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Abstract

This paper models the trade-off between production and appropri-
ation in the presence of simultaneous inter- and intra-group conflicts.
The model exhibits a ‘group cohesion effect ’: if the contest between
the groups becomes more decisive, or contractual incompleteness be-
tween groups becomes more serious, the players devote fewer resources
to the intra-group conflict. Moreover, there is also a ‘reversed group
cohesion effect’: if the intra-group contests become less decisive, or
contractual incompleteness within groups becomes less serious, the
players devote more resources to the inter-group contest. The model
also sheds new light on normative questions. I derive exact conditions
for when dividing individuals in more groups leads to more produc-
tive and less appropriative activities. Further, I show that there is
an optimal size of the organization which is determined by a trade-off
between increasing returns to scale in production and increasing costs
of appropriative activities.
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1 Introduction

Vilfredo Pareto famously remarked that men utilize their efforts in two differ-
ent ways: to produce economic goods, or to appropriate goods produced by
others. The corresponding trade off between productive and appropriative
activities has been studied extensively in the recent literature on endogenous
property rights (for a survey, see Skaperdas 2003).
Appropriative activities take place at different levels. For example, within

the EU, the member countries compete for subsidies. At the same time, there
is a contest over the allocation of subsidies within the countries. Or, within
a firm, several departments compete for resources, and in addition there is
a contest about the allocation of resources within the departments. The
common structure is that there are appropriative conflicts between certain
groups (states, departments, etc.), and appropriative conflicts within these
groups. The aim of this paper is to provide a model of situations like these.
What determines the amount of conflict within groups and between groups,
respectively? And what is the optimal design of an organization (be it a
federal state or a firm), taking into account that organizational structure has
an effect on appropriative activities?
In order to study these questions, I set up a model which is related to

the conflict models of Hirshleifer (1988, 2001) and Skaperdas (1992). These
models are motivated by some kind of contractual incompleteness which leads
to the absence of well defined and enforced property rights. Thus, individ-
uals can engage into appropriative activities and face a trade-off between
production and appropriation. The novel feature of my model is that I ex-
plicitly study simultaneous inter- and intra-group conflicts. Individuals are
partitioned in groups, and utilize their resources in three different ways: for
production, for appropriation in a contest between groups, and for appropri-
ation in a contest within their own group. The contractual incompleteness
problems may be different between groups and within groups. I model this in
a stylized way, taking contractual incompleteness as an exogenous parame-
ter, and being agnostic as to whether it is smaller or greater between groups
or within groups. Moreover, the technology of conflict (see Hirshleifer 1991)
may be different in the intra-group contest from that in the inter-group con-
test, since these contests are usually fought with different instruments. Again
I model this by a parameterization, taking an agnostic point of view about
which of the contests is the more decisive.
Situations of inter-group conflict have long been studied in the social sci-
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ences, especially in sociology, psychology, and anthropology. One seemingly
robust finding is that inter-group competition leads to increased cohesive-
ness within a group (see Fisher 1990, chapter 4, for a survey). My model
provides an economic explanation of this ‘group cohesion effect’: if the inter-
group conflict becomes more decisive, or more is at stake in this conflict, then
intra-group rent-seeking declines. Moreover, there is also an ‘reversed group
cohesion effect’: if the intra-group contest becomes less decisive, or contrac-
tual incompleteness problems within groups less severe, then appropriative
activities in the inter-group contest increase.
In addition, my paper has normative implications concerning the optimal

design of organizations. In this respect, it is related to a series of papers
by Karl Wärneryd and coauthors. They point out that, while traditionally
it has been thought that rent-seeking activities will increase if an organi-
zation acquires more layers in a hierarchy, such multitiered structures can
actually reduce the costs of appropriative activities. For example, Wärn-
eryd claims that “the institutional framework of federalism, such as that
of the EU may be seen as an efficient response (...) to rent-seeking activi-
ties, since it lowers the dead weight losses from such activities” (Wärneryd
1998, 436). Other applications include the allocation of free cash flow inside
organizations (Inderst, Müller and Wärneryd 2002), and distributional con-
flict between shareholders of corporations (Müller and Wärneryd 2001). The
analysis in these papers rests on three key assumptions. First, it is assumed
that there is a temporal order in which the contests take place: the inter-
group contest is fought first, and only when it is resolved, do the intra-group
contests begin.1 Here, while deciding how much to spend on the contest
between groups, an individual will anticipate that if his group gets a bigger
share, his fellow group members will fight harder in the following intra-group
contest. This dampens incentives to engage into appropriative activities be-
tween groups in the first stage. This is an important reason behind the result
of Wärneryd. In many real world examples, however, it seems more natural
to assume that the distributional conflicts take place simultaneously. I study

1There are several other papers that study this kind of two stage contest game. The
earliest paper I am aware of is Katz and Tokatlidu (1996). Stein and Rapoport (2004) study
asymmetries and the reversed order of timing where the intra-group contest comes first and
the inter-group contest second. Konrad (2004) considers a perfectly discriminating contest
and heterogeneous contestants. Garfinkel (2004) explores the endogenous formation of
groups when there is conflict both within and between groups. However, none of these
papers studies simultaneous inter- and intra-group conflicts.
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this case. Then the effect described above is not present, and this changes
the results. Second, Wärneryd models the contests in a way which follows
the literature on rent-seeking started by Tullock (1980): he uses a partial
equilibrium approach where the size of the contested rent is exogenous, and
does not depend on the amount of rent-seeking. This is realistic in some
contexts, but less so in others, where the allocation decision of the play-
ers are likely to have a discernible impact on the size of the contested rent.
Hence a general equilibrium approach, in the spirit of the conflict models of
Hirshleifer (1988, 2001) and Skaperdas (1992) might be appropriate, since
in these models output is endogenous. Wärneryd himself pointed out that
explicitly modelling the trade-off between production and appropriation is
an fruitful direction for further research (1998, p. 448; see Neary 1997 for a
comparison of rent-seeking and conflict models). Third, Wärneryd assumes
that the technology of conflict is the same in the intra-group contest as in
the inter-group contests. He relies on axiomatic foundations of contest tech-
nologies given by Skaperdas (1996), which can be generalized for inter-group
contests. However, the axioms pin down the functional form of the contest
success functions only up to a parameter, known as the decisiveness of the
contest, which is a major influence on the marginal benefits of rent-seeking
activities. As argued above, since inter- and intra-group contests are often
fought with different “weapons”, they may differ in their decisiveness. More-
over, the contractual problems that lead to rent-seeking activities might be
more or less severe within groups than between groups.
I study the trade off between production and appropriation in a general

equilibrium conflict model, where there are simultaneous inter- and intra-
group conflicts, taking into account possible differences in the technology of
conflict. For comparison I also study a partial equilibrium rent-seeking model
(with simultaneous inter- and intra-group contests and possibly different con-
test technologies).2 My normative findings are as follows. First, consider the
optimal number of groups for a given number of players. Whether splitting
up individuals into (more) groups leads to more or less rent-seeking depends
on the difference between the nature of the inter-group conflict and that of
the inter-group conflict. If these conflicts are equally decisive, and the con-

