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Abstract

Standard explanations for the income heterogeneity within neighborhoods rely
on differences of preferences across households and heterogeneity of the housing
stock. We propose an alternative and complementary explanation. We construct a
stochastic equilibrium sorting model where (1) income is the sole dimension of house-
hold heterogeneity, (2) households form state-contingent housing location plans that
may involve moves over their lifetimes, (3) households choose whether to own or rent
depending on the housing expenditure risk associated with each tenure mode, and
(4) there is a probability that newcomer households move in and compete for homes
with native households. Income mixing within neighborhood arises for two rea-
sons. First, allowing natives to form state-contingent housing location plans breaks
the indivisibility of housing consumption implicit in the literature where households
choose their location once and for all. Second, natives can insure themselves against
rent fluctuations by buying their home prior to the realization of the population
shock; newcomers cannot. As a result, poorer natives stay in the more desirable
communities and only richer newcomers move in these communities. Evidence from
U.S. metropolitan areas supports the effects predicted by the model.
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1 Introduction

There is considerable income heterogeneity within neighborhoods. Epple and Sieg (1999)

tell us that in 1980, 89 percent of the income variance in the Boston metropolitan area

could be explained by within-community variance. Ioannides (2004) finds a correlation

coefficient of only 0.3 between the income of a randomly chosen individual and that

person’s ten nearest neighbors. Hardman and Ioannides (2004) discover that in 1993

more than two-thirds of U.S. metropolitan neighborhoods in the American Housing Survey

included at least one household with income in the bottom quintile of the metropolitan

income distribution; more than half the neighborhoods had at least one household with

income in the top quintile.

The empirical evidence is at odds with the prediction of early equilibrium sorting

models that assume households differ according to income only; examples are Ellickson

(1971) and Henderson (1991). These models predict that a community will consist of

households whose incomes lie in a single interval and the set of communities partitions

the support of the income distribution.

A number of models that address this discrepancy between theory and evidence pre-

sume households differ not only in terms of income but also in terms of preferences; see

Epple and Platt (1998) and Epple and Sieg (1999). The equilibrium sorting models that

include these two dimensions of household heterogeneity still predict that household in-

comes within a community lie in one single interval, but intervals may overlap because

households with the same level of income can value the amenities offered by a community

differently.

We propose an alternative explanation for the income heterogeneity within neigh-

borhoods. In our equilibrium sorting model, income is the sole dimension of household

heterogeneity, yet the equilibrium distribution of households across communities is not

stratified according to income. There are pairs of households where the higher earning

household lives in the cheaper community.

We obtain this prediction because we pose the community choice problem within

a dynamic and stochastic environment where the cost of each location is determined

in equilibrium. Three primary features of the model are that: (1) households form

state-contingent housing location plans that may involve moves over their lifetimes, (2)

households choose whether to own or rent a home on the basis of aversion to housing

expenditure risk, (3) there is a probability that new households move into the area and

compete for homes with the current inhabitants.
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We construct a two-period model of a city with two communities. Households are

assumed to be risk averse. They all derive the same utility from living in the more

desirable of the two communities. Housing in this community is available in a fixed supply

and can be either rented or purchased from competitive risk-neutral absentee landlords.

For simplicity, we assume the supply of housing in the less desirable community to be

perfectly elastic. In the second period, there is a positive probability that some newcomers

move to the city. They enjoy the same utility from numeraire and location as the current

residents (natives). Like the natives, they differ in income levels.

Income mixing arises for two reasons. First, allowing native households to make state-

contingent location plans breaks the indivisibility of housing consumption implicit in

the literature where households choose their location once and for all. Consider two

households with different incomes living in different neighborhoods. The lower earning

household may be living in a nicer neighborhood because it plans to move to a cheaper

neighborhood in the future, while the higher earning household may have decided to live

in its neighborhood for life.

Second, natives who want to remain in a neighborhood no matter what happens to

local rents have a chance to insure themselves against future rent fluctuations by buying

a home prior to the realization of the shock. Newcomers do not. Natives and newcomers

thus have different housing opportunities, which affects the income distribution within

neighborhoods. In response to the arrival of newcomers, fewer natives move out of the

desirable community because they benefit from capital gains on their home when the

cost of housing increases. As a result, the income distribution of the newcomers who

choose that same community is truncated at a higher level. The natives who stay in

the desirable community are poorer; the newcomers who come in are richer than in a

rental-only economy.

We use data from the cluster component of the American Housing Survey to investigate

relationships between the income of a household and its neighbors and the time since a

household and its neighbors moved into the neighborhood. Households that moved in

later than their neighbors are found to have higher incomes. This relationship disappears

when we consider the sub-sample of renters. It holds in the sub-sample of owners even

when we control for the value of a household’s home relative to that of its neighbors. We

also find a more dispersed distribution of income within a neighborhood, the greater the

differences in the timing of households’ moves into the neighborhood.

Ioannides (2004) studies the income distribution of neighborhood clusters using the

same data from the American Housing Survey. He reports that the coefficient of variation
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in neighborhood incomes increases with the mean time since a household moved into the

neighborhood. He also finds that neighborhoods of renters are less heterogeneous than

neighborhoods of owners, another fact that indicates the relevance of the forces we identify

in our model.

Gyourko, Mayer and Sinai (2004) study the differences in income between natives and

newcomers across census-designated places within US metropolitan areas. They find that

newcomers tend to be richer than natives in neighborhoods that have experienced price

growth. Neighborhoods with the highest price growth attract a disproportionate share of

the rich households moving to the metropolitan area. This finding supports the prediction

of our model that variations in the times households move into a neighborhood contribute

to income mixing within neighborhoods.

Davidoff (2004) finds that considerable income mixing remains even when one cor-

rects for income reporting errors and for discrepancies between current and permanent

income. That income heterogeneity is not due simply to discrepancies between current

and permanent income is reinforced by a finding that household education levels are as

heterogeneous within neighborhoods as income levels (Ioannides, 2004).

A possible explanation of income mixing within neighborhoods is that housing is het-

erogeneous. Keely (2004) explains why developers have incentives to develop subdivisions

with heterogeneous homes. Nechyba (2000) presents a computational model with het-

erogeneous housing stock within communities in order to analyze private school voucher

policies. We obtain our results without assuming any heterogeneity in the stock of homes

in a location. Although heterogeneity of the housing stock must play a role in shaping

the income distribution of a neighborhood, we note that Ioannides (2004) finds that both

household income and education levels are more heterogeneous than property values.

Bénabou (1996a, 1996b), Durlauf (1996) and Fernandez and Rogerson (1996, 1998)

propose dynamic sorting models to analyze macroeconomic and policy issues. They as-

sume that the benefits of living in a community depend on the make-up of the community.

They are therefore determined endogenously. The same is true in static models that deter-

mine the benefits of each community by a political equilibrium; see, for example, Epple

and Sieg (1999). Common to these models is that households make only one location

decision in equilibrium, either by assumption or because of a focus on stationary environ-

ments. We instead take the amenities of a community as given, but we allow households

to relocate and to choose whether to own or rent their property in the face of endogenous

fluctuations in housing costs.
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Berglas and Pines (1981) obtain income mixing in a model where local jurisdictions

provide more than one public good. In Berglas (1976), Stiglitz (1983), McGuire (1981)

and Brueckner (1994), income mixing arises because firms have a production technology

which requires the use of low and high-skilled workers and workers must live in the same

jurisdiction as they work. In a monocentric model of a city with distinct center city

and suburban jurisdictions, de Bartolome and Ross (2003) obtain heterogeneity within

jurisdictions. However, households are perfectly stratified according to income over space

within each jurisdiction. The mechanisms that generate income mixing in these papers

are entirely different from the ones we model.

Although our discussion is cast in terms of communities within the same urban area,

our arguments apply equally to cities within a region. Our differentiating factor is the

combination of a city’s elasticity of housing supply and its desirability. This is a useful in-

terpretation because Gyourko, Mayer and Sinai (2004) indicate that households that move

to desirable cities with inelastic housing supplies tend to be richer than the households

already living in these cities.

2 Model

To analyze the location choices of households in an environment where they may move in

response to shocks we need a model with at least two locations and two periods. To analyze

the housing market interaction between current (native) households and newcomers, we

assume that newcomers may appear in the second period. This population shock affects

equilibrium housing rents and prices.

