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Abstract

Faced with the problem of pricing complex contingent claims, investors seek to 
make their valuations robust to model uncertainty. We construct a notion of a model-
uncertainty-induced utility function and show that model uncertainty increases investors’ 
effective risk aversion. Using this utility function, we extend the “no good deals” 
methodology of Cochrane and Saá-Requejo (2000) to compute lower and upper good-
deal bounds in the presence of model uncertainty. We illustrate the methodology using 
some numerical examples.
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1 Introduction

The recent financial crisis has highlighted the significance of unhedgable, illiquid positions

for individual financial institutions and for the global financial system as a whole. Indeed,

the Basel Committee on Banking Supervision notes that

One of the key lessons of the crisis has been the need to strengthen the risk

coverage of the capital framework. Failure to capture major on– and off–balance

sheet risks, as well as derivative related exposures, was a key destabilising factor

during the crisis.1

While concepts like marking-to-market and risk weighting of individual positions are incor-

porated in all three pillars of the Basel III capital regulation, the academic literature has

lagged in providing a robust, model-free way of implementing these in practice. In this pa-

per, we propose a methodology to compute upper and lower bounds on prices of complex

(potentially non-traded) securities that is robust to misspecifications of the model of the

underlying cash-flows.

Our methodology incorporates a concern for robustness to model uncertainty into the

“No Good Deals” methodology of Cochrane and Saá-Requejo [2000]. The no good deals

methodology refines the lower and upper arbitrage bounds on securities prices by imposing

a maximal admissible Sharpe ratio for trading strategies: Just as arbitrages are ruled out for

giving investors a free lunch, so very high Sharpe ratios are ruled out on the grounds that,

if allowed, a very high Sharpe ratio would represent such a good deal that (Ross [1976]) it

should not exist in equilibrium. In this paper, we extend the intuition of Cochrane and Saá-

Requejo [2000] and argue that investors should also be restricted in the set of models they

are allowed to use in computing the maximal Sharpe ratio. In particular, we assume that

investors evaluate alternative trading strategies using Hansen and Sargent [2008] multiplier

preferences. While an investor might have an estimate of the evolution of the underlying

1Source: Basel III.
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shocks in an economy, she recognizes that her estimate may not be the true data-generating

process. Thus, she considers a set of alternative models, with her preference for robustness

forcing her to choose the “worst-case” model in computing the good deal bounds.

Model uncertainty impacts the good deal bounds in two ways. First, since the uncertainty-

averse agent assigns higher probabilities (than under the approximating model) to states with

lower payoffs (or higher losses), the good deal bounds are wider in the presence of model

uncertainty than in its absence. Intuitively, the lower bound on the price of the security

is the bid that an agent buying the security is willing to submit; in the presence of model

uncertainty, a misspecification-averse agent fears that the security is less valuable than the

traditional good deal bounds would suggest. Similarly, the upper bound is set by the ask

price of the seller; in the presence of model uncertainty, a misspecification-averse agent fears

that the security is more valuable. Second, while the right to dynamically hedge is always

a valuable one, we show that model uncertainty reduces the benefit of dynamic hedging

relative to static hedging (see Carr, Ellis, and Gupta [1998] for a discussion of static hedging

strategies for complex options). In particular, as the investor becomes more averse to model

uncertainty, the good deal bounds converge to the no arbitrage bounds and the dynamic

hedging strategy converges to the static one.

We build on the results of Černý [2003] – that the restriction on the volatility of the

pricing kernel imposed by Cochrane and Saá-Requejo [2000] in their derivation of good

deal bounds is intimately tied with quadratic utility – to derive the analogous restrictions

on the pricing kernel in the presence of model uncertainty. More specifically, we begin by

introducing the notion of a model uncertainty induced utility function. The concern for model

misspecification increases the effective risk aversion of the investor, leading to wider good

deal bounds. Using the implied restrictions on the pricing kernel for quadratic, exponential

and CRRA utility function, we formulate the no good deal problem in the presence of model

uncertainty and solve for the lower and upper bounds. Finally, we show how to estimate
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the degree of investors’ aversion to model uncertainty, and illustrate the method using some

numerical examples.