2In addition to the papers discussed above, this is also related to Nitzan (1991), who
studied rent-seeking between groups. The main difference is that in Nitzan (1991) there is
no intra-group rent-seeking and the distribution of rents both within groups and between
groups depends on the inter -group rent-seeking efforts. For an excellent survey of rent-
seeking theory, see Nitzan (1994).
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tractual problems are equally severe, the amount of rent-seeking does not
depend on the number of groups. If the conflict is more decisive between the
groups than within groups, and if the degree of contractual incompleteness
is higher between the groups than within groups, then a flat structure where
all individuals belong to one group is optimal. And vice versa: if the intra-
group conflict is sharper, then one should split up the individuals in as many
groups as possible. These findings contrast starkly with the results in the
literature discussed above. The difference is due to the different assumption
on the timing of the conflicts. Thus, these results show the importance of the
simultaneity assumption. Second, I show that there is an optimal size of the
organization which is determined by a trade-off between increasing returns
to scale in production on the one hand, and increasing costs of conflict on
the other.
The paper proceeds as follows. The model of simultaneous inter- and

intra-group conflicts is laid out in section 2. Section 3 derives the basic
predictions of the model. Section 4 considers the question of optimal design.
Section 5 discusses extensions of the basic model to different production
technologies, conflict technologies, and unequal group size. Section 6 gives
a comparison with a partial equilibrium rent-seeking model of simultaneous
inter- and intra-group conflicts. Section 7 concludes.

2 The model

There are n identical individuals and G groups of equal size m = n/G. Each
individual is endowed with one unit of time and has three choice variables:
productive effort eig, intra-group rent-seeking effort xig, and inter-group rent-
seeking effort yig. The first subscript refers to the individual, the second to
the group he is a member of. The budget constraints are given by

eig + xig + yig = 1

for all i = 1, ...,m and all g = 1, .., G.
For simplicity, I assume that output is given by the constant elasticity

production function

q =

Ã
GX
g=1

mX
i=1

eig

!h

. (1)
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The parameter h > 0 determines returns to scale: if h > 1 we have increasing
returns to scale, if h = 1 constant, and if h < 1 decreasing returns to scale.
Equation (1) assumes that the complementarities within the organizations
are independent of the number of groups. This seems a natural benchmark
for studying the effects of the number and size of groups from a rent-seeking
perspective.
The output is distributed among the groups. Denote the share that goes

to group g by pg. Hence group g gets pgq. This amount is distributed within
the group; player i gets the share rig. Thus the payoff of player i in group g
is

uig = pgrigq.

Let us first turn to the allocation of output within groups. It depends on
the intra-group rent-seeking activities. I will assume that

rig =

(
γ

xaig

j x
a
jg
+ (1− γ) 1

m
, if

P
j x

a
jg > 0,

1
m
, if

P
j x

a
jg = 0.

(2)

Here, γ ∈ [0, 1] is a measure of the contractual incompleteness within groups:
one part (1− γ) of the group’s share is allocated by a simple equal division
rule, and the other part (γ) is allocated according to the intra-group rent-
seeking activities.
The specific functional form of the intra-group contest success function,

xaigP
j x

a
jg

,

has been used widely in the literature. There is an axiomatic foundation
by Skaperdas (1996). The parameter a describes the decisiveness of the
intra-group contest. If a → 0, rent-seeking effort has little influence on the
division of the gains, whereas if a→∞, tiny differences in rent-seeking effort
are decisive.
The allocation of output to groups depends on the inter-group rent-

seeking efforts. Group k gets the fraction

pk =


δ
( j yjk)

b

g( j yjg)
b + (1− δ) 1

G
, if

P
g

³P
j yjg

´b
> 0,

1
G
, if

P
g

³P
j yjg

´b
= 0,

(3)
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of the output. Here δ ∈ [0, 1] is a parameter that measures how important
rent-seeking activities are in the inter-group contest. It measures the con-
tractual incompleteness between the groups. As in the intra-group contest, in
the inter-group contest only a part (δ) is allocated according to rent-seeking
activities. Contractual incompleteness problems may be more or less severe
between groups than within groups. Hence δ may be bigger or smaller than
γ.
If the axioms of Skaperdas (1996) hold for the inter-group contest as well,

and the rent-seeking efforts of a group are aggregated efficiently, then one
can show that ³P

j yjk
´b

P
g

³P
j yjg

´b
is the only possible functional form of the inter-group contest success function
(see the appendix for the details). However, the axioms do not pin down the
decisiveness of the contest. Here, the parameter b describes the decisiveness
of the contest between the groups. It may, or may not, be equal to the
decisiveness of the contest within the groups a. Since contests between groups
are usually fought with instruments different from those in contests between
groups, they might well have a different decisiveness.3

Note that two pairs of parameters describe the different layers of conflict:
the decisiveness parameters a and b, and the parameters γ and δ that indicate
the importance of rent-seeking.
I will assume that 0 < a ≤ 1 and 0 < b ≤ 1. The assumption that a and

b are positive means that the a player’s share of the output increases in his
rent-seeking activities. The upper bounds are imposed to make the model
tractable. As we will see, they are sufficient to make all the optimization
problems well behaved. Let me point out that, if γ = δ = 1, no upper bounds
on a and b are necessary. In this case one can easily find the equilibria even
if a → ∞ and b → ∞ (this is the case of discontinuous contest success
functions, as in all pay auctions) (see section 5).

3To give an analogy, consider chess and backgammon. These games are certainly
governed by different contest success functions, since luck plays a much more important
role in backgammon.
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3 The group cohesion effect

Using the budget constraints to express uik as a function of rent-seeking
efforts alone, we can write

uik = pkrik

ÃX
g

X
j

(1− xjg − yjg)

!h

. (4)

I show in the appendix that the log of uik is strictly concave in (xik, yik) .
Hence any critical point of lnuik is a strict global maximum. Since the log
is a strictly monotone function, it follows that any critical point of uik is a
strict global maximum, too. This means that we can solve the maximization
problem of an individual by looking at the first order conditions. We will
ignore the non-negativity constraints temporarily, and check afterwards that
all the constraints hold.
Differentiating equation (4) with respect to yik and setting the result equal

to zero, we get

∂pk
∂yik

q = pkh

ÃX
g

X
j

(1− xjg − yjg)

!h−1

. (5)

In a symmetric equilibrium, all individuals choose the same allocation of their
budget: yig = y and xig = x for all i and g. Conjecturing that a symmetric
equilibrium exists, we get

(G− 1) bδm (1− x− y) = (my)h

Differentiating equation (4) with respect to xik, and setting the result equal
to zero yields

∂rik
∂xik

q = rikh

ÃX
g

X
j

(1− xjg − yjg)

!h−1

. (6)

In a symmetric equilibrium,

(m− 1) aγG (1− x− y) = xh

Solving, we finally get (recall n = mG)

y =
bδ (G− 1)

aγ (n−G) + bδ (G− 1) + h
(7)
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and

x =
aγ (n−G)

aγ (n−G) + bδ (G− 1) + h
. (8)

Note that 0 < x < 1 and 0 < y < 1. Productive effort per person equals

e = 1− x− y =
h

aγ (n−G) + bδ (G− 1) + h
> 0. (9)

This is positive, therefore no constraint is violated. We can conclude that a
symmetric equilibrium does in fact exist.
However, the equilibrium is not unique. The first order conditions pin

down only the total amount of inter-group rent-seeking done by a group,
and the total amount of productive effort put in by the group’s members.
How the members of the group coordinate in supplying productive and inter-
group rent-seeking effort is not determined. The following lemma sums up
this discussion.