As in Ortalo-Magné and Rady (2002), we focus on tenure choice driven by concerns

over future housing expenditure risk. Davidoff (2003), Diaz-Serrano (2004), Han (2004)

and Hilber (2005) provide evidence of the relevance of this driver of tenure choice. The

two-period model captures the idea that, at short horizons, household concerns over

period-to-period rent risk are dominated by concerns over end-of-holding-period price

risk, and vice versa at long horizons. Empirical support for this idea is provided in Sinai

and Souleles (forthcoming). From a modeling standpoint, the innovation in the present

paper is that we cast such tenure concerns within an equilibrium model of the housing

market.
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2.1 Economic environment

There are two periods, 1 and 2, and two communities, 0 and 1. In community 0, the

supply of homes is perfectly elastic at a constant rent normalized to zero. In community

1, there is a measure S of identical homes owned initially by absentee landlords. For

simplicity, the landlords are assumed to be risk-neutral. They discount rents at the same

exogenous interest rate, r > 0, at which households can borrow and save.

Initially, the area is populated by a measure one of households, that we call the

natives. They are distributed uniformly over the unit interval. Each one is identified by

an index i ∈ [0, 1]. Household i receives a stream of income defined by w1(i) in period

1, and w2(i) in period 2, both increasing continuous functions of i. The capitalized value

of the endowment of household i evaluated in period 2 is denoted W (i), with W (i) =

(1 + r)w1(i) + w2(i).

Native households derive additively separable utility from the consumption of housing

and the numeraire good. Community 1 is more desirable than community 0: housing

utility derived from a home in community 0 is normalized to zero, whereas a home in

community 1 yields an additive utility premium of µ > 0 per period, whether the home is

owned or rented. There is no discounting of utility across periods. The numeraire good is

enjoyed at the end of period 2 only. The utility derived from consumption of c units of the

numeraire good is described by the constant absolute risk aversion function U(c) = −e−ac

where a > 0 is the coefficient of absolute risk aversion.

There is uncertainty in period 2. With probability π ∈ (0, 1), state H occurs: A

measure ν of newcomer households moves to the area at the start of period 2. With

probability 1 − π, state L occurs: Nobody moves in. Although the shock is asymmetric

by design, we will see later that from the point of view of the natives, it amounts to either

a rent increase (state H), or a rent decline (state L). Our specific modeling choice for

the shock is motivated by our interest in the allocation of homes between households that

had a chance to buy their homes early and those who move in later.

Newcomers are distributed uniformly over the unit interval; they are characterized

by the index n ∈ [0, 1]. Their endowment is defined by the increasing and continuous

function W̃ (n). Newcomers have the same utility function as natives except that they

cannot obtain any utility from housing in period 1. The only decision they face is whether

to live in community 0 or 1 if state H occurs and how much of the numeraire good to

consume.
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Within each period, households first receive their endowments. Then, the markets

open and trade takes place. Next, households consume housing and, in period 2, the

numeraire good.

For ease of exposition, we assume 0 < ν < S < 1
2

throughout. These assumptions

limit the number of cases we will have to consider without taking anything away from the

results.

2.2 Tenure choice

Whether a household owns or rents a home in community 0, the cost is nil by assumption.

Since we also assume that housing utility does not depend on tenure, all households are

indifferent between renting and owning a home in community 0.

Tenure matters for homes in community 1. We denote R1 their rent in period 1; RH

in period 2, state H; and RL in period 2, state L. We first assume RL < RH . We will

see later that this inequality must hold in any equilibrium where some newcomers choose

community 1 in state H.

Arbitrage on the part of the landlords ensures that the price of a home in period 1,

p1, equals the first-period rent plus discounted expected second-period rent:

p1 = R1 +
R̄2

1 + r
(1)

where R1 denotes the first-period rent and R̄2 = π RH + (1− π) RL the expected second-

period rent. Since period 2 is the last period of the economy, renting a home in period

2 is equivalent to buying it, so the price of a home in period 2 coincides with the rental

cost of that home in period 2.

Equation (1) describes the meaning of ownership in the model. By purchasing a home

in the first period, a household effectively signs a two-period rental contract, locking in the

second-period rent at its expected level. Whether buying is more or less risky than renting

depends on the household’s planned housing consumption in the second period. If the

household plans to stay in community 1 in the second period, buying provides insurance

against second-period rent risk. If the household plans to sell and move to community 0

in period 2, buying exposes it to potential capital gains or losses; renting eliminates this

risk.

Further notation describes location and tenure choices. A native household’s location

plan is denoted by (h1, hH , hL), where h1, hH and hL take the value of 1 for community 1,

6



and 0 for community 0. To indicate the tenure choice when h1 = 1, we denote the com-

bined location-tenure plan by (1B, hH , hL) if the household buys a home, and (1R, hH , hL)

if it rents one. Figure 1 summarizes the location-tenure choices available to a native

household.

Period 1 Period 2

Housing

(Buy in 1)1B

(Rent in 1)1R

(Live in 0)0

(Live in 1)1

(Live in 0)0

(Live in 1)1

(Live in 0)0

3

s

State H

State L

π

1− π





{
Housing

{
Housing

Figure 1: Native households’ housing choices

Natives choose among twelve location-tenure plans. There are eight location plans.

There are two alternatives for each of period 1, period 2, state H, and period 2, state L.

For the four location plans that involve living in location 1 in period 1, native households

must decide whether to buy or rent.

The tenure choice affects how shocks to the housing markets translate into shocks

to the household’s cost of housing and then through the budget constraint into shocks

to non-housing consumption. The stochastic properties of numeraire consumption are

therefore what is at issue with regard to the choice of tenure.

For example, consider the expected numeraire consumption of a household that chooses

to live in location 1 in period 1 and in period 2, whatever the shock. If the household

rents in period 1, it pays first-period rent and then realized rent in period 2. Its expected

numeraire consumption is

π(W −R1 −RH) + (1− π)(W −R1 −RL).
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If the household buys in period 1, it pays first-period rent and expected second-period

rent. Its expected numeraire consumption is

π(W −R1 − R̄2) + (1− π)(W −R1 − R̄2).

By equation (1), both expressions simplify to the same amount of expected numeraire

consumption, W −R1 − R̄2. That is, expected numeraire consumption is independent of

tenure choice. The same holds for every other plan that involves a tenure choice.

Because households are risk-averse, this property of expected numeraire consumption

implies that the tenure decision reduces to choosing the option that produces the smallest

absolute difference between the numeraire consumption levels in the two states of the

economy.

For the location plans with a deterministic horizon in the type 1 home, (1, 0, 0) and

(1, 1, 1), the tenure choice is obvious as one of the tenure modes provides full insurance and

the other does not. A household that rents in period 1 and moves to location 0 in period

2 does not suffer any shock to its consumption of numeraire. A household that buys in

period 1 and remains in location 1 in period 2 does not face any numeraire consumption

risk either. The location-tenure plans (1R, 0, 0) and (1B, 1, 1) therefore dominate the plans

(1B, 0, 0) and (1R, 1, 1), respectively.

Under the location plans (1, 1, 0) and (1, 0, 1), however, either tenure mode imposes

some risk on the household. Under (1, 1, 0), if the household rents, it pays the rent RH

in state H and no rent in state L; its numeraire consumption is lower by RH in state H

than in state L. If the household buys in the first period, it sells the home if the state

L occurs. The price of a location 1 home in state L is RL. The household’s numeraire

consumption is therefore lower by RL in state H than in state L if it buys in period 1.

Buying is thus less risky, given our working assumption that RL is lower than RH . The

household that buys faces less risk in terms of second-period numeraire consumption. The

location-tenure plan (1B, 1, 0) therefore dominates the plan (1R, 1, 0).

Under (1, 0, 1), the logic is reversed. If the household rents in the first period, nu-

meraire consumption in state L is lower by RL since the second-period rent is paid only

in state L. If the household buys the home in the first period, numeraire consumption in

state H is higher by RH since the household sells its home in state H. Buying involves a

greater difference in realized numeraire consumption. The location-tenure plan (1R, 0, 1)

therefore dominates the plan (1B, 0, 1).

We summarize these findings in
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Lemma 1 If RL < RH , a native household wanting to live in location 1 in the first period

prefers to own its home if and only if it plans to stay in location 1 should state H occur

in the second period.