Literature Review

Our framework builds upon that of Cochrane and Saá-Requejo [2000]. Bernardo and Ledoit

[2000] simultaneously developed an alternative framework for constructing good deal bounds

which uses gain-loss ratios rather than Sharpe ratios. Černý [2003] and Černý and Hodges

[2001] explain how the use of gain-loss ratios puts the Bernardo and Ledoit [2000] framework

into a rather different category compared to the Sharpe ratio and generalised Sharpe ratio

based framework and, for this reason, we don’t consider it further. There have been some

follow-up papers to the work of Cochrane and Saá-Requejo [2000] - Hodges [2009] is a

comprehensive review - but as he points out, most of them are highly mathematical and the

economic intuition of Cochrane and Saá-Requejo [2000], and of Hansen and Jagannathan

[1991], and its potential use as a practical tool for practitioners and regulators alike has been

obscured.

The seminal contribution of the “No Good Deals” methodology of Cochrane and Saá-

Requejo [2000] is to narrow the arbitrage bounds by additionally requiring that the volatility

of the pricing kernel is bounded which, in view of Hansen and Jagannathan [1991], is the

same as bounding the maximum available Sharpe ratio. The resulting good deal bounds

both rule out arbitrage and rule out the possibility of forming a portfolio of the complex

security (termed the focus asset) and of a set of hedging assets (termed basis assets) which

has more than some given Sharpe ratio. Just as arbitrages are ruled out for giving investors

a free lunch, so very high Sharpe ratios are ruled out on the grounds that, if allowed, a very

high Sharpe ratio would represent such a good deal that (Ross [1976]) it should not exist in

equilibrium. Hence, “No Good Deals” introduce a partial equilibrium consideration into the

pricing of complex securities but, crucially, without having to make any strong assumptions

(for example, the precise specification of investors’ utility functions) concerning the nature of
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the equilibrium. This is especially pertinent to the pricing and trading of complex securities

where agents (typically employees of investment banks or hedge funds) are rarely acting on

their own account and hence personalised measures of preferences such as a utility function

(even if estimable) may be inappropriate.

Sharpe ratios de-personalise the selection of a criterion to narrow the arbitrage bounds.

If an investor (or, more generally, a financial institution) would be prepared to enter into any

trade that is either an arbitrage or that is expected to deliver more than a specified Sharpe

ratio, then she will, in all likelihood, be prepared to trade a complex security priced by the

same criterion. Further, Sharpe ratios are simple and widely used so it is likely that there

will be other investors (or financial institutions) who would be prepared to trade on the same

terms and who would therefore be prepared to take the other side of the trade should the

first investor decide to liquidate her position. Hence the use of Sharpe ratios gives a market

(as opposed to an individualistic) perspective.

Although the no good deals methodology provides a compelling and economically-motivated

way for investors to consider the impact of unhedgeable market risks on the prices of complex

securities, the recent history of financial institutions suggest that these considerations are

insufficient to incentivize market participants to be sufficiently conservative in their valua-

tions. Even before the global financial crisis of 2007–2009, there had been a series of financial

institutions (such as Bank of Tokyo/Mitsusbishi in 1997, Nat-West in 1997, Bankers Trust in

1998, Amaranth Advisors LLC in 2006) reporting large losses on their (supposedly, hedged)

positions in over-the-counter (OTC) derivatives. The losses have continued after the crisis.