Lemma 1 There is a continuum of equilibria, where
a) all contestants choose the same intra-group rent-seeking effort x given in
equation (8),
b) for all groups g, the total amount of inter-group rent-seeking chosen by g’s
members equals X

i

yig = my (10)

where y is given in equation (7),
c) for all groups g, the total amount of productive effort of the members of
group g equals X

i

eig = me, (11)

where e is given in equation (9),
d) the utility of an individual is

u =
1

n

µ
n

h

aγ (n−G) + bδ (G− 1) + h

¶h

. (12)

Proof. Parts a, b, and c follow from the discussion above; part d follows
by inserting equilibrium choices into the utility function.
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In these equilibria, the average amount of inter-group rent-seeking is y
given in equations (7) above. Similarly, e given in equation (9) is the av-
erage amount of productive effort. We will make use of this in some of the
comparative static exercises below.

What determines the allocation of effort to production and inter- and
intra-group rent-seeking? The following proposition studies the influence of
the technology of conflict, contractual incompleteness, and the production
technology.

Proposition 1 a) If the contest between the groups becomes more decisive
(i.e. b increases) and/or contractual incompleteness between groups becomes
more serious (i.e. δ increases), then rent-seeking within groups and produc-
tive effort decline, while inter-group rent-seeking increases.
b) If the intra-group contests become more decisive (i.e. a increases) and/or
contractual incompleteness within groups becomes more serious (i.e. γ in-
creases), then rent-seeking between groups and productive effort decline, while
intra-group rent-seeking increases.
c) An increase in the returns to scale in production h increases productive
effort, and decreases rent-seeking both within and between groups.

Proof. a) From equations (7)- (11) it is obvious that as δb increases, x
and

P
i eig decrease, while

P
i yig increases.

b) Again from equations (7)- (11), if γa increases,
P

i yig and
P

i eig
decrease, while x increases.
c) Differentiate equations (7)- (11) to get

∂x

∂h
= − aγ (n−G)

(aγ (n−G) + bδ (G− 1) + h)2
< 0,

∂

∂h

ÃX
i

yig

!
= −m bδ (G− 1)

(aγ (n−G) + bδ (G− 1) + h)2
< 0,

∂

∂h

ÃX
i

eig

!
= m

aγ (n−G) + (G− 1) bδ
(aγ (n−G) + bδ (G− 1) + h)2

> 0.

Part a) says that an increase in the contractual incompleteness between
groups, or an increase in the decisiveness of the inter-group contest, leads
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to less intra-group rent-seeking. This is reminiscent of the “group cohesion
effect” documented in psychology and anthropology: increased competition
between groups leads to more cohesion within the groups. In the model,
we can interpret more competition between groups as an increase in δ and/
or γ, and more cohesion as lower x. In the model a group cohesion effect
arises by individual, noncooperative utility maximization, without any need
for centralized leadership of the group. An increase in δ means that more is
at stake in the conflict between groups, and leads to less intra-group hostility.
Further, an increase in b means that the inter-group contest gets more deci-
sive, and leads to less intra-group hostility, too. The intuition is simply that
the marginal benefit of inter-group rent-seeking activities is proportional to
b and δ. Hence an increase in b and δ makes more inter-group rent-seeking
mor attractive compared to intra-group rent-seeking and production.
Sometimes a reverse of the group cohesion effect is postulated as well:

“heightened in-group cohesion is itself a condition for out-group hostility”
(Fisher 1990, p. 68).4 As part b) of the proposition shows, this effect holds
in the model studied here, too. A lower decisiveness a of the intra-group
contest success technology leads to more inter-group conflict. Also, a decrease
in γ - which means that the group is more ‘egalitarian’ and the distribution
within the group is less dependent on rent-seeking - leads to more conflict
between groups.
Part c) of proposition 1 says that an increase in h leads to more productive

effort, and less rent-seeking. This is due to the fact that the marginal benefit
of working productively is proportional to h. Usually, an increase in h will
increase utility. Utility can decline only if the sum of all productive efforts
is smaller than one. In this range, an increase in h corresponds to a decrease
in productivity, and may lead to lower equilibrium utility.

4 The optimal number and size of the groups

The next exercise is to describe the influence of the number and size of the
groups on equilibrium behavior.

Proposition 2 a) For a given number of individuals n, productive effort
increases in the number of groups G if, and only if, δb < γa. Intra-group rent-

4However, empirically the existence of such an effect is much more in doubt than the
original cohesion effect, see Fisher (1990).
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seeking effort x declines in G, and average inter-group rent-seeking effort y
increases.
b) Increasing the size m of the groups while holding constant their number G
results in an unambiguous decrease in average productive effort and average
inter-group rent-seeking, while it increases intra-group rent-seeking.
c) Increasing the number of groups G while holding constant the size m of
the groups leads to a decline in productive effort and an increase in inter-
group rent-seeking. The effect on the intra-group conflict depends on the
parameters: it increases if, and only if, h > bδ.

Proof. a) By differentiating equation (9) we find that

∂e

∂G
|n=const = h

aγ − bδ

(aγ (n−G) + bδ (G− 1) + h)2

 >
=
<

 0
if, and only if,

aγ

 >
=
<

 bδ.

Further, we get

∂x

∂G
|n=const = −aγ h+ (n− 1) bδ

(aγ (n−G) + bδ (G− 1) + h)2
< 0,

∂y

∂G
|n=const = bδ

aγ (n− 1) + h

(aγ (n−G) + bδ (G− 1) + h)2
> 0.

b) Use n = Gm to eliminate n in equations (9), (8), and (7):

e =
h

aγG (m− 1) + bδ (G− 1) + h

x =
aγG (m− 1)

aγG (m− 1) + bδ (G− 1) + h

y =
bδ (G− 1)

aγG (m− 1) + bδ (G− 1) + h

Obviously, e and y decrease in m for a given G, whereas x increases.
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c) Suppose G increases while m is constant. Clearly, e goes down, while
y goes up. Further,

∂x

∂G
|m=const. = (m− 1) aγ h− bδ

(aγG (m− 1) + bδ (G− 1) + h)2
,

hence x increases if, and only if, h > bδ.

Now we can turn to the normative implications of the model. The aim is
to understand what a rent-seeking perspective can contribute to the question
of an optimal design of an organization that is ridden by simultaneous inter-
and intra-group conflict. Especially, what are the optimal number and size
of groups? That is, which m and G maximize equilibrium utility as given in
equation (12) above?
As noted in the introduction, there is a discussion in the literature on

the effect of additional levels of hierarchy in an organization on rent-seeking
activities. The message of the present model is that the different technolo-
gies of conflict, and the amount of contractual incompleteness, are of the
paramount importance.

Proposition 3 If aγ < bδ, then a flat structure where all individuals belong
to the same group is optimal. On the other hand, if aγ > bδ, then one should
split the individuals up in as many groups as possible.