2.3 Community choice

¿From the twelve location-tenure plans we started with, we have shown that four are

dominated. We are left with eight plans to consider: (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1),

(1R, 0, 0), (1R, 0, 1), (1B, 1, 0), and (1B, 1, 1). Each of these plans determines a curve in

the plane with coordinates W (the household’s capitalized endowment) and EU (the

expected overall utility level). Determining the optimal plan for every W amounts to

characterizing the upper envelope of the expected utility curves. In the discussion, we

maintain our working assumption that RL < RH .

First, the CARA specification of non-housing utility implies that the expected utility

of any location-tenure plan can be written as EU = −Ae−aW + B with plan-specific

constants A > 0 and B ≥ 0, where B ∈ {0, πµ, (1− π)µ, µ, (1 + π)µ, (2− π)µ, 2µ} is

the expected utility of housing. For example, for the plan (1B, 1, 1), the expected utility

takes the form

EU(1B ,1,1) = − ea[(1+r)R1+R̄2] e−aW + 2µ.

It is easy to check that if the expected utility curves of two plans cross, the curve associated

with the plan that promises a longer expected time in community 1 (and so has the higher

B) is steeper at all endowment levels (greater A). Note also that the higher B, the greater

the expected utility as W increases (the limit of EU as W tends to infinity is B). This

immediately yields

Lemma 2 The amount of housing a native household expects to consume in community

1 is increases weakly with the household’s endowment.

Second, using CARA utility, it is easy to verify that the preference ranking of the

plans (1R, 0, 0) and (0, 1, 1) does not depend on the household’s endowment W . In other

words, the expected utility curves associated with these two plans are either identical or

do not intersect. Both plans generate the same utility of housing, µ; their ranking is thus

determined by the cost difference alone.

Lemma 3 The plan (1R, 0, 0) weakly dominates (0, 1, 1) if and only if

ea(1+r)R1 ≤ πeaRH + (1− π)eaRL , (2)
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with a strict preference if the inequality is strict.

Third, building on what we have learned so far about household tenure and location

decisions, we find that the plans (0, 1, 0) and (1B, 1, 0) are not chosen by anyone when

RL < RH . Increasing the wealth of a household that chooses (0, 0, 0) will eventually

prompt this household to spend some time in community 1. The cheapest community

1 housing available is in period 2, state L. This is the one the household will choose

first as its wealth rises. Conversely, diminishing the wealth of a household that chooses

(0, 1, 1) will prompt this household to eventually give up some time in community 1. As

community 1 housing is most expensive in state H, this is the one the household will give

up first as its wealth declines. This is why no household ever chooses (0, 1, 0). The same

argument applies to (1B, 1, 0).

Lemma 4 If RL < RH , a native household chooses a location-tenure plan from the subset

of alternatives (0, 0, 0), (0, 0, 1), (0, 1, 1), (1R, 0, 0), (1R, 0, 1) and (1B, 1, 1).

Proof: See Appendix A.1.

Fourth, we study how optimal location-tenure plans differ between households with

different endowment levels. We already know from Lemma 4 that the higher a household’s

endowment, the more time it spends in community 1. Here, we ask whether we see

increases of the time spent in community 1 in the smallest possible steps. The answer is

almost yes. More specifically, we prove:

Lemma 5 Let RL < RH . Then:

(i) at least one of the plans (0, 0, 1) and (1R, 0, 1) is preferred over both (0, 0, 0) and

(1B, 1, 1) at all endowment levels in some set of positive measure;

(ii) at least one of the plans (0, 0, 1) and (1R, 0, 0) is preferred over both (0, 0, 0) and

(1R, 0, 1) at all endowment levels in some set of positive measure;

(iii) the plan (0, 0, 1) is preferred over both (0, 0, 0) and (0, 1, 1) at all endowment levels

in some set of positive measure;

(iv) the plan (1R, 0, 1) is preferred over both (1R, 0, 0) and (1B, 1, 1) at all endowment

levels in some set of positive measure.

Proof: See Appendix A.1.
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The newcomers face a much simpler location choice problem. They appear in the

second period only if state H occurs, and they thus face a one-period deterministic con-

sumption problem. A newcomer with endowment W̃ moves into community 1 if and only

if the utility premium of living there more than outweighs the utility cost of the rent RH ;

that is:

µ ≥ e−a(W̃−RH) − e−aW̃ . (3)

Note that the right-hand side of this inequality is decreasing in W̃ because of the de-

creasing marginal utility of numeraire consumption. Therefore if a newcomer chooses

community 1, any other newcomer with a greater endowment chooses community 1 as

well.

2.4 Equilibrium

An equilibrium is a triple of rents, (R1, RH , RL), and a period 1 price, p1, for homes

in community 1, together with a location-tenure plan for each native household and a

location choice for each newcomer. The equilibrium price of homes in community 1 must

be such that landlords are indifferent between selling a home in period 1 and renting

it in both periods at the equilibrium rents. The equilibrium allocation must be such

that housing markets clear and each household’s utility is maximized, given its budget

constraint and the prices and rents of homes in community 1.

To formulate our main proposition, we need to define e > 1 as the unique real number

satisfying the equality

2(1− S) = W−1

(
1

a
ln

(
e− 1

µ

))
+ W−1


1

a
ln


min

{
e (e− 1), µeaW (1)

}

µ





 . (4)

Proposition 1 There is a unique equilibrium. If

µeaW̃ (1) > e− 1, (5)

a positive measure of newcomers choose community 1 in state H; the equilibrium prices

satisfy RL < (1 + r)R1 < RH and condition (2); and the location-tenure plans chosen by

a positive measure of native households are (0, 0, 0), (0, 0, 1) and (1R, 0, 0), plus either

• (0, 1, 1), and possibly (1R, 0, 1), or

• (1R, 0, 1) and (1B, 1, 1), and possibly (0, 1, 1).
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If (5) does not hold, all newcomers choose community 0 in state H and the equilibrium

prices satisfy (1 + r)R1 = RL = RH = (ln e)/a, so tenure does not matter. The location

plans chosen by a positive measure of native households are (0, 0, 0), (0, 1, 1) and (1, 0, 0),

plus possibly (1, 1, 1).

Proof: See Appendix A.1.

Condition (5) depends only on model parameters. Recall that W̃ (1) is the income

received by the best-paid newcomer. The inequality ensures that the best-paid newcomer

earns a high enough income that he chooses community 1 in equilibrium.

The inequality RL < RH reflects the price pressure newcomers exert when they appear

in state H. That the opportunity cost of choosing community 1 in the first period, (1 +

r)R1, lies strictly in between RL and RH is then dictated by market clearing. Intuitively,

the cost of living in community 1 in period 1 cannot be too different from the cost of

living in community 1 in period 2 for sure, a cost that lies in between RL and RH .

3 Income heterogeneity

In our two-period stochastic model, native households have the options: to vary their

housing consumption over time, to choose a state-contingent housing consumption plan,

and to choose a tenure mode. The behavior of natives under these circumstances gives

rise to income heterogeneity within communities. The fact that native households can

own their homes may add further to the heterogeneity of households within communities.

3.1 State-contingent plans and income mixing

Note that if some natives choose the plan (0, 1, 1), Proposition 1 implies that they are

indifferent as to the plan (1R, 0, 0) and that both plans are chosen in equilibrium. Conse-

quently, two households with similar incomes may chose different communities in period

1. There are pairs of households in period 1 in which the one with the lower income lives

in the nicer community. The households living in the nicer community in period 1 move

to the cheaper community in period 2, and vice versa. Whatever the state in period 2,

there are again pairs of households in which the one with the lower income lives in the

nicer community. By definition, this means that communities are not perfectly stratified

by income alone in both periods whenever some households choose the plan (0, 1, 1).

Depending on parameters, either some newcomers move to community 1 in state H or

they do not. If no newcomer chooses to live in community 1, Proposition 1 says that some

12



natives choose the plan (0, 1, 1). By the argument above, in both periods communities

are not perfectly stratified according to income alone.

If some newcomers choose to live in community 1, they affect the distribution of income

in that community. Their housing consumption is monotonic with their wealth, which

equals their income by assumption. The natives’ choice of community is also monotonic

with their wealth. The wealth of the natives consists of accumulated income minus any

housing costs incurred in period 1 plus, possibly, net capital gains that follow from the

purchase of a home in period 1. In general, this implies that the income of the native

household indifferent between living in either community is not the same as the income of

the newcomer who is at the same point of indifference. This also means that communities

are not stratified according to income when newcomers move in.