For example, in April 2011, Reuters reported that Mitsubishi UFJ Morgan Stanley Securi-

ties (a joint venture between a Japanese bank and Morgan Stanley) had incurred losses of

more than 1.75 billion dollars on its positions in complex derivatives. Furthermore, these

losses were not attributable to the earthquake and tsunami which had struck Japan six weeks

earlier. Instead, Reuters directly quoted a senior official at the joint venture as saying that

the losses had accumulated (and we quote verbatim) “bit by bit” over a period of months.
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Whilst the exact details of how these losses arose is still unclear, the quotation suggests that

the positions were incorrectly marked-to-market or suffered from gradual hedge-slippage as

the prices of hedging assets diverged from their model predictions.

The aftermath of the global financial crisis has intensified political and regulatory scrutiny

of the hedging and risk-management of OTC derivatives. Although both the new Basel

III banking regulation as well as its predecessor Basel II specifically require banks to take

into account model risk or uncertainty, based on our conversations with traders at leading

investment banks, there does not seem to any consistent methodology to doing so. Some

banks do not follow the framework in this regard due to auditor requirements on mark-to-

market accounting, while others have ad-hoc valuation adjustments to their mark-to-market

prices for some types of securities but not for others. This may be due to a lack of a consensus

on how to generate mark-to-market or reservation prices, or it may be because traders and

senior executives are incentivized by bonus structures to maximize up-front profits and not

to place conservative reservation prices on their positions, especially for complex securities

with long maturities. Either way, our paper suggests a way forward by requiring investors

to incorporate a concern for model misspecification in their price estimates.

Model uncertainty has the additional feature of reflecting a different dimension of uncer-

tainty faced by market participants. The original insight of Gilboa and Schmeidler [1989] –

that Knightian (or model) uncertainty can explain the Ellsberg [1961] paradox – has more

recently been extended by Hansen and Sargent [2008], Hansen, Sargent, and Tallarini [1999],

Hansen and Sargent [1995, 2001], Cagetti, Hansen, Sargent, and Williams [2002], Barillas,

Hansen, and Sargent [2009], Maenhout [2004], Garlappi, Uppal, and Wang [2007] and Uppal

and Wang [2003] to show that investors have a fundamentally different aversion to model

uncertainty. For example, Barillas et al. [2009] and Maenhout [2004] show that the classical

equity premium puzzle of Mehra and Prescott [1985] can be resolved by allowing agents

to have robustness preferences over alternative models; Uppal and Wang [2003] show that

model uncertainty can also be used to explain the home-bias puzzle of Cooper and Kaplanis

5



[1994], Coval and Moskowitz [1999] and Huberman [2001]. Additional studies examining the

implications of model uncertainty for equities and non-defaultable bonds include Anderson,

Ghysels, and Juergens [2009], Bossaerts, Ghirardato, Guarnaschelli, and Zame [2010], Leip-

pold, Trojani, and Vanini [2008], Cao, Wang, and Zhang [2005], Boyle, Garlappi, Uppal, and

Wang [2012] and Cvitanic, Lazrak, Martellini, and Zapatero [2011]. Furthermore, recent

studies have demonstrated the importance of model uncertainty in modeling the prices of

complex securities. Liu, Pan, and Wang [2005] find that aversion to model uncertainty plays

an important role in explaining the pricing differentials among options on the S & P 500

stock index across moneyness (that is, the “smirk” or “smile” seen in implied volatilities).

Using a similar intuition, Drechsler [2012] finds that concerns for model misspecification

explain the large premia in index options. Finally, Boyarchenko [2012] argues that model

uncertainty can explain the behavior of credit swap spreads (CDS) on financial institutions

during the recent financial crisis.

While the implications for asset pricing and portfolio choice under model uncertainty

have been extensively considered, incorporating model uncertainty into the pricing of con-

tingent claims has been less well-developed. Boyle, Feng, Tian, and Wang [2008] argue that,

in incomplete markets, the multiplicity of available stochastic factors naturally leads to a

concern for model misspecification. Instead of following the literature on robust preferences,

however, they choose the optimal pricing kernel to limit the variation in the price of a con-

tingent claim when the underlying asset’s payoff is slightly perturbed. The main advantage

of this approach is to construct perturbations that are based on the volatility of the basis

asset, which is the pertinent quantity in pricing options on the asset. This natural link comes

at a cost, however, with the Black and Scholes [1973] model used as the benchmark model.

