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Abstract

A number of recent studies in the economics literature have focused on the usefulness of factor models

in the context of prediction using �big data� (see Bai and Ng (2008), Dufour and Stevanovic (2010), Forni

et al. (2000, 2005), Kim and Swanson (2013), Stock and Watson (2002b, 2006, 2012), and the references cited

therein). In this paper, our over-arching question is whether such �big data� are useful for modelling low

frequency macroeconomic variables such as unemployment, in�ation and GDP. In particular, we analyze the

predictive bene�ts associated with the use dimension reducing independent component analysis (ICA) and

sparse principal component analysis (SPCA), coupled with a variety of other factor estimation as well as data

shrinkage methods, including bagging, boosting, and the elastic net, among others. We do so by carrying out a

forecasting �horse-race�, involving the estimation of 28 di¤erent baseline model types, each constructed using a

variety of speci�cation approaches, estimation approaches, and benchmark econometric models; and all used in

the prediction of 11 key macroeconomic variables relevant for monetary policy assessment. In many instances,

we �nd that various of our benchmark speci�cations, including autoregressive (AR) models, AR models with

exogenous variables, and (Bayesian) model averaging, do not dominate more complicated nonlinear methods,

and that using a combination of factor and other shrinkage methods often yields superior predictions. For

example, simple averaging methods are mean square forecast error (MSFE) �best� in only 9 of 33 key cases

considered. This is rather surprising new evidence that model averaging methods do not necessarily yield

MSFE-best predictions. However, in order to �beat�model averaging methods, including arithmetic mean and

Bayesian averaging approaches, we have introduced into our �horse-race�numerous complex new models involve

combining complicated factor estimation methods with interesting new forms of shrinkage. For example, SPCA

yields MSFE-best prediction models in many cases, particularly when coupled with shrinkage. This result

provides strong new evidence of the usefulness of sophisticated factor based forecasting, and therefore, of the

use of �big data�in macroeconometric forecasting.
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1 Introduction

In macroeconomics and �nancial economics, researchers bene�t from the availability of �big
data�, in the sense that the plethora of information currently available to applied practitioners
certainly cannot worsen previous achievements in the area of macroeconometric forecasting, and
may indeed improve upon them. Our over-arching question in this paper is whether such �big
data�are useful for modelling low frequency macroeconomic variables such as unemployment,
in�ation and GDP. We begin our examination of this question by noting that available datasets
are sometimes so large as to make dimension reduction an important consideration, both in
empirical as well as theoretical contexts. One dimension reduction technique, involving the
construction of di¤usion indices, has received considerable attention in the recent econometrics
literature, particularly in the context of forecasting (see e.g. Armah and Swanson (2010a,b),
Artis et al. (2005), Bai and Ng (2002, 2006b, 2008), Boivin and Ng (2005, 2006), Ding and
Hwang (1999), Stock and Watson (2002a, 2005, 2006, 2012)). Other recent important papers
which extend the discussion in the above papers to vector and error-correction type models
include Banerjee and Marcellino (2008), Dufour and Stevanovic (2010).
Our e¤ort at connecting the current discussion of �big data�in economics with the extant

literature on di¤usion index forecasting is based on an examination of a number of novel fac-
tor estimation methods within the framework of di¤usion index forecasting. In particular, we
analyze the empirical usefulness of independent component analysis (ICA) and sparse princi-
pal component analysis (SPCA), coupled with a variety of other factor estimation as well as
data shrinkage methods, including bagging, boosting, least angle regression, the elastic net,
and the nonnegative garotte. We do so by carrying out a large number of real-time out-of-
sample forecasting experiments; and our venue for this "horse-race" is the prediction of 11 key
macroeconomic variables relevant for monetary policy assessment. These variables include the
unemployment, personal income, the 10 year Treasury-bond yield, the consumer price index,
the producer price index, non-farm payroll employment, housing starts, industrial production,
M2, the S&P 500 index, and gross domestic product; and as noted in Kim and Swanson (2013)
are discussed on the Federal Reserve Bank of New York�s website, where it is stated that �In
formulating the nation�s monetary policy, the Federal Reserve considers a number of factors,
including the economic and �nancial indicators1, as well as the anecdotal reports compiled in
the Beige Book.�
The notion of a di¤usion index is to use appropriately �distilled� latent common factors

extracted from a large number of variables as inputs in the speci�cation of subsequent parsimo-
nious (yet �information rich�) models. More speci�cally, let X be an T�N -dimensional matrix
of observations, and de�ne an T � r-dimensional matrix of dynamic factors, F . Namely, let

X = F�0 + e (1)

where e is a disturbance matrix and � is an N�r coe¢ cient matrix. Once F is extracted using
one of the estimation methods examined in this paper, we construct the following forecasting
model based on Stock andWatson (2002a,b), Bai and Ng (2006a) and Kim and Swanson (2013):

Yt+h = Wt�W + Ft�F + "t+h; (2)

1See below for a list of 11 of these indicators.
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where Yt; is the target variable to be predicted, h is the prediction horizon, Wt is a 1� s vector
of �additional�explanatory variables, and Ft is a 1� r vector of factors, extracted from F: The
parameters, �W and �F ; are de�ned conformably, and "t+h is a disturbance term. In empirical
contexts such as that considered herein, we �rst estimate r unobserved (latent) factors, say F̂ ,
from the N observable predictors, X. To achieve useful dimension reduction, r is assumed to
be much less than N; (i.e. r << N) Then, parameter estimates, �̂W and �̂F are constructed
using an in-sample dataset with Yt+h; Wt, and F̂t: Finally, ex-ante forecasts based on rolling or
recursive estimation schemes are formed.
In Kim and Swanson (2013), principal component analysis (PCA) is used in obtaining

estimates of the latent factors, called principal components. PCA yields "uncorrelated" latent
principal components via the use of data projection in the direction of the maximum variance;
and principal components (PCs) are naturally ordered in terms of their variance contribution.
The �rst PC de�nes the direction that captures the maximum variance possible, the second PC
de�nes the direction of maximum variance in the remaining orthogonal subspace, and so forth.
Perhaps because derivation of PCs is easily done via use of singular value decompositions, it
is the most frequently used method in factor analysis (see e.g. Bai and Ng (2002, 2006b) and
Stock and Watson (2002a) for details). In this paper, we additionally implement two novel new
methods for estimating latent factors, including ICA and SPCA. These nonlinear methods are
used in the statistics discipline in a variety of contexts. However, economists have yet to explore
their usefulness in forecasting contexts, to the best of our knowledge. ICA (see e.g. Comon
(1994) and Lee (1998)) uses so-called �negentropy�, which is a measure of entropy, to construct
independent factors. SPCA is designed to uncover uncorrelated components and ultimately
factors, just like PCA. However, the method also searches for components whose factor loading
coe¢ cient matrices are "sparse" (i.e., the matrices can contain zeros). Since PCA yields nonzero
loadings for entire set of variables, practical interpretation thereof is di¢ cult, and estimation
e¢ ciency may become an issue. Because it allows for �sparsity�, SPCA addresses these issues,
leading to the estimation of more parsimonious latent factors than PCA or ICA (for further
discussion, see Vines (2000), Jolli¤e et al. (2003), and Zou et al. (2006)).
In order to add functional �exibility to our forecasting models, we additionally implement

versions of (2) where the numbers and functions of factors used are speci�ed via implementa-
tion of a variety of shrinkage methods, including boosting, bagging, and related methods (as
discussed above). The key feature of our shrinkage methods is that they are used for targeted
regressor and factor selection. Related research that focuses on shrinkage and related fore-
cast combination methods is discussed in Stock and Watson (2012), Aiol� and Timmermann
(2006), and Bai and Ng (2008); and our discussion of shrinkage is meant to add to the recent
work reported in Stock and Watson (2012) and Kim and Swanson (2013), who survey and
analyze several methods for shrinkage that are based on factor augmented autoregression mod-
els of the variety given in equation (2). Finally, in our experiments, we also consider various
linear benchmark forecasting models including autoregressive (AR) models, AR models with
exogenous variables, and combined autoregressive distributed lag models.
Our �ndings can be summarized as follows. In many instances, simple benchmark ap-

proaches based on the use of various AR type models, including Bayesian model averaging, do
not dominate more complicated nonlinear methods that involve the use of factors, particularly
when the factors are constructed using nonlinear estimation methods including ICA and SPCA.
For example, simple averaging methods are mean square forecast error �best�(MSFE-best) in
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only 9 of 33 key cases considered. This is rather surprising new evidence that model averaging
methods do not necessarily yield MSFE-best predictions. However, in order to �beat�model
averaging methods, including arithmetic mean and Bayesian averaging approaches, we have in-
troduced into our �horse-race�numerous complex new models involve combining complicated
factor estimation methods with interesting new forms of shrinkage. For example, SPCA yields
MSFE-best prediction models in many cases, particularly when coupled with shrinkage. This
result provides strong new evidence of the usefulness of sophisticated factor based forecasting,
and therefore, of the use of �big data�in macroeconometric forecasting. It is also noteworthy
that pure shrinkage-based prediction models are never MSFE-best when not based on the use
of factors constructed using either PCA, ICA or SPCA analysis. This result provides strong
new evidence of the usefulness of factor based forecasting, although it should be stressed that
factor estimation alone does not yield this clear-cut result. Rather, it is usually ICA and SPCA
type factor estimation approaches, coupled with shrinkage, that yield the �best�models. Taken
together, the above results provide strong new evidence of the usefulness of sophisticated fac-
tor based forecasting, and therefore, of the use of �big data�in macroeconometric forecasting.
Two additional rather surprising conclusions that we also draw from our empirical investigation
include the following. First, recursive estimation window strategies only dominate rolling strate-
gies at the 1-step ahead forecast horizon. Second, including lags in factor model approaches
does not generally yield improved predictions.

The rest of the paper is organized as follows. In the next section we provide a survey
of dynamic factor models, independent component analysis, and sparse principal component
analysis. In Section 3, we survey the robust shrinkage estimation methods used in our prediction
experiments. Data, forecasting methods, and baseline forecasting models are discussed in
Section 4, and empirical results are presented in Section 5. Concluding remarks are given
in Section 6.

2 Di¤usion Index Models

Recent forecasting studies using large-scale datasets and pseudo out-of-sample forecasting in-
clude: Armah and Swanson (2010a,b), Artis et al. (2005), Boivin and Ng (2005, 2006), Forni
et al. (2005), and Stock and Watson (1999, 2002a, 2005, 2006, 2012). Stock and Watson (2006)
additionally discuss in some detail the literature on the use of di¤usion indices for forecast-
ing. In this section, we begin by outlining the basic factor model framework which we use
(see e.g. Stock and Watson (2002a,b) and Kim and Swanson (2013)). Thereafter, we discuss
independent component analysis and sparse principal component analysis.

2.1 Factor Models: Basic Framework

Let Xtj be the observed datum for the j�th cross-sectional unit at time t, for t = 1; :::; T and
j = 1; :::; N: Recall that we shall consider the following model:

Xtj = �
0
jFt + etj; (3)

where Ft is a r � 1 vector of common factors, �j is an r �1 vector of factor loadings associated
with Ft, and etj is the idiosyncratic component of Xtj. The product �0jFt is called the common
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component of Xtj. This is the dimension reducing factor representation of the data. More
speci�cally, With r < N , a factor analysis model has the form

X1 = �11F1 + � � �+ �1rFr + e1 (4)

X2 = �21F1 + � � �+ �2rFr + e2
...

XN = �N1F1 + � � �+ �NrFr + eN :

Here, F is a vector of r < N underlying latent variables or factors, �ij is an element of an
N � r matrix, �; of factor loadings, and the e are uncorrelated zero-mean disturbances. Many
economic analyses �t naturally into the above framework. For example, Stock and Watson
(1999) consider in�ation forecasting with di¤usion indices constructed from a large number of
macroeconomic variables. Recall also that our generic forecasting equation is:

Yt+h = Wt�W + Ft�F + "t+h; (5)

where h is the forecast horizon, Wt is a 1� s vector (possibly including lags of Y ); and Ft is a
1� r vector of factors, extracted from F: The parameters, �W and �F are de�ned conformably,
and "t+h is a disturbance term. Following Bai and Ng (2002, 2006b, 2008, 2009), the whole
panel of data X = (X1; :::; XN) can be represented as (3). We then estimate the factors, Ft, via
principal components analysis, independent component analysis, or sparse principal component
analysis. In particular, forecasts of Yt+h based on (5) involve a two step procedure because both
the regressors and the coe¢ cients in the forecasting equation are unknown. The data, Xt; are
�rst used to estimate the factors, yielding F̂t. With the estimated factors in hand, we obtain
the estimators �̂F and �̂W by regressing Yt+h on F̂t andWt. Of note is that if

p
T=N ! 0, then

the usual generated regressor problem does not arise, in the sense that least squares estimates
of �̂F and �̂W are

p
T consistent and asymptotically normal (see Bai and Ng (2008)). In this

paper, we try di¤erent methods for estimating �̂F and then compare the predictive accuracy
of the resultant forecasting models.2

In the following sections, we begin by introducing ICA and SPCA and underscoring the
di¤erence between these methods and PCA. We omit detailed discussion of principal component
analysis, given the extensive discussion thereof in the literature (see e.g. Stock and Watson
(1999, 2002a, 2005, 2012), Bai and Ng (2002, 2008, 2009), and Kim and Swanson (2013)).3

2.2 Independent Component Analysis

Independent Component Analysis (ICA) is of relevance in a variety of disciplines, since it is
predicated on the idea of "opening" the black box in which principal components often reside.
A few uses of ICA include mobile phone signal processing, brain imaging, voice signal extraction
and stock price modeling. In all cases, there is a large set of observed individual signals, and it
is assumed that each signal depends on several factors, which are unobserved.

2We refer the reader to Stock and Watson (1999, 2002a, 2005, 2012) and Bai and Ng (2002, 2008, 2009) for
a detailed explanation of this procedure, and to Connor and Korajczyk (1986, 1988, 1993), Forni et al. (2005)
and Armah and Swanson (2010b) for further detailed discussion of generic di¤usion index models.

3In the sequel, we assume that all variables are standardized, as is customary in this literature.
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The starting point for ICA is the very simple assumption that the components, F; are
statistically independent in equation (3). The key is the measurement of this independence
between components. The method can be graphically depicted as follows:

Figure 1: Schematic representation of ICA

More speci�cally, ICA begins with statistical independent source data, S, which are mixed
according to 
; and X; which is observed, is a mixture of S weighted by 
: For simplicity, we
assume that the unknown mixing matrix, 
; is square, although this assumption can be relaxed
(see Hyvärinen and Oja (2000)). Using matrix notation, we have that

X = S
 (6)

We can rewrite (6) as follows,

X1 = !11S1 + � � �+ !1NSN (7)

X2 = !21S1 + � � �+ !2NSN
...

XN = !1NS1 + � � �+ !NNSN ;

where !ij is the (i; j) element of 
: Since 
 and S are unobserved, we have to estimate the
demixing matrix 	 which transforms the observed X into the independent components, F .
That is,

F = X	

or
F = S
	:

Since we assume that the mixing matrix, 
 is square, 	 is also square, and 	 = 
�1, so that
F is exactly same as S, and perfect separation occurs. In general, it is only possible to �nd
	 such that 
	 = PD where P is a permutation matrix and D is a diagonal scaling matrix.
The independent components, F are latent variables, just the same as principal components,
meaning that they cannot be directly observed. Also, the mixing matrix, 
 is assumed to be
unknown. All we observe is data, X, and we must estimate both 
 and S using it. Only then
can we estimate the demixing matrix 	; and the independent components, F: However (7) is
not identi�ed unless several assumptions are made. The �rst assumption is that the sources,
S; are statistically independent. Since various sources of information (for example, consumer�s
behavior, political decisions, etc.) may have an impact on the values of macroeconomic vari-
ables, this assumption is not strong. The second assumption is that the signals are stationary.
For further details, see Tong et al. (1991).
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ICA under (7) assumes that N components of F exist. However, we can simply construct
factors using up to r (< N) components, without loss of generality. In practice, we can construct
r independent components by preprocessing with r principal components. See chapter 6 and
10 of Stone (2004) for further details. In general, the above model would be more realistic if
there were noise terms added. For simplicity, however, noise terms are omitted; and indeed the
estimation of the noise-free model is already computationally di¢ cult (see Hyvärinen and Oja
(2000) for a discussion of the noise-free model, and Hyvärinen (1998, 1999a) for a discussion of
the model with noise added).