If state L occurs, there are always pairs of households in which the one with the

lower income chooses the nicer community. Proposition 1 implies that the plans (0, 0, 1)

and (1R, 0, 0) are both chosen in equilibrium. Lemma 2 implies that the households that

choose (0, 0, 1) earn less than the households that choose (1R, 0, 0). At the start of period

2, if state L occurs, the natives who chose (1R, 0, 0) move to the cheaper location, joining

there the lowest-income natives in the area. At the same time, the natives who chose

(0, 0, 1) are joining the highest-income natives in community 1, although they earn less

than the households that chose (1R, 0, 0). Therefore, in state L, communities are not

stratified according to income.

To illustrate the argument, we solve the model for a specific set of parameters. We

report the proportions of households who live in community 1 for each level of income in

Figure 2 for period 1, Figure 3 for period 2 state H, and Figure 4 for period 2 state L.1

The computed equilibrium has the property that households are indifferent between the

plans (1R, 0, 0) and (0, 1, 1).

In period 1, the computed equilibrium displays the type of imperfect stratification

found in models with both income and preference heterogeneity: the supports of the

income distributions in each community are overlapping intervals. Here, the imperfect

stratification comes from the fact that the households who choose to spend a total of

one period in community 1 over their life are indifferent between living in community 1

in period 1 or in period 2. As shown in Figure 2, these are the households with income

between 3.05 and 5.45 in period 1. Figure 3 shows the difference between natives’ and

newcomers’ location choice in state H. The support of the income distribution of native

1The figures are drawn assuming the following parameter values: a = 5, ν = .4, µ = 8, π = .2, r = .05,
S = .499, W̃ (n) = 8 n, and wt(i) = 8 i for t = 1, 2. The equilibrium rents are R1 = 5.645, RH = 6.244
and RL = 5.253.
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Figure 2: Proportions of native households in community 1 by income – Period 1
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Figure 3: Proportions of households in community 1 by income – Period 2, state H

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Household Income

P
ro

po
rt

io
n 

of
 

H
ou

se
ho

ld
s 

in
 1

Figure 4: Proportions of native households in community 1 by income – Period 2, state L
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households living in community 1 is not convex in this state. In state L, Figure 4 implies

that the support of the income distribution in community 0 is not convex.

In all, we learn that optimal household choices yield an equilibrium where communities

are not stratified according to income alone, for sure in period 2, and possibly in period

1. The underlying reason is that knowing a household’s income at a particular point

in time is not sufficient to predict its housing consumption plan. First, past housing

experiences affect the relationship between the household’s wealth and its current income.

More important, because of the diversity of equilibrium housing choices, the relationship

between wealth and income does not remain monotonic over time.

Furthermore, wealth itself is not sufficient to predict a household’s community choice.

Two households with identical wealth may choose different communities simply because

they have different housing consumption plans for the future.

3.2 Tenure choice and income mixing

Proposition 1 implies that when the richest native households choose to live in community

1 for the two periods, they buy their homes in period 1. The next-poorer natives rent

in community 1 in period 1 and remain there only if state L occurs. The households

indifferent between the two plans have accumulated earnings W so that the utilities they

derive from each plan are equal; that is:

−e−a(W−(1+r)R1−R̄2) + 2µ = π
(
−e−a(W−(1+r)R1) + µ

)

+ (1− π)
(
−e−a(W−(1+r)R1−RL) + 2µ

)
, (6)

or

µea(W−(1+r)R1) = eaRH − 1 +
eaR̄2 − πeaRH − (1− π)eaRL

π
. (7)

If ownership were not an option, the plan (1R, 1, 1) would replace (1B, 1, 1) as the plan

offering the greatest utility of housing. A similar derivation yields that the households

indifferent between (1R, 1, 1) and (1R, 0, 1) would be the ones with accumulated earnings

W defined by

µea(W−(1+r)R1) = eaRH − 1. (8)

The endowment level that solves equation (8) is higher than the endowment level

that solves (7) because the third term on the right-hand side of (7) is negative. This

term captures the benefit of the insurance provided by a purchase in period 1. That is,
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an owner pays expected second-period rent, R̄2, instead of RH with probability π and

RL with probability 1− π. Therefore, at the equilibrium rents, if ownership were not an

option, fewer native households would choose to stay in location 1 in state H. Equilibrium

rents would be different if ownership were not an option.

To analyze whether changes in rents would compensate the difference in natives’ de-

mand for community 1 in state H, we compare the benchmark equilibrium to a rental-only

equilibrium, amending the benchmark model by removing the right to purchase a home.

We prove in Appendix A.5 that this rental-only economy has a unique equilibrium. Fur-

thermore, if model parameters are such that a positive measure of newcomers choose

community 1 in state H and a positive measure of native households choose the plan

(1B, 1, 1) in the benchmark economy, then the equilibrium rents in the two economies

display the relationship:

Rr
1 ≤ Rb

1, Rr
H < Rb

H , Rr
L ≥ Rb

L, (9)

where the superscripts r and b distinguish variables in the rental-only economy from their

counterparts in the benchmark economy.

The difference between the benchmark and the rental-only economy amounts to a

downward shift in the natives’ demand for community 1 in state H. This downward shift

implies that RH must be lower in the rental-only economy. A lower RH raises the demand

for community 1 not only from natives but also from newcomers. Therefore, when state

H occurs, fewer natives remain in community 1 than when ownership is an option.

Rents in period 1 and in state L may also differ between the rental-only and the

benchmark economy. This is because the lower RH in the rental-only economy may

prompt some households that choose the plan (1R, 0, 0) in the benchmark economy to

choose (0, 1, 1) in the rental-only economy. In this case, the rents R1 and RL cannot be

identical in the two economies. The shift from (1R, 0, 0) to (0, 1, 1) implies a lower demand

for location 1 in period 1 and a higher demand for location 1 in state L in the rental-only

economy. This explains why R1 may be lower and RL may be higher in the rental-only

economy.

Alternatively, if no household chooses (0, 1, 1) in the rental-only economy, then the

same is true in the ownership economy. In this case, there is no effect on demand in

period 1 and period 2, state L, and the rents R1 and RL are the same in both economies.

This explains the weak inequalities for R1 and RL in (9).

Overall, the difference in equilibrium rents between the benchmark and the rental-

only economy does not fully offset the drop in demand for location 1 in state H by native

16



0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

Household Income

P
ro

po
rt

io
n 

of
 

H
ou

se
ho

ld
s 

in
 1

Natives (Benchmark) Newcomers (Benchmark)

Natives (Rental-only) Newcomers (Rental-only)

Figure 5: Proportions of households in community 1 by income – Period 2, state H

households. More newcomers move to location 1 in the rental-only economy than in the

benchmark economy, taking advantage of the lower rent in state H.

Allowing households to own their home therefore widens the difference between the

average income of the newcomers who move to location 1 and the average income of

the natives who stay in location 1 in period 2 when state H occurs. Some poorer native

households stay put in location 1 in state H when ownership is an option, while the income

distribution of the newcomers who choose location 1 is truncated at a higher level. The

newcomers who choose location 1 are richer on average. Unless the average income of

newcomers located in 1 is lower than the average income of their native neighbors, this

difference in averages implies greater income dispersion under homeownership than in the

rental-only economy.

To illustrate the above result, we report in Figure 5 the proportions of households

who live in community 1 in state H in the benchmark economy and in the rental-only

economy, as a function of household income. We use the same parameters as in the earlier

example.2

3.3 Empirical evidence

Ioannides (2004) finds a positive correlation between the income dispersion within a neigh-

borhood and the average time since households moved into the neighborhood. A high

average can be associated with either a high or a low dispersion of the time since each

household moved in. We therefore ask whether there is a positive correlation between

2Rents in the rental-only equilibrium are: R1 = 5.517, RH = 6.099 and RL = 5.320.
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the income dispersion in a neighborhood and the dispersion of the time since a household

moved to the neighborhood.

Table 1 presents summary statistics for the neighborhood cluster sample of the Amer-

ican Housing Survey for the years 1985, 1989 and 1993.

We regress the coefficient of variation of neighborhood income on the standard devi-

ation of the years since each household moved into the neighborhood. Results reported

in Table 2 indicate that neighborhoods with a high standard deviation of time since each

household moved in are neighborhoods with a significantly higher dispersion of income.

To examine further whether the discrepancy between the income of newcomers and the

income of households that moved into the neighborhood earlier is a significant contributor

to neighborhood income heterogeneity, we focus on a household’s income relative to that

of its neighbors. Results are reported in Table 3.

