate (index)

data such as S&P500 futures returns; and while modelling jump risk power variations may not be

important for in-sample �t, it clearly plays an important role in out-of-sample volatility prediction.

The rest of the paper is organized as follows. Section 2 discusses volatility and jumps, while

Section 3 discusses the various realized measures of price jump variation that we examine. Section 4

outlines our experimental setup, and Section 5 gathers our empirical �ndings. Concluding remarks

are contained Section 6.
5 In our implementation, for q > 6, the prediction results are almost the same as the case q = 6 and therefore are

not presented.

5



2 Volatility and Price Jump Variations

2.1 Set-up

We adopt a general semi-parametric speci�cation for asset prices. Following Todorov and Tauchen

(2010), the log-price of asset, pt = log(Pt); is assumed to be an Itô semimartingale process,

pt = p0 +

Z t

0
bsds+

Z t

0
�sdBs + Jt; (1)

where p0 +
R t
0 bsds+

R t
0 �sdBs is a Brownian semi-martingale and Jt is a pure jump process which

is the sum of all "discontinuous" price movements up to time t;

Jt =
X
s�t

�ps:

Jt is assumed to be �nite6 and a jump at time s is de�ned as �ps = ps� ps�.
When the jump component is a compound poisson process (CPP) - i.e. a �nite activity jump

process - then,

Jt =

NtX
i=1

Yi; (2)

where Nt is number of jumps on [0; t]. Nt follows a Poisson process, and the jump magnitudes,

i.e. the Y 0i s are iid random variables. The CCP assumption has been widely used in the literature

on modeling, forecasting, and testing for jumps. However, jumps may arise in other model setups,

such as when in�nite activity jumps are speci�ed (see Todorov and Tauchen (2010)).

The empirical evidence discussed in this paper involves examining the variation of the log-price

jump component using an equally spaced path of historically observed prices, i.e. fp0; p1�n ; p2�n :::; pn�ng,
where the sampling frequency, �n = t

n ; is deterministic
7. The intra-daily return or increment of pt

is

ri;n = pi�n � p(i�1)�n :

Returns are observed at various frequencies. However, volatility of log-prices is often treated as

an unobserved variable. The "true" price variance (risk) is de�ned in this paper by the quadratic

variation of the process pt, i.e.,

Vt = [p; p]t =

Z t

0
�2sds+QJt;

where the variation of the continuous component (integrated volatility) is

IVt =

Z t

0
�2sds;

6See, for example Jacod (2008) or Todorov and Tauchen (2009) for the conditions for the �niteness of jumps.
7For instance, if we use a 5 minute sampling frequency to calculate daily measures in our application, then t = 1,

n = 78; and �n =
1
78
:
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and the variation of the price jump component is

QJ =
X
s�t
(�ps)

2:

The realized volatility (RV), constructed by simply summing up all successive intra-daily squared

returns, converges to the quadratic variation of the process, as n ! 1. Andersen, Bollerslev,
Diebold and Labys (2001) use realized volatility as an estimator of volatility of the price process.

In particular, they use

RVt =

nX
i=1

r2i;n
ucp�! Vt = IVt +QJt; (3)

where ucp denotes uniform convergence in probability.

2.2 Jump Tests and Jump Decompositions

In this section, we review results on jump tests and the jump decomposing technique used in Duong

and Swanson (2011) and Aït-Sahalia and Jacod (2012).

2.2.1 Testing for Jumps

First, we review some theoretical results on testing for jumps; namely testing whether Jt 6= 0.

In pioneering work, BNS (2006) propose a robust and simple test for a class of Brownian Itô-

semimartingales plus compound poisson jump processes. In recent work, Aït-Sahalia and Jacod

(2009a), among others, develop a di¤erent test which applies to a large class of Itô-semimartingales,

and allows the log price process to contain in�nite activity jumps - small jumps with in�nite

concentrations around 0. In this paper, we follow the jump test methodology of Huang and Tauchen

(2005) as well as BNS (2006), which looks at the di¤erence between the continuous component and

total quadratic variation in order to test for jumps. However, we make use of the limit theorems

developed and used by Jacod (2008) and Aït-Sahalia and Jacod (2009a) in order to implement the

BNS (2006) type test under the presence of both in�nite activity and �nite activity jumps.

A simpli�ed version of the results of the above authors applied to (1) for the one-dimensional

case is as follows. If the process is continuous, let f(x) = xn, let ��s be the law N(0; �
2
s); and let

��s(f) be the integral of f with respect to this law. Then:r
1

�n

 
�n

nX
i=1

f(
ri;np
�n
)2 �

Z t

0
��s(f)ds

!
L�S�!

Z t

0

q
��s(f

2)� �2�s(f)dBs (4)

Here, L� S denotes stable convergence in law, which also implies convergence in distribution. For
n = 2; the above result is the same as BNS (2006). More generally:
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r
1

�n

 
nX
i=1

(ri;n)
2 �

Z t

0
�2sds

!
D�! N(0;

Z t

0
#�4sds) (5)

or q
1
�n

�Pn
i=1(ri;n)

2 �
R t
0 �

2
sds
�

qR t
0 #�

4
sds

D�! N(0; 1); (6)

where # is constant and where
R t
0 �

2
sdt is known as the integrated volatility or the variation of the

continuous component of the model. Additionally,
R t
0 �

4
sdt is the integrated quarticity. From the

above result, notice that if the process does not have jumps, then
Pn
i=1(ri;n)

2; which is an approx-

imation of the quadratic variation of the process, should be "close" to the integrated volatility.

This is the key idea underlying the BNS (2006) jump test. A crucial issue in this jump test is

the estimation of
R t
0 �

2
sdt and

R t
0 �

4
sdt in the presence of both �nite and in�nite activity jumps. As

remarked in BNS (2006), in order to ensure that tests have power under the alternative, intergrated

volatility and integrated quarticity estimators should be consistent under the presence of jumps.

The authors note that robustness to jumps is straightforward so long as there are a �nite number

of jumps, or in cases where the jump component model is a Lévy or non-Gaussian OU model (see

Barndor¤-Nielsen, Shephard, and Winkel (2006)). Moreover, under in�nite activity jumps, note

that as pointed out in Jacod (2007), there are available limit results for volatility and quarticity

estimators for the case of semimartingales with jumps.

Turning again to our discussion of volatility and quarticity, note that in a continuation of work

initiated by Barndor¤-Nielsen and Shephard (BNS: 2004), Barndor¤-Nielsen, Graverson, Jacod,

Podolskij, and Shephard (2005) develop so-called multipower variation estimators of
R t
0 �

q
sds; in the

case of continuous semimartingales and semimartingales with jumps. These estimators are de�ned

as follows.

Vm1;m2:::;mj =

nX
i=2

jri;njm1 jri�1;njm2 ::::jri�j;njmj ,

where m1;m2;:::;mj are positive, such that
Pj
1mi = q: Regardless of the estimator of

R t
0 �

2
sdt that

is used, the appropriate test hypotheses are:

H0 : pt is a continuous process in the interval [0; t]

H1 : the negation of H0 (there are jumps)

If we use multipower variation, under the null hypothesis the test statistic which directly follows

from the CLT mentioned above is:

LSjump =

q
t
n

�Pn
i=1(ri;n)

2 � cIV �q
#cIQ D�! N(0; 1);
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The the so-called jump ratio test statistic is:

RSjump =

q
t
nq

#cIQ=(cIV )2
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1):

where cIV and cIQ are (multipower variation) estimators of integrated volatility
R t
0 �

2
sds and ofR t

0 �
4
sds. BNS (2006) use V1;1 (bipower variation) and V1;1;1;1. In our empirical analysis, we also use

tripower variation, V 2
3
; 2
3
; 2
3
; instead of bipower variation, V1;1; as it more robust to clustered jumps.

In particular, we set: cIV = V 2
3
; 2
3
; 2
3
��32
3

(7)

and

cIQ = ��1n V 4
3
; 4
3
; 4
3
��34
3

; (8)

where �r = E(jZjr) and Z is a N(0; 1) random variable. Andersen, Dobrev, Schaumburg (2008)

suggest a di¤erent estimator that is robust in the case of consecutive jumps. This estimator is also

more robust to occurrence of zero-returns, as is constructed as follows.

cIV =MedRVn = �

6� 4
p
3 + �

�
n

n� 2

� n�1X
i=2

med (jri�1;nj jri�2;nj jri�3;nj)2 :

Of note is that a related "adjusted" jump ratio statistic has been shown by extensive Monte

Carlo experimentation in Huang and Tauchen (2005), in the case of CCP jumps, to perform better

than the two above statistics, being more robust to jump over-detection. This adjusted jump ratio

statistic is:

AJjump =

p
n
tq

#max(t�1; cIQ=(cIV )2)
 
1�

cIVPn
i=1(ri;n)

2

!
D�! N(0; 1):

In general, given a daily test statistic, say Zt;n(�); where n is the number of observations per

day and � is the test signi�cance level, we reject the null hypothesis if Zt;n(�) is in excess of the

critical value ��; leading to a conclusion that there are jumps during the day. The converse holds

if Zt;n(�) < ��. In our empirical application, Zt;n(�) is the adjusted jump ratio statistic.

2.2.2 Price Jump Decompositions

For a given level of 
; 
 > 0; equation (1) can be written as:

pt = p0 +

Z t

0
bsds+

Z t

0
�sdBs +

X
s�t

�psIj�psj�
 +
X
s�t

�psIj�psj>
 ; (9)
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where Ij�ps�
j is an indicator which equals 1 for j�psj �
 and 0 otherwise. Thus, once the process
is found to have jumps, the jumps process can be decomposed into 2 components. One contains

jumps with size larger than 
 (large jumps) and the other contains jumps with size smaller than 


(small jumps).