2.2.1 Comparison with Principal Component Analysis

As is evident from Figure 1, ICA is exactly the same as PCA, if we let the demixing matrix be
the factor loading coe¢ cients associated with principal components analysis. The key di¤erence
between ICA and PCA is in the properties of the factors obtained. Principal components are
uncorrelated and have descending variance so that they can easily be ordered in terms of
their variances. Moreover, those components explaining the largest share of the variance are
often assumed to be the �relevant�ones for subsequent use in di¤usion index forecasting. In
particular, the �rst principal component captures the maximum variance possible, the second
component also capture the maximum variance but in an orthogonal subspace, and is thus
uncorrelated with the �rst component, and so on.
For simplicity, consider two observables, X = (X1; X2) : PCA �nds a matrix which trans-

forms X into uncorrelated components F = (F1; F2) ; such that the uncorrelated components
have a joint probability density function, pF (F ) with

E (F1F2) = E (F1)E (F2) : (8)

On the other hand, ICA �nds a demixing matrix which transforms the observed X = (X1; X2)
into independent components F � = (F �1 ; F

�
2 ) ; such that the independent components have a

joint pdf pF � (F �) with
E [F �p1 F

�q
2 ] = E [F �p1 ]E [F

�q
2 ] ; (9)

for every positive integer value of p and q. That is, the condition holds for all moments.
Evidently, PCA estimation is much simpler than ICA, since it just involves �nding a linear

transformation of components which are uncorrelated. Moreover, PCA ranks components using
their variances or correlations, so that components associated with higher variance or correlation
are assumed to have more explanatory power than those with lower variance or correlation. On
the other hand, ICA is unable to �nd the variance associated with each independent component
since both S and 
 in (6) are unknown, so that any scalar multiplier in one of the sources,
Sj; could be cancelled by dividing the corresponding mixing vector, !j by the same scalar.
Therefore, we can randomly change the order of X in (6) so that we cannot determine the
order of the independent components. From the perspective of forecasting, this is probably a
good thing, since there is no a priori reason to believe that �largest variance�PCA components
are the most relevant for predicting any particular target variable. Moreover, this feature of
ICA is the reason for using PCA for pre-processing in ICA algorithms. For further details
about preprocessing, see Appendix F of Stone (2004).
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2.2.2 Estimation of ICA

Estimation of independent components is done by estimating the demixing matrix iteratively,
systematically increasing the degree of independence of the components. As noted above, un-
correlated components are not independent (except under Gaussianity). However, there is no
direct measure for independence. The standard approach is instead to use so-called �non-
gaussianity� as a measure of independence. In contrast, Gaussian variables cannot produce
independent components. This is a straightforward result, since the distribution of any orthog-
onal transformation of two independent and Gaussian random variables, say X1 and X2; has
the same distribution as that of X1 and X2; in turn implying that the mixing matrix, 
 cannot
be identi�ed.
For simplicity, let all independent components have the same distribution. For the �rst

independent component, consider a linear combination of Xj; j = 1; :::; N; so that Fj = X	j,
where 	j is a vector to be estimated. If 	j were one of the rows of the inverse of 
, this linear
combination would equal one of the independent components. In practice, it is not possible to
obtain 	j exactly, since 
 is not observed. Instead, let � = 	
: Then, we can express Fj as a
linear combination of the unobserved source S because

Fj = X	j = S
	j = S�j;

and combination weights are given by �j . Note also that a sum of two independent random
variables is in a concrete sense �more�Gaussian than the original variables, given a central limit
theorem. Therefore, S�j is �more�Gaussian than any of the S 0s: In practice, the objective
is to extract 	j as a vector maximizing the nongaussianity of X	j. This in turn implies that
X	j = S�j is an independent component.

Measuring Nongaussianity In this section we discuss how we measure nongaussianity.
The easiest way is via the use of kurtosis.

1. Kurtosis: kurt(F ) = E [F 4] � 3 (E [F 2])2 ; which is zero under Gaussianity. However,
this measure is very sensitive to outliers, and so is not particularly useful for measuring
nongaussianity.

2. Entropy�Negentropy: Another way of measuring nongaussianity or independence is en-
tropy. The di¤erential entropy H of a random variable F with pdf, pF is de�ned as

H (F ) = �
Z
pF (f) ln pF (f) dF (10)

Note that a moment of a pdf can be expressed as an expectation, and (10) can thus be
expressed as

H (F ) = �E [ln pF (f)] : (11)

A fundamental result of information theory is that a Gaussian variable has the largest
entropy among all random variables of equal variance. This supports the use of entropy as
a measure of nongaussianity. Moreover, entropy tends to be smaller when the distribution
is dense around a certain value. Based on these results, one often uses a modi�ed version
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of entropy, so called negentropy, N;where:

N (F ) = H (Fgauss)�H (F ) : (12)

Here, Fgauss is a Gaussian random variable with the same covariance matrix as F: The
negentropy, N (�), as a measure of nongaussianity, is zero for a Gaussian variable and is
always nonnegative. Comon (1994), Hyvärinen (1999b) and Hyvärinen and Oja (2000)
note that negentropy has additional interesting properties, including the fact that it is
invariant under invertible linear transformations.

3. Mutual Information: This measure is of the amount of information each variable contains
about each other variable. Namely, it is the di¤erence between the sum of individual
entropies and the joint entropy of two variables, and is de�ned as follows:

I (F ) =
nX
i=1

H (Fi)�H (F ) ; (13)

for n random variables. The quantity I (F ) is equivalent to the Kullback-Leibler distance

between density g (F ) of F and its independence version
nY
i=1

gi (Fi) ; where gi (Fi) is the

marginal density of Fi: The mutual information becomes zero if the variables are statis-
tically independent. This is somewhat similar to negentropy. If we have an invertible
linear transformation F = X	, then

I (F ) =
nX
i=1

H (Fi)�H (X)� ln jdet	j (14)

becomes

I (F ) =
nX
i=1

H (Fi)�H (X) : (15)

Finding 	 to minimize I (F ) = I (X	) involves looking for the orthogonal transformation
that leads to the �most� independence between its components; and this is equivalent
to minimizing the sum of the entropies of the separate components of F: That is, min-
imization of mutual information is equivalent to �nding directions where negentropy is
maximized.

Estimation of Entropy Negentropy is well known and understood in the statistics litera-
ture, and is the optimal estimator of nongaussianity in contexts such as that considered here.
A classical approximation of negentropy using higher-order moments is the following:

N (F ) t
1

12
E
�
F 3
�2
+
1

48
kurt (F )2 : (16)
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Another approximation from Hyvärinen (1998) is based on the maximum-entropy principle,
does not explicitly include a measure of kurtosis, and is de�ned as follows:

N (F ) t �
j
kj [E fGj (F )g � E fGj (Z)g]2 ; (17)

where the kj are positive constants, Z is a standardized Gaussian variable, F is standardized,
and the Gj are nonquadratic functions. Note that (17) can be used consistently, in the sense
that it is always non-negative, and equals zero if F has a Gaussian distribution. Simple versions
of this approximation use only one nonquadratic function, G; leading to:

N (F ) / [E fG (F )g � E fG (�)g]2 : (18)

This equation is a generalization of (16), when F is symmetric. If one sets G as the quartic,
(18) becomes (16). Therefore, choosing an appropriate G function is important. If we pick
non-fast growing G, we may have more robust estimators. Hyvärinen and Oja (2000) suggest
two Gs, and they show that these functions yield good approximations. They are:

G1 (y) =
1

a1
log cosh a1y (19)

and
G2 (y) = � exp

�
�u2=2

�
; (20)

where 1� a1 � 2 is some suitable constant.

2.2.3 ICA Algorithm: FastICA

ICA implementation involves �nding a direction for a unit vector, 	j; such that the component
projection matrix, X	j; maximizes nongaussianity. In this paper, we estimate negentropy to
measure nongaussianity via the �FastICA�algorithm which e¢ ciently minimizes negentropy.
FastICA is a popular ICA algorithmwhich is based on a �xed-point scheme for tracking maximal
nongaussianity of the projection matrix, X	 = fX	1; :::;X	ng ; where the 	j are the column
vectors of 	, and are not correlated with each other. Simply put, the algorithm �nds a unit
vector 	j such that X	j maximizes nongaussianity, as measured by negentropy (see equation
(18)). Note that the variance of X	j is constrained to be unity, so that the norm of 	j is
constrained to be unity, since we use standardized data.
Let g be the derivative of the nonquadratic function G used in (19) and (20). FastICA is the

�xed-point algorithm which maximizes (18), and maxima are obtained at optima E fG (F )g =
E fG (X	)g : Let us explain with one unit for simplicity. Using Kuhn-Tucker conditions, the
optima of E fG (X	j)g under the constraint E

�
G (X	j)

2	 = k	jk = 1 can be obtained at
E fG (X	j)g � �	j = 0: One can solve this equation using the Newton-Raphson method. See
Hyvärinen and Oja (2000) for computational details. Thus, we have the following iterative
procedure:

	� = 	� [E fXg (X	j)g � �	j]

[E fg (X	j)g � �]
: (21)

Multiplying both sides by �� E fg0 (X	j)g yields
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	� = E fXg (X	j)g � E fg0 (X	j)g	j: (22)

The basic FastICA algorithm is as follows.

1. Choose an initial weight vector 	:

2. For j = 1; :::; r; �nd mixing vectors yielding components with minimized negentropy. Let
	�j = E fXg (X	j)g � E fg0 (X	j)g	j:

3. Set 	+j = 	
�
j=
	�j : If convergence is not achieved, go back to Step 2.

4. To decorrelate j independent components, for j � 2; set (a) 	+j = 	+j � �
j�1
h=1	

+0
j 	h	h

and then (b) 	+j = 	
+
j =
q	+0j 	+j :

The initial vector, 	; is given from the loadings of the r ordinary principal components
(Penny et al. (2001) and Stone (2004)) Once the �nal 	 is estimated, X	 are the independent
components. In this paper, we choose G as in (19), and accordingly g is de�ned as tanh (u) ; if
we set a1 = 1:

2.3 Sparse Principal Component Analysis

As was explained in the previous section, principal components are linear combinations of
variables that are ordered by covariance contributions, and selection is of a small number of
components which maximize the variance that is explained. However, factor loading coe¢ cients
are all typically nonzero, making interpretation of estimated components di¢ cult. SPCA aids
in the interpretation of principal components by placing (zero) restrictions on various factor
loading coe¢ cients.
For example, Jolli¤e (1995) modi�es loadings to be values such as 1, -1 and 0. Another

approach is setting thresholds for the absolute value of the loadings, below which loadings are
set to zero. Jolli¤e et al. (2003) suggest using so-called �SCoTLASS� to construct modi�ed
principal components with possible zero loadings, �; by solving

max�0(X 0X)�; subject to
NX
j=1

j�jj � '; �0� = 1;

for some tuning parameter, '. The absolute value threshold results in (various) zero loadings,
hence inducing sparseness. However, the SCoTLASS constraint does not ensure convexity, and
therefore the approach may be computationally expensive. As an alternative, Zou et al. (2006)
develop a regression optimization framework. Namely, they assume that the X are dependent
variables, F are explanatory variables, and the loadings are coe¢ cients. They then use the
lasso (and elastic net) to derive a sparse loading matrix. Other recent approaches include those
discussed in Leng and Wang (2009) and Guo et al. (2010), both of which are based on Zou
et al. (2006). We follow the approach of Zou et al. (2006), and readers are referred to Sections
3.3-3.5 of their paper for complete details. As an introduction to the method, the following
paragraphs summarize key discussions from their paper.
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2.3.1 Estimation of Sparse Principal Components

Suppose that we derive principal components (PCs), F; via ordinary PCA. In particular, our
standardized data matrix, X is identical to UDV 0 by the singular value decomposition. The
PCs, F; are de�ned as UD, and V are the factor coe¢ cient loadings. Then, let the estimated j-
th principal component ; Fj be the dependent variable andX be independent variables. Suppose

that �̂
Ridge

j is the ridge estimator4 of the loading for the j-th principal component. We solve
the following problem to obtain the ridge estimator,

�̂
Ridge

j = argmin
�j
kFj �X�jk2 + � k�jk2 : (23)

Note that after normalization, the coe¢ cients are independent of �: Therefore, the ridge penalty
term, � k�jk2, is not used to penalize the regression coe¢ cients but rather in the construction
of the principal components. Add an L1 penalty to (23) and solve the following optimization
problem; namely, solve the so-called naïve elastic net (NEN) (see Section 3.4 for details on the
NEN), as follows:

�̂
NEN

j = argmin
�j
kFj �X�jk2 + � k�jk+ �1 k�jk1 ; (24)

where k�jk1 =
N

�
i=1
j�ijj : Here, X�̂j is the j-th principal component. In this problem, large

enough �1 guarantees a sparse �; and hence a sparse loading matrix. With a �xed value of �, the
problem given by equation (24) can be solved using the LARS-EN algorithm5 proposed by Zou
and Hastie (2005). Zou et al. (2006) modify this idea to a more general lasso regression type
problem. In particular, they use a two-stage analysis in which they �rst estimate the principal
components by the ordinary PCA, and thereafter �nd sparse loadings using (24). This type of
SPCA is predicated on the fact that PCA can be written as a penalized regression problem6,
and thus the lasso, or the elastic net, can be directly integrated into the regression criterion
such that the resulting modi�ed PCA produces sparse loadings.
Continuing the above discussion, note that Zou et al. (2006) suggest using the following

penalized regression type criterion. Let Xt denote the t-th row vector of the matrix X: For any
positive value of �; let �

�̂j; �̂j

�
= argmin

�j ;�j

T

�
t=1

Xt � �j�
0
jXt

2 + � k�jk2 ; (25)

subject to k�jk2 = 1:

Then, �̂j becomes the approximation to the j-th factor loadings, �j: If we let � equal �,

then
T

�
t=1

Xt � �j�
0
jXt

2 = T

�
t=1

Xt � �j�
0
jXt

2 . Therefore, �̂(= �̂) becomes the j-th ordinary

principal component loading (see Hastie et al. (2009) for details). Equation (25) can be easily
extended to derive the whole sequence of PCs. Let there be r components. Set � and � to be

4See Section 3.3 for further details about the ridge estimator.
5See Section 3.5 for details about the LARS-EN algorithm.
6See Section 3.2 of Kim and Swanson (2013) for a discussion of penalized regression
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N � r matrices. For any positive value of �; let�
�̂; �̂

�
= argmin

�;�

T

�
t=1
kXt ���0Xtk2 + �

r

�
j=1
k�jk2 (26)

subject to �0� = Ir:

Here, � is anN�r matrix with column �j and� is also anN�r orthonormal constraint, so that
�̂j is the approximation to the j-th factor loadings, �j; for j = 1; :::; r. As we see in the above
expression, by setting � and � to be equal, �̂ becomes the exact r factor loadings of ordinary
principal components. Equation (26) is the generalized derivation of principal components and
enables us to obtain sparse loadings by modifying the original PCA problem. The penalty
parameter in the above expression is applied for all variables, and so we do not yet have sparse
loadings, however. To construct sparsity, add a lasso penalty into equation (26), and consider
the following penalized regression problem,�

�̂; �̂
�
= argmin

�;�

T

�
t=1
kXt ���0Xtk2 + �

r

�
j=1
k�jk2 +

r

�
j=1
�1;j k�jk1 ; (27)

subject to �0� = Ir:

Here, �̂ is the approximation of the factor loadings. This problem has two penalties; the
�rst term, � is applied to all possible r components, and the second term, �1;j is applied to
individual components to penalize their loadings. As in the estimation of a single component in

equation (25), if we set � = �, then we have
T

�
t=1
kXt ���0Xtk2 =

T

�
t=1
kXt ���0Xtk2, and so

�̂(= �̂) becomes the ordinary principal component loading matrix. Since equation (27) is not
jointly convex for � and �, two steps to solve this problem are needed. The �rst one involves
�xing �; and then minimizing over �; which leads to a problem involving r elastic nets. In
particular, since � is orthonormal, let �y be any orthonormal matrix such that

�
�;�y� is an

r � r orthonormal matrix. Then we have

T

�
t=1
kXt ���0Xtk2 = kX �X��0k2

=
X�y2 + kX��X�k2

=
X�y2 + r

�
j=1
kX�j �X�jk2

That is, let � be given. The optimal solution for � is based on minimizing

argmin
�

r

�
j=1

�
kX�j �X�jk2 + � k�jk2 + �1;j k�jk1

�
: (28)

This is equivalent to r independent elastic net problems. If we rewrite (28) for a single loading,
we have

�̂j = argmin
�j

F �j �X�j
2 + � k�jk2 + �1;j k�jk1 ; (29)
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where F �j = X�j: Now, (29) is identical to

(�j � �j)
0X 0X (�j � �j) + � k�jk2 + �1;j k�jk1 : (30)

Here, we only need to calculate the correlation matrix, since we already standardized X. In
the end, we solve these elastic nets e¢ ciently via the LARS-EN algorithm discussed below.
The next step involves minimizing (27) over �; with �xed �: Then penalty term in this

problem is now meaningless, and so the problem is solved by minimizing

T

�
t=1
kXt ���0Xtk2 ; (31)

subject to �0� = Ir:

This problem can be solved by the so called �Procrustes�transformation. (see Chapter 14.5 of

Hastie et al. (2009) for details). Since
T

�
t=1
kXt ���0Xtk2 = kX �X��0k2 ; using an appropri-

ate transformation, we have the following singular value decomposition

X 0X� = UDV 0;

where �̂ = UV 0: In practice, we let � be the factor loading matrix associated with ordinary
PCs, then we estimate � as a sparse factor loading matrix. In this variant of the problem, the
LARS-EN algorithm discussed below delivers a whole sequence of sparse approximations for
each PC and the corresponding values of �1;j:

2.3.2 SPCA algorithm

The numerical solution for the SPCA criterion to obtain sparse principal components is given
as follows.