We find that the shorter the time since a household moved into the neighborhood, the

higher its income relative to its neighbors’ income. Over the period of the study, almost

all neighborhoods were located in MSAs that enjoyed housing price growth.

When we restrict the sample to owners only, the same results hold, but when we

restrict the sample to renters only, the significant negative relationship disappears.

The AHS gives an estimate of property value for the sub-sample of owners. We find

a significant positive relationship between the relative value of a household’s home and

its relative income. The negative relationship between the relative income of a household

and the relative number of years since it moved in remains when we control for relative

property values. (Both the income and the time-since-moved variables are a household’s

own value divided by the neighborhood mean. The same results obtain when we consider

the sub-sample of owners and use the mean of the neighborhood owners as benchmarks.)

This evidence together with the evidence in the literature suggests that the mechanisms

generating income heterogeneity within our model are empirically relevant.

4 Concluding remarks

The standard explanation for the income mixing we see within US metropolitan neighbor-

hoods is that households differ in their preferences for various local amenities. We propose

a complementary explanation. By setting the community choice problem in a dynamic

and stochastic environment, we show that income mixing arises even if households have
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Table 1: Summary statistics

1985 1989 1993

Variable Mean S.D. Mean S.D. Mean S.D.

— Neighborhoods —
C.V. income 0.548 0.214 0.572 0.212 0.575 0.215
S.D. time since moved 9.603 5.966 10.553 5.824 11.196 .5.929

— All households —
Income 30085 24929 36175 30010 38220 32081
Time since moved 10.25 11.64 10.87 12.18 11.64 12.92

— Owners —
Income 35820 26446 42636 32293 45905 34740
Time since moved 14.02 12.33 14.77 12.91 16.17 13.77
Property value 79427 53454 112466 87655 109929 79557

— Renters —
Income 21125 19156 25814 22326 26255 22752
Time since moved 4.34 7.23 4.63 7.48 4.60 7.11

Table 2: Coefficient of variation of neighborhood income

Year 1985 1989 1993

Intercept 0.4831 0.4855 0.5098
(0.0182)∗ (0.0183)∗ (0.0169)∗

S.D. time since moved 0.0067 0.0082 0.0058
(0.0016)∗ (0.0015)∗ (0.0013)∗

R2 0.035 0.050 0.026
Number of observations 486 545 730
∗Indicates statistical significance at the 0.05 level.
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Table 3: Household income relative to neighbors’ income

Year 1985 1989 1993

—— All households ——
Intercept 1.0295 1.0406 1.0420

(0.0109)∗ (0.0103)∗ (0.0093)∗

Relative time since moved −0.0295 −0.0406 −0.0420
(0.0079)∗ (0.0074)∗ (0.0067)∗

R2 0.002 0.004 0.004
Number of observations 5968 6806 8899

—— Owners only ——
Intercept 1.1264 1.1483 1.1829

(0.0156)∗ (0.0149)∗ (0.0134)∗

Relative time since moved −0.0775 −0.0940 −0.1160
(0.0107)∗ (0.0010)∗ (0.0091)∗

R2 0.014 0.021 0.029
Number of observations 3656 4193 5425

—— Renters only ——
Intercept 0.9414 0.9363 0.9126

(0.0153)∗ (0.0140)∗ (0.0126)∗

Relative time since moved 0.0019 0.0022 0.0195
(0.0122) (0.0114) (0.0104)

R2 0.000 0.000 0.001
Number of observations 2312 2613 3487

—— Owners only ——
Intercept 0.8881 0.8737 0.9300

(0.0325)∗ (0.0333)∗ (0.0305)∗

Relative time since moved −0.0741 −0.0909 −0.1131
(0.0106)∗ (0.0099)∗ (0.0090)∗

Relative home value 0.2343 0.2710 0.2497
(0.0281)∗ (0.0295)∗ (0.0271)∗

R2 0.033 0.040 0.044
Number of observations 3656 4193 5424
∗Indicates statistical significance at the 0.05 level.

20



identical standard preferences and there is a homogeneous stock of housing within each

neighborhood.

Our analysis sheds new light on policies that distort housing consumption. For ex-

ample, when property taxes depend on the purchase price of a home and not its current

value, buying a home provides a hedge not only against future rent risk but also against

future tax liabilities risk. This kind of policy reinforces the effects of ownership on the

composition of neighborhoods that our model identifies.

Our findings raise questions about empirical research that relies on cross-sectional

observations of household income and housing choice to estimate demand functions for

local amenities. If the reason behind observed differences in location choices between

households with identical income is not a difference in preferences, then a household’s

income and location choice is not sufficient to infer its preferences or its willingness to

pay for local amenities.
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Appendix

A.1 Proofs

To ease the notational burden, we define

e1 = ea(1+r)R1 , eH = eaRH , eL = eaRL , e2 = eaR̄2 . (A.1)

Proof of Lemma 4: In view of Lemma 1, it is enough to show that the plans (1B , 1, 0) and (0, 1, 0)
are never optimal. We deal with (1B , 1, 0) first.

Suppose π > 1
2 . Let W1 be the endowment level at which a native household would be indifferent

between the plans (1R, 0, 1) and (1B , 1, 1), and W2 the endowment level at which it would be indifferent
between the plans (1R, 0, 1) and (1B , 1, 0). To show that the plan (1B , 1, 0) is never optimal, it suffices
to show that W1 < W2. To see this, recall from Section 2.2 that if the expected utility curves of two
plans cross, the curve associated with the plan that promises a larger amount of housing consumption in
location 1 ex ante is steeper at all endowment levels. The curve associated with (1B , 1, 1) is above the
curve associated with (1R, 0, 1) to the right of W1, and the curve associated with (1R, 0, 1) is above the
curve associated with (1B , 1, 0) to the left of W2. If W1 < W2, this implies that the curve associated with
(1B , 1, 0) is everywhere below the upper envelope of the curves associated with (1R, 0, 1) and (1B , 1, 1).

It is straightforward to verify that the endowment levels W1 and W2 are defined by

µeaW1 =
1
π

e1 [e2 − π − (1− π)eL] , (A.2)

µeaW2 =
1

1− 2π
e1

[
(1− π)

(
eL − e2

eL

)
− π (e2 − 1)

]
. (A.3)

It is easy to show that W1 < W2 if and only if e2 > eL, which in turn is equivalent to RL < RH .
Now suppose π < 1

2 . Let W3 be the endowment level at which a native household would be indifferent
between the plans (1R, 0, 1) and (1R, 0, 0):

µeaW3 = e1 (eL − 1). (A.4)

The plan (1B , 1, 0) is never optimal if W2 < W3. This inequality is easily seen to be equivalent to e2 > eL.
In the case where π = 1

2 , a comparison of expected utilities shows that for e2 > eL, the plan (1R, 0, 1)
is preferred to (1B , 1, 0) at all endowment levels. This completes the proof that (1B , 1, 0) is never optimal.

Turning to (0, 1, 0), suppose π > 1
2 . Let W4 be the endowment level at which a native household

would be indifferent between the plans (0, 1, 0) and (0, 1, 1), and W5 the endowment level at which it
would be indifferent between the plans (0, 0, 1) and (0, 1, 0):

µeaW4 = eL − 1, (A.5)

µeaW5 =
1− π

1− 2π
(eL − 1)− π

1− 2π
(eH − 1). (A.6)

The plan (0, 1, 0) is never optimal if W4 < W5. It is easy to verify that this inequality is equivalent to
eL < eH .