This decomposition of jumps into "large" and "small" components allows us to assess relative

contributions to the overall variation of the price process. In particular, for some �xed level 
,

de�ne large and small jump components as follows, respectively:

LJt(
) =
X
s�t

�psIj�psj�
 and SJt(
) =
X
s�t

�psIj�psj<
 :

The choice of 
 may be data driven, but scenarios where there is prior knowledge concerning

the magnitude of 
 are also of interest. For example, under various regulatory settings, capital

reserving and allocation decisions may be based to a large extent on the probability of jumps

or shocks occurring that are of a magnitude greater than some known value, 
. In such cases,

planners may be interested not only in knowledge of jumps of magnitude greater than 
, but also

in characterizing the nature of the variation associated with such large jumps. The procedure

discussed in this section can readily be applied to uncover this sort of information.

As jumps are often linked to abnormal or tail behavior of returns, the assessment of di¤erent

RMs of jump variations is also important. One way is to decompose price jumps, �ps; using a

pre-�xed truncation level 
; 
 � 0; is to de�ne

QJt;
 =
X
0<s�t

(�ps)
2I�ps>
 +

X
0<s�t

(�ps)
2I�ps<�
 ; (10)

where I(�) is an indicator taking 1 if jump size is larger than 
 (upside truncated jumps) or less
than �
 (downside truncated jumps).

In summary, once jumps are detected, it should be of interest to examine realized measures

of the above jump variations. We do this by following and building on ABD (2007). Namely, we

construct:

RV Jt =Variation of the jump component = maxf0; RVt � cIVtg � Ijump;t
RV Ct =Variation of continuous component = RVt � V Jt;
where RVt and cIVt are the daily realized volatility measures (de�ned above), Ijump;t is an indicator
taking the value 0 if there are no jumps and 1 otherwise, and n is the number of intra-daily obser-

vations. One can then calculate daily jump risk. Note that in these formulae, the variation of the

continuous component has been adjusted using the max operator (i.e. the variation of the contin-

uous component equals realized volatility if there are no jumps and equals cIVt if there are jumps).
In addition, note that

Pn
i=1 r

2
i;nIjri;nj�
 converges uniformly in probability to

P
s�t(�ps)

2Ij�psj�
 ;

as n goes to in�nity 8. Thus, the contribution of the variation of jumps with magnitude larger than


 and smaller than 
 are denoted and calculated as follows:
8See Jacod (2008), Aït-Sahalia and Jacod (2011) for further details.
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Realized measure of large jump variation: V LJt;
=minfRV Jt; (
Pn
i=1 r

2
i;nIjri;nj�
 � Ijump;t)g,

Realized measure of small jump variation: V SJt;
 = RV Jt �V LJt;
 ;
where Ijump is de�ned above and Ijump;
 is an indicator taking the value 1 if there are large jumps

and 0 otherwise. This condition simply implies that large jump risk is positive if the process has

jumps and has jumps with magnitude greater than 
:

Finally, we can write the relative contribution of the variation of the di¤erent jump components

to total variation in a variety of ways:

Relative contribution of continuous component = RV Ct
RVt

Relative contribution of jump component = RV Jt
RVt

Relative contribution of large jump component = V LJt;

RVt

Relative contribution of small jump component = V LSt;

RVt

Relative contribution of large jumps to jump variation = V LJt;

RV Jt

Relative contribution of small jumps to jump variation = V LSt;

RV Jt

3 Jump and Signed Jump Power Variations

In previous section, we discussed jump variation decompositions using arbitrary truncation levels.

We can also assess jump variations using jump power variations formulated by power transformation

of absolute log-price jumps (j�psjq). In particular, de�ne the jump power variation as follows.

JPq;t =
X
0<s�t

j�psjq, (11)

with "upside" jump power variation de�ned as

JPV +q;t =
X
0<s�t

j�psjqI�ps>0, (12)

and "downside" jump power variation de�ned as

JPV �q;t =
X
0<s�t

j�psjqI�ps<0. (13)

Finally, jump asymmetry can be measured using so-called signed jump power variation, de�ned as

follows.

JAq;t =
X
0<s�t

j�psjqI�ps>0 �
X
0<s�t

j�psjqI�ps<0. (14)

In the above expressions, we are particularly interested in the case where q � 2. Note that for

large values of q; JPq;t; JPV +q;t; JPV
�
q;t; JAq;t are dominated by large jumps. For q < 2; the jump

variations are not always guaranteed to be �nite. One of our main goals in this paper is to construct

and examine realized measures (RMs) of jump power variations including JPq;t; JPV +q;t; JPV
�
q;t;

JAq;t; for a wide range of values of q, and to use them in prediction experiments.
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For the case q = 2, BKS (2010) develop so-called realized semivariances which are particular es-

timators of JPV +q;t; JPV
�
q;t. PS (2011) build on these results and make use of realized semivariances

to forecast volatility. The realized semivariances of BKS (2010) are de�ned as follows:

RS� =
nX
i=1

(ri;n)
2 Ifri;n<0g and RS

+ =

nX
i=1

(ri;n)
2 Ifri;n>0g.

Here, RS� (RS+) contain only negative (positive) intra-daily returns and can serve as measures

of downside (upside) risk as pointed out in BKS (2010). They show that RS+ and RS� converge

uniformly in probability to semi-variances. Namely,

RS+ ! 1

2

Z t

0
�2sds+

X
(�ps)

2I�ps>0 and RS
� ! 1

2

Z t

0
�2sds+

X
(�ps)

2I�ps<0. (15)

Realized measures of "downside" and "upside" jump variation are thus obtained by replacingR t
0 �

2
sds with cIV . For example, we see that "downside" variation can be constructed by calculating

nX
i=1

r2i;nIfri;n<0g �
1

2
cIV !X

(�ps)
2I�ps�0. (16)

In volatility forecasting experiments, PS (2011) use bipower variation for cIV . In addition, they
construct "signed" jump variation, �RJ = RS+�RS�; which captures jump variation asymmetry,
since �RJ !

P
(�ps)

2I�ps>0�
P
(�ps)

2I�ps<0. When jumps are not present, �RJ converges to

0 and there is no asymmetry in volatility. When the process has jumps, �RJ can proxy for jump

variation asymmetry.

Turning now to the case of variations with q 6= 2; GS (2009) undertake to �nd the "optimal"
realized power variation, n�1+q=2

Pn
i=1 jri;njq , for some q, when forecasting future RV: Recall,

however, that they assume that the price process follows a Brownian semi-martingale. Their results

are therefore restricted to the case of higher order variations of the continuous component,
R t
0 �

q
sds;

involving no jumps: In this case, Ait-Sahalia and Jacod (2012) point out that for all q > 0;

n�1+q=2
nX
i=1

jri;njq ! �q

Z t

0
�qsds, (17)

where �q = E(jujq) and u is a standard normal random variable.

Recent limit theory advances due to Jacod (2008) and BKS (2010) allow us to construct es-

timators of downside and upside jump power variations, JPV +q;t; JPV
�
q;t for q > 2; using intra-

daily positive and negative returns. These estimators are suggested by BKS (2010) as alterna-

tives to the semivariances implemented in PS (2011). Namely, de�ne jump power variation as

RPVq;t =
Pn
i=1 jri;njq; q > 0: Realized downside and upside power variations are de�ned as:

RJ+q;t =

nX
i=1

jr+i;nj
q and RJ�q;t =

nX
i=1

jr�i;nj
q, q > 2:
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Convergence of the above RMs to jump power variations occurs when q > 2. Therefore, in our pre-

diction experiments, di¤erentiating our approach from that of previous authors, we are particularly

interested a range of q from 2 to 6; and allow the price process to contain jumps.

In their analysis of the limiting behavior of RPVq;t; Todorov and Tauchen (2010) summarize

selected results from Barndor¤-Nielsen et. al. (2005), Barndor¤-Nielsen et. al. (2006) and Jacod

(2008). In their set-up, the log-price process contains continuous martingale, jump and drift com-

ponents. The value of q directly a¤ects the limiting behavior of RPVq;t. For instance, for q < 2;

the limit of RPVq;t is determined by the continuous martingale. For q > 2; the limit is driven by

jump component. When q = 2; both continuous and jump components contribute to the limit of

RPVq;t. The results are summarized as follows:8><>:
�
1�q=2
n RPVq;t

ucp�! �q
R t
0 �

q
sds , if 0 < q < 2,

RPVq;t
ucp�! V if q = 2,

RPVq;t
ucp�! JPq;t if q > 2.

(18)

BKS (2010) point out that we can go one step further and decompose jump power variations

into upside movements and downside movements, i.e.,�
RJ+q;t

ucp�! JPV +q;t

RJ�q;t
ucp�! JPV �q;t

if q > 2: (19)

As mentioned earlier, for q < 2; scaled RPVq;t converges to the power variation of the continuous

component, i.e. no jumps. Intuitively, with q > 2; scaled RPVq;t; RJ+q;t; RJ
�
q;t eliminate all variations

due to the continuous component and keep all "large" jumps. In addition, these realized measures

are evidently dominated by larger jumps the higher the value of q. Finally, building on (19), we

construct a new RM of jump power variation asymmetry, so-called "signed" jump power variation.

It is straightforward to verify that:

RJAq;t = RJ
+
q;t �RJ�q;t

ucp�! JAq;t:

In our forecasting experiments, we also examine the usefulness of this new jump asymmetry variable,

RJAq;t for a wide range of values of q > 2. Of �nal note is that, as elsewhere in this paper, we use

Vm1;m2:::;mj ; to estimate
R t
0 �

q
sds in all calculations of jump variations.

In summary, the (daily) variables that we construct when carrying out our prediction experi-

ments are as follows.

RPVq;t = Realized Measure of qth order power variation at day t =
Pn
i=1 jri;njq with q > 0,

RJ+q;t = Realized Measure of qth order upside jump power variation at day t =
Pn
i=1

�
jr+i;njq

�
;

q > 2,

RJ�q;t = Realized Measure of qth order downside jump power variation at day t =
Pn
i=1

�
jr�i;njq

�
,

q > 2, and
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RJAq;t = Realized Measure of qth order signed jumps power variation at day t = RJ+q;t�RJ�q;t,
q > 2.