1. Let � be the loadings of the �rst r ordinary principal components.

2. Given �; solve the following problem for j = 1; 2; :::; r.

�j = argmin
�
(�j � �)0X 0X (�j � �) + � k�k2 + �1;j k�k1 :

3. For each �xed � = [�1; :::; �r]; do the singular vector decomposition on X 0X� = UDV 0,
then update �� = UV 0:

4. Repeat steps 2-3, until convergence.

In practice, the choice of � does not change the result very much, particularly in the case
where X is a full rank matrix, in which case zero is a reasonable value to use. Additionally,
one may try picking �1 using cross-validation, or a related method. Moreover, the LARS-EN
algorithm e¢ ciently solves this problem for all possible values of �1 (see Zou and Hastie (2005)
or Kim and Swanson (2013) for computational details). Since the tuning parameter, �1; a¤ects
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the sparsity and variance of the components simultaneously, the algorithm is designed to give
more weight to variance.
Note that if F̂ ; are factors estimated by ordinary PCA, then they are uncorrelated so that

we can compute the total variance explained by F̂ as tr
�
F̂ 0F̂

�
. However, two conditions

for principal components, uncorrelatedness and orthogonality, are not guaranteed in the case
of sparse principal components. Still, it is necessary to derive the total variance in order to
explain howmuch the components explain, even when the above two conditions are not satis�ed.
Zou et al. (2006) proposes a new way to compute the variance explained by the components,

accounting for any correlation among the components. Since variance is given as tr
�
F̂ 0F̂

�
for total variance if sparse principal components are already uncorrelated, this formula can
be used more generally to compute the total variance of sparse principal components. Let
~F =

h
~F1; :::; ~Fr

i
be the r components constructed via sparse principal component analysis.

Denote r̂j as the residual after regressing ~Fj on ~F1; :::; ~Fj�1; so that

r̂j = ~Fj �P1;:::;j�1 ~Fj;

where P1;:::;j�1 is the projection matrix on ~F1; :::; ~Fj�1: Then, the adjusted variance of a single

component is kr̂jk2 and the total variance is
r

�
j=1
kr̂jk2 : In practice, computation is easily done

by QR factorization. If we let ~F = QR; then kr̂jk2 = R2jj; so that total variance is
r

�
j=1
R2jj:

Since the above computation is sequential, the order of components matters. However, in the
current paper, we derive sparse PCs based on ordinary PCs, which are in turn already ordered
by the size of the variance.

3 Robust Estimation Techniques

We consider a variety of �robust� shrinkage techniques in our forecasting experiments. The
methods considered include bagging, boosting, ridge regression, least angle regression, the
elastic net, the non-negative garotte and Bayesian model averaging. Here, we brie�y summarize
the shrinkage methods, and provide relevant citations to detailed discussions thereof.
Bagging, which was introduced by Breiman (1996), is a machine based learning algorithm

whereby outputs from di¤erent predictors of bootstrap samples are combined in order to im-
prove overall forecasting accuracy. Bühlmann and Yu (2002) use bagging in order to improve
forecast accuracy when data are iid. Inoue and Kilian (2008) and Stock and Watson (2012)
extend bagging to time series models. Stock and Watson (2012) consider �bagging�as a form of
shrinkage, when constructing prediction models. In this paper, we use the same algorithm that
they do when constructing bagging estimators. This allows us to avoid time intensive bootstrap
computation done elsewhere in the bagging literature. Boosting, a close relative of bagging,
is another statistical learning algorithm, was originally designed for classi�cation problems in
the context of Probability Approximate Correct (PAC) learning (see Schapire (1990)), and is
implemented in Freund and Schapire (1997) using the algorithm called �AdaBoost.M1�. Hastie
et al. (2009) apply it to classi�cation, and argue that �boosting� is one of the most powerful
learning algorithms currently available. The method has been extended to regression problems
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in Ridgeway et al. (1999) and Shrestha and Solomatine (2006). In the economics literature, Bai
and Ng (2009) use a boosting for selecting the predictors in factor augmented autoregressions.
We implement a boosting algorithm that mirrors that used by these authors.
The other shrinkage methods implemented herein are basically regression with regression

coe¢ cient penalization. First, we consider ridge regression, which is a well known linear re-
gression shrinkage method which modi�es sum of square residual computations to include a
penalty for inclusion of larger numbers of parameters. Conveniently, ridge regression uses a
quadratic penalty term, and has a closed form solution. Second, we implement the �least ab-
solute shrinkage and selection operator� (lasso), which was introduced by Tibshirani (1996),
and is another attractive technique for variable selection using high-dimensional datasets, espe-
cially when N is greater than T . This method doesn�t yield a closed form solution, and it needs
to be estimated numerically. Third, we examine �Least Angle Regression�(LARS), which is
introduced in Efron et al. (2004), and is a method for choosing a linear model using the same
set of data as that used to evaluate and implement the model. LARS can be interpreted as the
algorithm which �nds a solution path for the lasso. Moreover, LARS is based on a well known
model-selection approach known as �forward-selection�, which has been extensively used to
examine cross-sectional data (for further details, see Efron et al. (2004)). Bai and Ng (2008)
show how to apply LARS and the lasso in the context of time series data, and Gelper and
Croux (2008) extend Bai and Ng (2008)�s work to time series forecasting with many predictors.
We implement Gelper and Croux (2008)�s algorithm when constructing the LARS estimator.
Fourth, we consider a related method called the �Elastic Net�, which is proposed by Zou and
Hastie (2005), and which is also similar to the lasso, as it simultaneously carries out automatic
variable selection and continuous shrinkage. Its name comes from the notion that it is simi-
lar in structure to a stretchable �shing net that retains �all the big �sh�. LARS-Elastic Net
(LARS-EN) is proposed by Zou and Hastie (2005) for computing entire elastic net regulariza-
tion paths using only a single least squares model, for the case where the number of variables
is greater than the number of observations. Bai and Ng (2008) apply the elastic net method
to time series using the approach of Zou and Hastie (2005). We also follow their approach
when implementing the elastic net. Finally, we consider the so-called, �non-negative garotte�,
originally introduced by Breiman (1995). This method is a scaled version of the least square
estimator with shrinkage factors. Yuan and Lin (2007) develop an e¢ cient garrotte algorithm
and prove consistency in variable selection. We follow Yuan and Lin (2007) in the sequel.
In addition to the above shrinkage methods, we consider Bayesian model averaging (hence-

forth, BMA), as it is one of the most attractive methods for model selection currently available
(see Fernandez et al. (2001b), Koop and Potter (2004) and Ravazzolo et al. (2008)). The con-
cept of Bayesian model averaging can be described with simple probability rules. If we consider
R di¤erent models, each model has a parameter vector and is represented by its prior prob-
ability, likelihood function and posterior probability. Given this information, using Bayesian
inference, we can obtain model averaging weights based on the posterior probabilities of the
alternative models. Koop and Potter (2004) consider BMA in the context of many predictors
and evaluate its performance. We follow their approach.
In the following subsections, we explain the intuition behind the above methods, and how

they are used in our forecasting framework.
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3.1 Bagging

Bagging, which is short for �bootstrap aggregation�, was introduced by Breiman (1996) as a
device for reducing prediction error in learning algorithms. Bagging involves drawing bootstrap
samples from the training sample (i.e. in-sample), applying a learning algorithm (prediction
model) to each bootstrap sample, and averaging the predicted values. Consider the regression
problem with the training sample fY;Xg : Generate B bootstrap samples from the dataset and
form predictions, Ŷ �

b (X
�
b ) ; say, using each bootstrap sample, b = 1; :::; B. Bagging averages

these predictions across bootstrap samples in order to reduce prediction variation. In particular,
for each bootstrap sample, fY �

b ; X
�
b g ; regress Y �

b on X
�
b and construct the �tted value Ŷ

�
b (X

�
b ).

The bagging predictor is de�ned as follows:

Ŷ Bagging =
1

B

BX
b=1

Ŷ �
b (X

�
b ) (32)

Inoue and Kilian (2008) apply this bagging predictor in a time series context. Bühlmann and
Yu (2002) consider bagging with a �xed number of strictly exogenous regressors and iid errors,
and show that, asymptotically, the bagging estimator can be represented in shrinkage form.
Namely:

Ŷ Bagging
T+h =

N

�
j=1
 (!j) �̂jXTj + op (1) ; (33)

where Ŷ Bagging
T+h is the forecast of Yt+h made using data through time T; �̂j is the least squares estimator

of �j under Y = X� and !j =
p
T �̂j=se; with s2e = �Tt=1(Yt+h � Xt�̂

0
)2=(T � N); where

�̂ =
�
�̂1; :::; �̂N

�0
: Also,  is

 (!) = 1� � (! + c) + � (! � c) + !�1[� (! � c)� � (! + c)]; (34)

where c is the pre-test critical value, � is the standard normal density and � is the standard
normal CDF.
Now, following Stock and Watson (2012), de�ne the forecasting model using bagging as

follows:
Ŷ Bagging
T+h = WT �̂W +

r

�
j=1
 (!j) �̂FjF̂Tj; (35)

where �̂W is the LS estimator of �W ; WT is a vector of observed variables (e.g. lags of Y ) as
in (5), and �̂Fj is estimated using residuals, YT+h �WT �̂W : The t-statistics used for shrinkage
(i.e. the !j) are computed using least squares and Newey-West standard errors. Further, the
pretest critical value for bagging in this paper is set at c = 1:96.

3.2 Boosting

Boosting (see Freund and Schapire (1997)) is a procedure that combines the outputs of many
�weak learners�(models) to produce a �committee�(prediction). In this sense, boosting bears
a resemblance to bagging and other �committee-based� shrinkage approaches. Conceptually,
the boosting method builds on a user-determined set of many weak learners (for example, least
square estimators) and uses the set repeatedly on modi�ed data which are typically outputs
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from previous iterations of the algorithm. Typically this output comes from minimizing a loss
function averaged over training data. In this sense, boosting has something in common with
forward stagewise regression. The �nal boosted procedure takes the form of linear combinations
of weak learners. Freund and Schapire (1997) propose the so-called �adaBoost� algorithm.
AdaBoost and other boosting algorithms have attracted a lot of attention due to their success
in data modeling.
Friedman et al. (2000) extend AdaBoost to �Real AdaBoost�, which focuses on the con-

struction of real-valued predictions. Suppose that we have a training sample of data, (Y;X),
and let �̂ (X) be a function (learner) de�ned on Rn: Also, let L (Yt; � (Xt)) be the loss func-
tion that penalizes deviations of �̂ (X) from Y; at time t: The objective is to estimate � (�) to
minimize expected loss, E [L (Yt; �̂ (Xt))] : Popular �learners�include smoothing splines, kernel
regressions and least squares. Additionally, in AdaBoost, an exponential loss function is used.
Friedman (2001) introduces �L2Boosting�, which takes the simple approach of re�tting base

learners to residuals from previous iterations under quadratic loss. Bühlmann and Yu (2003)
suggest another boosting algorithm, �tting learners using one predictor at one time when large
numbers of predictors exist. Bai and Ng (2009) modify this algorithm to handle time-series.
We use their �Component-Wise L2Boosting�algorithm in the sequel.

Boosting Algorithm Let Z = Y � Ŷ W ; which is obtained in a �rst step by �tting an
autoregressive model to the target variable using Wt as regressors. Then, using estimated
factors:

1. Initialize : �̂0 (Ft) =
_

Z, for each t.

2. For i = 1; :::;M iterations, carry out the following procedure. For t = 1; :::; T; let ut = Zt�
�̂i�1 (Dt) be the �current residual�. For each j = 1; ::; r; regress the current T�1 residuals,
u on F̂j (the j-th factor) to obtain �̂j:

3. Compute d̂j = u � F̂j�̂j for j = 1; ::; r; and the sum of squared residuals, SSRj =
d̂0j d̂j: Let j

i
� denote the column selected at the i

th iteration, say, such that SSRji� =
minj2[1;:::;r] SSRj; and let ĝi�(F ) = F̂ji� �̂ji� :

4. For t = 1; :::; T; update �̂i = �̂i�1 + �ĝi�; where 0 � � � 1 is the step length.

Over-�tting may arise if this algorithm is iterated too many times. Therefore, selecting the
number of iterations, M is crucial. Bai and Ng (2009) de�ne the stopping parameter M using
an information criterion of the form:

IC (i) = log
h
�̂
i2
i
+
AT � df i
T

(36)

where �̂
i2

= �Tt=1

�
Yt � �̂i

�
F̂t

��2
and AT = log(T ): Evidently,

M = argmin
i
IC (i) : (37)

Here, the degrees of freedom is de�ned as df i = trace (Bi) ; where Bi = Bi�1�P(i) (IT �Bi�1) =

IT � �ih=0
�
IT � �P(h)

�
; with P(i) = F̂ji�

�
F̂ 0ji�F̂ji�

��1
F̂ji� : Starting values for B

i are given as
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B0 = 1
�
P (0) = 10T1T=T; where 1T is a T � 1 vector of 1�s. Our boosting estimation uses this

criterion. Finally, we have:
Ŷ Boosting
t+h = Wt�̂W + �̂M

�
F̂t

�
; (38)

where �̂W is de�ned above.

3.3 Ridge Regression

In the following three subsections, we discuss penalized regression approaches, including ridge
regression, least angle regression, the elastic net and the nonnegative garotte. These methods
shrink regression coe¢ cients by only retaining a subset of potential predictor variables. Ridge
regression, as introduced by Hoerl and Kennard (1970), is the classical penalized regression
method, and is introduced here in order to place the methods discussed thereafter in context.
Consider explanatory variables that are stacked in an T �N matrix, and a univariate response
or target variable, Y . Coe¢ cients are estimated by minimizing a penalized residual sum of
squares criterion. Namely, de�ne:

�̂
Ridge

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!2
+ �

NX
i=1

�2i

35 ; (39)

where � is a positive penalty parameter. The larger is �; the more we penalize coe¢ cients,
and the smaller the eventual subset of possible predictors that is used. The ridge regression
estimator in (39) can be restated in the context of constrained regression, as follows:

�̂
Ridge

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!235 ; (40)

subject to
NX
i=1

�2i � m;

where m is a positive number which corresponds to �: (Note that all observable predictors
are standardized here, as elsewhere in this paper.) The ridge criterion (39) picks coe¢ cients
to minimize the residual sum of squares, and can conveniently be written in matrix form, as
follows:

RSS (�) = (Y �X�)0 (Y �X�) + ��0�; (41)

where RSS denotes the residual sum of squares. Thus,

�̂
Ridge

= (X 0X + �I)
�1
X 0Y; (42)

where I is the N � N identity matrix. In our experiments, we use the following model for
forecasting:

Ŷ Ridge
t+h = Wt�̂W + F̂t�̂

Ridge

F : (43)

Note that there is another penalized regression method that is similar to ridge regression,
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which is called the lasso (i.e. least absolute shrinkage selection operator). The key di¤erence
between two methods is the penalty function. The lasso estimator is de�ned as follows:

�̂
Lasso

= argmin
�

24 TX
t=1

 
Yt �

NX
i=1

Xti�i

!235 ; (44)

subject to
NX
i=1

j�ij � m

That is, the L2 ridge penalty is replaced by an L1 lasso penalty. Accordingly, the lasso does
not have a closed form solution like the ridge estimator. Although we report �ndings based
upon ridge regression type models, we no not estimate the lasso, as it can be interpreted as a
special case of least angle regression, which is discussed in the next subsection.

3.4 Least Angle Regression (LARS)

Least Angle Regression (LARS) is proposed in Efron et al. (2004), and can be viewed as an
application of forward stagewise regression. In forward stagewise regression, predictor sets are
constructed by adding one new predictor at a time, based upon the explanatory context of each
new candidate predictor in the context of a continually updated least squares estimator. For
details, see Efron et al. (2004).
Like many other stagewise regression approaches, start with �̂0 = �Y ; the mean of the

target variable, use the residuals after �tting Wt to the target variable, and construct a �rst
estimate, �̂ = Xt�̂; in stepwise fashion, using standardized data. De�ne �̂G to be the current
LARS estimator, where G is a set of variables that is incrementally increased according to
the relevance of each variable examined. De�ne c (�̂G) = ĉ = X 0 (Y � �̂G) ; where X is the
�current�set of regressors, to be the �current correlation�vector of length N . In particular,
de�ne the set G to be the set including covariates with the largest absolute correlations; so that
we can de�ne Ĉ = max

j
fĉjg and G =

n
j : jĉjj =

���Ĉ���o ; by letting sj = sign (ĉj) (i.e. �1); for
j 2 G; and de�ning the active matrix corresponding to G as XG = (:::sjXj:::)j2G : The objective
is to �nd the predictor, Xj; that is most highly correlated with the residual. Let

DG = X 0
GXG and AG =

�
10GD�1G 1G

�� 1
2 ; (45)

where 1G is a vector of ones equal in length to the rank of G. A unit equiangular vector with
columns of XG can be de�ned as uG = XGwG; where wG = AGD�1G 1G so that X 0

GuG = AG1G:
LARS then updates �̂ as

�̂G+ = �̂G + ̂uG; (46)

where

̂ = min
j2Gc

+

 
Ĉ � ĉj
AG � aj

! 
Ĉ + ĉj
AG + aj

!
; (47)

with aj = X 0wj for j 2 Gc: Efron et al. (2004) show that the lasso is in fact a special case of
LARS that imposes speci�c sign restrictions. In summary, LARS is a procedure that simply
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seeks new predictors that have the highest correlation with the current residual.
In order to apply LARS to time series data, Gelper and Croux (2008) revise the basic

algorithm described here. They start by �tting an autoregressive model to the target variable,
excluding predictor variables, using least squares. The corresponding residual series is retained
and its standardized version is denoted by Z. The time-series LARS (henceforth, TS-LARS)
procedure ranks the predictors according to how much they contribute to improving upon
autoregressive �t. Using estimated factors as regressors, the following is the �LARS�algorithm
of Gelper and Croux (2008):

LARS Algorithm

1. Fit an autoregressive model to the dependent variable without factors and retain the
corresponding residuals. The objective is to forecast these residuals. Begin by setting
�̂0 = �̂0

�
F̂
�
= �Z; as done in the boosting algorithm above, and using standardized data.