Next suppose π < 1
2 . Let W6 be the endowment level at which a native household would be indifferent

between the plans (0, 0, 0) and (0, 0, 1), and W7 the endowment level at which it would be indifferent
between the plans (0, 0, 0) and (0, 1, 0):

µeaW6 = eL − 1, (A.7)
µeaW7 = eH − 1. (A.8)

The plan (0, 1, 0) is never optimal if W6 < W7, which is obviously the same as eL < eH .
In the case where π = 1

2 , a comparison of expected utilities shows that for eL < eH , the plan (0, 0, 1)
is preferred to (0, 1, 0) at all endowment levels. This completes the proof.
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Proof of Lemma 5: Part (i): Let W1 be the endowment level at which a native household would be
indifferent between the plans (0, 0, 0) and (1R, 0, 1), and W2 the endowment level at which it would be
indifferent between the plans (1R, 0, 1) and (1B , 1, 1). To show that the plan (1R, 0, 1) is preferred to
both (0, 0, 0) and (1B , 1, 1) on a set of endowment levels of positive measure, it is enough to show that
W1 < W2. To see this, recall from Section 2.2 that if the expected utility curves of two plans cross, the
curve associated with the plan that promises a larger amount of housing consumption in location 1 ex ante
is steeper at all endowment levels. The curve associated with (1R, 0, 1) is above the curve associated with
(0, 0, 0) to the right of W1, and above the curve associated with (1B , 1, 1) to the left of W2. If W1 < W2,
therefore, (1R, 0, 1) is preferred to both (0, 0, 0) and (1B , 1, 1) at all wealth levels strictly between W1 and
W2. It is straightforward to verify that the endowment levels W1 and W2 are defined by

µeaW1 =
1

2− π
[πe1 + (1− π)e1eL − 1] , (A.9)

µeaW2 =
e1

π
[e2 − π − (1− π)eL] . (A.10)

It is easy to see that W1 < W2 if and only of 2(1− π)e1(e2 − eL) + π [e1e2 − 2e1 + 1] > 0. As eL < eH ,
we have e2 > eL. If e2 ≥ e1, we also have e1e2 − 2e1 + 1 ≥ (e1 − 1)2, so e2 ≥ e1 is a sufficient condition
for W1 < W2, and hence for (1R, 0, 1) to be preferred to (0, 0, 0) and (1B , 1, 1) on some open interval of
endowment levels.

Next, let W3 be the endowment level at which a native household would be indifferent between the
plans (0, 0, 0) and (0, 0, 1), and W4 the endowment level at which it would be indifferent between the
plans (0, 0, 0) and (1B , 1, 1):

µeaW3 = eL − 1, (A.11)

µeaW4 =
1

2− π
[e1e2 − π − (1− π)eL] . (A.12)

It is easy to see that W3 < W4 if and only of e1e2−2e2+1+2(e2−eL) > 0. As eL < eH , we have e2 > eL.
If e1 ≥ e2, we also have e1e2 − 2e2 + 1 ≥ (e2 − 1)2, so e1 ≥ e2 is a sufficient condition for W3 < W4, and
hence for (0, 0, 1) to be preferred to (0, 0, 0) and (1B , 1, 1) on some open interval of endowment levels.

Part (ii): An argument similar to the one used for part (i) shows first that for e1 ≤ eL, (1R, 0, 0)
is preferred to (0, 0, 0) and (1R, 0, 1) on some open interval of endowment levels; and second, that for
e1 ≥ eL, (0, 0, 1) is preferred to (0, 0, 0) and (1R, 0, 1) on some open interval of endowment levels.

Part (iii): Let W5 be the endowment level at which a native household would be indifferent between
the plans (0, 0, 0) and (0, 1, 1), and W6 the endowment level at which it would be indifferent between the
plans (0, 0, 1) and (0, 1, 1):

µeaW5 = πeH + (1− π)eL − 1, (A.13)
µeaW6 = eH − 1. (A.14)

It suffices to show that W5 < W6. This is easily seen to be equivalent to eL < eH .
Part (iv): Let W7 be the endowment level at which a native household would be indifferent between

the plans (1R, 0, 0) and (1B , 1, 1), and W8 the endowment level at which it would be indifferent between
the plans (1R, 0, 1) and (1B , 1, 1):

µeaW7 = e1 (e2 − 1), (A.15)

µeaW8 = e1

[
e2 − 1 +

1− π

π
(e2 − e1)

]
. (A.16)

It suffices to show that W7 < W8. This is easily seen to be equivalent to eL < e2, which in turn is the
same as eL < eH .

Proof of Proposition 1: The proof draws on auxiliary results that are established in Sections A.2–
A.4 of this appendix. Lemma A.6 shows that in equilibrium, second period rents satisfy RL < RH if a
positive measure of newcomers choose location 1, and RL = RH otherwise. Lemma A.11 shows that (2)
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holds if RL < RH . Lemmas A.8 and A.9 show that equilibrium configurations must be as stated in the
proposition. This implies that the relevant market clearing conditions are (A.26)–(A.29). Lemma A.12
shows that these conditions are equivalent to the system of equations (A.30)–(A.33). Lemmas A.13 and
A.14 show that this system admits a unique solution with RL ≤ RH and the properties stated in the
proposition. Lemma A.15 shows that this solution yields an equilibrium.

A.2 Auxiliary results on household behavior

If RL > RH , the roles of the two states in period 2 are reversed. The three results below are therefore
just mirror images of Lemmas 1, 4, and 5, respectively, and do not require individual proofs.

Lemma A.1 If RL > RH , a native household wanting to live in location 1 in the first period prefers to
own its home if and only if it plans to stay in location 1 should state L occur in the second period.

Lemma A.2 If RL > RH , a native household chooses a location-tenure plan from the following subset
of available options: (0, 0, 0), (0, 1, 0), (0, 1, 1), (1R, 0, 0), (1R, 1, 0) and (1B , 1, 1).

Lemma A.3 Let RL > RH . Then:

(i) at least one of the plans (0, 1, 0) and (1R, 1, 0) is preferred to both (0, 0, 0) and (1B , 1, 1) at all
endowment levels in some set of positive measure;

(ii) at least one of the plans (0, 1, 0) and (1R, 0, 0) is preferred to both (0, 0, 0) and (1R, 1, 0) at all
endowment levels in some set of positive measure;

(iii) the plan (0, 1, 0) is preferred to both (0, 1, 1) and (0, 0, 0) at all endowment levels in some set of
positive measure;

(iv) the plan (1R, 1, 0) is preferred to both (1B , 1, 1) and (1R, 0, 0) at all endowment levels in some set
of positive measure.

If RH = RL, the tenure mode is irrelevant, so native households’ decisions concern location only.

Lemma A.4 If RL = RH , each of the location plans (1, 1, 0), (1, 0, 1), (0, 1, 0) and (0, 0, 1) is optimal
for a native household at precisely one endowment level, and suboptimal at all other endowment levels.
Thus, only the plans (0, 0, 0), (0, 1, 1), (1, 0, 0) and (1, 1, 1) may be chosen by a positive measure of native
households.

Proof: The first statement follows if we let RL tend to RH in Lemmas 4 and A.2. The second statement
follows trivially from the first.

Lemma A.5 Let RL = RH . If the location plans (1, 1, 1) and (0, 0, 0) are optimal at some endowment
levels, then one of the plans (1, 0, 0) and (0, 1, 1) is preferred to both (1, 1, 1) and (0, 0, 0) on a set of
endowment levels of positive measure.

Proof: As RL = RH , we have eL = eH = e2, for which we shall write e∗.
Let W1 be the endowment level at which a native household would be indifferent between the plans

(0, 0, 0) and (1, 0, 0), and W2 the endowment level at which it would be indifferent between the plans
(1, 0, 0) and (1, 1, 1):

µeaW1 = e1 − 1, (A.17)
µeaW2 = e1 (e∗ − 1). (A.18)

Thus, W1 < W2 if and only if e1 (e∗ − e1) + (e1 − 1)2 > 0, a sufficient condition for which is e∗ ≥ e1.
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Next, let W3 be the endowment level at which a native household would be indifferent between the
plans (0, 0, 0) and (0, 1, 1), and W4 the endowment level at which it would be indifferent between the
plans (0, 1, 1) and (1B , 1, 1):

µeaW3 = e∗ − 1, (A.19)
µeaW4 = e∗ (e1 − e∗). (A.20)

Thus, W3 < W4 if and only if e∗ (e1− e∗)+ (e∗− 1)2 > 0, a sufficient condition for which is e1 ≥ e∗. This
implies that at least one of the inequalities W1 < W2 and W3 < W4 always holds.

A.3 Auxiliary results on equilibrium prices and configurations

In the following, we shall write D1, DH , and DL for native households’ aggregate demand for housing in
location 1 in period 1; period 2, state H; and period 2, state L, respectively.

Lemma A.6 In equilibrium, second-period rents satisfy RL < RH if a positive measure of newcomers
choose location 1, and RL = RH otherwise.

Proof: Suppose that RL ≥ RH with a positive measure of newcomers choosing location 1 in state
H. Then, Lemmas A.2 and A.4 imply that DL ≤ DH . Aggregate demand for housing in location 1 by
native households and newcomers is therefore higher in state H than in state L. Given that the supply
of housing in location 1 is the same in both states, this is incompatible with market clearing. This proves
the first part of the lemma.