Additionally, we consider variants of all of these variables that are multiplied by an indicator

variable, Ijump;t, where Ijump;t = 1 if jumps occur at day t and Ijump;t = 0 otherwise: Thus, for

example, we also model RPVq;t = Ijump;t�f
Pn
i=1 jri;njqg, RJ

+
q;t = Ijump;t�f

Pn
i=1

�
jr+i;njq

�
g, RJ�q;t =

Ijump;t � f
Pn
i=1

�
jr�i;njq

�
g, and RJAq;t = Ijump;t � fRJ+q;t �RJ�q;tg.

4 Prediction Models and Methodology

In a classic paper, Ding, Granger and Engle (DGE:1993) �nd that the auto-correlation of power

transformations of daily S&P500 returns is strongest when q = 1, as opposed to the value q =

2; which was previously widely used in the literature: This led them to formulate the so-called

Asymmetric Power ARCH (APARCH) model. The APARCH speci�cation allows for �exibility

via use of qth power transformations of absolute returns. GS (2009) point out that this class of

models ends up working with volatility that is not measured by squared returns, which is what

researchers and practitioners care about the most. Using �ve-minute intra-daily returns on the

Dow Jones composite index for the period 1993-2000, GS (2009) carry out a thorough empirical

correlation analysis (using MIDAS) of daily RV and realized power variations, with the forecasting

horizon from one to four weeks. They conclude that realized power variation with q = 1 and future

RV display the strongest cross-correlation over the �rst 10 lags. Beyond this �rst 10 lags, the

cross-correlation holds for q = 0:5. This suggests that the prediction of RV using variables such

as realized power variation might yield better results compared to simply using lags of RV. As

mentioned in the introduction, our approach is to utilize our "new" power variation variables that

capture information generated by jumps by estimating and carrying out prediction experiments

using HAR-RV models. The HAR-RV model, initially developed in Corsi (2009), is formulated on

the basis of the so-called heterogeneous ARCH, or HARCH class of models analyzed by Müller

et al. (1997), in which the conditional variance of discretely sampled returns is parameterized

as a linear function of the lagged squared returns over the identical return horizon together with

the squared returns over shorter return horizons. Intuitively, di¤erent groups of investors have

di¤erent investment horizons, and consequently behave di¤erently. The original HAR-RV model

is a constrained AR(22) model and is convenient in applications, as volatility is treated as if it is

observed.

De�ne the multi-period normalized realized measures for jump and continuous components as

the average of the corresponding one-period measures. Namely for daily time series Yt; construct

Yt;t+h such that

Yt;t+h = h
�1[Yt+1 + Yt+2 + :::+ Yt+h]; (20)

where h is an integer. Yt;t+h aggregates information between time t+ 1 and t+ h: The daily time
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series Yt can be any of RVt; RV Jt; RV Ct; RPVq;t; RJ+q;t; RJ
�
q;t; or RJAq;t; with q = f0:1kgk=60k=1 . In

standard linear and nonlinear HAR-RV models, future RV depends on past RV. Namely,

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �t+h, (21)

where � is a linear, square root or log function. The incorporation of RMs of jump variations, such

RV Jt can be done as in ABD (2007), using the HAR-RV-J model, speci�ed as follows

�(RVt;t+h) = �0 + �d�(RVt) + �w�(RVt�5;t) + �m�(RVt�22;t) + �j�(RV Jt) + �t+h,

or the HAR-RV-CJ model,

�(RVt+h) = �0 + �d�(RV Ct) + �w�(RV Ct�5;t) + �m�(RV Ct�22;t) + �jd�(RV Jt);

+ �jw�(RV Jt�5;t) + �jm�(RV Jt�22;t) + �t+h:

ABD (2007) �nd that the class of log HAR-RV, log HAR-RV-J and log HAR-RV-CJ models perform

the best for several market indexes. DS (2011) revisit this class of models but focus on the predic-

tive performance of the models for analyzing individual stock returns. PS (2011) assess di¤erent

predictors, including realized semivariances and realized signed jump measures. Their extended

HAR-RV model is,

�(RVt;t+h) = �0 + �
+
1 �(RS

+
t ) + �

�
1 �(RS

�
t ) + �

+
5 �(RS

+
t�5;t) + �

�
5 �(RS

�
t�5;t)

+ �+22�(RS
+
t�22;t) + �

�
22�(RS

�
t�22;t) + "t+h:

Building on the above papers, we extend the HAR-RV model to incorporate time series of RMs of

jump power variations. In addition, we examine forecasts of RVt+h; rather than RVt;t+h, and we

carry out both in-sample regression analysis as well as ex ante prediction experiments using both

rolling and recursive estimation windows: All estimation is carried out using least squares, and

heteroskedasticity and autocorrelation consistent standard errors are used in all inference based on

the models. The models, which are re-estimated for each value of q, are as follows:

Speci�cation 1: Standard HAR-RV-C Model (Benchmark Model):

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t) + �t+h: (22)

In this benchmark case, future RV depends on lags of the variation of the continuous component

of the process.

Speci�cation 2: HAR-RV-C-PV(q) Model:

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RPVq;t) + �jw�(RPVq;t�5;t) + �jm�(RPVq;t�22;t) + �t+h; (23)
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where RPVq;t is the qth order variation of the jump component. RPVq;t�5;t and RPVq;t�22;t are

calculated using (20), and 0:1 � q � 6:
Speci�cation 3: HAR-RV-C-UJ(q) Model (Upside Jumps):

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h: (24)

RJ+q;t; RJ
+
q;t�5;t; RJ

+
q;t�22;t measure the qth order power variation of positive jumps today, last week,

and last month, and are calculated using (20), and 2:1 � q � 6:
Speci�cation 4: HAR-RV-C-DJ(q) Model (Downside Jumps):

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (25)

The range of q is 2:1 � q � 6:
Speci�cation 5: HAR-RV-C-UDJ(q) Model (Upside and Downside Jumps):

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �+jd�(RJ
+
q;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+ ��jd�(RJ
�
q;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h: (26)

Speci�cation 6: HAR-RV-C-APJ(q) Model (Asymmetric Jumps):

�(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)

+ �jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h: (27)

This model uses RMs of signed jump power variations, i.e., measures of jump asymmetry, as

explanatory variables. These variables, RJAq;t; RJAq;t�5;t and RJAq;t�22;t; are calculated using

(20).

Finally, for completeness, we also carry out our empirical analysis using the above models, but

with jump variables re-de�ned as follows, RJq(
) =
Pn
i=1 jri;njqIjri;nj<
 ; RJ�q (
) =

Pn
i=1 jri;njqI�
<ri;n<0;

and RJ+q (
) =
Pn
i=1 jri;njqI0<ri;n<
 : Evidently, in these experiments, we truncated our measures

to include only jump variations associated with large (small) jumps, as discussed in Section 2.

The forecast horizons that we examine are h = 1; 5; 22; which correspond to one day, one week,

and one month ahead, respectively. For each speci�cation (except for Speci�cations 1 and 2), there

are 40 sub-models, corresponding to 40 di¤erent values of q: In our forecasting experiments, the

entire sample of T observations is divided into two samples, the estimation sample containing R

observations and the prediction sample containing P = T � R observations. Both rolling and

recursive windows of data are used in model estimation, prior to the construction of each new

prediction. In addition to reporting out-of-sample R2, calculated by projecting RV forecasts on
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historical RV, we also report traditional in-sample adjusted R2; calculated using entire sample of

T observations. In our prediction experiments, we also carry out pairwise Diebold and Mariano

(DM: 1995). Our DM tests assume quadratic loss, have a null of equal predictive ability, and

are asymptotically normally distributed (under a nonnestedness assumption - see Corradi and

Swanson (2006) and the references cited therein for a complete discussion). The test statistic is

DM = P�1
PP
k=1 (dt=b�) where dt = b"21;t+h�b"22;t+h;the b"s are forecast errors from the two competing

models, and b� is a heteroskedasticity and autocorrelation consistent estimator of the standard error
of the mean of dt.

5 Empirical Findings

5.1 Data Description

Our S&P500 futures index and Dow 30 individual stock datasets (collected for the period 1993-2009

and 1993-2008, respectively) were obtained from the TAQ database. When processing the data, we

followed the common practice of eliminating from the sample those days with infrequent trades (less

than 60 transactions at our 5 minute frequency). In the literature, two methods are often applied

for �ltering out an evenly-spaced sample - the previous tick method and the interpolation method

(Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)). As shown in Hansen and Lund (2006), in

applications using quadratic variation, the interpolation method should not be used, as it leads to

realized volatilities with value 0 (see Lemma 3 in their paper). Therefore, we use the previous tick

method (i.e. choosing the last price observed during a given interval). We restrict our dataset to

regular time and ignore ad hoc transactions outside of this time interval. To reduce microstructure

noise e¤ects, the suggested sampling frequency in the literature ranges from 5 minutes to 30 minutes.

We choose the 5 minute frequency, yielding 78 observations per day in most cases.9

5.2 Basic Analysis of Jumps

All daily statistics are calculated using the formulae in Sections 2 with

�n =
1

n
=

1

# of 5 minute transactions / day
:

For instance, �n = 1=78 for most of the stocks in the sample. This implies that the time

interval [0; 1] maps into a beginning time of 9 am (set equal to 0) and an end time of 4:30 pm (set

equal to 1), in our setup: In all calculations involving integrated volatility and integrated quarticity,

we use multipower variation, as discussed above. Let T denote the number of days in the sample.

We construct the time series fZt;n(�)gTt=1 and
n
RV Ct
RVt

; RV JtRVt
;
V LJt;

RVt

;
V SJt;

RVt

oT
t=1
: The number of

9A main drawback of realized measures constructed using high frequency data is that they are contaminated by
mictrostructure noise, and hence our use of a 5 minute data interval. See Aït-Sahalia, Mykland and Zhang (2005)
for further dicussion.
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days and proportion of days identi�ed as containing jumps can easily be calculated as: number

of days identi�ed as having jumps =
PT
i=1 I(Zi;n(�) > ��) and proportion of days identi�ed as

having jumps =
PT
i=1 I(Zt;n(�)>��)

T ; where I(�) denotes the indicator function, as usual. The average
relative contribution of continuous, jump, and large jump components to the variation of the

process is reported using the mean of the sample (i.e., we report the means of RV CtRVt
; RV JtRVt

;
V LJt;

RVt

;

andV SJt;
RVt
): In the sequel, we provide numerical results and �gures for S&P500 futures, while

only select (representative) results are reported for the Dow 30 components, in cases were brevity

becomes and issue, and where qualitative �ndings remain the same. Complete results are available

upon request.