Proof. This maximizes productive effort by proposition 2 above. Output
depends by assumption only on the sum of the individual productive efforts,
and not directly on the number of groups. Each individual gets the share
1/n of the output. Hence the result follows.

Having studied the optimal number of groups, I turn now to the question
of optimal group size. Consider first the case that aγ < bδ. Here, we have
seen that having only one group is optimal. Setting G = 1 in equation (12)
we get

u =
1

n

µ
n

h

aγ (n− 1) + h

¶h

.

Maximizing this over n (ignoring integer constraints for convenience) leads
to an optimal size of the organization which is given by

n∗ |aγ<bδ = 1 + h
h− 1− aγ

aγ
.
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Several features are worth noting. First, the production technology must
exhibit sufficiently increasing returns to scale for it to be worthwhile forming
a partnership. If h ≤ 1 + aγ, the optimal ‘organization’ consists of only
one person. Second, the optimal size is increasing in returns to scale in
production h, decreasing in the decisiveness of the contest a, and decreasing
in the severity of contractual incompleteness γ.
We have here a trade of between increasing returns and rent-seeking. If

h > 1 production exhibits increasing returns to scale. Therefore it would be
optimal to have as many people as possible working together, if one could
distribute the gains without rent-seeking activities (formally, as aγ → 0,
n∗ → ∞). But if the output is distributed by rent-seeking, the optimal size
of the partnership is limited by the increasing rent-seeking cost. An increase
in the number of individuals leads to unambiguously lower productive effort
per person.
A similar analysis applies for the case aγ > bδ. Here, it is optimal to have

G = n, and the optimal size of the organization is

n∗ |aγ>bδ = 1 + h
h− 1− bδ

bδ
.

In the remaining case where aγ = bδ, the number of groups plays no role
for welfare, and the optimal size of the organization is given by either of the
equations above. The following proposition sums up the findings concerning
the optimal size of the organization.

Proposition 4 There exists an optimal size of the organization which is
determined by a trade off between increasing returns to scale in production
on the one hand and increasing costs of conflict on the other. The optimal size
increases in the returns-to-scale parameter h. It decreases in the decisiveness
of the contest and in the amount of contractual incompleteness.

5 Extensions: production technology, contest
technology, unequal group size

Production technology. As a robustness check I generalize the model by
considering a more general production function

q = f

Ã
nX
i=1

ei

!
. (13)
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I assume that f is strictly increasing and twice differentiable. In addition, I
will assume that the function f is ‘not too convex’. A sufficient condition is
that the log of f be concave. Given this assumption, the objective functions
of the players are log-concave, and we can rely on first order conditions in
order to characterize equilibria.
After imposing symmetry the first order conditions boil down to

my = δb
(G− 1)

G

f (n (1− x− y))

f 0 (n (1− x− y))
(14)

and

x = γa
m− 1
m

f (n (1− x− y))

f 0 (n (1− x− y))
(15)

Since f is log-concave by assumption, the right hand sides of the previous
equations are decreasing in x and y. Hence the equations determine x and y
uniquely.
Summing over equations (14) and (15), it follows that the total amount

of rent-seeking
R := n (y + x)

equals (use (m− 1) /m = (n−G) /n)

R = ((G− 1) (δb− γa) + γa (n− 1)) f (n−R)

f 0 (n−R)
(16)

I show in the appendix that the comparative statics given in proposition 1
above holds true also with the more general production technology considered
here, except part c concerning the productivity parameter h, which does not
appear in (13). In particular, both the group cohesion effect and the reversed
group cohesion effect still hold.
Moreover, as we found above, the total amount of rent-seeking is increas-

ing in the number of groups if, and only if, δb > γa. This can be seen easily
from equation (16). Since f is by assumption log-concave, the right hand
side is decreasing in R. Suppose δb > γa, and G increases. Then R has to
increase in order that (16) holds. Hence it is clear that the findings are not
an artifact of the production function (1) considered above.

Contest technology. So far, the analysis was based on the assumption that
a ≤ 1 and b ≤ 1. That is, the decisiveness of the contest success functions
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was assumed to be bounded from above. Here I add some brief considera-
tions on the case where the contest technologies are very decisive. Then it
is no longer clear whether the first order conditions in fact do describe equi-
libria. However, the benchmark case where γ = δ = 1 turns out to be easy
to solve. Here the objective functions are log-concave for all a, b ∈ (0,∞)
(see appendix). Hence the analysis above holds without alteration for all
a, b ∈ (0,∞) . We can use this case to study a situation where the environ-
ment is very conflictual: the whole output is distributed according to the
appropriative activities, and the contests are very decisive. For example, it
is interesting to note what happens in the limiting case a = b =∞. Here the
contest success functions are discontinuous: the group that puts in the most
inter-group rent-seeking effort gets the whole output, and, within groups, the
player who chooses the highest intra-group effort gets everything (in case of
a tie the groups or persons involved share equally). There is an equilibrium
where all players devote all their energy to inter-group rent-seeking (yig = 1).
In this equilibrium, output and utility equals zero. No one has an incentive
to deviate, since then the inter-group rent-seeking efforts of his group would
be smaller than those of the other groups, and thus his group will get noth-
ing. Similarly, there is an equilibrium where all devote their energy solely to
intra-group rent-seeking (xig = 1).

Unequal group size. When groups are of equal size, equilibrium utility is
increasing in the number of groups if, and only if, aγ > bδ. However, when
the groups are of unequal size, utility of the individuals also depends on the
size of the groups.
Suppose there are two groups. Define ‘symmetric interior equilibrium’ as

an equilibrium where all individuals in a given group g = 1, 2 choose the same
amounts of inter-group rent-seeking, intra-group rent-seeking, and productive
effort, and all the choice variables are strictly positive (no corner solution). In
contrast to the case of equal group size, a symmetric interior equilibrium does
not always exist here. However, if the technology is sufficiently productive
(h sufficiently large), a symmetric interior equilibrium exists.
One can show that in a symmetric interior equilibrium, each group gets

1/2 of the output. Thus an individual in group g gets the share 1/ (2mg) of
the output, where mg is the number of individuals in group g.
To compare this with a situation where all individuals belong to only

one group, consider first the case where aγ = bδ. Here, output is the same
irrespective of the number of groups. But its allocation to the individuals
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differs. With only one group, each individual gets the share 1/n of the output.
Hence, members of the smaller group prefer the situation with two groups,
but members of the bigger group would rather have a unified organization. If
aγ 6= bδ, we have the additional effect that total output is different between
the two structures. See the appendix for a formal derivation of these remarks.