2. For i = 1; 2; :::; r :

(a) Pick ji� from j = 1; 2; :::; r (� N) which has the highest R2 value, R2
�
�̂i�1 � F̂j

�
;

where R2 is a measure of least square regression �t, and where �v " denotes horizontal
concatenation. The predictor with highest R2 is denoted F̂(i) = F̂ji� ; and this predictor
will be included in the active set Gi: That is, F̂(i) denotes the ith ranked predictor, the
active set Gi will contain F̂(1); F̂(2); :::; F̂(i); and ji� is excluded in next iteration.
(b) Denote the matrix corresponding to the ith ranked active predictor by H(i); which
is the projection matrix on the space spanned by the columns of F̂(i): That is, H(i) =

F̂(i)

�
F̂ 0(i)F̂

�1
(i)

�
F̂ 0(i):

(c) Let ~F(i) = H(i)�̂
i�1 be the T � 1 standardized vector of values, F̂ ; at the ith iteration:

Then, �nd the equiangular vector ui; where ui =
�
~F(1); ~F(2); :::; ~F(i)

�
wi; wi =

D�1
Gi
1iq

10iD
�1
Gi
1i
;

DGi = F 0
GiFGi , FGi =

�
:::sjF̂

j:::
�
j2Gi

, sj = sign (ĉj) ; and ĉ = F̂ 0
�
�Z � �̂i

�
.

3. (iii) Update the response �̂i = �̂i�1 � ̂iui; where ̂i is the smallest positive solution for
a predictor F̂j which is not already in the active set, and is de�ned in (47):Then go back
to Step 2, where F̂(i+1) is added to the active set and the new response is standardized
and denoted by �̂i+1 (see Gelper and Croux (2008) for further computational details).

After ranking the predictors, F̂ , the highest ranked will be included in the �nal model. Now,
the only choice remaining is how many predictors to include in the model. Finally, construct

Ŷ LARS+

t+h = Wt�̂W + �̂LARS(F̂t) (48)

where �̂LARS(F̂t) is the optimal value of the LARS estimator: The �nal predictor of Y is formed
by adding back the mean to Ŷ LARS+

t+h :
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3.5 Elastic Net (EN)

The elastic net (EN) is proposed by Zou and Hastie (2005), who point out various limitations
of the lasso. Since it is a modi�cation of the lasso, it can be viewed as a type of LARS, and
indeed, their algorithm is sometimes called �LARS-EN�. In order to motivate the LARS-EN
algorithm, we begin with a generic discussion of the �naïve elastic net�(NEN). Assume again
that we are interested in X and Y; and that the variables in X are standardized. For any �xed
non-negative �1 and �2, the naive elastic net criterion is de�ned as:

L (�1; �2; �) = jY �X�j2 + �2 j�j
2 + �1 j�j1 ; (49)

where j�j2 =
NP
j

(�j)
2 and j�j1 =

NP
j

���j��. The naïve elastic net estimator is �̂NEN = argmin
�
fL (�1; �2; �)g :

This problem is equivalent to the optimization problem:

�̂
NEN

= argmin
�
jY �X�j2 ; subject to (1� �) j�j1 + � j�j2 ; (50)

where � = �2
�1+�2

: The term (1� �) j�j1 + � j�j2 is called the elastic net penalty, and leads to
the lasso or ridge estimator, depending on the value of �: (If � = 1; it becomes ridge regression;
if � = 0; it is the lasso, and if � 2 (0; 1); it has properties of both methods.) The solution to
the naïve elastic involves de�ning a new dataset (X+; Y +) ; where

X+
(T+N)�N = (1 + �2)

�1=2
�

Xp
�2IN

�
and Y +

(T+N)�1 =

�
Y
0N

�
: (51)

Now, rewrite the naive elastic criterion as:

L

�
�1p
1 + �2

; �

�
= L

�
�1p
1 + �2

; �+
�
=
��Y + �D+�+

��2 + �1p
1 + �2

���+��
1
: (52)

If we let

�̂
+
= argmin

�+
L

�
�1p
1 + �2

; �+
�
; (53)

then the NEN estimator �̂
NEN

is:

�̂
NEN

=
1p
1 + �2

�̂
+
: (54)

In this orthogonal setting, the naïve elastic net can be represented as combination of ordinary
least squares and the parameters (�1; �2). Namely:

�̂
NEN

=

�����̂LS���� �1=2
�
pos

1 + �2
sign

n
�̂
LS
o
; (55)

where �̂
LS
is the least squares estimator of � and sign (�) equals �1: Here, \pos" denotes the

positive part of the term in parentheses. Using these expressions, the ridge estimator can be
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written as

�̂
Ridge

=
�̂
LS

1 + �2
(56)

and the lasso estimator is

�̂
Lasso

=
�����̂LS���� �1=2

�
pos
sign

n
�̂
LS
o
: (57)

Zou and Hastie (2005), in the context of the above naive elastic net, point out that there is
double shrinkage, which does not help to reduce the variance and may lead to unnecessary bias,
and they propose the elastic net, in which this double shrinkage is corrected. Given equation
(51), the naive elastic net solves the regularization problem of the type:

�̂
+
= argmin

�+

��Y + �X+�+
��2 + �1p

1 + �2

���+��
1
: (58)

In this context, the elastic net estimator, �̂
EN
; is de�ned as:

�̂
EN

=
p
1 + �2�̂

+
: (59)

Thus ,
�̂
EN

= (1 + �2) �̂
NEN

: (60)

Via this rescaling, the estimator preserves the properties of naive elastic net. Moreover, by
Theorem 2 in Zou and Hastie (2005), is can be seen that the elastic net is a stabilized version
of the lasso. Namely,

�̂
EN

= argmin
�
�0
�
X 0X + �2IN
1 + �2

�
� � 2Y 0X� + �1 j�j1 ; (61)

which is the estimator that we use in the forecasting model given as (5) when carrying out our
prediction experiments.
Zou and Hastie (2005) propose an algorithm called the LARS-EN to estimate �̂

EN
using

LARS, as discussed above. With �xed �2; the elastic net problem is equivalent to the lasso
problem on the augmented dataset (X+; Y +) ; where DG in (45) is equal to 1

1+�2

�
X 0
GXG + �2IG

�
for any active set G: The LARS-EN algorithm updates the elastic net estimator sequentially.
Choosing tuning parameters, �1 and �2; is a critical issue in the current context. Hastie

et al. (2009) discuss some popular ways to choose tuning parameters, and Zou and Hastie
(2005) use tenfold cross-validation (CV). Since there are two tuning parameters, it is necessary
to cross-validate in two dimensions. We do this by picking a small grid of values for �2, say
(0; 0:01; 0:1; 1; 10; 100). LARS-EN selects the �2 value that yields the smallest CV error. We
follow this approach when implementing LARS-EN.

3.6 Non-Negative Garotte (NNG)

The NNG estimator of Breiman (1995) is a scaled version of the least squares estimator. As
in the previous section, we begin by considering generic X and Y . Assume that the follow-
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ing shrinkage factors are given: q (�) = (q1 (�) ; q2 (�) ; :::; qN (�))
0 : The objective is to choose

shrinkage factors in order to minimize:

1

2
kY �Gqk2 + T�

NP
j=1

qj; subject to qj > 0; j = 1; ::; N; (62)

where G = (G1; ::; GN)
0, Gj = Xj

b�LSj ; and b�LS is the least squares estimator. Here � > 0
is the tuning parameter. The NNG estimator of the regression coe¢ cient vector is de�ned
as �̂

NNG

j (�) = qj (�) �̂
LS

j ; and the estimate of Y is de�ned as b� = X�̂
NNG

(�). Assuming,
for example, that X 0X = I, the minimizer of expression (62) has the following explicit form:

qj (�) =

�
1� �

(�̂
LS
j )2

�
+

; j = 1; :::; N: This ensures that the shrinking factor may be identically

zero for redundant predictors. The disadvantage of the NNG is its dependence on the ordinary
least squares estimator, which can be especially problematic in small samples. Accordingly,
Yuan and Lin (2007) consider lasso, ridge regression, and the elastic net as alternatives for
providing an initial estimate for use in the NNG; and they prove that if the initial estimate is
consistent, the non-negative garotte is a consistent estimator, given that the tuning parame-
ter, �; is chosen appropriately. Zou (2006) shows that the original non-negative garotte with
ordinary least squares is also consistent, if N is �xed, as T ! 1: Our approach is to start
the algorithm with the least squares estimator, as in Yuan (2007), who outline the following
algorithm for the non-negative garotte that we use in the sequel:

Non-Negative Garotte Algorithm

1. First, set i = 1; q0 = 0; �̂0 = �Z: Then compute the current active set

Gi = argmax
j

�
G0j�̂

i�1� ;
where Gj = F̂j�̂j, is the j

th element of the T � r matrix G; and the initial �̂ is obtained
by regressing F̂ on Z; using least squares.

2. Compute the current direction ; which is an r dimensional vector de�ned by (Gi)c = 0
and


Gi
=
�
G0GiG

0
Gi
��1

G0Gi�̂
i�1:

3. For every j0 =2 Gi; compute how far the non-negative garotte will progress in direction 
before F̂j enters the active set. This can be measured by a �j such that

G0j0
�
�̂i�1 � �jG

0
�
= G0j

�
�̂i�1 � �jG

0
�

where j is arbitrarily chosen from Gi: Now, for every j 2 Gi; compute �j = min
�
�j; 1

�
;

where �j = �qi�1j =j; if nonnegative, measures how far the group non-negative garotte
will �progress�before qj becomes zero.

4. If �j � 0, 8j or min
j;�j>0

f�jg > 1; set � = 1: Otherwise, denote � = min
j;�j>0

f�jg � �j� Set

qi = qi�1 + �0: If j� =2 Gi; update Gi+1 by adding j� to the set Gi; else update Gi+1 by
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taking out j� from the set Gi:

5. Set �̂i = Y � G0qi and i = i + 1: Go back to Step 1 repeat until � = 1; yielding
�̂final = �̂NNG: Finally, form

Ŷ NNG+

t+h = Wt�̂W + �̂NNG; (63)

and construct the prediction Ŷ NNG
t+h by adding back the mean to Ŷ NNG+

t+h :

3.7 Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) has received considerable attention in recent years in the
forecasting literature (see e.g. Koop and Potter (2004) and Wright (2008, 2009)) For a concise
discussion of BMA, see Hoeting et al. (1999) and Chipman et al. (2001). The basic idea of BMA
starts with supposing that interest focuses on Q possible models, denoted by M1; :::;MQ, say:
In forecasting contexts, BMA involves averaging target predictions, Yt+h from the candidate
models, with weights appropriately chosen. In a very real sense, thus, it resembles bagging. One
might also select a model by choosingMq� which maximizes p (MqjData) ; but model averaging
is generally preferred. If we denote ! as a particular parameter vector, then BMA begins by
noting that:

p (!jData) =
QX
q=1

p (!jData;Mq) p (MqjData) : (64)

If g (!) is a function of !; then without loss of generality, the conditional expectation is given
as:

E [g (!) jData] =
QX
q=1

E [g (!) jData;Mq] p (MqjData) : (65)

This means that we can compute the variance of the parameter for quadratic g: Accordingly,
BMA involves obtaining results for all candidate models and averaging them with weights de-
termined by the posterior model probabilities. That is, BMA, puts little weight on implausible
models, as opposed to other varieties of shrinkage discussed above that operate directly on
regressors. As we have 144 variables in our empirical work, we have 2144 possible models. This
means that we must estimate more than 1043 models at every forecasting horizon, and prior to
the construction of each new prediction in this paper. Though there has been a quantum leap
in computing technology in recent years, it would take several years to do this. Koop and Pot-
ter (2004) use the approach of Clyde (1999) for dealing with this problem, and take posterior
draws of the parameters and associated variances using Gibbs sampling. The algorithm they
use is somewhat di¤erent from the popular Markov Chain Monte Carlo algorithm in that draws
are taken directly from the conditional probability of the parameters, given the data and the
variance. In this paper, we use the algorithm given in Koop and Potter (2004). However, we
additionally require a slightly di¤erent setup from that discussed above, in order to handle Wt

in (2). Accordingly, we follow Chipman et al. (2001). Speci�cally, we transform our forecasting
framework as follows. Let:

Y �
t+h = ��F �t + "�t ; (66)
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where Y �
t+h = [IT �Wt (W

0
tWt)W

0
t ]Yt+h, F

�
t = [IT �Wt (W

0
tWt)W

0
t ] F̂t; Wt; and F̂t are de�ned

in (5), and "t+h � N (0; �2) : This setup leads to a natural conjugate prior (i.e. ��j��2 �
N
�
��; �2V

�
) and ��2 � G (s�2; $) ; where G (s�2; $) denotes the gamma distribution with

mean s�2 and degrees of freedom $. Each candidate model is described with U; which is an
r � 1 vector which shows whether each column of explanatory variables is included in current
model, with a one or a zero. In this sense, U is similar to the current set in penalized regression.
Moreover, U gives the prior model probability, p (Mq) ; as the prior for U is equivalent to
p (Mq) : According to Koop and Potter (2004), p (U jY �) is drawn directly, since our explanatory
variables are orthogonal. We set p (Y �jU; �2) to be the marginal likelihood for the normal
regression model de�ned by U; and derive P (U jY �; �2), given a prior, p (U) : Here, p (�2jY �; U)
takes the inverted-Gamma form as usual. The next step involves specifying the prior model
probability, p (Mq) or equivalently, a prior for p (U) :

p (U) =
RQ
j=1

�
Uj
j (1� �j)

Uj ; (67)

where �j is the prior probability that each potential factor enters the model. A common
benchmark case sets �j = 1

2
; equivalently, P (Mq) =

1
Q
for q = 1; :::; Q: Other choices are also

possible. For example, we could allow �j to depend on the j-th largest eigenvalue of F̂ 0F̂ :
Using the strategy described in Fernandez et al. (2001a) and Kass and Raftery (1995), we

use a noninformative improper prior over parameters for lagged variables in all models; and
in particular we follow Koop and Potter (2004), who suggest a noninformative prior for ��2:
Namely, if $ = 0; s�2 does not enter the marginal likelihood or posterior. Following Fernandez
et al. (2001a), we set �� = 0R and use a g-prior form for V by setting

V r = [grF
�0
r F

�
r ]
�1 (68)

(see Fernandez et al. (2001a) and Zellner (1986) for more details on the use of g-priors). Finally,
we are left with the issue of speci�cation of g. Fernandez et al. (2001a) examine the properties
of many possible choices for g and Koop and Potter (2004), in an objective Bayesian spirit,
focus on values for g including g = 1

T
and g = 1

Q2
: We specify the same functions for g: Using

the above approach, we form:
Ŷ �;BMA
t+h = �̂FF

�
t (69)

and our forecast, Ŷ BMA
t+h is de�ned as [IT �Wt (W

0
tWt)W

0
t ]
�1 Ŷ �;BMA

t+h :

4 Data, Forecasting Methods, and Baseline Forecasting
Models

4.1 Data

The data that we use are monthly observations on 144 U.S. macroeconomic time series for
the period 1960:01 - 2009:5 (N = 144; T = 593)7. Forecasts are constructed for eleven vari-
ables, including: the unemployment rate, personal income less transfer payments, the 10 year

7This is an updated and expanded version of the Stock and Watson (2005a,b) dataset.
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Treasury-bond yield, the consumer price index, the producer price index, non-farm payroll em-
ployment, housing starts, industrial production, M2, the S&P 500 index, and gross domestic
product.8 Table 1 lists the eleven variables. The third row of the table gives the transforma-
tion of the variable used in order to induce stationarity. In general, logarithmic di¤erences were
taken for all nonnegative series that were not already in rates (see Stock and Watson (2002a,
2012) for complete details). Note that a full list of the 144 predictor variables is provided in an
appendix to an earlier version of this paper which is available upon request from the authors.