Turning to our �ndings, a �rst impression regarding the prevalence of jumps can be obtained

by inspecting Figures 1 and 4, where statistics higher than 3.09 (i.e., the 0.001 signi�cance level

critical value) are depicted for the entire sample from 1993-2009 for S&P500 futures returns and

from 1993-2008 for Citigroup, Home Depot, Intel, and Microsoft returns. It is obvious that jumps

are prevalent. The highest statistic values are around 8 from 2006 to 2008, for S&P500 futures,

as shown in Figure 1. The highest statistic values for individual stocks are around 7 for Citigroup

from 1996 to 1997, around 7 in 1999, 2003 and between 2006 and 2008 for Home Depot, around 9

for Intel in 1994, and �nally around 6 in 1998, 2001, and 2007 for Microsoft.

When examining large jumps, an important step is the choice truncation level, 
. If we choose

arbitrarily large truncation levels, then clearly we will �nd no evidence of large jumps. Also,

one might imagine proceeding by picking truncation levels based on the percentiles of the entire

historical sample of 5 minute returns. However, results will then be di¢ cult to interpret, as the

usual choice of 90th or 75th percentiles leads to virtually no large jumps while the choice of 25th

or 10th percentiles leads to a very large number of large jumps. In addition, large jumps are

often thought of as abnormal events that arise at a frequency of one in several months or even

years. Therefore, a reasonable way to proceed is to pick the truncation level on the basis of the

sample of the monthly maximal increments, i.e., monthly abnormal events. Speci�cally, we set four

levels 
 = 1; 2; 3; 4 to be the 50th; 75th; 90th and 95th percentiles of the entire sample of maximal

increments from 1993-2009 for S&P500 futures and from 1993-2008 for the Dow 30 components. As

an illustration, Figure 2 depicts the monthly largest absolute increments and the jump truncation

levels used in our calculations of the variation of large and small jump components at three levels,


 = 1; 2; 3; for S&P500 futures. It is quite obvious that the monthly maximum increments are

dominant for the period from 1998-2002 and for the period from 2006-2008. The truncation level

for S&P500 futures ranges from approximately 0.03 to 0.08.

Next, notice that the graphs in Figure 3 depict magnitudes of the variation of continuous,

jump, and truncated jump components of S&P500 futures returns. Namely, the plots are of daily

realized volatility and realized variances of continuous, jump and large jump components at di¤erent

truncation levels. As might be expected, inspection of the graphs suggests a close linkage between
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the greater number of jumps and the magnitude of jump risk over the same period. For example,

in the case of S&P500 futures, the variation of the jump components is clearly dominant in the

sample periods from 1998-2002 and from 2006-2008. The highest daily jump risk occurs in 2001,

and is above 0.12. Indeed, at jump truncation level 2, we only see large jump risk for the years

1998, 2001, and 2007. Combined with the results of Figure 1, this again strongly suggests that

there are notable jumps in S&P500 futures data.

Turning now to our tabulated results, Tables 1 and 2 contain results summarizing the con-

tribution of realized variations of various price components of S&P500 futures and Dow 30 stock

components, relative to total variation. Table 1 reports the average percentage of daily variation of

the continuous and jump components, at truncation levels 1; 2; 3; 4; relative to daily realized vari-

ances, for the sample period from 1993-2009, across test signi�cance levels, � = 0:0001, 0:001; 0:005

and 0:01. For example, at the � = 0:001 and 0:0001 levels, the average daily jump variations are

25.3% and 14.4% during the 1993-2009 period, respectively. Corresponding average variations of

large daily jumps at truncation level 3 are 1.7% and 0.7% respectively. For individual stocks, Table

2 reports average percentage of days identi�ed as having jumps, and the average percentage of

daily variation of continuous, jump, and large jump components, at truncation levels 1; 2; 3; for

signi�cance level, � = 0:001; and across 25 stocks in the Dow 30, for the period from 1993-2008.

There is clear evidence of "jump-days" for all of these stocks. For instance, as illustrated in Figure

4, and tabulated in Table 2, the proportion of "jump-days" for Citigroup, Home Depot, Intel and

Microsoft is 15.4%, 17.5%, 14.7% and 13.9%, respectively. In addition, jumps contribute a signi�-

cant part of the realized volatility across all stocks. For instance, the average daily jump variations

for Citigroup, Home Depot, Intel and Microsoft are 8.3%, 9.2%, 6.8%, and 6.3%. When considering

large jumps with 
 = 3, the average daily jump variations of the same stocks are 0.2%, 0.0%, 0.1%,

and 0.1%, respectively.

In summary, and not surprisingly, we have strong evidence that jumps characterize the structure

of S&P500 futures and Dow 30 returns. Moreover, the prevalence of jumps is dependent upon sam-

ple period, and, just as importantly, is dependent upon truncation level. For example, the overall

contribution of jumps is quite dissimilar across Dow 30 stocks, ranging from around 3% to over

10%; but when truncation levels are applied, the relative contribution of jumps appears very similar

(e.g., when 
 = 2 the range is 0.0% to 0.2%). This certainly suggests that clustering is occurring

during "bad" times; but, just as importantly, it suggests that jump information aggregation might

be important in �nancial applications, and in particular in forecasting exercises.

5.3 RV Prediction using Realized Jump Power Variations

We begin by calculating all daily RMs, as discussed above, using our S&P500 dataset; yielding

time series with T = 4123 observations. In our out-of-sample forecasting experiments, we set
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P = 410.10 The models used in our experiments are discussed above and summarized in Table

4. Finally, as a point of reference, recall that the empirical analyses of exchange rates, equity

index returns, and bond yields reported in ABD (2007) suggest that the volatility jump component

is both highly important and distinctly less persistent than the continuous component, and that

separating "rough" jump movements from smooth continuous movements results in signi�cant in-

sample volatility forecast improvements (i.e., linear and nonlinear HAR-RV-CJ models perform

better than models without "separate" jumps).

We now turn to our analysis of the alternative models presented summarized in Table 4. Con-

sider S&P500 futures. The predictive performance of a model is measured by both in-sample and

out-of sample R2; which is similar to approach taken in ABD (2007). We also carry out DM (1995)

predictive accuracy tests to determine whether the choice of q matters when forecasting RV. Table

3 reports regression estimates, as well as in-sample and out-of-sample R2 values for linear, square

root and log HAR-RV-C models at daily (h = 1), weekly (h = 5) and monthly (h = 22) prediction

horizons. Entries in brackets are robust t-statistics. When comparing in-sample and out-of-sample

R2 statistics, it is clear that the square root and log models perform much better than their linear

counterparts, regardless of prediction horizon. For instance, for h = 1; the in-sample and out-of-

sample R2 statistics for square root models are 0.45 and 0.34 while those of their linear counterparts

are 0.35 and 0.24, respectively. In addition, the estimates of �cd, �cw, �cm; as well as associated

t-statistics con�rm the long memory (persistence) property of volatility. For the linear model with

h = 1; the t-statistic of the monthly forecast parameter is 7:81; implying that the continuous com-

ponent from the previous month is potentially important for one-day ahead prediction of volatility.

This statistical pattern holds for square root and log models, across all forecast horizons. In addi-

tion, at prediction horizon h = 22; while the in-sample R2s are large, out-of sample results show

deteriorating behavior, as might be expected.

When constructingRPVq;t, RJ+q;t, RJ
�
q;t, andRJAq;t, values of q including f2:1; 2:2; :::; 5:8; 5:9; 6:0g

were tried.11 Larger values of q e¤ectively eliminate the e¤ects of the continuous component and of

smaller jumps, while magnifying the relevance of large jumps. In Tables 5A-5D, we report results

only for q = 2:5 and q = 5, as these are two good representative cases when distinguishing between

small and large jump power variations. Each table contains results for linear, square root and log

models. All bracketed entries are t-statistics. Observe �rst that jump coe¢ cients are not usually

statistically signi�cant for q = 5 (large jumps). This result holds across all model speci�cations, and

holds for all cases where q = 5; except in Table 5B. Here, �jw and �jm associated with the square

root model at h=5 have t-statistics of 17.89 and -5.09, respectively. Additionally, in Table 5C, ��jd
(linear model and h=1) has a t-statistic of 1.96. For q = 2:5, t-statistics are signi�cant for �jm in

linear and square root HAR-RV-C-PV(q) models (the t-statistics are 2.37 and 2.10 for h = 1; in

10We also analyzed alternative out-of-sample periods, including P ={210, 310, 510, 610,710}. Results were quali-
tatively similar to those reported here, and are available upon request.
11For q > 6, prediction results are almost the same as when case q = 6; and are therefore not discussed.
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linear and square root HAR-RV-C-DJ(q) models, respectively. Turning to our "full decomposition"

HAR-RV-C-UDJ(q) model, we �nd that downside jumps rarely have an impact on future RV, such

as when h = 1: Also, for the linear model, note in Table 5C that the t-statistic associated with ��jd
is 2.14, for h = 22. Upward jump variations generally have a negligible impact in our prediction

models, however. Most interestingly, correlation between past RJA(q) and future RV is rather

strong across all forecast horizons (daily, weekly and monthly) for linear and square root models,

as indicated by a large number of statistically signi�cant coe¢ cient estimates on this variable (see

Table 5D).