6 Comparison with a partial equilibrium rent-
seeking model

It is interesting to compare the model derived above with a rent-seeking
model where production is exogenous. The model considered so far is a gen-
eral equilibrium model, whereas rent-seeking models typically assume that
the size of the contested rent is constant and are thus partial equilibrium
models. Which of the two types of models is more appropriate depends on
the application one has in mind (see Neary 1997 for a discussion).
Consider the following rent-seeking model. As above, there are n indi-

viduals in G groups of equal size m = G/n. They compete over some exoge-
nously given prize of value v. Each individual simultaneously chooses some
inter-group rent-seeking effort yig and some intra-group rent-seeking effort
xig. The payoff of individual i in group g is

vig = pgrigv − xig − yig

where rig and pg are as given in equations (2) and (3) above. There are no
budget constraints.
For simplicity, I will only consider the case where a symmetric equilibrium

exists. Contrary to the conflict model above, symmetric equilibria do not
always exist. Mathematically, this difference is due to the fact that lnuig is
concave and hence a critical point of uig is a maximum, whereas ln vig is not
necessarily concave. In fact, critical points of vig are not always maxima.
Implicitly, the assumption of a symmetric equilibrium imposes restrictions
on the parameters of the model.5

In a symmetric equilibrium, it is clear that x and y must be positive.
Hence the derivative of uig with respect to xig and yig has to be zero. Using

5For example, suppose aγ = bδ = 1 and G = 2. Then a symmetric equilibrium exists if
n = 4, but no symmetric equilibrium exists if n = 10 (see appendix).
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symmetry, these first order conditions boil down to

x =
(m− 1)
m2

aγ

G
v =

(n−G) aγ

n2
v,

y =
(G− 1)
G2

bδ

m2
v =

(G− 1) bδ
n2

v.

These equations show that, in the partial equilibrium rent-seeking model,
neither the group cohesion effect, nor its converse holds: x is independent
of b and δ, and y is independent of a and γ. Therefore, the group cohesion
effect and its reverse are general equilibrium effects in nature.
However, the effect of dividing contestants into subgroups is qualitatively

similar in the rent-seeking and the conflict models. In the rent-seeking model,
the total amount of rent-seeking equals

x+ y =
(n−G) aγ + (G− 1) bδ

n2
v.

Clearly, this is increasing in G if, and only if, aγ < bδ. Therefore, proposition
3 above holds in the rent-seeking model, too, and is not due to a general
equilibrium effect.
As noted in the introduction, Wärneryd (1998) argues that dividing the

contestants in groups leads to less rent-dissipation, although it induces an
additional layer of (inter-group) conflict. The model studied here differs from
Wärneryd’s in two respects. First, in Wärneryd’s model the contest between
groups takes place first, and only when it is resolved do the contests within
groups start. Second, Wärneryd assumes that the contest technology is the
same in the intra- and inter-group contests. For a comparison, consider the
case where bδ = aγ. If inter- and intra-group conflicts take place simultane-
ously, then total rent-seeking expenditure does not depend on G. Therefore,
it is mainly the sequential timing of choices that drives Wärneryd’s results.6

The intuition for this is clear. If the contests take place sequentially, an
individual will reason as follows while deciding how much to spend on the
contest between groups: if my group gets a bigger share, my fellow group
members will fight harder in the following intra-group contest. This damp-
ens incentives for inter-group rent-seeking. However, this effect is not present
in the case of simultaneous inter- and intra-group conflicts, where, in a Nash
equilibrium, each player takes the actions of the other players as given.

6This corrects the erroneous claim that, in Wärneryd’s model, it is of no importance
whether the conflicts take place simultaneously or sequentially (see Wärneryd 1998, p.
444 footnote 7, Müller and Wärneryd 2001 p. 531, who attribute this claim to a referee).
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7 Conclusion

This paper studied the trade off between production and appropriation in
the presence of simultaneous inter- and intra-group conflicts. It gave an
economic model of the ‘group cohesion effect’: if the contest between groups
becomes more decisive, or the degree of contractual incompleteness between
groups increases, this leads to less conflict within groups. Moreover, in the
model there is also an ‘reversed group cohesion effect’: if the intra-group
contest becomes less decisive, or the degree of contractual incompleteness
within groups decreases, this leads to more inter-group conflict.
The model has two normative implications. First, whether a multitiered

structure with several groups leads to less rent-seeking activities depends
on the decisiveness of the inter- and intra-group contest success functions,
and on the amount of contractual incompleteness within groups and between
groups. If the inter-group contest is less decisive than the intra-group contest,
and contractual problems are less severe between groups than within groups,
a multi-tiered structure is beneficial - it leads to less rent-seeking and more
production. On the other hand, if the inter-group contest is more decisive,
and contractual problems are more severe between groups, a multi-tiered
structure leads to more rent-seeking.
Second, there is an optimal size of the organization which is determined by

a trade-off between increasing returns to scale in production and increasing
costs of rent-seeking.

8 Appendix

8.1 Axiomatic foundation for the inter-group contest
success function

In an important paper, Skaperdas (1996) gave an axiomatic characterization
of contest success functions. The purpose of this appendix is to extend his
work to the case of contests between groups.
Suppose there are n individuals divided into G groups of m = n/G mem-

bers each. (Extensions to unequal group size are straightforward.) Denote
the set of the groups by Γ = {1, ..., G} . Each individual chooses some inter-
group contest effort. Denote the effort chosen by individual i in group g by
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xig. Let xg = (x1g, ..., xmg) be them−vector of efforts of the members of group
g. Further, define x−g = (x1, ..., xg−1, xg+1, ..., xn). This is the vector of the ef-
forts of all individuals except those in group g. Finally, let x = (x1, ..., xn) be
the n−vector collecting all the individual efforts. I sometimes write (xg, x−g)
to denote x.

For any group g = 1, .., G, it is assumed that there exists some function
pg (x) which can be interpreted as the probability that group g wins the
contest. Alternatively, pg (x) can also be interpreted as the share of the cake
that group g gets. The following axioms adapt the axioms Skaperdas (1996)
laid out for the case of a contest within a group to the case of inter-group
conflict.

Assumption 1) (Probability)
PG

g=1 pg (x) = 1; pg (x) ≥ 0 for all x and
all g ∈ Γ; if xi > 0 for some i ∈ g, then pg (x) > 0.
Assumption 2) (Monotonicity) For all i = 1, ...,m and all g, k ∈ Γ

with g 6= k, pg (x) is increasing in xig and decreasing in xik.
Assumption 3) (Group Anonymity) For any bijection ψ : Γ→ Γ we

have pψ(g) = pg
¡
xψ(1), xψ(2), ..., xψ(G)

¢
.

Assumption 1 says that pg is a probability, and that any group has a
positive chance to win if at least one of the group’s members puts in positive
effort. Assumption 2 says that the winning probability is increasing in the
expenditure of the group members, and is decreasing in the expenditure of
the other players. Assumption 3 says that the labeling of the groups does
not matter: the winning probabilities are determined by the vector of efforts
alone. This means that the contest is ‘fair’ between the groups.

Assumption 4) (Subcontest consistency) Let pMg (x) be group g0s
probability of winning a subcontest played by a subset M of the groups.
Then

pMg (x) =
pg (x)P

k∈M pk (x)

for all g ∈M and all M ⊂ Γ.

Assumption 5) (Subcontest independence) pMg (x) is independent of
expenditure of individuals belonging to groups not inM. That is, pMg (x)may
be written as pMg

¡
xM
¢
, where xM = {xg |g ∈M } .
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Assumption 6) (Homogeneity) pg (λx) = pg (x) for all λ > 0 and all
g ∈ Γ.