4.2 Forecasting Methods

Using the transformed dataset, denoted by X, factors are estimated using linear and nonlinear
factor estimation methods, as discussed above. Thereafter,the robust estimation methods out-
lined in the previous sections are used to form forecasting models and predictions. In particular,
we consider three speci�cation types, as follows.
Speci�cation Type 1: Factors are �rst constructed using the large-scale dataset and each

of PCA, ICA, and SPCA; and then prediction models are formed using the robust shrinkage
methods of Section 3 to select functions of and weights for the factors to be used in prediction
models of the variety given in (5). This speci�cation type is estimated with and without lags
of factors.
Speci�cation Type 2: Factors are �rst constructed using subsets of variables from the

large-scale dataset and each of PCA, ICA, and SPCA. Variables used in factor calculations are
pre-selected via application of the robust shrinkage methods discussed in Section 3. Thereafter,
prediction models of the variety given in (5) are estimated. This is di¤erent from the above
approach of estimating factors using all of the variables. Note that forecasting models are
estimated with and without lags of factors.
Speci�cation Type 3: Prediction models are constructed using only the shrinkage meth-

ods discussed in Section 3, without use of factor analysis at any stage.
Speci�cation Type 4: Prediction models are constructed using only shrinkage methods,

and only with variables which have nonzero coe¢ cients, as speci�ed via pre-selection using
SPCA.
In Speci�cation Types 3 and 4, factor augmented autoregressions (FAAR) and pure factor

based models (such as principal component regression - see next subsection for complete details)
are not used as candidate forecasting models, since models with these speci�cation types do
not include factors or any type.
In our prediction experiments, pseudo out-of-sample forecasts are calculated for each vari-

able, model variety, and speci�cation type, for prediction horizons h = 1; 3; and 12. All
estimation, including lag selection, shrinkage method application, and factor selection is done
anew, at each point in time, prior to the construction of each new prediction, using both re-
cursive and rolling data window strategies. Note that at each estimation period, the number of
factors included will be di¤erent, following the testing approach discussed in Section 2. Note
also that lags of the target predictor variables are also included in the set of explanatory vari-
ables, in all cases. Selection of the number of lagged variable to include is done using the SIC.
Out-of-sample forecasts begin after 13 years (e.g. the initial in-sample estimation period is

8Note that gross domestic product is reported quaterly. We interpolate these data to a monthly frequency
following Chow and Lin (1971),
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R =156 observations, and the out-of-sample period consists of P = T � R = 593� 156 = 437
observations, for h = 1). Moreover, the initial in-sample estimation period is adjusted so
that the ex ante prediction sample length, P , remains �xed, regardless of the forecast hori-
zon. For example, when forecasting the unemployment rate, when h = 1, the �rst forecast
will be Ŷ h=1

157 = �̂WW156 + �̂F ~F156; while in the case where h = 12, the �rst forecast will be
Ŷ h=12
157 = �̂WW145 + �̂F ~F145: In our rolling estimation scheme, the in-sample estimation period
used to calibrate our prediction models is �xed at length 12 years. The recursive estimation
scheme begins with the same in-sample period of 12 years (when h = 12), but a new observation
is added to this sample prior to the re-estimation and construction of each new forecast, as we
iterate through the ex-ante prediction period. Note, thus, that the actual observations being
predicted as well as the number of predictions in our ex-ante prediction period remains �xed,
regardless of forecast horizon, in order to facilitate comparison across forecast horizons as well
as models.
Forecast performance is evaluated using mean square forecast error (MSFE), de�ned as:

MSFEi;h =
T�h+1P
t=R�h+2

�
Yt+h � Ŷi;t+h

�2
; (70)

where bYi;t+h is the forecast for horizon h. Forecast accuracy is evaluated using the above point
MSFE measure as well as the predictive accuracy test statistic (called �DM� hereafter) of
Diebold and Mariano (1995), which is implemented using quadratic loss, and which has a null
hypothesis that the two models being compared have equal predictive accuracy (see Clark and
McCracken (2001), McCracken (2000), McCracken (2007), and McCracken (2004)for details
describing the importqance of accounting for parameter estimation error and nonestedness in
the DM and related predictive accuracy tests).9 In the simplest case, the DM test statistic has
an asymptotic N(0; 1) limiting distribution, under the assumption that parameter estimation
error vanishes as T; P;R ! 1, and assuming that each pair of models being compared is
nonnested: The null hypothesis of the test is H0 : E

h
l
�
"1t+hjt

�i
� E

h
l
�
"2t+hjt

�i
= 0; where

"it+hjt is i�th model�s prediction error and l (�) is the quadratic loss function. The actual statistic

in this case is constructed as: DM = P�1
PP

i=1 dt=�̂d; where dt =
�
["1t+hjt

�2
�
�
["2t+hjt

�2
; d is

the mean of dt, �̂d is a heteroskedasticity and autocorrelation robust estimator of the standard

deviation of d, and ["1t+hjtand ["2t+hjt are estimates of the true prediction errors "
1
t+hjtand "

2
t+hjt.

Thus, if the statistic is negative and signi�cantly di¤erent from zero, then Model 2 is preferred
over Model 1.

4.3 Baseline Forecasting Models

In conjunction with the various forecast model speci�cation approaches discussed above, we
also form predictions using the following benchmark models, all of which are estimated using
least squares.

9In the context of the experiments carried out in this paper, we no not consider so-called real-time data.
However, it is worth noting that the use of real-time datasets in macroeconometrics, and in particular in
forecasting and policy analysis, has received considerable attention in the literature in recent years. For a
discussion of DM and related tests using real-time data, the reader is referred to Clark and McCracken (2009a).
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Univariate Autoregression: Forecasts from a univariate AR(p) model are computed as
Ŷ AR
t+h = �̂+ �̂ (L)Yt; with lags , p, selected using of the SIC.
Multivariate Autoregression: Forecasts from an ARX(p) model are computed as Y ARX

t+h =

�̂ + �̂Zt + �̂ (L)Yt; where Zt is a set of lagged predictor variables selected using the SIC. De-
pendent variable lags are also selected using the SIC. Selection of the exogenous predictors
includes choosing up to six variables prior to the construction of each new prediction model, as
the recursive or rolling samples iterate forward over time.
Principal Component Regression: Forecasts from principal component regression are

computed as Ŷ PCR
t+h = �̂ + ̂F̂t; where F̂t is estimated via principal components using X; as in

equation (5).
Factor Augmented Autoregression: Based on equations (5), forecasts are computed

as Y h
t+h = �̂ + �̂F F̂t + �̂W (L)Yt: This model combines an AR(p) model, with lags selected

using the SIC, and the above principal component regression (PCR) model. PCR and factor
augmented autoregressive (FAAR) models are estimated using ordinary least squares. Factors
in the above models are constructed using PCA, ICA and SPCA.
Combined Bivariate ADL Model: Following Stock and Watson (2012), we implement

a combined bivariate autoregressive distributed lag (ADL) model. Forecasts are constructed
by combining individual forecasts computed from bivariate ADL models. The i-th ADL model
includes pi;x lags of Xi;t; and pi;y lags of Yt; and has the form Ŷ ADL

t+h = �̂+ �̂i (L)Xi;t+ �̂i (L)Yt:

The combined forecast is Ŷ Comb;h
T+hjT =

N

�
t=1
wiŶ

ADL;h
T+hjT . Here, we set (wi = 1=N) ; where N = 144.

There are a number of studies that compare the performance of combining methods in controlled
experiments, including: Clemen (1989), Diebold and Lopez (1996), Newbold and Harvey (2002),
and Timmermann (2005); and in the literature on factor models, Stock and Watson (2004,
2006, 2012), and the references cited therein. In this literature, combination methods typically
outperform individual forecasts. This stylized fact is sometimes called the �forecast combining
puzzle.�
Mean Forecast Combination: To further examine the issue of forecast combination,

and in addition to the Bayesian model averaging methods discussed in the previous section, we
form forecasts as the simple average of the thirteen forecasting models summarized in Table 2.

5 Empirical Results

In this section, we summarize the results of our prediction experiments. Target variable
mnemonics are given in Table 1, and forecasting models used are summarized in Panel A
of Table 2. There are 6 di¤erent speci�cation �permutations�. Speci�cation Types 1 and 2 (es-
timated with and without lags) are estimated via PCA, ICA and SPCA, so that there 4�3 = 12
permutations of these two speci�cations. Adding Speci�cation Types 3 and 4, and multiplying
by two (for recursive and rolling windowing strategies) yields a total of (12 + 2) � 2 = 28
speci�cation types for each target variable and each forecast horizon. Forecast models and
modelling methods are summarized in Panel B of Table 2. For the sake of brevity, we eschew
reporting the entirety of our experimental �ndings, instead focusing on key �ndings and results.
Complete details are available upon request from the authors.
Table 3 summarizes point MSFEs �best�models, relative to the AR(SIC) model, where

the AR(SIC) MSFE is normalized to unity. Results are reported in two panels, with the �rst
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panel summarizing �ndings across recursively estimated prediction models, and the second
panel likewise reporting �ndings based on models estimated using rolling windows of data.
Entries in bold denote MSFE-best models from among the factor estimation methods, for a
given model speci�cations, estimation windows, and forecast horizons. Since the benchmark
models, including AR(SIC), ARX, etc., are included as candidate models under speci�cation
type, there are some cases where the lowest relative MSFEs are same across factor estimation
methods, for a given speci�cation type. For example, in the case of Speci�cation Type 1 and
h = 1, GDP MSFEs are 0.916 for all three factor estimation methods. This is because ARX,
one of benchmark models, yields a lower MSFE than any other model used in conjunction with
the factor estimation methods. Moreover, since Speci�cation Types 3 and 4 do not involve use
of a factors, there are no bold entries in rows corresponding to these speci�cation types.
Although there are a limited number of exceptions, most of the entries in Table 3 are less

than unity, indicating that our factor based forecasting models dominate the autoregressive
model. For example, note that the relative MSFE value for IPX, when using Speci�cation
Type 1 (SP1) and h = 1, is 0.268. Other bold entries can be seen to range from the low 0.80s
to the mid 0.90s. Almost all of these entries are associated with models in which the DM null
hypothesis of equal predictive accuracy is rejected.
Entries in the Table 4 show which forecast modelling method from Panel A of Table 2 has the

lowest relative MSFE, for each target variable, and for each speci�cation type, factor estimation
method, and forecast horizon, by estimation window (Panel A summarizes results for recursive
window estimation, and Panel B does the same for rolling window estimation). These entries,
thus, report the forecast modelling methods associated with each MSFE value given in Table 3.
For example, in the leftmost three entries of Panel A of Table 3, we see that for unemployment,
the FAAR, ARX, and FAAR models resulted in the MSFE-best predictions, under SP1 and
for each of PCA, ICA, and SPCA, respectively, where these MSFEs, as reported in Table 3,
are 0.780, 0.897 and 0.827, respectively. Bold entries in Panels A and B of the table denote
forecasting method yielding MSFE-best predictions, for a given speci�cation type, forecast
horizon, and target variable. Panel C of Table 4 summarizes the number of �wins� across
6 main speci�cation types10 for the 11 target variables, by forecast horizon (i.e. reports the
number of bold entries by forecast modelling method in Panels A and B). Note that FAAR and
PCR are methods that are not used in Speci�cation Types 3 and 4, since these speci�cations
do not use factors. Accordingly, mean forecasts in Speci�cation Types 3 and 4 are constructed
using the arithmetic mean of all forecast modelling methods except these two.
Notice also, in Table 4, that ARX appears in multiple entries. For example, for HS and

h = 1, ARX appears as the �winner" in numerous cases. The reason for this is that each
speci�cation type has the same ARX model as one of the baseline models, and so correct
interpretation of this �nding is that the same ARX model dominates for a couple of variables
(i.e. HS and GDP), when h = 1, regardless of factor estimation method used for speci�cation
of factor models. However, note that for HS, the FAAR model �wins�under SP1 and SPCA
for h = 1, and has a relative MSFE (from Table 3) of 0.542, which is substantially lower than
the value of 0.901 that applies to all of the cases where ARX �wins�. Thus, care must be taken
when interpreting the results of Table 4; inasmuch as the ARX model is much less dominant
than may appear to be the case upon cursory inspection of entries. Interestingly, boosting and

10In Speci�cation Type 1 and 2 without lags and with lags, we pick the best model amongst the three factor
estimation methods so that we have 6 speci�cations in this analysis, and not 14.
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LARS perform well in several speci�cations and forecast horizons. This is particularly true
for higher forecast horizons, where the only method to �win�more frequently involves simply
using the arithmetic mean.
Entries in Panel A of Table 5 report which factor estimation method yields the lowest MSFE

for each speci�cation type, forecast horizon and target variable, when models are estimated
using recursive data windows. (Since Speci�cation Types 3 and 4 do not use factors, they are
excluded in this table.) Panel B is the same as Panel A, except that results are for models
estimated using rolling windows of data. Panel C of the table summarizes the result in Panels
A and B across target variables, thus reporting counts of the number of times each factor
estimation method �wins�by speci�cation type, forecast horizon, and estimation window. For
example, upon inspection of Panel C, we see that for Speci�cation Type 2 without lags, PCA,
ICA and SPCA win 7, 2 and 1 times, respectively, for h = 1. Notice that SPCA performs
very well under Speci�cation 1, when h = 1; although PCA �wins�the most across all other
speci�cation types, regardless of forecast horizon. Moreover, ICA performs much worse than
either other factor estimation method. However, this result does not directly imply that PCA is
a better method for factor analysis, since these results are based on complex hybrid forecasting
modelling strategies coupling factor estimation methods with shrinkage and other regression
modelling strategies.
Entries in Panel A of Table 6 report which estimation window method yields the lowest

MSFE for each speci�cation type, factor estimation method, forecast horizon and target vari-
able. Again, since Speci�cation Types 3 and 4 do use factors, they are excluded in this table.
Panel B of the table summarizes results in Panel A across speci�cation types. Here, �Recur�
stands for recursive window estimation and �Roll�for rolling window estimation. Recursive win-
dow estimation �wins�in 93 out of 154 cases, when h = 1. On the other hand, it is interesting
to note that rolling window estimation dominates at the h = 12 horizon, winning in 119 of 154
cases. Thus, the trade-o¤ between using less data (and hence inducing increased parameter
uncertainty in order to bene�t from quicker adjustment for structural breaks) and using more
data (and hence failing to account for breaks), appears to depend on forecast horizon. For
further discussion of data windowing, including a discussion of window combination, see Clark
and McCracken (2009b).
Panels A, B, and C of Table 7 summarize results reported in Table 3 and 4. Entries in

Panel A report the �best�MSFEs for each target variable, by speci�cation type and forecast
horizon. Further, the window estimation scheme / factor estimation method / winning model
combinations associated with the lowest MSFE associated with each target variable in Panel A
are given in Panel B of the table. Finally, the speci�cation type / window estimation scheme
/ factor estimation method / winning model combinations associated with each bold MSFE
entry in Panel A are given in Panel C of the table. In Panel A, note that SP1 and SP1L
yield the MSFE-best prediction models in 15 of 33 possible cases, across forecast horizon, with
more than one half of these �wins�arising for the case where h = 1: Thus, just as estimation
window selection seems to require di¤erentiating across forecast horizon, so too does forecast
horizon make a di¤erence when ranking speci�cation types. However, recall from the results
reported in Table 5 that although PCA �wins�quite frequently, the �wins�accorded to ICA and
SPCA arise rather uniformly across forecast horizon. Upon inspection of Panel B of the table,
the following conclusions emerge. First, of the window estimation scheme / factor estimation
method / winning model combinations, recursive windowing �wins�17 of 33 times. Thus, over
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all permutations and variables, the evidence suggests that there is little to choose between
the two schemes. This points to a need to carefully consider the methods discussed in Clark
and McCracken (2009) when estimating prediction models. Second, PCA actually �wins�
in only 14 of 33 possible cases, overall. This suggests that although PCA �wins� in many
more cases when disaggregating our �ndings, as reported earlier, when we actually summarize
across the very best models, it wins less than one half of the time. We thus have interesting
new evidence suggesting that ICA and SPCA are very useful factor modelling tools; and in
particular, we have seen from earlier discussion that SPCA is the clear winner from amongst
non-PCA factor methods. Thus, as discussed in numerous papers, imposing parsimony on our
factor modelling methods is quite useful. This in turn points to the fact that there is much
remaining to be done in the area of parsimonious di¤usion index modelling, given the novel
nature and relative inexperience that economists have with the methods used herein. Third,
we see that the arithmetic mean forecasting model �wins�in only 9 of 33 cases. This is rather
surprising new evidence that simple model averaging does not necessarily yield MSFE-best
predictions. However, in order to �beat�model averaging methods, including arithmetic mean
and Bayesian averaging approaches, we have needed to introduce into our horse-race numerous
complex new models. Indeed, we see from further inspection of this table that most of the
winning models involve combining complicated factor estimation methods with interesting new
forms of shrinkage. It is really the combination of factors and shrinkage that is delivering our
results that model averaging does not always �win�. Finally, turning to Panel C of Table 7,
note that hybrid methods that couple factor estimation methods with shrinkage �win� in 9
of 33 cases, while simpler factor modelling approaches that do not additionally use shrinkage
�win�in 10 of 33 cases. Pure shrinkage methods (i.e. SP3 and SP4 with shrinkage) �win�in
3 cases, while Bayesian model averaging and simpler arithmetic mean combination methods
�win� the remaining 11 cases. Simple linear autoregressive type models never win. We take
these �nal results as further evidence of the usefulness of new methods in factor modelling and
shrinkage, when the objective is prediction of macroeconomic time series variables.
In a �nal twist on our results, please refer to Table 8, where we summarize whether or

not including lags in our speci�cation types yields MSFE-best models, or not, for each target
variable and factor estimation method. Interesting, it is immediately apparent, upon inspection
of the entries in the table, that �No Lag�speci�cation types dominate. This �nding again points
to the need for parsimonious data reduction methods when using �big data�.

6 Concluding Remarks

In this paper we outline and discuss a number of interesting new forecasting methods that have
recently been developed in the statistics and econometrics literatures. We focus in particular on
the examination of a variety of factor estimation methods, including principal components as
discussed by Stock and Watson (2002a,b), independent component analysis (ICA) and sparse
principal component analysis (SPCA); as well as hybrid forecasting methods that use these
factor estimation methods in conjunction with various types of shrinkage, such as bagging,
boosting, least angle regression, the elastic net, and the nonnegative garotte. Finally, we carry
out a series of real-time prediction experiments evaluating all of these methods against a number
of benchmark linear models and forecast combination approaches. Our experiments are carried
out in the context of predicting 11 key macroeconomic indicators at various forecast horizons.
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We �nd that model simple time series models and model averaging methods do not dominate
hybrid methods that couple factor estimation methods with shrinkage. However, pure shrinkage
methods do not fare well, when implemented in isolation, with the use of latent factors. We
take these �nal results as further evidence of the usefulness of new methods in factor modelling
and shrinkage, when the objective is prediction of macroeconomic time series variables.

32



References

Aiol�, M. and Timmermann, A. (2006). Persistence in forecasting performance and conditional
combination strategies. Journal of Econometrics, 135(1-2):31�53.