Table 6 reports on tests carried out to compare the predictive accuracy of a subset of our

prediction models. In particular, and for each model listed in the �rst column of the table, qb
denotes the value of q that yields the largest out-of-sample R2 values; while qs denotes the value of

q that yields the smallest R2 values, for q = f2:5 + k � 0:1gk=35k=0 . The DM statistics in the �rst row

of each panel of the table are based on the comparison of each pair of (qb; qs) models, and positive

values indicate that the qb model dominates, in terms of out-of-sample mean square forecast error

�t. Since almost all DM statistics are positive, we have evidence that the highest out-of-sample R2

model is statistically superior to the lowest. Moreover, as we generally see that qb = 2:5, we have

strong evidence that large, seemingly rare and possibly iid jumps do not help in prediction, while

smaller, less rare and possibly serially correlated jumps do help.

Continuing our discussion of predictive performance, note that our prediction experiments show

improvements, both in- and out-of-sample, when RMs of jump power variations are used as addi-

tional predictors in volatility forecasting. For example, at forecast horizons h = 1 and h = 5, the

out-of sample R2 values of the benchmark HAR-RV-C square root models are 0.34 for h = 1 and

0.24 for h = 5: Compare these values with those of 0.37 and 0.26, which obtain when our HAR-

RV-C-PV(q) model is used to construct forecasts. This is equivalent to an 8% and 7.5% increase in

R2; when switching from HAR-RV-C to HAR-RV-C-PV models. However, as shown in the table,

the continuous component, RV C; dominates in all prediction experiments, which is consistent with

previous �ndings in the literature on volatility forecasting using high frequency data. Moreover,

there is little improvements in R2 when HAR-RV-C-UDJ(q) is used for prediction. Interestingly,

results in the table suggest that in- and out-of sample R2 values are smaller, the larger is q (compare

the cases where q = 2:5 and q = 5). This pattern is clearly depicted in the �gures discussed below.

Finally, the above conclusions are con�rmed in Figures 5-8. In these �gures, both in- and out-

of-sample R2 values are reported. In all plots, the vertical axis ranges from 0 to 1; and denotes

the value R2. The horizontal axis ranges from 0.1 to 6, representing 60 grid points of values of

q, i.e. q = f0 + 0:1 � kg60k=1. Notice �rst that there is little to choose between the models, in a
majority of cases, con�rming our earlier �nding that jumps, while prevalent, add relatively little

to predictive accuracy. Second, comparing "no jump test" cases with "jump test" cases indicates

that �ndings do change, to some degree, when jump tests are used in the construction of jump
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variation variables. In particular, compare Figures 5 and 6 (the case where S&P500 futures are

modelled). The maximal in-sample R2 values that is achieved when no jump tests are used is

usually modestly higher, under our log model, regardless of forecast horizon (compare the last

column of plots in each �gure). Naturally, the R2�"best" value of q also varies, although to a very
small extent, when comparing these two �gures. The same broad result holds when comparing out-

of-sample R2 values in Tables 7A (no jump test) and 7B (jump test). In summary, little is gained in

our experiments by constructing realized measures that directly incorporate a variable indicating

whether our jump test �nd evidence of jumps during a particular day. Third, Table 8 clearly

indicates that the R2�"best" value of q is higher when S&P500 index returns are predicted, than
when individual DOW components are predicted. This suggests that aggregation plays a crucial

role in risk prediction. Values of q less than 2 dominate under individual stocks, while values greater

than 2 dominate under our index variable. Evidently, jumps matter much more for risk prediction

in a return variable that aggregates many jumps from many companies than in isolated companies.

Finally, while the in-sample R2�"best" value of q is always near unity in our log models, when
evaluating the S&P500 index (see Figures 5-7), the out�of-sample R2�"best" value of q is always
near or greater than 2 (see Figures 7A-7B). This rather interesting �nding suggests that what�s

best for in-sample analysis is far from best for out-of-sample analysis. In particular, jumps do play

a role, at least when modelling aggregate (index) data such as S&P500 futures returns; and while

modelling jump risk power variations may not be important for in-sample �t, it clearly plays an

important role in out-of-sample volatility prediction.

6 Concluding Remarks

In this paper, we use recent theoretical results of Jacod (2008), BNS (2004, 2006), and BKS (2010)

to examine jumps and the usefulness of jumps in forecasting volatility. Our key �ndings can be

summarized as follows. First, we �nd evidence that jumps characterize the structure of S&P500

futures and the individual stocks that we examine. Moreover, the prevalence of jumps is dependent

upon sample period; and is also dependent upon truncation level. This is consistent with "clus-

tering" occurring during "bad" times; but, just as importantly, it suggests that jump information

aggregation might be of relevance in �nancial applications, and in particular in forecasting exer-

cises. Second, our prediction experiments show improvements, both in- and out-of-sample, when

RMs of jump power variations are used as additional predictors in volatility forecasting. However,

past "large" jump power variations help less in the prediction of future realized volatility, than past

"small" jump power variations. This in turn suggests the "larger" jumps might help less in the

prediction than "smaller" jumps. In a related �nding, we note that seemingly rare and possibly

iid jumps do not help in prediction, while smaller, less rare and possibly serially correlated jumps

do help. Third, the continuous component dominates in all prediction experiments, which is con-

sistent with previous �ndings in the literature on volatility forecasting using high frequency data.
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Fourth, incorporation of downside and upside jump power variations does improve predictability,

albeit to a limited extent. Fifth, comparing "no jump test" cases with "jump test" cases indicates

that �ndings do change, to some degree, when jump tests are used in the construction of jump

variation variables. Additionally, the power of q associated with our R2�"best" model is higher
when S&P500 index returns are predicted, than when individual DOW components are predicted.

This suggests that aggregation plays a crucial role in risk prediction. Finally, values of q less than

2 dominate under individual stocks, while values greater than 2 dominate under our index variable.

Taken together, these results suggest that what�s best for in-sample analysis is far from best for

out-of-sample analysis. Moreover, jumps do play a role, at least when modelling aggregate (index)

data such as S&P500 futures returns; and while modelling jump risk power variations may not be

important for in-sample �t, it clearly plays an important role in out-of-sample volatility prediction.

Many questions remain for future research. For example, it remains to be seen whether pre-

diction based "gains" associated with modelling jumps translates into improved performance when

carrying out real-world derivative pricing, asset allocation, and hedging exercises. Additionally,

and although we have presented some evidence tying jump variations to general economic activity,

it remains to exhaustively analyze the linkages between jumps, jump variations, market risk, and

business cycle activity.
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Table 1: Daily S&P500 Futures Returns:

Ratio of Continuous, Total Jump, Large Jump and Small Jump (Truncation Levels 1,2,3,4) to

Total Realized Variation for the Period 1993-2009*

Variation ComponentnSigni�cance Level 0.0001 0.001 0.005 0.01

Continuous 85.6 74.7 64.3 59.4

Total Jump 14.4 25.3 35.7 40.6

Large Jump (Truncation Level 4) 0.1 0.1 0.20 0.2

Large Jump (Truncation Level 3) 0.7 1.7 2.6 2.8

Large Jump (Truncation Level 2) 2.2 4.3 6.2 6.8

Large Jump (Truncation Level 1) 4.0 8.7 13.3 15.4

Small Jump (Truncation Level 4) 14.3 25.2 35.4 40.4

Small Jump, (Truncation Level 3) 13.6 23.6 33.1 37.8

Small Jump (Truncation Level 2) 12.2 21 29.5 33.8

Small Jump (Truncation Level 1) 10.3 16.6 22.4 25.2
� Entries in rows 2 and 3 denote the average percentage of daily variation of the continuous component and total jump

component, relative to daily realized variance. Entries in rows 3 to 8 denote the average percentage of daily variation due to
large and small jumps constructed using truncation levels 1, 2, 3,4 relative to the daily realized variance, where Truncation
Level 1 corresponds to the median of monthly maximum increments, Truncation Level 2 corresponds to 75th percentile monthly
maximum increments, Truncation level 3 corresponds to 90th percentile monthly maximum increments, and truncation level 4
corresponds to 95th percentile monthly maximum increments of (log) prices of S&P500 futures returns for the sample 1993-2009.
Entries are caculcated for jump tests carried out using 4 di¤erent signi�cance levels, � =0:0001; 0:001; 0:005; 0:01. See Sections
2 and 5 for further details.
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Table 2: Daily DOW 30 Component Returns:

Ratio of Continuous, Total Jump, Large Jump, and Small Jump (Truncation Levels 1,2,3) to

Total Realized Variation for the Period 1993-2008*

Company Jump Continuous Total Jumps Truncation Truncation Truncation
Frequency Level 1 Level 2 Level 3

Alcoa 17.6 90.8 9.2 0.7 0.3 0.1
American Express 13.8 92.8 7.2 0.5 0.3 0.1
Bank of America 15.2 92.1 7.9 0.7 0.3 0.1

Citigroup 15.4 91.7 8.3 0.5 0.3 0.2
Caterpillar 17.7 90.6 9.4 0.7 0.4 0.2
Dupont 17 91.2 8.8 0.5 0.2 0.0

Walt Disney 18.9 89.8 10.2 0.6 0.2 0.1
General Electric 16 91.8 8.2 0.4 0.1 0.0

GM 18.1 90.3 9.7 0.5 0.2 0.1
Home Depot 17.5 90.8 9.2 0.4 0.2 0.0

IBM 12.7 93.4 6.6 0.6 0.3 0.1
Intel 14.7 93.2 6.8 0.6 0.2 0.1

Johnson &Johnson 18.2 90.6 9.4 0.6 0.3 0.2
JPM 15.3 92.1 7.9 0.5 0.2 0.0

Coca Cola 17.2 91.0 9.0 0.6 0.2 0.1
McDonald�s 19.1 89.6 10.4 0.5 0.3 0.1

3M 17.3 90.8 9.2 0.6 0.2 0.1
Microsoft 13.9 93.7 6.3 0.6 0.2 0.1
P�zer 18 90.6 9.4 0.6 0.3 0.1

Procter &Gamble 16.5 91.3 8.7 0.6 0.3 0.1
AT &T 18.6 90.1 9.9 0.8 0.4 0.2

United Tech.Corp. 15.4 92.3 7.7 0.8 0.3 0.1
Verizon 11.9 94.9 5.1 0.7 0.3 0.1
Walmart 11.6 93.9 6.1 0.6 0.3 0.1