Assumptions 1-6 simply reformulate the assumptions in Skaperdas (1996)
for an inter-group contest. In particular, if there is only one individual in
each group, Assumptions 1-7 are identical to the corresponding assumptions
in Skaperdas (1996).
In addition, I will make the following

Assumption 7) (Efficient aggregation)

pMg ((x1g, ..., xig −∆, xjg +∆, ..., xmg) , x−g) = pMg (xg, x−g)

for all ∆ ≤ xig, all x, and all i, j ∈ {1, ...,m} , g ∈M ⊆ Γ.

Let x̂g = (
Pm

i=1 xig, 0, ..., 0) and x̂−g = (x̂1, ..., x̂g−1, x̂g+1, ..., x̂n) . Now we
can show the following.

Lemma 2 pg (x̂g, x̂−g) = pg (xg, x−g) .

Proof. From assumption 7, taking M = Γ, it follows that pg (x̂g, x−g) =
pg (xg, x−g) .
Next we will show that

pg (x1, ..., xh−1, xh, xh+1, ..., xn) = pg (x1, ..., xh−1, x̂h, xh+1, ..., xn) .

I will show this for groups 1 and 2. In words, if we replace x2 by x̂2, this
does not change the winning probability group 1.
To see this, consider the subcontest among the groups 1 and 2. By as-

sumption 1 and subcontest consistency, we get

p
{1,2}
1 (x) = 1− p

{1,2}
2 (x) =

= 1− p
{1,2}
2 (x1, x̂2, x3, ..., xn) =

= p
{1,2}
1 (x1, x̂2, x3, ..., xn)

where the second equality uses assumption 7, taking M = {1, 2} .
Using subcontest consistency, we get

p1 (x)

p1 (x) + p2 (x)
=

p1 (x1, x̂2, x3, ..., xn)

p1 (x1, x̂2, x3, ..., xn) + p2 (x1, x̂2, x3, ..., xn)
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Since by assumption 7 (taking M = Γ) we have

p2 (x) = p2 (x1, x̂2, x3, ..., xn)

we can conclude that

p1 (x)

p1 (x) + p2 (x)
=

p1 (x1, x̂2, x3, ..., xn)

p1 (x1, x̂2, x3, ..., xn) + p2 (x)

and hence
p1 (x) = p1 (x1, x̂2, x3, ..., xn) .

This completes the proof.
The lemma shows that the winning probabilities depend only on the sum

of each group’s expenditures. Hence we can view an inter-group contest as a
contest between individuals where, for each group, one individual puts in the
whole expenditure of the group. Denote the contest success function for this
contest by p̂g : RG → [0, 1] (note this is a function of G arguments only):

p̂g

Ã
mX
i=1

xi1, ...,
mX
i=1

xiG

!
:= pg (x̂g, x̂−g) .

By the previous lemma,

p̂g

Ã
mX
i=1

xi1, ...,
mX
i=1

xiG

!
= pg (x) ∀x.

Next, we have to show that the function p̂g satisfies the assumptions of
Skaperdas (1996). But this is obvious because pg (x̂g, x̂−g) satisfies the cor-
responding assumptions for an inter-group contest. Therefore it is clear that
the proofs in Skaperdas (1996) apply to p̂g as well, and we can conclude with

Remark 1 The only continuous contest success function satisfying Assump-
tions 1-7 is

pg (x) =

³Pm
j=1 xig

´b
PG

k=1

³Pm
j=1 xik

´b
for some b > 0.
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8.2 Utility is log-concave if 0 < a ≤ 1 and 0 < b ≤ 1
From equation (4), we get

lnuik = ln

γ

³Pm
j=1 yjk

´b
PG

g=1

³Pn
j=1 yjg

´b + (1− δ)

G


| {z }

A(yik)

+

+ln

Ã
γ

xaikP
j x

a
jk

+
(1− γ)

m

!
| {z }

B(xik)

+

+h ln

ÃX
g

X
j

(1− xjg − yjg)

!
| {z }

C(xik,yik)

.

We want to show that this is strictly concave in (xik, yik) .

Let us look at the terms in turn. For notational convenience, let
Pm

j 6=i yjk =:

Y and
PG

g 6=k
³Pn

j=1 yjg
´b
=: Z. Then

A (yik) = ln

Ã
γ

(yik + Y )b

(yik + Y )b + Z
+
(1− δ)

G

!
.

By differentiation, we get

A0 (yik) =
1³

γ (yik+Y )
b

(yik+Y )
b+Z

+ (1−δ)
G

´γ bZ (yik + Y )b−1³
(yik + Y )b + Z

´2 .
Since b ≤ 1, the numerator is decreasing in yik. The denominator is increasing
in yik. Hence A00 (yik) < 0.

Now to the second term. Let
P

j 6=i x
a
j1 =: X for notational convenience.

Then

B (xik) = ln

µ
γ

xaik
xaik +X

+
(1− γ)

m

¶
.
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Differentiating,

B0 (xik) =
1³

γ
xaik

xaik+X
+ (1−γ)

m

´γ aXxa−1ik

(xaik +X)2
.

Since a ≤ 1, the numerator is decreasing in xik. The denominator is increasing
in xik. Hence B00 (xik) < 0.

Now consider the third term. For notational convenience, define

W :=

ÃX
g

X
j

(1− xjg − yjg)

!
+ xik + yik.

Then C (xik, yik) = h ln (W − xi1 − yi1) . Differentiating, we find

∂2C

∂x2ik
=

∂2C

∂y2ik
=

∂2C

∂xik∂yik
= − h

(W − xik − yik)
2 < 0

The determinant of the Hessian matrix is zero. Hence the Hessian matrix is
negative semidefinite, and C (xik, yik) is concave in (xik, yik) .
Finally, we can put things together and show that lnuik is strictly concave

in (xi1, yi1) .
Write ln (uik (x, y)) = A (y)+B (x)+C (x, y) . For any (x, y), (x0, y0) ∈ R2+

and any t ∈ (0, 1) , we have
ln (uik (tx+ (1− t)x0, ty + (1− t) y0)) =

= A (ty + (1− t) y0) +B (tx+ (1− t)x0) + C (tx+ (1− t)x0, ty + (1− t) y0) <
< tA (y) + (1− t)A (y0) + tB (x) + (1− t)B (x0) + tC (x, y) + (1− t)C (x0, y0) =

= t ln (uik (x, y)) + (1− t) ln (uik (x
0, y0)) .

Hence lnuik (xik, yik) is strictly concave in (xik, yik) .

8.3 Utility is log-concave if γ = δ = 1

If γ = δ = 1, the we find that

A0 (yik) =
b

yik + Y
− b (yik + Y )b−1

(yik + Y )b + Z
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and

A00 (yik) = − b

(yik + Y )2
−
³
(yik + Y )b + Z

´
b (b− 1) (yik + Y )b−2 −

³
b (yik + Y )b−1

´2
³
(yik + Y )b + Z

´2 .

Simplifying, we get

A00 (yik) = − b

(yik + Y )2
Z
(yik + Y )b + Z + (yik + Y )b b³

(yik + Y )b + Z
´2 < 0.

Further,

B0 (xik) =
a

xik
− axa−1ik

(xaik +X)

and

B00 (xik) = − a

(xik)
2 −

(xaik +X) a (a− 1)xa−2i1 −
¡
axa−1ik

¢2
(xaik +X)2

.