Next, suppose that RL < RH with all newcomers choosing location 0 in state H. Then, market
clearing implies DH = DL, which in turn implies that the plans (1R, 0, 1) and (0, 0, 1) are not chosen
by any native households. This contradicts parts (ii) and (iii) of Lemma 5 unless either (1R, 0, 0) and
(0, 1, 1) are the only plans chosen (in which case they are chosen in equal measure), or (1B , 1, 1) and
(0, 0, 0) are the only plans chosen. The first alternative contradicts our assumption that S < 1

2 , the
second contradicts part (i) of Lemma 5. A similar argument involving Lemma A.3 instead of Lemma 5
shows that the inequality RL > RH is also incompatible with no newcomers choosing location 1 in state
H. This proves the second part of the lemma.

Lemma A.7 In any equilibrium, the plan (0, 0, 0) is chosen by a positive measure of native households.

Proof: From Lemma A.6, we know that RL ≤ RH . From Lemmas 4 and A.4, we know that the only
housing consumption plans that may be chosen by a positive measure of native households are (1, 1, 1),
(1, 0, 1), (1, 0, 0), (0, 1, 1), (0, 0, 1) and (0, 0, 0). We write m111 for the measure of native households
choosing (1, 1, 1), m101 for the measure of native households choosing (1, 0, 1) etc.

Now suppose m000 = 0. Then, market clearing in period 1 implies m001 + m011 = 1 − S; market
clearing in period 2, state L implies m100 = 1−S. Adding these two equations yields m001+m011+m100 =
2(1− S) > 1, which contradicts the fact that the total native population has size 1.

Lemma A.8 In an equilibrium where a positive measure of newcomers choose location 1 in state H,
the location-tenure plans chosen by a positive measure of native households are (0, 0, 0), (0, 0, 1), and
(1R, 0, 0), plus either

(a) (0, 1, 1), or

(b) (0, 1, 1) and (1R, 0, 1), or

(c) (0, 1, 1), (1R, 0, 1) and (1B , 1, 1), or

(d) (1R, 0, 1) and (1B , 1, 1).
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Proof: From Lemma A.6, we know that RL < RH . From Lemma 4, we know that the only plans that
may be chosen by a positive measure of native households are (1B , 1, 1), (1R, 0, 1), (0, 1, 1), (1R, 0, 0),
(0, 0, 1) and (0, 0, 0). Because of our assumption that ν < S, there must be a positive measure of native
households consuming housing in location 1 in state H. This means that at least one of the plans (1B , 1, 1)
and (0, 1, 1) must be chosen. (Here and in what follows, we interpret the word “chosen” to mean “chosen
by a positive measure of native households.”)

Case 1: (0, 1, 1) is not chosen, so (1B , 1, 1) must be chosen. We want to show that (1R, 0, 1), (1R, 0, 0)
and (0, 0, 1) are chosen as well. Market clearing requires D1 = DL > DH , so (1R, 0, 1) must be chosen,
or both (1R, 0, 0) and (0, 0, 1) must be chosen. By part (iv) of Lemma 5, (1R, 0, 1) is chosen whenever
(1R, 0, 0) is chosen. So (1R, 0, 1) must be chosen. Next, Lemma A.7 implies that (0, 0, 0) is chosen, so by
part (ii) of Lemma 5, at least one of (0, 0, 1) and (1R, 0, 0) is chosen. As D1 = DL, one cannot be chosen
without the other.

Case 2: (1B , 1, 1) is not chosen, so (0, 1, 1) must be chosen. First, note that (1R, 0, 0) must be chosen
as well; otherwise, D1 cannot equal DL. Next, Lemma A.7 implies that (0, 0, 0) is chosen, so by part (iii)
of Lemma 5, (0, 0, 1) is chosen.

Case 3: Both (1B , 1, 1) and (0, 1, 1) are chosen. Arguing as in the previous case, we see that (1R, 0, 0),
(0, 0, 1) and (0, 0, 0) are chosen as well. By part (iv) of Lemma 5, finally, (1R, 0, 1) is also chosen.

Lemma A.9 In an equilibrium where all newcomers choose location 0 in state H, the location plans
chosen by a positive measure of native households are (0, 0, 0), (0, 1, 1), and (1, 0, 0), plus possibly (1, 1, 1).

Proof: From Lemma A.6, we know that RL = RH . For this case, Lemma A.4 implies that the only
housing consumption plans possibly chosen by a positive measure of native households in equilibrium are
(0, 0, 0), (0, 1, 1), (1, 0, 0) and (1, 1, 1). Lemma A.7 implies that (0, 0, 0) is chosen. Lemma A.5 implies
that the configuration cannot just consist of (0, 0, 0) and (1, 1, 1). Market clearing implies that if the
equilibrium configuration contains (0, 1, 1), it must also contain (1, 0, 0), and vice versa.

By Lemma 3, this immediately implies

Lemma A.10 In an equilibrium where all newcomers choose location 0 in state H, equation (2) holds
with equality; as RL = RH , this means (1 + r)R1 = RL = RH .

Lemma A.11 In an equilibrium where a positive measure of newcomers choose location 1 in state H,
the measure of native households that choose the plan (1R, 0, 0) is at least as large as the measure of
native households that choose the plan (0, 1, 1). As a consequence, (0, 1, 1) cannot dominate (1R, 0, 0), so
(2) holds.

Proof: Suppose to the contrary that fewer native households choose (1R, 0, 0) than (0, 1, 1). In view of
Lemmas A.6 and 4, this implies that DH ≥ DL, which is incompatible with the premise that a positive
measure of newcomers choose location 1 in state H.

A.4 Auxiliary results on equilibrium existence and uniqueness

It will be convenient to work with e1, eL, and eH instead of R1, RL, and RH , respectively. We define
ψ = µeaW (1−S) + 1.

Four critical endowment indices fully characterize native households choices. For indifference between
(0, 0, 0) and (0, 0, 1), the critical endowment index is i1 with

µeaW (i1) = max
{

min
{

eL − 1, µeaW (1)
}

, µeaW (0)
}

. (A.21)

For indifference between (0, 0, 1) and (1R, 0, 0), the critical endowment index is i2 with

µeaW (i2) = max
{

min
{

e1 − π − (1− π)eL

π
, µeaW (1)

}
, µeaW (0)

}
. (A.22)
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For indifference between (1R, 0, 0) and (1R, 0, 1), the critical endowment index is i3 with

µeaW (i3) = max
{

min
{

e1 (eL − 1) , µeaW (1)
}

, µeaW (0)
}

. (A.23)

For indifference between (1R, 0, 1) and (1B , 1, 1), the critical endowment index is i4 with

µeaW (i4) = max



min





e1

(
eaR̄2 − π − (1− π)eL

)

π
, µeaW (1)



 , µeaW (0)



 . (A.24)

Given our results on the set of possible equilibrium configurations, these critical indices satisfy the
following conditions in equilibrium: 0 < i1 ≤ i2 < i3 ≤ i4.

Newcomers face a deterministic one-period problem since they only enter if state H occurs. Given
the continuity and monotonicity of the endowment function W̃ , we obtain a critical index n1 such that
the newcomers with index n > n1 prefer location 1 over location 0. This index is implicitly defined by
the equation

µeaW̃ (n1) = max
{

min
{

eH − 1, µeaW̃ (1)
}

, µeaW̃ (0)
}

. (A.25)

Using the definition of the five critical indices, the market clearing conditions for housing in location 1,
period 1; period 2, state H; and period 2, state L, take the form

S = 1− i3 + ρ(i3 − i2), (A.26)
S = 1− i4 + (1− ρ)(i3 − i2) + (1− n1)ν, (A.27)
S = 1− i3 + (1− ρ)(i3 − i2) + i2 − i1, (A.28)

where ρ is the fraction of households with indices between i2 and i3 who choose (1R, 0, 0). By definition,
0 ≤ ρ ≤ 1. Lemma 3 implies that

(1− ρ) (e1 − πeH − (1− π)eL) = 0. (A.29)

Note that our use of min and max operators in the definitions of the critical indices allows us to write
each demand for location 1 housing as a single expression for all possible equilibrium configurations.