ExxonMobil 7.5 96.9 3.1 0.4 0.2 0.1
� See notes to Table 1. Entries in column 2 of the table denote the percentage of days identi�ed as having jumps based

on the calculation of daily statistics, and using the adjusted jump statistic of BNS (2006) and Huang and Tauchen (2005), with
signi�cance level � =0:001. Entries in columns 3 and 4 denote the average percentage of daily variation of the continuous and
total jump components relative to daily realized variance, based on the use of jump tests. Entries in columns 5-7 denote the
average percentage of daily variation due to jumps constructed using truncation levels 1, 2, 3, relative to daily realized variance.
All calculation are for the sample period 1993-2008. See Sections 2 and 5 for further details.
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Table 3: Daily, Weekly and Monthly HAR-RV-C Prediction Regression

Results for S&P500 Futures Returns (Benchmark Model)*

Linear Model Square Root Model Log Model
�0 �d �w �m �0 �d �w �m �0 �d �w �m

Forecast Horizon h=1 (Daily)
0.00 0.09 0.06 1.65 0.00 0.07 0.12 1.00 -0.20 0.17 0.10 0.72
(0.67) (1.93) (0.38) (7.81) (1.57) (2.70) (1.70) (11.91) (1.15) (7.04) (1.66) (11.71)

R2in(R
2
out) = 0:35(0:24) R2in(R

2
out) = 0:45(0:34) R2in(R

2
out) = 0:45(0:39)

Forecast Horizon h=5 (Weeky)
0.00 0.06 -0.08 1.83 0.00 0.06 0.04 1.08 -0.35 0.13 0.14 0.69
(0.71) (0.51) (0.43) (10.31) (1.00) (0.94) (0.40) (12.62) (1.84) (5.80) (2.40) (10.85)

R2in(R
2
out) = 0:35(0:17) R2in(R

2
out) = 0:44(0:24) R2in(R

2
out) = 0:43(0:30)

Forecast Horizion h=22 (Monthly)
0.00 -0.03 0.39 1.38 0.00 0.01 0.14 0.98 -0.77 0.08 -0.01 0.85
(0.32) (0.89) (3.47) (11.86) (0.18) (0.41) (1.92) (15.04) (3.08) (3.24) (0.19) (12.39)

R2in(R
2
out) = 0:33(0:03) R2in(R

2
out) = 0:41(0:04) R2in(R

2
out) = 0:38(0:03)

� See notes to Tables 1 and 2. Entries are prediction regression results (i.e., out-of-sample forecast model estimates), as
well as both in-sample and out-of-sample R2 values, for linear, square root, and log HAR-RV-C models at daily (h=1), weekly
(h=5) and monthly (h=22) forecast horizons. Entries in brackets are robust t-statistics.

Table 4: Summary of Additional Models Used for Forecasting RV*

Speci�cation 1 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t) + �t+h
(HAR-RV-C)

Speci�cation 2 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)
(HAR-RV-C-PV(q)) +�jd�(RPVq;t) + �jw�(RPVq;t;t�5) + �jm�(RPVq;t;t�22) + �t+h

Speci�cation 3 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)+
(HAR-RV-C-UJ(q)) +�+jd�(RJ

+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t) + �t+h

Speci�cation 4 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct;t�5) + �cm�(RV Ct;t�22)+
(HAR-RV-C-DJ(q)) +��jd�(RJ

�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 5 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)
(HAR-RV-C-UDJ(q)) +�+jd�(RJ

+
q;t�5;t) + �

+
jw�(RJ

+
q;t�5;t) + �

+
jm�(RJ

+
q;t�22;t)

+��jd�(RJ
�
q;t�5;t) + �

�
jw�(RJ

�
q;t�5;t) + �

�
jm�(RJ

�
q;t�22;t) + �t+h

Speci�cation 6 �(RVt+h) = �0 + �cd�(RV Ct) + �cw�(RV Ct�5;t) + �cm�(RV Ct�22;t)
(HAR-RV-C-APJ(q)) +�jd�(RJAq;t) + �jw�(RJAq;t�5;t) + �jm�(RJAq;t�22;t) + �t+h

� See notes to Table 3. Entries in this table are for forecast models examined in our prediction experiments.
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Table 5A: HAR-RV-C-PV(q) Prediction Regression Results (q=2.5 and 5) for

S&P500 Futures Returns*

Linear Models Square Root Models Log Models
h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q = 2:5 0.00 0.00 0.00 0.01 0.01 0.01 -0.52 -0.70 -1.23
�0 (3.04) (1.74) (2.11) (3.44) (2.89) (3.29) (-1.90) (-2.37) (-3.29)

q = 5 0.00 0.00 0.00 0.00 0.00 0.01 -0.38 -0.55 -1.02
(3.17) (2.35) (2.47) (2.49) (2.46) (3.14) (-1.62) (-2.17) (-3.20)

q = 2:5 0.07 0.00 -0.07 0.02 0.02 0.03 0.17 0.14 0.08
�cd (1.45) (0.03) (-1.09) (0.60) (0.35) (0.67) (6.81) (5.69) (2.98)

q = 5 0.07 0.02 -0.08 0.06 0.06 0.03 0.17 0.13 0.07
(1.77) (0.17) (-1.32) (1.79) (0.96) (0.71) (6.89) (5.73) (2.94)

q = 2:5 -0.12 -0.25 0.42 0.02 -0.12 0.11 0.09 0.13 -0.02
�cw (-0.81) (-1.42) (2.79) (0.18) (-1.06) (1.25) (1.35) (2.10) (-0.22)

q = 5 -0.07 -0.20 0.43 0.06 -0.07 0.09 0.10 0.14 -0.01
(-0.44) (-1.15) (2.94) (0.78) (-0.62) (1.02) (1.59) (2.29) (-0.16)

q = 2:5 0.70 1.23 0.69 0.52 0.70 0.37 0.68 0.65 0.79
�cm (2.47) (4.93) (2.22) (3.63) (4.69) (1.93) (10.06) (9.15) (10.09)

q = 5 1.25 1.57 1.03 0.85 0.97 0.78 0.69 0.67 0.82
(6.84) (10.87) (5.28) (9.24) (10.03) (7.70) (10.76) (9.92) (11.08)

q = 2:5 0.07 0.21 0.17 0.11 0.07 -0.04 -16.35 -9.51 -2.19
�jd (0.43) (1.32) (0.70) (1.94) (0.88) (-0.43) (-1.44) (-0.79) (-0.14)

q = 5 18.27 56.89 71.90 0.63 -0.05 -0.84 -2597.00 -1047.00 3180.00
(0.35) (1.17) (1.00) (0.56) (-0.04) (-0.45) (-0.88) (-0.30) (0.89)

q = 2:5 0.79 0.79 -0.19 0.32 0.47 0.08 27.95 30.64 10.90
�jw (1.63) (1.78) (-0.54) (1.92) (2.57) (0.54) (0.87) (0.97) (0.36)

q = 5 194.64 195.39 -76.42 3.98 7.13 3.42 2032.00 6163.00 127.00
(1.16) (1.47) (-0.81) (1.06) (1.88) (1.22) (0.22) (0.68) (0.02)

q = 2:5 1.18 0.46 1.24 0.39 0.20 0.75 32.42 26.80 51.59
�jm (2.24) (0.89) (1.98) (1.97) (0.79) (2.74) (0.98) (0.73) (1.39)

q = 5 114.43 2.21 211.49 0.88 -1.85 2.98 10776.00 6132.00 10073.00
(0.71) (0.02) (1.35) (0.25) (-0.45) (0.99) (1.07) (0.59) (1.06)

R2in q = 2:5 0.38 0.37 0.33 0.46 0.45 0.42 0.45 0.43 0.38
q = 5 0.37 0.37 0.33 0.46 0.45 0.41 0.45 0.43 0.38

R2out q = 2:5 0.32 0.20 0.03 0.37 0.26 0.04 0.39 0.30 0.03
q = 5 0.24 0.17 0.03 0.34 0.24 0.04 0.39 0.30 0.03

� See notes to Tables 3 and 4. Prediction model estimates, as well as in-sample and out-of-sample R2 values, are reported
for linear, square root and log HAR-RV-C-PV(q) models, for q=2.5 and q=5, at daily (h=1), weekly (h=5) and monthly (h=22)
prediction horizons. Entries in brackets are robust t-statistics.
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Table 5B: HAR-RV-C-DJ(q) Prediction Regression Results (q=2.5 and 5) for