Armah, N. A. and Swanson, N. R. (2010a). Di¤usion index models and index proxies: Recent
results and new direction. European Journal of Pure and Applied Mathematics, 3:478�501.

Armah, N. A. and Swanson, N. R. (2010b). Seeing inside the black box: Using di¤usion index
methodology to construct factor proxies in large scale macroeconomic time series environ-
ments. Econometric Reviews, 29:476�510.

Artis, M. J., Banerjee, A., and Marcellino, M. (2005). Factor forecasts for the uk. Journal of
Forecasting, 24(4):279�298.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor models.
Econometrica, 70(1):191�221.

Bai, J. and Ng, S. (2006a). Con�dence intervals for di¤usion index forecasts and inference for
factor-augmented regressions. Econometrica, 74(4):1133�1150.

Bai, J. and Ng, S. (2006b). Evaluating latent and observed factors in macroeconomics and
�nance. Journal of Econometrics, 131(1-2):507�537.

Bai, J. and Ng, S. (2008). Forecasting economic time series using targeted predictors. Journal
of Econometrics, 146(2):304�317.

Bai, J. and Ng, S. (2009). Boosting di¤usion indices. Journal of Applied Econometrics,
24(4):607�629.

Banerjee, A. and Marcellino, M. (2008). Factor-augmented error correction models. CEPR
Discussion Papers 6707, C.E.P.R. Discussion Papers.

Boivin, J. and Ng, S. (2005). Understanding and comparing factor-based forecasts. Interna-
tional Journal of Central Banking, 1(3):117�152.

Boivin, J. and Ng, S. (2006). Are more data always better for factor analysis? Journal of
Econometrics, 132(1):169�194.

Breiman, L. (1995). Better subset regression using the nonnegative garrote. Technometrics,
37(4):373�384.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123�140.
Bühlmann, P. and Yu, B. (2002). Analyzing bagging. Annals of Statistics, 30:927�961.
Bühlmann, P. and Yu, B. (2003). Boosting with the l2 loss: Regression and classi�cation.
Journal of the American Statistical Association, 98:324�339.

Chipman, H., George, E. I., and Mcculloch, R. E. (2001). The practical implementation of
bayesian model selection. In Institute of Mathematical Statistics, pages 65�134.

Chow, G. C. and Lin, A.-l. (1971). Best linear unbiased interpolation, distribution, and extrap-
olation of time series by related series. The Review of Economics and Statistics, 53(4):372�75.

Clark, T. and McCracken, M. W. (2001). Tests of equal forecast accuracy and encompassing
for nested models. Journal of Econometrics, 105:85�110.

Clark, T. and McCracken, M. W. (2009a). Tests of equal predictive ability with real-time data.
Journal of Business and Economic Statistics, 27:441�454.

Clark, T. E. and McCracken, M. W. (2009b). Improving forecast accuracy by combining
recursive and rolling forecasts. International Economic Review, 50(2):363�395.

33



Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International
Journal of Forecasting, 5(4):559�583.

Clyde, M. (1999). Bayesian model averaging and model search strategies. In J. M. Bernardo,
J. O. Berger, A. P. D. and Smith, A., editors, Bayesian Statistics 6, pages 157�185. Oxford
University Press.

Comon, P. (1994). Independent component analysis - a new concept? Signal Processing,
36:287�314.

Connor, G. and Korajczyk, R. A. (1986). Performance measurement with the arbitrage pricing
theory : A new framework for analysis. Journal of Financial Economics, 15(3):373�394.

Connor, G. and Korajczyk, R. A. (1988). Risk and return in an equilibrium apt : Application
of a new test methodology. Journal of Financial Economics, 21(2):255�289.

Connor, G. and Korajczyk, R. A. (1993). A test for the number of factors in an approximate
factor model. Journal of Finance, 48(4):1263�91.

Diebold, F. X. and Lopez, J. A. (1996). Forecast evaluation and combination. NBER Technical
Working Papers 0192, National Bureau of Economic Research, Inc.

Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business
& Economic Statistics, 13(3):253�63.

Ding, A. A. and Hwang, J. T. G. (1999). Prediction intervals, factor analysis models, and high-
dimensional empirical linear prediction. Journal of the American Statistical Association,
94(446):446�455.

Dufour, J.-M. and Stevanovic, D. (2010). Factor-augmented varma models: Identi�cation,
estimation, forecasting and impulse responses. Working paper, McGill University.

Efron, B., Hastie, T., Johnstone, L., and Tibshirani, R. (2004). Least angle regression. Annals
of Statistics, 32:407�499.

Fernandez, C., Ley, E., and Steel, M. F. J. (2001a). Benchmark priors for bayesian model
averaging. Journal of Econometrics, 100(2):381�427.

Fernandez, C., Ley, E., and Steel, M. F. J. (2001b). Model uncertainty in cross-country growth
regressions. Journal of Applied Econometrics, 16(5):563�576.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2000). The generalized dynamic-factor model:
Identi�cation and estimation. The Review of Economics and Statistics, 82(4):540�554.

Forni, M., Hallin, M., Lippi, M., and Reichlin, L. (2005). The generalized dynamic factor
model: One-sided estimation and forecasting. Journal of the American Statistical Associa-
tion, 100:830�840.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119�139.

Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive logistic regression: a statistical
view of boosting. Annals of Statistics, 28:2000.

Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29(5):1189�1232.

Gelper, S. and Croux, C. (2008). Least angle regression for time series forecasting with many
predictors, working paper. Technical report, Katholieke Universiteit Leuven.

Guo, J., James, G., Levina, E., Michailidis, G., and Zhu, J. (2010). Principal component
analysis with sparse fused loadings. Journal of Computational and Graphical Statistics,
19(4):947�962.

34



Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical Learning.
Springer, 2nd edition.

Hoerl, A. and Kennard, R. (1970). Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics, 12:55�67.

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. (1999). Bayesian model
averaging: a tutorial. Statistical Science, 14:382�417.

Hyvärinen, A. (1998). Independent component analysis in the presence of gaussian noise by
maximizing joint likelihood. Neurocomputing, 22:49�67.

Hyvärinen, A. (1999a). Gaussian moments for noisy independent component analysis. IEEE
Signal Processing Letters, 6(6):145�147.

Hyvärinen, A. (1999b). Survey on independent component analysis. Neural Computing Surveys,
2:94�128.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms and applica-
tions. Neural Networks, 13(4-5):411�430.

Inoue, A. and Kilian, L. (2008). How useful is bagging in forecasting economic time series? a
case study of us cpi in�ation. Journal of the American Statistical Association, 103(482):511�
522.

Jolli¤e, I., Trenda�lov, N., and Uddin, M. (2003). A modi�ed principal component technique
based on the lasso. Journal of Computational and Graphical Statistics, 12:531�547.

Jolli¤e, I. T. (1995). Rotation of principal components: choice of normalization constraints.
Journal of Applied Statistics, 22:29�35.

Kass, R. and Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association,
90:773�795.

Kim, H. H. and Swanson, N. R. (2013). Forecasting �nancial and macroeconomic variables using
data reduction methods: New empirical evidence. Journal of Econometrics, Forthcoming.

Koop, G. and Potter, S. (2004). Forecasting in dynamic factor models using bayesian model
averaging. Econometrics Journal, 7(2):550�565.

Lee, T.-W. (1998). Independent Component Analysis - Theory and Applications. Springer,
Boston, Massachusetts, 1 edition.

Leng, C. and Wang, H. (2009). On general adaptive sparse principal component analysis.
Journal of Computational and Graphical Statistics, 18(1):201�215.

McCracken, M. W. (2000). Robust out-of-sample inference. Journal of Econometrics, 99:195�
223.

McCracken, M. W. (2004). Parameter estimation error and tests of equal forecast accuracy
between non-nested models. International Journal of Forecasting, 20:503�514.

McCracken, M. W. (2007). Asymptotics for out-of-sample tests of granger causality. Journal
of Econometrics, 140:719�752.

Newbold, P. and Harvey, D. I. (2002). Forecast combination and encompassing. In Clements,
M. P. and Hendry, D. F., editors, A Companion to Economic Forecasting, pages 268�283.
Blackwell Press, Oxford.

Penny, W., Robert, S., and Everson, R. (2001). Ica: Model order selection and dynamic source
models. In Roberts, S. and Everson, R., editors, Independent Component Analysis: Principles
and Practice, pages 299�314. Cambridge University Press, Cambridge, UK.

35



Ravazzolo, F., Paap, R., van Dijk, D., and Franses, P. H. (2008). Bayesian Model Averaging in
the Presence of Strutural Breaks, chapter 15. Frontier of Economics and Globalization.

Ridgeway, G., Madigan, D., and Richardson, T. (1999). Boosting methodology for regression
problems. In The Seventh International Workshop on Arti�cial Intelligence and Statistics
(Uncertainty �99), pages 152�161. Morgan Kaufmann.

Schapire, R. E. (1990). The strength of weak learnability. Machine Learning, 5(2):197�227.
Shrestha, D. L. and Solomatine, D. P. (2006). Experiments with adaboost.rt, an improved
boosting scheme for regression. Neural Computation, 18(7):1678�1710.

Stock, J. H. and Watson, M. W. (1999). Forecasting in�ation. Journal of Monetary Economics,
44(2):293�335.

Stock, J. H. and Watson, M. W. (2002a). Forecasting using principal components from a large
number of predictors. Journal of the American Statistical Association, 97:1167�1179.

Stock, J. H. and Watson, M. W. (2002b). Macroeconomic forecasting using di¤usion indexes.
Journal of Business & Economic Statistics, 20(2):147�62.

Stock, J. H. and Watson, M. W. (2004). Combination forecasts of output growth in a seven-
country data set. Journal of Forecasting, 23(6):405�430.

Stock, J. H. and Watson, M. W. (2005). Implications of dynamic factor models for var analysis.
NBER Working Papers 11467, National Bureau of Economic Research, Inc.

Stock, J. H. and Watson, M. W. (2006). Forecasting with many predictors. In Elliott, G.,
Granger, C., and Timmermann, A., editors, Handbook of Economic Forecasting, volume 1,
chapter 10, pages 515�554. Elsevier.

Stock, J. H. and Watson, M. W. (2012). Generalized shrinkage methods for forecasting using
many predictors. Journal of Business and Economic Statistics, forthcoming.

Stone, J. V. (2004). Independent Component Analysis. MIT Press.
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267�288.

Timmermann, A. G. (2005). Forecast combinations. CEPR Discussion Papers 5361, C.E.P.R.
Discussion Papers.

Tong, L., Liu, R.-w., Soon, V., and Huang, Y.-F. (1991). Indeterminacy and identi�ability of
blind identi�cation. IEEE Transactions on Circuits and Systems, 38:499�509.

Vines, S. (2000). Simple principal components. Applied Statistics, 49:441�451.
Wright, J. H. (2008). Bayesian model averaging and exchange rate forecasting. Journal of
Econometrics, 146:329�341.

Wright, J. H. (2009). Forecasting u.s. in�ation by bayesian model averaging. Journal of Fore-
casting, 28:131�144.

Yuan, M. (2007). Nonnegative garrote component selection in functional anova models. In
Proceedings of the Eleventh International Conference on Arti�cial Intelligence and Statistics,
pages 660�666. JMLR Workshop and Conference Proceedings.

Yuan, M. and Lin, Y. (2007). On the non-negative garrotte estimator. Journal of the Royal
Statistical Society, 69(2):143�161.

Zellner (1986). On assessing prior distributions and bayesian regression analysis with g-prior
distributions,. In Goel, P. and Zellner, A., editors, Bayesian Inference and Decision Tech-
niques: Essays in Honour of Bruno de Finetti. Armsterdam: North-Holland.

36



Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101:1418�1429.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal
Of The Royal Statistical Society Series B, 67(2):301�320.

Zou, H., Hastie, T., and Tibshirani, R. (2006). Sparse principal component analysis. Journal
of Computational and Graphical Statistics, 15(2):262�286.

37



Table 1: Target Forecast Variables *

Series Abbreviation Yt+h
Unemployment Rate UR Zt+1�Zt
Personal Income Less transfer payments PI ln (Zt+1=Zt)
10-Year Treasury Bond TB Zt+1�Zt
Consumer Price Index CPI ln (Zt+1=Zt)
Producer Price Index PPI ln (Zt+1=Zt)
Nonfarm Payroll Employment NPE ln (Zt+1=Zt)
Housing Starts HS ln (Zt)
Industrial Production IPX ln (Zt+1=Zt)
M2 M2 ln (Zt+1=Zt)
S&P 500 Index SNP ln (Zt+1=Zt)
Gross Domestic Product GNP ln (Zt+1=Zt)

* Notes: Data used in model estimation and prediction construction are monthly U.S. �gures for the period
1960:1-2009:5. Data transformations used in prediction experiments are given in the last column of the table.
See Section 4 for further details.
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Table 2: Models and Methods Used In Real-Time Forecasting Experiments*

Method Description

AR(SIC) Autoregressive model with lags selected by the SIC
ARX Autoregressive model with exogenous regressors
CADL Combined autoregressive distributed lag model
FAAR Factor augmented autoregressive model
PCR Principal components regression
Bagging Bagging with shrinkage, c = 1:96
Boosting Component boosting, M = 50
BMA1 Bayesian model averaging with g-prior = 1=T
BMA2 Bayesian model averaging with g-prior = 1=N2

Ridge Ridge regression
LARS Least angle regression
EN Elastic net
NNG Non-negative garotte
Mean Arithmetic mean

* Notes: This table summarizes the prediction model speci�cations used in all experiments. In addition to
directly estimating the above pure linear and factor models (i.e., AR, ARX, CADL, FAAR, PCR), three di¤erent
combined factor and shrinkage type prediction �speci�cation methods�are used in our forecasting experiments,
including: Speci�cation Type 1 - Principal components are �rst constructed, and then prediction models are
formed using the above shrinkage methods (including Bagging, Boosting, Ridge, LARS, EN, and NNG) to select
functions of and weights for the factors to be used in our prediction models. Speci�cation Type 2 - Principal
component models are constructed using subsets of variables from the large-scale dataset that are �rst selected
via application of the above shrinkage methods (ranging from bagging to NNG). This is di¤erent from the
above approach of estimating factors using all of the variables. Speci�cation Type 3 - Prediction models are
constructed using only the above shrinkage methods (ranging from bagging to NNG), without use of factor
analysis at any stage. See Sections 3 and 4 for complete details.
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Table 3: Point MSFEs by Forecast Estimation Metho and Speci�cation Type*

Panel A: Recursive Window Estimation

Forecast
Horizon

Factor Spec. Mtd. UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA 0.780 0.870 0.940 0.875 0.943 0.811 0.901 0.800 0.939 0.976 0.916
ICA 0.897 0.920 0.931 0.840 0.843 0.802 0.901 0.574 0.965 0.920 0.916
SPCA 0.827 0.789 0.409 0.870 0.858 0.706 0.542 0.268 0.969 0.897 0.916

SP1L
PCA 0.850 0.889 0.955 0.865 0.945 0.879 0.901 0.804 0.930 0.976 0.916
ICA 0.897 0.966 0.978 0.939 0.960 0.918 0.901 0.861 0.991 1.002 0.916
SPCA 0.897 0.954 0.987 0.939 0.972 0.881 0.901 0.826 0.954 0.998 0.916

SP2
PCA 0.861 0.950 0.965 0.933 0.968 0.854 0.901 0.833 0.942 0.985 0.871
ICA 0.897 0.959 0.971 0.939 0.965 0.861 0.901 0.874 0.959 0.991 0.867
SPCA 0.897 0.959 0.976 0.939 0.966 0.860 0.901 0.873 0.940 0.986 0.873

SP2L
PCA 0.861 0.950 0.965 0.933 0.968 0.854 0.901 0.833 0.942 0.985 0.871
ICA 0.864 0.957 0.975 0.923 0.967 0.862 0.901 0.840 0.961 0.993 0.871
SPCA 0.868 0.961 0.974 0.939 0.963 0.859 0.901 0.874 0.950 0.991 0.879

SP3 0.897 0.944 0.987 0.933 0.956 0.826 0.901 0.874 0.977 0.989 0.873

SP4 0.897 0.964 0.979 0.939 0.962 0.865 0.901 0.829 0.971 0.986 0.916

h = 3

SP1
PCA 0.913 0.866 0.998 0.929 0.910 0.819 0.852 0.850 0.977 0.994 0.956
ICA 0.914 0.902 0.975 0.922 0.945 0.819 0.917 0.834 0.969 1.002 0.976
SPCA 0.916 0.892 0.988 0.895 0.940 0.775 0.862 0.816 0.942 0.997 0.944

SP1L
PCA 0.925 0.892 0.988 0.901 0.929 0.818 0.852 0.838 0.978 0.993 0.963
ICA 0.963 0.902 0.998 0.967 0.945 0.927 0.948 0.895 0.997 1.007 0.979
SPCA 0.951 0.902 0.984 0.968 0.945 0.924 0.912 0.887 0.990 0.997 0.988

SP2
PCA 0.916 0.895 0.992 0.888 0.945 0.827 0.783 0.809 0.967 0.995 0.954
ICA 0.941 0.902 0.995 0.959 0.945 0.859 0.824 0.821 0.980 0.997 0.963
SPCA 0.943 0.902 0.998 0.975 0.945 0.894 0.793 0.873 0.964 0.993 0.963