Lemma A.12 The system of equations (A.26)–(A.29) is equivalent to the system of equations

2(1− S) = i1 + i3, (A.30)
2(1− S) + ν = i2 + i4 + νn1, (A.31)

e1 = π min
{

eH , µeaW (1−S) + 1
}

+ (1− π)eL, (A.32)

and

ρ =
i3 − (1− S)

i3 − i2
. (A.33)

Proof: Adding equations (A.26) and (A.27), we obtain (A.31). Adding equations (A.26) and (A.28),
we obtain (A.30). Now, if e1 < πeH + (1 − π)eL then ρ = 1. Equation (A.26) then implies i2 = 1 − S,
which by the definition of i2 yields

e1 = πψ + (1− π)eL < πeH + (1− π)eL. (A.34)

Then, since i2 = 1−S, equation (A.33) simply becomes ρ = 1. If e1 = πeH +(1−π)eL then ρ ≤ 1 and the
definition of i2 becomes µeaW (i2) = eH−1. Moreover, (A.26) implies i2 ≤ 1−S, hence µeaW (1−S) ≥ eH−1.
Therefore:

e1 = πeH + (1− π)eL ≤ πψ + (1− π)eL. (A.35)
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Therefore equation (A.32) holds. Using (A.26), we obtain (A.33).
Conversely, equation (A.32) gives us two possible cases. First, if µeaW (1−S) + 1 < eH , then (A.32)

plus the definition of i2 imply i2 = 1 − S, which yields ρ = 1 by equation (A.33) and implies that
equations (A.26) and (A.29) hold. Then, replacing one term 1− S by i2 in equations (A.31) and (A.30)
yields equations (A.27) and (A.28) for the case ρ = 1. Second, if ψ ≤ eH , then (A.32) implies that (A.29)
holds. Using (A.33) to replace one 1 − S term in equations (A.31) and (A.30) yields equations (A.27)
and (A.28). Rearranging (A.33) yields (A.26).

For our next result, recall the definition of e in Section 2.4. It is straightforward to see that e < ψ.

Lemma A.13 Equations (A.30) and (A.32) yield e1 and eL as continuous monotonic functions of eH ,
with the first weakly increasing and the second weakly decreasing in eH . The inequality eL < eH holds
if and only if eH > e. More precisely, µeaW (1−2S) + 1 < eL < e < e1 < eH if e < eH < ψ, and
µeaW (1−2S) + 1 < eL < e1 < ψ ≤ eH if eH ≥ ψ. Finally, eL = e1 = eH if and only if eH = e.

Proof: Equation (A.30) implies that neither i1 nor i3 can be zero, and at most one of them can assume
the value one. By the definitions of i1 and i3, the right-hand side of (A.30) is strictly increasing in eL,
and weakly increasing in e1. This defines eL as a weakly decreasing function of e1 which assumes the
value ψ at e1 = 1 and tends to µeaW (1−2S) + 1 as e1 goes to infinity. Rearranging equation (A.32) into

(1− π)eL = e1 − π min {eH , ψ} (A.36)

defines eL as a strictly increasing function of e1, given eH . This function assumes a value of at most 1 at
e1 = 1 and tends to infinity as e1 does. This implies that for any given eH , (A.30) and (A.32) determine
unique values of e1 and eL with µeaW (1−2S) +1 < eL < ψ. An increase in eH either leaves both functions
unchanged, or shifts the second function down and leaves the first unchanged. Continuity is obvious.

Next, note that in the (e1, eL)-plane, the graph of the function defined by (A.36) cuts the 45 degree
line from below at e1 = min{eH , ψ}, while the graph of the function defined by (A.30) cuts the 45 degree
line from above at e1 = e. Using these facts, it is now easy to verify the statements about the ranking of
e1, eH and eL.

Lemma A.14 The system of equations (A.30)–(A.32) has a unique solution with eH ≥ e, and eH = e if
and only if µeaW̃ (1) ≤ e− 1.

Proof: We want to to establish that equation (A.31) admits a unique solution eH once e1 and eL are
solved for as functions of eH according to Lemma A.13. First, we note that i2 is weakly increasing in e1

and weakly decreasing in eL. This implies that i2 is weakly increasing in eH . Second, n1 is also weakly
increasing in eH . Third, the definition of i4 can be rearranged into

µeaW (i4) = max
{

min
{

e1eL − e1 + e1eLz, µeaW (1)
}

, µeaW (0)
}

, (A.37)

where z = [(eH/eL)π − 1] /π is strictly increasing in eH and non-negative when eH ≥ e. We know from
the proof of Lemma A.13 that i3 > 0. If i3 < 1, then µeaW (i3) = e1eL− e1, which is weakly increasing in
eH by Lemma A.13 and equation (A.30) because i1 is weakly decreasing in eH . This in turn implies that
e1eL− e1 is weakly increasing in eH . Given that e1 is weakly increasing in eH , e1eL is weakly increasing.
So, if i3 < 1, then i4 is weakly increasing in eH , and strictly increasing up to the level 1. If i3 = 1, it is
immediate that i4 = 1 as well. This establishes that the right-hand side of (A.31) is strictly increasing in
eH up to a point and then possibly constant. The term i4 + νn1 becomes constant when eH is so high
that i4 = n1 = 1. In addition, when eH ≥ ψ, then equation (A.32) and the definition of i2 implies that
i2 = 1− S. So, if the right-hand side of (A.31) ever becomes flat as eH increases, it does so at the level
2 − S + ν which is greater than the left-hand side of (A.31). At eH = e, we have i2 = i1 and i4 = i3,
so (A.30) implies that the right-hand side of (A.31) does not exceed the left-hand side. This establishes
existence and uniqueness of a solution to the system of equations (A.30)–(A.32) with eH ≥ e. It also
shows that eH = e if and only if n1 equals 1 at eH = e, that is, if and only if µeaW̃ (1) ≤ e− 1.
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Lemma A.15 The solution to the system of equations (A.30)–(A.32) identified in Lemma A.14 consti-
tutes an equilibrium.

Proof: If µeaW̃ (1) ≤ e − 1, we have e1 = eL = eH = e by Lemma A.13 and so 0 < i1 = i2 < i3 = i4.
If µeaW̃ (1) > e − 1, Lemma A.13 implies that 0 < i1 < i2 < i3 ≤ i4. This shows that the ranking of
the critical endowment indices i1 through i4 is the one that we assumed when formulating the market
clearing conditions (A.26)–(A.29). The solution we have identified thus constitutes an equilibrium.

A.5 Existence and uniqueness of equilibrium in the rental-only
economy

Replicating the arguments we used in the benchmark economy with homeownership, it is easy to verify
that in a rental-only equilibrium where some newcomers choose location 1 in state H, the rental prices
satisfy RL < RH and native households will choose housing consumption plans from the following subset
of alternatives: (0, 0, 0), (0, 0, 1), (0, 1, 1), (1R, 0, 0), (1R, 0, 1) and (1R, 1, 1). Again, (0, 1, 1) is weakly
dominated by (1R, 0, 0) and can arise as a native household’s equilibrium choice only if (2) holds as an
equality. So there are again four critical indices that characterize marginal households. The indices i1,
i2, i3 are defined exactly as in the benchmark economy. For indifference between (1R, 0, 1) and (1R, 1, 1),
however, the critical index is now defined by

µeaW (i4) = ea(1+r)R1
(
eaRH − 1

)
. (A.38)

Proposition 2 There is a unique equilibrium in the rental-only economy. If a positive measure of new-
comers choose location 1 in state H and a positive measure of native households choose the plan (1B , 1, 1)
in the economy where homeownership is allowed, then the equilibrium prices in the rental-only economy
compare as follows with those in the ownership economy:

Rr
1 ≤ Rb

1, Rr
H < Rb

H , Rr
L ≥ Rb

L.

Proof of Proposition 2: Existence and uniqueness of equilibrium are shown along exactly the same
lines as in the proof of Proposition 1. Note in particular that equations (A.30) and (A.32) are the same
in both economies, so Lemma A.13 with its description of e1 and eL as continuous monotonic functions
of eH carries over without any modification. Given a value for eH , we thus have the same values for e1,
eL, i2 and n1 in both economies. In contrast, we have ib4 < ir4 at any given value of eH that is assumed
common to both economies, different from eL and such that 0 < ib4 < 1. By the definitions of these
indices, the stated inequality is equivalent to e2 − (1− π)eL < πeH , which always holds by the convexity
of the exponential function. As a function of eH , therefore, the right-hand side of (A.31) is strictly larger
in the rental-only economy over the range where 0 < ib4 < 1. This implies that if ib4 < 1 in the ownership
equilibrium, then the equilibrium rental prices in state H satisfy eL < eH . The remaining comparison
results now follow from Lemma A.13.
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