S&P500 Futures Returns*

Linear Models Square Root Models Log Models
h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q = 2:5 0.00 -0.70 -1.23 0.01 0.01 0.01 -0.53 -0.71 -1.24
�0 (3.02) (-2.37) (-3.29) (3.46) (2.89) (3.28) (-1.92) (-2.39) (-3.30)

q = 5 0.00 -0.55 -1.02 0.00 2.49 0.01 -0.38 -0.55 -1.03
(3.18) (-2.17) (-3.20) (2.53) (0.00) (3.15) (-1.63) (-2.18) (-3.20)

q = 2:5 0.07 0.14 0.08 0.02 0.03 0.03 0.17 0.14 0.07
�cd (1.47) (5.69) (2.98) (0.68) (0.36) (0.65) (6.81) (5.65) (2.96)

q = 5 0.08 0.13 0.07 0.06 0.97 0.03 0.17 0.13 0.07
(1.78) (5.73) (2.94) (1.81) (0.06) (0.67) (6.89) (5.72) (2.93)

q = 2:5 -0.12 0.13 -0.02 0.02 -0.11 0.11 0.09 0.13 -0.02
�cw (-0.80) (2.10) (-0.22) (0.22) (-1.04) (1.23) (1.35) (2.13) (-0.20)

q = 5 -0.07 0.14 -0.01 0.06 -0.63 0.09 0.10 0.14 -0.01
(-0.46) (2.29) (-0.16) (0.80) (-0.06) (0.98) (1.60) (2.29) (-0.16)

q = 2:5 0.66 0.65 0.79 0.50 0.68 0.37 0.68 0.65 0.79
�cm (2.21) (9.15) (10.09) (3.44) (4.54) (1.97) (10.05) (9.12) (10.04)

q = 5 1.23 0.67 0.82 0.85 10.02 0.79 0.69 0.67 0.82
(6.49) (9.92) (11.08) (8.96) (0.98) (7.67) (10.74) (9.90) (11.06)

q = 2:5 0.12 -9.51 -2.19 0.14 0.09 -0.06 -33.78 -16.72 -2.73
�jd (0.35) (-0.79) (-0.14) (1.80) (0.86) (-0.41) (-1.49) (-0.73) (-0.09)

q = 5 21.14 -1047.00 3180.00 0.72 -0.08 -1.05 -5414.00 -2223.00 7005.00
(0.20) (-0.30) (0.89) (0.45) (-0.42) (-0.41) (-0.92) (-0.34) (0.99)

q = 2:5 1.55 30.64 10.90 0.44 0.65 0.13 56.90 57.26 17.94
�jw (1.64) (0.97) (0.36) (1.92) (2.52) (0.62) (0.89) (0.90) (0.30)

q = 5 390.00 6163.00 127.00 5.42 1.89 5.19 3453.00 12940.00 -688.00
(1.18) (0.68) (0.02) (1.06) (17.89) (1.39) (0.18) (0.71) (-0.04)

q = 2:5 2.53 26.80 51.59 0.58 0.30 1.04 65.74 56.05 106.02
�jm (2.37) (0.73) (1.39) (2.10) (0.86) (2.75) (1.00) (0.76) (1.42)

q = 5 263.00 6132.00 10073.00 1.72 -0.45 3.73 22752.00 12109.00 20505.00
(0.82) (0.59) (1.06) (0.35) (-5.09) (0.86) (1.10) (0.58) (1.05)

R2in q = 2:5 0.38 0.37 0.33 0.46 0.45 0.42 0.45 0.43 0.38
q = 5 0.37 0.37 0.33 0.46 0.45 0.41 0.45 0.43 0.38

R2out q = 2:5 0.32 0.20 0.03 0.36 0.26 0.04 0.39 0.30 0.03
q = 5 0.24 0.17 0.03 0.35 0.24 0.04 0.39 0.30 0.03

� See notes to Tables 3, 4, and 5A. Prediction model estimates, as well as in-sample and out-of-sample R2 values, are
reported for linear, square root and log HAR-RV-C-DJ(q) models, for q=2.5 and q=5, at daily (h=1), weekly (h=5) and monthly
(h=22) prediction horizons. Entries in brackets are robust t-statistics.
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Table 5C: HAR-RV-C-UDJ(q) Prediction Regression Results (q=2.5 and 5) for

S&P500 Futures Returns*

Linear Models Square Root Models Log Models
h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q = 2:5 0.00 0.00 0.00 0.01 0.01 0.01 -0.57 -0.75 -1.28
�0 (2.95) (1.65) (2.06) (3.55) (2.90) (3.28) (-2.04) (-2.47) (-3.36)

q = 5 0.00 0.00 0.00 0.00 0.00 0.01 -0.42 -0.58 -1.03
(3.22) (2.33) (2.61) (2.73) (2.56) (3.13) (-1.75) (-2.26) (-3.16)

q = 2:5 0.07 0.00 -0.07 0.02 0.02 0.03 0.17 0.14 0.07
�cd (1.48) (0.03) (-1.14) (0.58) (0.34) (0.67) (6.76) (5.65) (2.95)

q = 5 0.07 0.02 -0.07 0.06 0.05 0.03 0.17 0.13 0.07
(1.85) (0.18) (-1.30) (1.78) (0.94) (0.71) (6.86) (5.73) (2.96)

q = 2:5 -0.10 -0.24 0.41 0.02 -0.11 0.11 0.09 0.13 -0.01
�cw (-0.63) (-1.44) (2.76) (0.22) (-1.03) (1.29) (1.46) (2.17) (-0.14)

q = 5 -0.04 -0.19 0.41 0.07 -0.06 0.08 0.10 0.14 -0.01
(-0.24) (-1.13) (2.76) (0.83) (-0.56) (0.98) (1.67) (2.33) (-0.17)

q = 2:5 0.58 1.15 0.71 0.51 0.68 0.36 0.67 0.64 0.78
�cm (1.71) (3.75) (2.47) (3.55) (4.64) (1.94) (9.92) (8.89) (9.76)

q = 5 1.16 1.50 1.06 0.83 0.95 0.79 0.68 0.66 0.82
(5.21) (8.90) (6.02) (8.65) (10.12) (8.49) (10.53) (9.60) (10.98)

q = 2:5 -1.12 0.42 1.84 -0.30 -0.11 0.08 -144 89.00 75.00
��jd (-0.66) (0.40) (2.14) (-1.00) (-0.32) (0.26) (-1.04) (0.78) (0.64)

q = 5 -526.00 8.00 532.00 -5.81 -4.14 3.52 -16818 -7675 39133
(-0.79) (0.03) (1.96) (-0.83) (-0.70) (0.67) (-0.43) (-0.31) (1.64)

q = 2:5 0.52 -0.58 0.40 0.00 0.59 0.61 214.00 -130.00 -173.00
��jw (0.11) (-0.24) (0.08) (0.00) (0.76) (0.70) (0.45) (-0.34) (-0.41)

q = 5 400.00 245.00 328.00 -2.50 16.94 11.89 -22222 58161 -39700
(0.29) (0.35) (0.22) (-0.14) (1.48) (0.95) (-0.20) (0.75) (-0.43)

q = 2:5 14.00 9.03 -3.69 2.77 1.64 0.10 946 989 1155
��jm (1.68) (0.80) (-0.50) (1.44) (0.74) (0.05) (1.22) (1.06) (1.26)

q = 5 3597.00 2303.00 -1813.00 47.31 18.59 -22.76 277860 154197 28836
(1.69) (0.83) (-0.92) (1.69) (0.57) (-0.72) (1.53) (0.74) (0.12)

q = 2:5 1.27 0.00 -1.54 0.46 0.21 -0.14 113.35 -109.98 -81.23
�+jd (0.76) (0.00) (-1.55) (1.60) (0.57) (-0.48) (0.82) (-0.88) (-0.69)

q = 5 567.86 103.84 -397.29 6.77 4.20 -4.74 11699 5426 -33271
(0.83) (0.33) (-1.31) (1.02) (0.66) (-0.90) (0.29) (0.19) (-1.37)

q = 2:5 0.89 2.09 -0.69 0.45 0.06 -0.50 -172.66 185.57 187.45
�+jw (0.18) (0.79) (-0.13) (0.37) (0.09) (-0.55) (-0.36) (0.49) (0.43)

q = 5 -79.64 108.40 -441.16 7.85 -7.33 -6.75 22772 -48575 40677
(-0.06) (0.14) (-0.27) (0.44) (-0.79) (-0.51) (0.21) (-0.66) (0.43)

q = 2:5 -11.31 -7.91 6.10 -2.23 -1.36 0.97 -875 -934 -1049
�+jm (-1.44) (-0.73) (0.78) (-1.17) (-0.62) (0.46) (-1.13) (-1.01) (-1.16)

q = 5 -3255.07 -2218.65 2196.22 -45.62 -20.66 26.62 -252245 -138328 -8874
(-1.63) (-0.80) (1.07) (-1.65) (-0.63) (0.81) (-1.47) (-0.68) (-0.04)

R2in q = 2:5 0.38 0.37 0.34 0.46 0.45 0.42 0.48 0.43 0.38
q = 5 0.37 0.37 0.34 0.46 0.45 0.04 0.45 0.43 0.38

R2out q = 2:5 0.34 0.21 0.03 0.37 0.26 0.04 0.39 0.30 0.03
q = 5 0.25 0.17 0.03 0.35 0.25 0.04 0.39 0.30 0.03

�See notes to Tables 3, 4, and 5A. Prediction model estimates, as well as in-sample and out-of-sample R2 values, are
reported for the linear, square root and log HAR-RV-C-UDJ(q) models, for q=2.5 and q=5, at daily (h=1), weekly (h=5) and
monthly (h=22) prediction horizons. Entries in brackets are robust t-statistics.
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Table 5D: HAR-RV-C-APJ(q) Prediction Regression Results (q=2.5 and 5) for

S&P500 Futures Returns*

Linear Models Square Root Models Log Models
h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22

q = 2:5 0.00 0.00 0.00 0.01 0.01 0.01 -0.52 -0.70 -1.23
�0 (3.04) (1.74) (2.11) (3.45) (2.89) (3.29) (-1.90) (-2.37) (-3.29)

q = 5 0.00 0.00 0.00 0.00 0.00 0.01 -0.38 -0.55 -1.02
(3.17) (2.35) (2.47) (2.48) (2.45) (3.14) (-1.62) (-2.17) (-3.20)

q = 2:5 0.07 0.00 -0.07 0.02 0.02 0.03 0.17 0.14 0.08
�cd (1.45) (0.03) (-1.09) (0.58) (0.34) (0.68) (6.81) (5.69) (2.98)

q = 5 0.07 0.02 -0.08 0.06 0.06 0.03 0.17 0.13 0.07
(1.77) (0.17) (-1.32) (1.78) (0.95) (0.71) (6.89) (5.73) (2.94)

q = 2:5 -0.12 -0.25 0.42 0.01 -0.12 0.11 0.09 0.13 -0.02
�cw (-0.81) (-1.42) (2.79) (0.16) (-1.05) (1.24) (1.35) (2.10) (-0.22)

q = 5 -0.07 -0.20 0.43 0.06 -0.06 0.09 0.10 0.14 -0.01
(-0.44) (-1.15) (2.94) (0.74) (-0.60) (1.01) (1.59) (2.29) (-0.16)