Simplifying, we get

B00 (xik) = −aXxaik +X + axaik
x2ik (x

a
ik +X)2

< 0.

As above, it follows that lnuik is strictly concave in (xik, yik) . Note that we
needed no upper bounds on a and b.

8.4 Comparative statics with a general production func-
tion

In this section I derive the comparative statics with the more general pro-
duction technology given in equation (13) q = f

³PG
g=1

Pm
i=1 eig

´
, where the

function f is strictly positive, twice differentiable and strictly increasing.

The following proposition 1* generalizes proposition 1 from the main text.

Proposition 1* Suppose that output is given in equation (13) and f is
log-concave.
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a) If the contest between the groups becomes more decisive (i.e. b in-
creases) and/or contractual incompleteness between groups becomes more se-
rious (i.e. δ increases), then rent-seeking within groups x and productive
effort e decline, while inter-group rent-seeking y increases.
b) If the intra-group contests become more decisive (i.e. a increases)

and/or contractual incompleteness within groups becomes more serious (i.e.
γ increases), then rent-seeking between groups y and productive effort e
decline, while intra-group rent-seeking x increases.

Proof. As argued in the main text, after imposing symmetry the first
order conditions imply equations (14) and (15), that I reproduce here for
convenience:

my = δb
(G− 1)

G

f (n (1− x− y))

f 0 (n (1− x− y))

x = γa
m− 1
m

f (n (1− x− y))

f 0 (n (1− x− y))

Define

φ (z) :=
f (z)

f 0 (z)

Note that φ (z) > 0, and φ0 (z) > 0 since f is assumed to be log-concave.
Total differentiation of equations (14) and (15) leads to

M

µ
dy
dx

¶
= N


a
b
γ
δ


where

M =

·
m+ δb (G−1)

G
nφ0 δb (G−1)

G
nφ0

γam−1
m

nφ0 1 + γam−1
m

nφ0

¸
,

and

N =

·
0 δ (G−1)

G
φ 0 b (G−1)

G
φ

γm−1
m

φ 0 am−1
m

φ 0

¸
(For brevity, I omit the arguments of the functions φ and φ0).
The determinant of the matrix M equals

|M | = mG+ φ0anGγ (m− 1) + δbnφ0 (G− 1)
G

> 0
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Now we can prove part a).

dx

db
= − 1

|M |γa
m− 1
m

nφ0δ
(G− 1)

G
φ < 0.

Moreover,
dy

db
=

1

|M |δ
(G− 1)

G
φ

µ
1 + γa

m− 1
m

nφ0
¶
> 0.

Finally,

de

db
= −

µ
dx

db
+

dy

db

¶
=

= − 1

|M |δ
(G− 1)

G
φ < 0.

Similarly,

dx

dδ
= − 1

|M |γa
m− 1
m

nφ0b
(G− 1)

G
φ < 0,

dy

dδ
=

1

|M |b
(G− 1)

G
φ

µ
1 + γa

m− 1
m

nφ0
¶
> 0,

de

dδ
= − 1

|M |b
(G− 1)

G
φ < 0.

Part b).

dx

da
=

1

|M |
µ
m+ δb

(G− 1)
G

nφ0
¶
γ
m− 1
m

φ > 0,

dy

da
= − 1

|M |δb
G− 1
G

nφ0γ
m− 1
m

φ < 0,

de

da
= − 1

|M |γ (m− 1)φ < 0.

Similarly,

dx

dγ
=

1

|M |
µ
m+ δb

(G− 1)
G

nφ0
¶
a
m− 1
m

φ > 0,

dy

dγ
= − 1

|M |δb
G− 1
G

nφ0a
m− 1
m

φ < 0,

de

dγ
= − 1

|M |a (m− 1)φ < 0.
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8.5 Unequal group size

In this section I study the case of G = 2 groups of different size, which was
briefly discussed in the main text at the end of section 5.
Denote the number of individuals in group g by mg. The objective func-

tion of player i = 1, ...,mg in group g = 1, 2 can be written as

uig = pgrig

ÃX
g

X
j

(1− xjg − yjg)

!h

where

pg = δ

¡Pmg

j=1 yjg
¢b³Pm1

j=1 yj1
´b
+
³Pm2

j=1 yj2
´b + (1− δ)

2
,

rig = γ
xaigPmg

j=1 x
a
jg

+ (1− γ)
1

mg

As mentioned in the main text, I will concentrate on symmetric interior
equilibria, where

(xi1, yi1) = (x1, y1)∀i = 1, ..., n1,
(xi2, yi2) = (x2, y2)∀i = 1, ..., n2.

and 0 < xig < 1, 0 < yig < 1, 0 < eig < 1.

Remark 2 In a symmetric interior equilibrium, both groups get the same
share of the output

p1 = p2 =
1

2
,

and the share of an individual i = 1, ...,mg in group g = 1, 2 equals

pirig =
1

2mg
.
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Proof. Writing out the first order condition ∂ui1
∂yi1

= 0, we get

δ
b
³Pm1

j=1 yj1
´b−1 ³Pm2

j=1 yj2
´b

µ³Pm1

j=1 yj1
´b
+
³Pm2

j=1 yj2
´b¶2

ÃX
g

X
j

(1− xjg − yjg)

!

=

δ

³Pm1

j=1 yj1
´b

³Pm1

j=1 yj1
´b
+
³Pm2

j=1 yj2
´b + (1− δ)

2

h

Imposing symmetry, we have

δ
b (m1y1)

b−1 (m2y2)
b³

(m1y1)
b + (m2y2)

b
´2 (n−m1 (x1 + y1)−m2 (x2 + y2))

=

Ã
δ

(m1y1)
b

(m1y1)
b + (m2y2)

b
+
(1− δ)

2

!
h

Analogously

δ
b (m2y2)

b−1 (m1y1)
b³

(m1y1)
b + (m2y2)

b
´2 (n−m1 (x1 + y1)−m2 (x2 + y2))

=

Ã
δ

(m2y2)
b

(m1y1)
b + (m2y2)

b
+
(1− δ)

2

!
h (17)

Dividing the previous equations, we get

m2y2
m1y1

=
δ (m1y1)

b

(m1y1)
b+(m2y2)

b +
(1−δ)
2

δ (m2y2)
b

(m1y1)
b+(m2y2)

b +
(1−δ)
2

Since the left hand side is increasing in y2 while the right hand side is de-
creasing in y2, this implies

m1y1 = m2y2. (18)

Hence we can conclude that the shares of the groups are p1 = p2 = 1/2. By
symmetry, an individual i in group g gets rig = 1/mg of what his group gets.
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To study existence of such an equilibrium, let us derive a candidate equi-
librium and then check whether all the constraints hold. Insert equation (18)
into equation (17) and solve for

m1y1 = m2y2 =
1

2
δb
n−m1x1 −m2x2

δb+ h
(19)

Writing out the first order condition ∂ui1
∂xi1

= 0, we get

γ
axa−1i1

³P
j 6=i x

a
j1

´
³P

j x
a
j1

´2
ÃX

g

X
j

(1− xjg − yjg)