SP2L
PCA 0.916 0.895 0.992 0.888 0.945 0.827 0.783 0.809 0.967 0.995 0.954
ICA 0.916 0.902 0.998 0.903 0.945 0.827 0.854 0.812 0.979 0.997 0.967
SPCA 0.950 0.902 0.994 0.972 0.945 0.889 0.803 0.812 0.974 0.993 0.962

SP3 0.943 0.902 0.998 0.926 0.945 0.860 0.723 0.881 0.939 1.001 0.975

SP4 0.950 0.902 0.986 0.979 0.945 0.898 0.937 0.872 0.990 0.988 0.978

h = 12

SP1
PCA 0.939 0.956 0.997 0.886 0.939 0.874 0.818 0.919 0.958 1.002 0.999
ICA 0.948 0.944 0.997 0.960 0.977 0.907 0.844 0.952 0.960 1.001 0.986
SPCA 0.933 0.940 0.992 0.928 0.950 0.845 0.841 0.932 0.950 0.996 0.993

SP1L
PCA 0.903 0.956 0.988 0.888 0.927 0.860 0.829 0.926 0.942 0.995 1.000
ICA 0.943 0.969 0.997 0.961 0.981 0.912 0.912 0.939 0.964 1.002 0.981
SPCA 0.912 0.977 0.997 0.945 0.970 0.879 0.832 0.937 0.981 1.001 0.997

SP2
PCA 0.926 0.949 0.992 0.891 0.950 0.816 0.749 0.916 0.930 0.995 0.982
ICA 0.941 0.949 0.997 0.909 0.960 0.843 0.901 0.942 0.933 0.999 0.991
SPCA 0.916 0.948 0.997 0.935 0.957 0.843 0.910 0.919 0.916 0.997 0.992

SP2L
PCA 0.926 0.949 0.992 0.891 0.950 0.816 0.749 0.916 0.930 0.995 0.982
ICA 0.933 0.953 0.992 0.894 0.964 0.853 0.883 0.944 0.942 0.998 0.985
SPCA 0.914 0.950 0.996 0.958 0.968 0.872 0.880 0.938 0.961 0.994 0.989

SP3 0.926 0.961 0.997 0.899 0.953 0.862 0.804 0.890 0.910 1.002 0.982

SP4 0.926 0.963 0.997 0.943 0.962 0.855 0.886 0.927 0.976 1.001 0.990
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Panel B: Rolling Window Estimation

Forecast
Horizon

Factor Spec. Mtd. UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA 0.787 0.909 0.944 0.843 0.971 0.831 0.841 0.803 0.863 0.998 0.940
ICA 0.871 1.014 0.977 0.876 0.973 0.918 0.841 0.910 0.918 0.998 0.948
SPCA 0.871 1.023 0.977 0.883 0.996 0.877 0.841 0.875 0.869 1.007 0.945

SP1L
PCA 0.852 0.989 0.954 0.850 0.973 0.871 0.841 0.845 0.845 1.002 0.943
ICA 0.871 1.004 0.982 0.883 0.985 0.924 0.841 0.877 0.908 1.008 0.941
SPCA 0.871 1.081 0.992 0.883 1.003 0.911 0.841 0.851 0.880 1.008 0.989

SP2
PCA 0.871 1.085 0.963 0.849 0.936 0.869 0.841 0.858 0.889 0.998 0.915
ICA 0.871 1.114 0.977 0.849 0.941 0.884 0.841 0.858 0.908 1.006 0.915
SPCA 0.871 1.087 0.979 0.844 0.949 0.877 0.841 0.892 0.888 1.007 0.927

SP2L
PCA 0.871 1.088 0.964 0.850 0.948 0.865 0.841 0.833 0.886 0.997 0.905
ICA 0.871 1.100 0.977 0.843 0.953 0.880 0.841 0.841 0.909 1.004 0.905
SPCA 0.871 1.095 0.979 0.840 0.957 0.879 0.841 0.864 0.910 1.004 0.915

SP3 0.871 1.114 0.992 0.858 1.000 0.924 0.841 0.841 0.916 1.008 0.930

SP4 0.871 1.091 0.977 0.828 0.946 0.872 0.841 0.867 0.899 1.008 0.945

h = 3

SP1
PCA 0.882 0.872 1.002 0.861 0.937 0.786 0.769 0.835 0.914 0.997 0.937
ICA 0.923 0.925 0.996 0.890 0.941 0.833 0.839 0.854 0.978 1.004 0.957
SPCA 0.926 0.913 0.993 0.870 0.944 0.847 0.807 0.869 0.941 1.003 0.969

SP1L
PCA 0.904 0.889 0.981 0.848 0.920 0.807 0.744 0.820 0.908 0.988 0.953
ICA 0.936 0.925 1.001 0.900 0.951 0.876 0.854 0.877 0.976 1.008 0.957
SPCA 0.957 0.903 1.002 0.905 0.945 0.905 0.840 0.884 0.981 1.001 0.972

SP2
PCA 0.895 0.883 0.998 0.875 0.941 0.814 0.740 0.833 0.912 0.989 0.929
ICA 0.912 0.899 0.995 0.875 0.939 0.838 0.743 0.850 0.915 0.989 0.950
SPCA 0.919 0.914 0.997 0.863 0.941 0.846 0.785 0.857 0.927 0.989 0.947

SP2L
PCA 0.889 0.886 0.988 0.864 0.942 0.792 0.738 0.823 0.911 0.985 0.938
ICA 0.888 0.901 0.998 0.865 0.941 0.792 0.806 0.838 0.921 0.985 0.947
SPCA 0.927 0.919 1.002 0.861 0.936 0.843 0.772 0.858 0.929 0.985 0.943

SP3 0.911 0.903 1.002 0.906 0.960 0.839 0.683 0.844 0.950 1.002 0.970

SP4 0.930 0.903 1.002 0.842 0.925 0.831 0.806 0.858 0.942 0.994 0.960

h = 12

SP1
PCA 0.897 0.935 0.997 0.812 0.891 0.729 0.723 0.884 0.896 1.007 1.010
ICA 0.930 0.944 0.997 0.863 0.949 0.779 0.741 0.909 0.937 0.996 0.999
SPCA 0.879 0.953 0.997 0.781 0.920 0.720 0.715 0.890 0.904 1.006 0.997

SP1L
PCA 0.864 0.946 0.997 0.819 0.902 0.737 0.726 0.898 0.899 1.000 0.996
ICA 0.908 0.951 0.997 0.872 0.962 0.730 0.773 0.902 0.942 1.003 0.987
SPCA 0.869 0.983 0.992 0.816 0.938 0.759 0.712 0.943 0.960 1.002 0.984

SP2
PCA 0.893 0.929 0.997 0.818 0.912 0.692 0.637 0.880 0.884 0.994 0.994
ICA 0.911 0.932 0.997 0.833 0.915 0.691 0.726 0.902 0.888 0.994 0.993
SPCA 0.901 0.935 0.997 0.819 0.921 0.692 0.693 0.896 0.879 0.991 0.991

SP2L
PCA 0.883 0.927 0.997 0.816 0.903 0.714 0.624 0.888 0.880 0.993 0.996
ICA 0.895 0.929 0.997 0.835 0.917 0.719 0.695 0.898 0.897 0.994 0.993
SPCA 0.888 0.935 0.997 0.836 0.910 0.722 0.768 0.897 0.905 0.994 0.991

SP3 0.903 0.971 0.997 0.799 0.947 0.690 0.551 0.940 0.891 1.001 0.998

SP4 0.882 0.937 0.997 0.804 0.912 0.702 0.616 0.886 0.902 0.997 0.985

*Notes: See notes to Tables 1 and 2. Numerical entries in this table are the lowest (relative) mean square forecast errors (MSFEs)
based on the use of various �recursively estimated� (Panel A) and �rolling estimated� (Panel B) prediction models using three
di¤erent factor estimation methods (PCA, ICA and SPCA - see Section 2 for further discussion), for six di¤erent speci�cation types.
Prediction models and target variables are described in Tables 1 and 2 (see Section 4 for further discussion). Forecasts are monthly,
for the period 1974:3-2009:5. Forecast horizons reported on include h=1,3 and 12. Tabulted relative MSFEs are calculated such
that numerical values less than unity constitute cases for which the alternative model has lower point MSFE than the AR(SIC)
model. Entries in bold denote point-MSFE �best� models among the three factor estimation methods, for a given speci�cation
type, estimation window and forecast horizon. See Section 5 for further details.
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Table 4: Summary of MSFE �Best�Models*

Panel A: Recursive Window Estimation

Forecast
Horizon

Factor Spec.
Mtd.

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA FAAR PCR Ridge PCR PCR FAAR ARX PCR Mean Mean ARX
ICA ARX FAAR FAAR FAAR FAAR Ridge ARX FAAR Mean Boost ARX
SPCA FAAR PCR PCR BMA1 BMA2 Mean FAAR FAAR Mean Boost ARX

SP1L
PCA FAAR PCR Mean PCR Mean Mean ARX BMA1 Mean Boost ARX
ICA ARX Mean Mean ARX Mean Mean ARX Mean Mean AR ARX
SPCA ARX Mean CADL ARX Mean Boost ARX Mean Mean Mean ARX

SP2
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA ARX Mean Mean ARX Mean Mean ARX ARX EN Mean Boost
SPCA ARX Mean Mean ARX Mean Mean ARX BMA1 Boost Mean Boost

SP2L
PCA Boost Mean Mean Boost Mean Mean ARX BMA1 BMA2 Mean Boost
ICA Boost Mean Mean Boost Mean Mean ARX Boost EN Mean Boost
SPCA Boost Mean Mean ARX Mean Mean ARX ARX Boost Mean Boost

SP3 ARX Mean CADL Mean Mean Mean ARX ARX Mean Boost Mean

SP4 ARX Mean Mean ARX Mean Mean ARX BMA1 Mean Mean ARX

h = 3

SP1
PCA PCR PCR CADL FAAR PCR FAAR Boost Mean Mean LARS Mean
ICA FAAR ARX PCR FAAR ARX FAAR LARS Mean Bagg AR Mean
SPCA Mean PCR Mean FAAR Mean Ridge Mean FAAR Mean NNG Mean

SP1L
PCA Mean Mean Mean Mean Mean BMA1 Mean Mean Mean NNG Mean
ICA Mean ARX CADL Mean ARX Mean LARS ARX NNG AR Mean
SPCA Mean ARX Mean Mean ARX BMA2 Mean Mean NNG NNG NNG

SP2
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Mean ARX LARS Boost ARX Boost Boost Boost Mean Mean Mean
SPCA Mean ARX CADL Mean ARX Mean Boost Mean Boost LARS Mean

SP2L
PCA Boost Mean EN Boost ARX Boost Boost Mean Mean Mean Mean
ICA Boost ARX CADL Boost ARX Boost Boost LARS Mean Mean Mean
SPCA Mean ARX BMA2 Mean ARX Mean Boost LARS Boost Mean Mean

SP3 Boost ARX CADL Mean ARX Mean Mean BMA2 Mean AR Boost

SP4 Mean ARX Mean Mean ARX Mean Mean Mean NNG Mean Mean

h = 12

SP1
PCA Ridge Mean CADL FAAR FAAR FAAR FAAR Mean Mean AR Mean
ICA Mean Mean CADL Mean Mean Mean FAAR CADL Mean AR Bagg
SPCA Mean Mean NNG Mean Mean Mean Mean Mean Mean LARS Mean

SP1L
PCA Mean Mean Boost Mean Mean Mean Mean Mean Boost LARS AR
ICA Mean Bagg CADL Mean Mean Mean FAAR Bagg Mean AR Bagg
SPCA Mean Mean CADL Mean BMA2 Mean Mean Mean Mean AR Mean

SP2
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LARS LARS
ICA Mean Mean CADL Boost Mean EN Boost Mean Mean LARS Mean
SPCA Boost Mean CADL Mean Mean EN Boost Mean Mean LARS Mean

SP2L
PCA Mean Mean Mean BMA1 Mean Boost Boost Mean Mean LARS LARS
ICA Mean Mean BMA2 Boost Mean Boost Boost Mean Mean Mean LARS
SPCA Boost Mean Mean Mean Mean Mean Boost Mean Mean BMA2 LARS

SP3 Boost Boost CADL Mean Mean Boost EN EN Mean AR EN

SP4 Mean Mean CADL Mean Mean Mean Boost Mean Mean AR Mean
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Panel B: Rolling Window Estimation

Forecast
Horizon

Factor Spec.
Mtd.

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
PCA FAAR PCR Mean FAAR Mean FAAR ARX PCR FAAR LARS Mean
ICA ARX AR Mean Mean Mean Mean ARX ARX Mean NNG Mean
SPCA ARX AR Mean ARX LARS Mean ARX Mean Mean AR Mean

SP1L
PCA Mean PCR Mean Mean Mean Mean ARX Mean Mean AR Mean
ICA ARX AR Mean ARX Mean Mean ARX Mean Mean AR Mean
SPCA ARX AR CADL ARX AR Mean ARX Mean Mean AR LARS

SP2
PCA ARX AR Mean Mean LARS Mean ARX Boost Mean EN EN
ICA ARX AR Mean Mean LARS Mean ARX Boost Mean AR EN
SPCA ARX AR Mean Boost LARS Mean ARX Mean Mean AR LARS

SP2L
PCA ARX AR Mean Mean EN Mean ARX BMA2 Mean LARS LARS
ICA ARX AR Mean Mean EN Mean ARX Boost Mean AR LARS
SPCA ARX AR Mean Mean Mean Mean ARX Boost Mean AR LARS

SP3 ARX AR CADL Boost AR Boost ARX Boost LARS AR EN

SP4 ARX AR Boost BMA2 Mean Mean ARX Mean Boost AR Mean

h = 3

SP1
PCA Mean PCR AR Mean Mean PCR Boost Mean FAAR LARS Boost
ICA Mean Mean PCR Mean Mean Mean Bagg Mean Bagg AR Mean
SPCA Mean Mean BMA2 BMA1 Mean Mean Mean Mean Mean AR Mean

SP1L
PCA Mean Mean LARS Mean Mean Mean Boost Mean Mean Mean Mean
ICA Mean Mean AR BMA2 Boost Mean Boost Mean Mean AR Mean
SPCA Mean Mean AR BMA2 NNG Mean Mean Mean Mean AR LARS

SP2
PCA Mean Mean NNG Mean Mean BMA2 Boost Mean EN NNG LARS
ICA Mean Mean BMA2 Mean Mean Mean Boost Mean EN NNG Mean
SPCA Boost Mean BMA1 BMA2 Mean Mean Boost Mean Mean NNG Mean

SP2L
PCA Boost Mean BMA1 Mean Mean Boost BMA2 Mean Mean NNG Mean
ICA Boost Mean BMA2 Mean Mean Boost Boost Boost Boost NNG Mean
SPCA Mean Mean AR Mean Mean Mean Boost Mean Boost NNG Mean

SP3 Boost Boost AR Boost NNG Boost Boost Boost Boost AR Boost

SP4 Mean Mean AR Mean Mean Boost Mean Boost Boost Mean LARS

h = 12

SP1
PCA Mean Mean CADL Mean PCR FAAR Boost Mean Mean AR AR
ICA Mean Mean CADL Ridge Mean Mean FAAR Mean Mean Bagg Mean
SPCA Mean Mean CADL BMA2 Mean Mean Mean Mean Mean AR Mean

SP1L
PCA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR NNG
ICA Mean Mean CADL Mean Mean Mean Mean Mean Mean AR Bagg
SPCA Mean NNG NNG BMA2 Boost Mean Mean LARS LARS AR LARS

SP2
PCA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
ICA Mean Mean CADL Mean Mean EN Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean Mean EN Boost Mean Boost LARS Mean

SP2L
PCA Mean Mean CADL Mean Mean Boost Boost Mean Mean BMA2 Mean
ICA Mean Mean CADL Mean Mean Boost Boost Mean Boost NNG Mean
SPCA Mean Mean CADL Mean LARS Boost Boost Mean Boost NNG Mean

SP3 Boost Boost CADL EN EN Boost Boost Boost Boost AR NNG

SP4 Mean Mean CADL Boost Mean Mean Boost Mean Mean NNG EN
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Panel C: Summary of Forecast Model Sepci�cation �Wins�Reported in Panels A and B