q = 2:5 0.70 1.23 0.69 0.52 0.70 0.37 0.68 0.65 0.79
�cm (2.47) (4.93) (2.22) (3.65) (4.68) (1.93) (10.06) (9.15) (10.09)

q = 5 1.25 1.57 1.03 0.86 0.97 0.78 0.69 0.67 0.82
(6.84) (10.87) (5.28) (9.29) (9.99) (7.69) (10.76) (9.92) (11.08)

q = 2:5 0.07 0.21 0.17 0.08 0.05 -0.03 -16.14 -9.32 -2.04
�jd (0.43) (1.32) (0.70) (1.97) (0.90) (-0.43) (-1.43) (-0.78) (-0.13)

q = 5 18.27 56.89 71.90 0.45 0.00 -0.59 -2596.87 -1046.81 3180.15
(0.35) (1.17) (1.00) (0.57) (0.00) (-0.45) (-0.88) (-0.30) (0.89)

q = 2:5 0.79 0.79 -0.19 0.23 0.33 0.06 27.70 30.42 10.64
�jw (1.63) (1.78) (-0.54) (1.93) (2.59) (0.55) (0.87) (0.97) (0.36)

q = 5 194.64 195.39 -76.42 2.94 4.93 2.42 2031.94 6162.49 127.11
(1.16) (1.47) (-0.81) (1.11) (1.90) (1.23) (0.22) (0.68) (0.02)

q = 2:5 1.18 0.46 1.24 0.27 0.14 0.53 32.37 26.71 51.50
�jm (2.24) (0.89) (1.98) (1.95) (0.81) (2.74) (0.99) (0.73) (1.39)

q = 5 114.43 2.21 211.49 0.50 -1.22 2.10 10776.18 6131.78 10073.20
(0.71) (0.02) (1.35) (0.20) (-0.44) (0.99) (1.07) (0.59) (1.06)

R2in q = 2:5 0.38 0.37 0.34 0.46 0.45 0.42 0.45 0.43 0.38
q = 5 0.37 0.37 0.34 0.46 0.45 0.42 0.45 0.43 0.38

R2out q = 2:5 0.32 0.20 0.03 0.37 0.26 0.04 0.39 0.30 0.03
q = 5 0.24 0.17 0.03 0.34 0.24 0.04 0.39 0.30 0.03

�See notes to Tables 3, 4, and 5A. Prediction model estimates, as well as in-sample and out-of-sample R2 values, are
reported for linear, square root and log HAR-RV-C-APJ(q) models, for q=2.5 and q=5, at daily (h=1), weekly (h=5) and
monthly (h=22) prediction horizons. Entries in brackets are robust t-statistics.
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Table 6: Diebold-Mariano Predictive Accuracy Tests Results for Various Values of q; and for

S&P500 Futures Returns*

Panel A: Recursive Scheme
Linear Models Square Root Models Log Models

h=1 h=5 h=22 h=1 h=5 h=22 h=1 h=5 h=22
DM Stat 5.30 2.75 -3.04 3.42 2.60 3.25 2.08 2.84 2.29

HAR-C-PV(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50
qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.05 1.61 -2.40 3.20 2.90 3.41 2.51 3.20 2.64
HAR-C-UJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00
DM Stat 6.16 2.89 -1.75 3.51 2.31 3.16 2.19 2.28 1.63

HAR-C-DJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50
qs 4.30 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 5.80 2.36 -1.69 3.20 2.05 3.30 2.20 1.49 1.31
HAR-C-UDJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

qs 4.40 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00

Panel B: Rolling Scheme
DM Stat 6.17 3.19 -3.41 3.29 2.55 3.19 0.99 2.87 2.49

HAR-C-PV(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50
qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 4.28 2.15 -2.67 3.09 2.84 3.32 -3.18 3.30 2.83
HAR-C-UJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.30 2.50 2.50

qs 4.20 4.70 5.40 6.00 6.00 6.00 6.00 6.00 6.00
DM Stat 7.13 3.40 -1.75 3.35 2.26 3.11 2.11 2.24 1.88

HAR-C-DJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.40 2.50 2.50
qs 4.20 4.70 5.40 6.00 6.00 6.00 2.50 6.00 6.00

DM Stat 6.56 2.86 -1.89 3.04 1.99 3.20 0.92 1.46 1.53
HAR-C-UDJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.10 2.50 2.50

qs 4.20 4.70 5.30 6.00 6.00 6.00 6.00 6.00 6.00

Panel C: Fixed Scheme
DM Stat 6.17 3.11 -3.23 4.27 3.15 3.41 -4.82 3.32 2.35

HAR-C-PV(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.50 2.50 2.50
qs 4.30 4.80 5.80 6.00 6.00 6.00 2.50 6.00 6.00

DM Stat 4.23 1.98 -2.46 3.67 3.25 3.52 -3.75 3.46 2.66
HAR-C-UJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50 2.50

qs 4.30 5.80 5.80 6.00 6.00 6.00 6.00 6.00 6.00
DM Stat 7.13 3.05 -1.80 4.37 2.87 3.34 1.73 3.19 1.85

HAR-C-DJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.50 3.50 3.50
qs 4.30 4.30 4.30 6.00 6.00 6.00 6.00 6.00 6.00

DM Stat 6.82 2.76 -1.84 3.86 2.43 3.37 0.21 1.80 1.23
HAR-C-UDJ(q) qb 2.50 2.50 2.50 2.50 2.50 2.50 3.20 2.50 2.50

qs 4.30 4.90 3.40 6.00 6.00 6.00 6.00 6.00 6.00
� Table 6 reports Diebold-Mariano (1995) test statistics, carried out to compare the predictive accuracy of a subset of our

prediction models, including linear, square root and log HAR-C-PV(q), HAR-C-DJ(q), HAR-C-UDJ(q), and HAR-C-APJ(q)
models at daily (h=1), weekly (h=5) and monthly (h=22) prediction horizons. For each model listed in the �rst column of the
table, qb denotes the value the value of q that yields the largest out-of-sample R2, while qs denotes the value of q that yields the
smallest R2, for q = f2:5+k�0:1gk=35k=0 . The DM statistics in the �rst row of each panel of the table are based on the comparison
of each pair of qb,qs models, and positive values indicate that the qb model dominates, in terms of out-of-sample forecast mean
square error �t. The statistics are calculated using robust t-statistics (using up to 44 autoregresive lags in estimation of the
denominator of the statistics). See Sections 4 and 5 for further details.
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Figure 1: Jump Test Statistics on Days Identi�ed as Having Jumps Using S&P500 Futures

Returns: Sample Period 1993-2009 *
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� Daily test statistics are plotted for days identi�ed as having jumps using S&P500 futures (log) price returns; and using
a 0.001 jump test signi�cance level.

Figure 2: Monthly Largest Increments and Truncation Levels 1,2,3 Using S&P500 Futures

Returns: Sample Period 1993-2009 *
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� Monthly "largest" absolute increments and jump truncation levels used as thresholds in our calculations of the variations
of large and small jump components are plotted, where Truncation Level 1 corresponds to the median monthly maximum incre-
ments, Truncation Level 2 corresponds to 75th percentile monthly maximum increments, and Truncation Level 3 corresponds
to 90th percentile monthly maximum increments of S&P500 futures price returns.
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Figure 3: Daily Realized Volatility (RV) and Realized Variation of Continuous, Jump and

Truncated Jump Components of S&P500 Futures Returns for Truncation Levels 1, 2, 3: Sample

Period 1993-2009*
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� See notes to Figure 2 for details about the jump truncation levels. The above panels plot daily realized volatility, as
well as realized measures of the variation of continuous, jump and large jump components at truncation levels 1,2,3 for S&P500
futures returns, for the period 1993-2009.
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Figure 4: Selected DOW 30 Jump Test Statistics for Days Identi�ed as Having Jumps: Sample

Period 1993-2008 *
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� See notes to Figure 1. Plots depict selected DOW 30 component daily test statistic for days identi�ed as having jumps,
using 0.001 signi�cance level.
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Figure 5: In-sample R2 Values for S&P500 Futures, No Jump Test*
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� Figure 5 contains plots of in-sample R2 values for linear, square root and log HAR-RV-C, HAR-RV-C-PV(q), HAR-
RV-C-UJ(q), HAR-RV-C-DJ(q), HAR-RV-C-UDJ(q) models at daily (h=1), weekly (h=5) and monthly (h=22) prediction
horizons, for the case where jumps tests are not used when calculating realized measures of jumps for S&P500 futures returns,
for the sample period 1993-2009. In each plot, the vertical axis ranges from 0 to 1, and denotes R squared statistic value. The
horizontal axis ranges from 0.1 to 6, representing 60 grid points of values of q, i.e. q = f0 + 0:1 � k � 0:1gk=60k=0 .
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Figure 6: In-sample R2 Values for S&P500 Futures, with Jump Test*
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� See notes to Figure 5. All plotted values are based on use of jumps tests when calculating realized measures of jumps
for S&P500 futures returns, for the sample period 1993-2009.
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Figure 7A: Out-of-sample R2 Values for S&P500 Futures, No Jump Test*
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� See notes to Figure 5. This �gure corresponds to Figure 5, except that all reported results are for out-of-sample
experiments. See Sections 4 and 5 for further details.

Figure 7B: Out-of-sample R2 Values for S&P500 Futures, with Jump Test
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� See notes to Figure 6. This �gure corresponds to Figure 6, except that all reported results are for out-of-sample
experiments. See Sections 4 and 5 for further details.
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Figure 8: In-Sample R2 Values for Dow 30 Components for Square Root Models, No Jump Test*

Panel A: Citigroup

.12

.16

.20

.24

.28

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Power q

Square Root Model and Forecast Horizon h=1

.12

.16

.20

.24

.28

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Power q

Square Root Model and Forecast Horizon h=5

.12

.16

.20

.24

.28

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Power q

Square Root Model and Forecast Horizon h=22
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Panel C: Intel
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Panel D: Microsoft
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� See notes to Figure 5. This �gure corresponds to Figure 5, except that reported results are for selected DOW 30
components. See Sections 4 and 5 for further details.
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