!
=

Ã
γ

xai1P
j x

a
i1

+ (1− γ)
1

m1

!
h

Imposing symmetry,

γ
a (m1 − 1)

m1
(n−m1 (x1 + y1)−m2 (x2 + y2)) = hx1 (20)

Similarly, for group 2

γ
a (m2 − 1)

m2
(n−m1 (x1 + y1)−m2 (x2 + y2)) = hx2 (21)

Solving equations (19), (20), and (21) we find

xg =
(mg − 1)

mg

aγn

(γa (n− 2) + δb+ h)
> 0, (22)

yg =
n

2mg

bδ

γa (n− 2) + δb+ h
> 0. (23)

(Note that if m1 = m2 = n/2, then (mg − 1)n/mg = n−2 and these expres-
sions simplify to the corresponding expressions in the main text.) Using the
budget constraint, we get

eg =
(n− 2mg) (2γa− δb) + 2mgh

2mg (γa (n− 2) + δb+ h)
(24)

If the technology is sufficiently productive, then eg > 0 for both groups
and no constraints are violated; hence equations (22), (23) and (24) describe
a symmetric interior equilibrium. The following remark makes this precise.
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Remark 3 A symmetric interior equilibrium exists if and only if

h ≥
µ
1− n

2mg

¶
(2γa− δb) for g = 1, 2. (25)

In the case of equal group size, condition (25) holds trivially since h ≥
0. An easy example with unequal group size where existence is ensured is
γa = δb = h = 1. Here, eg = yig = 1/ (2mg) , xg = (mg − 1) /mg. However,
with unequal group size, there is no symmetric interior equilibrium if h is too
small: if h → 0, sgn (eg) = sgn ((n− 2mg) (2γa− δb)) , but this is negative
for at least one group. For the rest of this section, I will assume that (25)
holds.

Finally, we can turn to welfare considerations.

Remark 4 If aγ = bδ, total output is the same when there are two groups
and when there is a unified organization (only one group). The members of
the smaller group prefer the situation with two groups, but members of the
bigger group would rather have a unified organization.

Proof. With two groups, output equals

qII = (m1e1 +m2e2)
h =

µ
nh

γa (n− 1) + δb− γa+ h

¶h

With one group (see lemma 1 in the main text), output equals

qI =

µ
nh

aγ (n− 1) + h

¶h

Clearly, qI > (=, <) qII if and only if δb > (=, <) γa.

If aγ = bδ, equilibrium utility with two groups equals

uIIig =
1

2mg

µ
nh

aγ (n− 1) + h

¶h

.

Equilibrium utility with one group equals

uIig =
1

n

µ
nh

aγ (n− 1) + h

¶h

.

Obviously, uIIig >I
ig if and only if mg <

n
2
.
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8.6 Existence of symmetric equilibria in the rent-seeking
model: two examples

This section studies two examples for the (non-) existence of symmetric equi-
libria in the rent-seeking model discussed in section 6.

Example 1 Let aγ = bδ = 1, G = 2, and n = 4. Then there exists a
symmetric equilibrium of the rent-seeking model, where

x =
1

8
v, y =

1

16
v. (26)

To prove this, suppose that three players behave according to equation
(26). The problem of the remaining player is

y + 1
16
v

y + 3
16
v

x

x+ 1
8
v
v − x− y → max

x,y
subject to x ≥ 0, y ≥ 0. (27)

We have to show that the solution of this problem is given in equation (26).

1. The player can always ensure zero utility by choosing x = y = 0. Hence
we can constrain our search to pairs (x, y) with x + y ≤ v. Now we
have a maximization problem of a continuous function over a compact
domain. By the Weierstrass theorem, a solution exists.

2. The constraint x ≥ 0 is not binding in the optimum. Suppose it were.
Then utility is at most zero. But the player can get a positive utility
by behaving as in equation (26). Contradiction.

3. The constraint y ≥ 0 is not binding, either. Suppose it were. Then the
best the player can do is to choose x ≥ 0 to solve

1

3

x

x+ 1
8
v
v − x→ max

x≥0

The objective function is concave. The optimal choice of x is given by

x = −1
8
v +

1

12
v
√
6 > 0.

The utility equals

1

3

−1
8
v + 1

12

√
6v

−1
8
v + 1

12

√
6v + 1

8
v
v −

µ
−1
8
+
1

12

√
6

¶
v =

µ
11

24
− 1
6

√
6

¶
v
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But by behaving as in equation (26), the player gets utility

v

4
− v

8
− v

16
=

v

16
>

µ
11

24
− 1
6

√
6

¶
v.

Contradiction.

4. Of course, the constraint x+ y ≤ v is not binding, either.

5. Hence, the first order conditions have to hold at the optimum:

2
16
v¡

y + 3
16
v
¢2 x

x+ 1
8
v
v = 1 (28)

y + 1
16
v

y + 3
16
v

1
8
v¡

x+ 1
8
v
¢2v = 1

6. Dividing these equations yields

32x
8x+ v

(16y + 3v) (16y + v)
= 1.

Solving for x we get two possibilities: x = −y− 3
16
v or x = y+ 1

16
v. Since

x > 0 and y > 0 at the optimum, we can exclude the first possibility.
This leaves us with

x = y +
1

16
v. (29)

7. Plugging this back into equation (28) gives us

2
16
v¡

y + 3
16
v
¢2 y + 1

16
v

y + 1
16
v + 1

8
v
v = 1

or
32v2

16y + v

(16y + 3v)3
= 1

This equation has three roots, one positive root yI = 1
16
v, and two

negative roots: yII =
¡− 5

16
+ 1

8

√
5
¢
v ≈ −3.3 × 10−2v < 0 and yIII =¡− 5

16
− 1

8

√
5
¢
v ≈ −0.59v < 0. Hence we know that y = v

16
.

8. Plugging this back in equation (29) we get x = v
8
.
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9. The problem (27) has a solution (step 1), the solution satisfies x > 0
and y > 0 (steps 2 and 3), and it is a critical point (step 5). The
only critical point satisfying x > 0 and y > 0 is x = v

8
and y = v

16
,

as in equation (26) (steps 6-8). Hence, the solution is indeed given by
equation (26). This completes the proof.

It might be reassuring to check the local second order condition. The
Hessean corresponding to the objective function in problem (27) is

H (x, y) =

"
−128 16y+v

(16y+3v)(8x+v)3
v2 256

(16y+3v)2(8x+v)2
v3

256
(16y+3v)2(8x+v)2

v3 −8192 x
(16y+3v)3(8x+v)

v2

#
Hence,

H
³v
8
,
v

16

´
=

· −8
v

4
v

4
v
−8

v

¸
is negative definite, and the local second order condition holds.

Example 2 Let aγ = bδ = 1, G = 2, and n = 10. Then no symmetric
equilibrium exists in the rent-seeking model.

To see this, note that there is a unique candidate for a symmetric equi-
librium, where

x =
(10− 2)
102

v, y =
v

102
.

In this candidate equilibrium, a player gets utility v/100. However, if a player
deviates to y = 0 and x = 6v/(100), he gets

4v
100

4v
100
+ 5v

100

6v
100

6v
100
+ 4

¡
8
100

v
¢v − 6v

100
=

29

2850
v >

v

100
.
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