Recursive Window Estimation Rolling Window Estimation

Horizon Method SP1 SP1L SP2 SP2L SP3 SP4 Total SP1 SP1L SP2 SP2L SP3 SP4 Total

h = 1

AR 0 1 0 0 0 0 1 3 6 5 5 3 2 24
ARX 6 10 8 5 3 4 36 7 7 6 6 2 2 30
CADL 0 1 0 0 1 0 2 0 1 0 0 1 0 2
FAAR 10 1 0 0 0 0 11 4 0 0 0 0 0 4
PCR 6 2 0 0 0 0 8 2 1 0 0 0 0 3
Bagg 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Boost 2 2 6 10 1 0 21 0 0 3 2 3 2 10
BMA1 1 1 2 1 0 1 6 0 0 0 0 0 0 0
BMA2 1 0 1 1 0 0 3 0 0 0 1 0 1 2
Ridge 2 0 0 0 0 0 2 0 0 0 0 0 0 0
LAR 0 0 0 0 0 0 0 2 1 4 4 1 0 12
EN 0 0 1 1 0 0 2 0 0 3 2 1 0 6
NNG 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Mean 5 15 15 15 6 6 62 14 17 12 13 0 4 60

h = 3

AR 1 1 0 0 1 0 3 3 4 0 1 2 1 11
ARX 2 5 5 5 2 2 21 0 0 0 0 0 0 0
CADL 1 1 1 1 1 0 5 0 0 0 0 0 0 0
FAAR 7 0 0 0 0 0 7 1 0 0 0 0 0 1
PCR 5 0 0 0 0 0 5 3 0 0 0 0 0 3
Bagg 1 0 0 0 0 0 1 2 0 0 0 0 0 2
Boost 1 0 10 10 2 0 23 2 3 4 9 8 3 29
BMA1 0 1 0 0 0 0 1 1 0 1 1 0 0 3
BMA2 0 1 0 1 1 0 3 1 2 3 2 0 0 8
Ridge 1 0 0 0 0 0 1 0 0 0 0 0 0 0
LAR 2 1 2 2 0 0 7 1 2 1 0 0 1 5
EN 0 0 1 1 0 0 2 0 0 2 0 0 0 2
NNG 1 5 0 0 0 1 7 0 1 4 3 1 0 9
Mean 11 18 14 13 4 8 68 19 21 18 17 0 6 81

h = 12

AR 2 3 0 0 1 1 7 3 3 0 0 1 0 7
ARX 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CADL 3 2 2 0 1 1 9 3 2 3 3 1 1 13
FAAR 5 1 0 0 0 0 6 2 0 0 0 0 0 2
PCR 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Bagg 1 3 0 0 0 0 4 1 1 0 0 0 0 2
Boost 0 2 6 7 3 1 19 1 1 6 8 6 2 24
BMA1 0 0 1 1 0 0 2 0 0 0 0 0 0 0
BMA2 0 1 0 2 0 0 3 1 1 0 1 0 0 3
Ridge 1 0 0 0 0 0 1 1 0 0 0 0 0 1
LAR 1 1 4 4 0 0 10 0 3 1 1 0 0 5
EN 0 0 2 0 3 0 5 0 0 3 0 2 1 6
NNG 1 0 0 0 0 0 1 0 3 2 2 1 1 9
Mean 19 20 18 19 3 8 87 20 19 18 18 0 6 81

*Notes: See notes to Tables 1-3. In Panels A and B, �winning� models, based on results reported in Table 4, for each factor
estimation method are tabulated across forecast horizons and target forecast variable. Panel C summarizes results from Panels A
and B, reporting the number of �wins�by forecast model speci�cation.
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Table 5: Summary of MSFE �Best�Factor Estimation Methods*

Panel A: Recursive Window Estimation

Speci�cation Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1
h = 1 PCA SPCA SPCA ICA ICA SPCA SPCA SPCA PCA SPCA ALL
h = 3 PCA PCA ICA SPCA PCA SPCA PCA SPCA SPCA PCA SPCA
h = 12 SPCA SPCA SPCA PCA PCA SPCA PCA PCA SPCA SPCA ICA

SP1L
h = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA PCA
h = 3 PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA PCA
h = 12 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA ICA

SP2
h = 1 PCA PCA PCA PCA ICA PCA ALL PCA SPCA PCA ICA
h = 3 PCA PCA PCA PCA ALL PCA PCA PCA SPCA SPCA PCA
h = 12 SPCA SPCA PCA PCA PCA PCA PCA PCA SPCA PCA PCA

SP2L
h = 1 PCA PCA PCA ICA SPCA PCA ALL PCA PCA PCA ICA
h = 3 PCA PCA PCA PCA ALL ICA PCA SPCA PCA SPCA PCA
h = 12 SPCA PCA PCA PCA PCA PCA PCA PCA PCA SPCA PCA

Panel B: Rolling Window Estimation

Speci�cation Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1
h = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA PCA
h = 3 PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA PCA
h = 12 SPCA PCA PCA SPCA PCA SPCA SPCA PCA PCA ICA SPCA

SP1L
h = 1 PCA PCA PCA PCA PCA PCA ALL PCA PCA PCA ICA
h = 3 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
h = 12 PCA PCA SPCA SPCA PCA ICA SPCA PCA PCA PCA SPCA

SP2
h = 1 PCA PCA PCA SPCA PCA PCA PCA PCA SPCA PCA PCA
h = 3 PCA PCA ICA SPCA ICA PCA PCA PCA PCA PCA PCA
h = 12 PCA PCA PCA PCA PCA ICA PCA PCA SPCA SPCA SPCA

SP2L
h = 1 PCA PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA
h = 3 ICA PCA PCA SPCA SPCA PCA PCA PCA PCA PCA PCA
h = 12 PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA SPCA

Panel C: Summary of MSFE-best by PC Method

Recursive Window Estimation Rolling Window Estimation

h = 1 h = 3 h = 12 h = 1 h = 3 h = 12

PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA PCA ICA SPCA

SP1 2 2 6 5 1 5 4 1 6 10 0 0 10 0 1 5 1 5
SP1L 10 0 0 10 0 1 10 1 0 9 1 0 11 0 0 6 1 4
SP2 7 2 1 8 0 2 8 0 3 9 0 2 8 2 1 7 1 3
SP2L 7 2 1 7 1 2 9 0 2 10 0 1 8 1 2 10 0 1

* Notes: See notes to Table 4. Entries in Panels A and B of this table show which factor estimation method yields the lowest
MSFE predictions. Cases where a benchmark model (AR,ARX and CADL) is MSFE �better�than PCA, ICA and SPCA in Table
4, are denoted by the entry �ALL�; otherwise, entries correspond to MSFE-best factor estimation methods reported in Table 4.
Summarizing results from Panels A and B, entries in Panel C give counts of the number of factor estimation method �wins� by
Speci�cation type and forecast horizon, across all forecast target variables. Since there is no column for �ALL�, count sums across
individual row of entries do not always sum to eleven (the number of target forecast variables).
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Table 6: Summary of Estimation Windowing Scheme Yielding MSFE �Best�Models*

Panel A: MSFE �Best�Models by Estimation Windowing Scheme Across Speci�cation Types and Factor Estimation Method

Speci�cation
Type

Forecast
Horizon

Fac. Est. Mtd. UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1

h = 1
PCA Recur Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
ICA Roll Recur Recur Recur Recur Recur Roll Recur Roll Recur Recur
SPCA Recur Recur Recur Recur Recur Recur Recur Recur Roll Recur Recur

h = 3
PCA Roll Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll
ICA Recur Recur Recur Roll Roll Recur Roll Recur Recur Recur Roll
SPCA Recur Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur

h = 12
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
ICA Roll Recur Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Recur

SP1L

h = 1
PCA Recur Recur Roll Roll Recur Roll Roll Recur Roll Recur Recur
ICA Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur
SPCA Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Recur

h = 3
PCA Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll
ICA Roll Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll
SPCA Recur Recur Recur Roll Recur Roll Roll Roll Roll Recur Roll

h = 12
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Roll
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
SPCA Roll Recur Roll Roll Roll Roll Roll Recur Roll Recur Roll

SP2

h = 1
PCA Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ICA Roll Recur Recur Roll Roll Recur Roll Roll Roll Recur Recur
SPCA Roll Recur Recur Roll Roll Recur Roll Recur Roll Recur Recur

h = 3
PCA Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
ICA Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
SPCA Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll Roll

h = 12
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll

SP2L

h = 1
PCA Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ICA Recur Recur Recur Roll Roll Recur Roll Recur Roll Recur Recur
SPCA Recur Recur Recur Roll Roll Recur Roll Roll Roll Recur Recur

h = 3
PCA Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
ICA Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
SPCA Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Roll

h = 12
PCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
ICA Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
SPCA Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur

SP3
h = 1 Roll Recur Recur Roll Recur Recur Roll Roll Roll Recur Recur
h = 3 Roll Recur Recur Roll Recur Roll Roll Roll Recur Recur Roll
h = 12 Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Recur

SP4
h = 1 Roll Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
h = 3 Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Roll
h = 12 Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll
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Panel B: Count of MSFE �Best�Models By Estimation Window and Speci�cation Type

h = 1 h = 3 h = 12

Recur Roll Recur Roll Recur Roll

SP1 26 7 19 14 10 23
SP1L 20 13 9 24 8 25
SP2 17 16 5 28 5 28
SP2L 19 14 5 28 7 26
SP3 6 5 5 6 4 7
SP4 5 6 3 8 1 10

Total 93 61 46 108 35 119

* Note: See notes to Tables 1-5. Entries in Panel A indicate winning estimation windowing scheme across various measures including
forecast horizon and speci�cation type, for each target forecast variable. �Recur� refers recursive window estimation and �Roll�
refers to rolling window esimation. Panel B entries are counts of �wins� across speci�cation types, and hence summarize results
from Panel A of the table.

Table 7: Prediction �Best�MSFEs By Speci�cation Type and Forecast Horizon*

Panel A: �Best�MSFEs By Speci�cation Type, for Each Target Forecast Variable

Forecast
Horizon

Speci�cation
Type

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1 0.780 0.789 0.409 0.84 0.843 0.706 0.542 0.268 0.863 0.897 0.916
SP1L 0.850 0.889 0.954 0.850 0.945 0.871 0.841 0.804 0.845 0.976 0.916
SP2 0.861 0.950 0.963 0.844 0.936 0.854 0.841 0.833 0.888 0.985 0.867
SP2L 0.861 0.950 0.964 0.840 0.948 0.854 0.841 0.833 0.886 0.985 0.871
SP3 0.871 0.944 0.987 0.858 0.956 0.826 0.841 0.841 0.916 0.989 0.873
SP4 0.871 0.964 0.977 0.828 0.946 0.865 0.841 0.829 0.899 0.986 0.916

h = 3

SP1 0.882 0.866 0.975 0.861 0.910 0.775 0.769 0.816 0.914 0.994 0.937
SP1L 0.904 0.889 0.981 0.848 0.920 0.807 0.744 0.820 0.908 0.988 0.953
SP2 0.895 0.883 0.992 0.863 0.939 0.814 0.740 0.809 0.912 0.989 0.929
SP2L 0.888 0.886 0.988 0.861 0.936 0.792 0.738 0.809 0.911 0.985 0.938
SP3 0.911 0.902 0.998 0.906 0.945 0.839 0.683 0.844 0.939 1.001 0.970
SP4 0.930 0.902 0.986 0.842 0.925 0.831 0.806 0.858 0.942 0.988 0.960

h = 12

SP1 0.879 0.935 0.992 0.781 0.891 0.720 0.715 0.884 0.896 0.996 0.986
SP1L 0.864 0.946 0.988 0.816 0.902 0.730 0.712 0.898 0.899 0.995 0.981
SP2 0.893 0.929 0.992 0.818 0.912 0.691 0.637 0.880 0.879 0.991 0.982
SP2L 0.883 0.927 0.992 0.816 0.903 0.714 0.624 0.888 0.880 0.993 0.982
SP3 0.903 0.961 0.997 0.799 0.947 0.690 0.551 0.890 0.891 1.001 0.982
SP4 0.882 0.937 0.997 0.804 0.912 0.702 0.616 0.886 0.902 0.997 0.985
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Panel B: Summary of Winning Methods and Models by Forecast Horizon and Sepci�cation Type

Forecast
Horizon

Speci�cation
Type

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1
Recur Recur Recur Recur Recur Recur Recur Recur Roll Recur Recur
PCA SPCA SPCA ICA ICA SPCA SPCA SPCA PCA SPCA PCA
FAAR PCR PCR FAAR FAAR Mean FAAR FAAR FAAR Boost ARX

SP1L
Recur Recur Roll Roll Recur Roll Roll Recur Roll Recur Recur
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
FAAR PCR Mean Mean Mean Mean ARX BMA1 Mean Boost ARX

SP2
Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
PCA PCA PCA SPCA PCA PCA PCA PCA SPCA PCA ICA
Boost Mean Mean Boost LARS Mean ARX BMA1 Mean Mean Boost

SP2L
Recur Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
PCA PCA PCA SPCA PCA PCA PCA PCA PCA PCA PCA
Boost Mean Mean Mean EN Mean ARX BMA1 Mean Mean Boost

SP3
Roll Recur Recur Roll Recur Recur Roll Roll Roll Recur Recur
ARX Mean CADL Boost Mean Mean ARX Boost LARS Boost Mean

SP4
Roll Recur Roll Roll Roll Recur Roll Recur Roll Recur Recur
ARX Mean Boost BMA2 Mean Mean ARX BMA1 Boost Mean ARX

h = 3

SP1
Roll Recur Recur Roll Recur Recur Roll Recur Roll Recur Roll
PCA PCA ICA PCA PCA SPCA PCA SPCA PCA PCA PCA
Mean PCR PCR Mean PCR Ridge Boost FAAR FAAR LARS Boost

SP1L
Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll Roll
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
Mean Mean LARS Mean Mean Mean Boost Mean Mean Mean Mean

SP2
Roll Roll Recur Roll Roll Roll Roll Recur Roll Roll Roll
PCA PCA PCA SPCA ICA PCA PCA PCA PCA PCA PCA
Mean Mean EN BMA2 Mean BMA2 Boost Mean EN NNG LARS

SP2L
Roll Roll Roll Roll Roll Roll Roll Recur Roll Roll Roll
ICA PCA PCA SPCA SPCA PCA PCA PCA PCA PCA PCA
Boost Mean BMA1 Mean Mean Boost BMA2 Mean Mean NNG Mean

SP3
Roll Recur Recur Roll Recur Roll Roll Roll Recur Recur Roll
Boost ARX CADL Boost ARX Boost Boost Boost Mean AR Boost

SP4
Roll Recur Recur Roll Roll Roll Roll Roll Roll Recur Roll
Mean ARX Mean Mean Mean Boost Mean Boost Boost Mean LARS

h = 12

SP1
Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
SPCA PCA SPCA SPCA PCA SPCA SPCA PCA PCA SPCA ICA
Mean Mean NNG BMA2 PCR Mean Mean Mean Mean LARS Bagg

SP1L
Roll Roll Recur Roll Roll Roll Roll Roll Roll Recur Recur
PCA PCA PCA SPCA PCA ICA SPCA PCA PCA PCA ICA
Mean Mean Boost BMA2 Mean Mean Mean Mean Mean LARS Bagg

SP2
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA PCA PCA ICA PCA PCA SPCA SPCA PCA
Mean Mean Mean Mean Mean EN Boost Mean Boost LARS LARS

SP2L
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA PCA
Mean Mean Mean Mean Mean Boost Boost Mean Mean BMA2 LARS

SP3
Roll Recur Recur Roll Roll Roll Roll Recur Roll Roll Recur
Boost Boost CADL EN EN Boost Boost EN Boost AR EN

SP4
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Roll
Mean Mean CADL Boost Mean Mean Boost Mean Mean NNG EN
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Panel C: Summary of Winning Methods and Models by Forecast Horizon

Forecast Horizon UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

h = 1

SP1 SP1 SP1 SP4 SP1 SP1 SP1 SP1 SP1L SP1 SP2
Recur Recur Recur Roll Recur Recur Recur Recur Roll Recur Recur
PCA SPCA SPCA N/A ICA SPCA SPCA SPCA PCA SPCA ICA
FAAR PCR PCR BMA2 FAAR Mean FAAR FAAR Mean Boost Boost

h = 3

SP1 SP1 SP1 SP4 SP1 SP1 SP3 SP2 SP1L SP2L SP2
Roll Recur Recur Roll Recur Recur Roll Recur Roll Roll Roll
PCA PCA ICA N/A PCA SPCA N/A PCA PCA PCA PCA
Mean PCR PCR Mean PCR Ridge Boost Mean Mean NNG LARS

h = 12

SP1L SP2L SP1L SP1 SP1 SP3 SP3 SP2 SP2 SP2 SP1L
Roll Roll Recur Roll Roll Roll Roll Roll Roll Roll Recur
PCA PCA PCA SPCA PCA N/A N/A PCA SPCA SPCA ICA
Mean Mean Boost BMA2 PCR Boost Boost Mean Boost LARS Bagg

* Notes: See notes to Tables 1-6. Entries in Panel A are lowest relative MSFEs across speci�cation type, for each forecast horizon
and target forecast variable. Thus, entries report �best�MSFEs across all factor estimation methods. Entries in Panel B break
down the information from Panel A by listing, for each MSFE in Panel A, the winning (Prediction Model,Factor Estimation
Method,Estimation Windowing Scheme) triple, for each forecast horizon and model speci�cation type. Panel C summarizes the
results of Panel A by aggregating over speci�cation types, hence reporting the �ultimate�winning permutations. Since Speci�cation
types 3 and 4 do not involve factor estimation, third rows of entries are reported as �N/A� in cases where either of these two
specifcation types win. Note that benchmark models, including AR and ARX models, are never MSFE-best across all speci�cation
types, for a given forecasting horizon and variable.

Table 8: Comparison of �Best�Factor Estimation Methods With and Without Lags*

Speci�cation UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP

SP1
PCA No Lag No Lag No Lag Lag No Lag No Lag No Lag No Lag Lag Lag N/A
ICA Lag No Lag No Lag No Lag No Lag No Lag Lag No Lag No Lag No Lag N/A
SPCA No Lag No Lag No Lag No Lag No Lag No Lag No Lag No Lag Lag No Lag N/A

SP2
PCA No Lag No Lag No Lag No Lag No Lag No Lag No Lag No Lag No Lag No Lag No Lag
ICA Lag Lag No Lag Lag No Lag No Lag No Lag Lag No Lag No Lag No Lag
SPCA Lag No Lag Lag No Lag Lag Lag No Lag No Lag No Lag No Lag No Lag

* Notes: Entries denotes which factor estimation method (with lags or without lags) is MSFE �best�under each speci�cation type
(i.e., SP1 and SP2). For GDP, results are not available no factor-based forecasting model ever yields the lowest point MSFE.
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