Furthermore, the authors focus on standard European options. While they briefly discuss

the pricing of other types of derivatives, the continuous time set-up makes these extensions

non-trivial for the case of path-dependent or early exercise (American) options.
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In contrast, we make the lower and upper bounds on the value of a contingent claim

robust to model uncertainty by choosing the pricing kernel subject to a relative entropy cri-

terion. Thus, our perturbations are based on the conditional entropy of the pricing kernel,

allowing for non-Gaussian distributions even in the static case. An additional advantage

of our approach is in considering a discrete-time, discrete space (lattice) formulation. The

lattice approach simplifies the pricing of finite horizon, path-dependent options while em-

phasizing their illiquid nature. Further, any continuous space stochastic process can be well

approximated by a discrete lattice, provided that the lattice has sufficient states. Finally,

continuous trading is not always possible in real markets; the discrete-time formulation nat-

urally incorporates these breaks in trading activity.

The rest of this paper is structured as follows: Section 2 provides an overview of the

“No Good Deals” methodology. Section 3 introduces model uncertainty and shows how the

Cochrane and Saá-Requejo [2000] bound E[m2] ≤ A2 should be modified in its presence.

Section 4 defines and solves for the lower and upper good deal bounds. Section 5 shows

how to estimate the parameter (Ω) that controls aversion to model uncertainty. Section

6 extends our methodology to multiple time periods. Section 7 provides some numerical

results. Section 8 concludes. Proofs are relegated to the appendix.

2 Good deal bounds without model uncertainty

We briefly review the “No Good Deals” methodology of Cochrane and Saá-Requejo [2000]

(in the absence of model uncertainty) and its subsequent extensions (Hodges [1998], Černý

and Hodges [2001] and Černý [2003]) to alternative utility function settings. The starting

point of this methodology is to describe the distribution of future pay-offs to financial assets

or outcomes of economic variables (such as interest rates). This is equivalent to specifying a

reference probability measure P over the possible states of the economy. Although our focus

in this paper is to allow agents to be uncertain about the probability measure P, in this section
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we ignore model uncertainty concerns and take P as given. This allows us to outline the

relationship between the “No Good Deals” methodology and expected utility maximization,

making the link between model uncertainty and good deal bounds more immediate.

Consider pricing a complex security or contingent claim (or a portfolio of these), and

assume that this focus asset (in the terminology of Cochrane and Saá-Requejo [2000]) pays

xc at time 1. In addition, assume that there are Nb basis assets, traded in an active, liquid

market. Each basis asset i = 1, . . . , Nb pays xi at time 1, with the time 0 market price given

by pi. We denote by p and x respectively the Nb - dimensional vectors whose ith elements

are pi and xi, respectively. We assume that the agent in question does not know the pricing

kernel used by the marginal investor in the market and instead uses the prices of the basis

assets to inform herself about the possible pricing kernels in the economy. More specifically, a

candidate pricing kernel m must price exactly the basis assets under the reference probability

measure P, so that EP[mxi] = pi, for each i = 1, . . . , Nb, and imply no-arbitrage, so that

m ≥ 0.2 Notice that, since we do not assume that markets are complete, there can be

multiple candidate pricing kernels that satisfy these conditions.

The innovation of Cochrane and Saá-Requejo [2000] is to restrict the set of candidate

pricing kernels by requiring that the variance of a candidate pricing kernel is bounded from

above. In particular, the lower CNoMU and upper C
NoMU

good deal bounds on the time 0

price of the focus asset satisfy

CNoMU = inf
m

{
EP[mxc] such that EP[mx] = p,m ≥ 0,EP[m2] ≤ A2

}
, (1)

with the infimum replaced by a supremum for C
NoMU

. The first two constraints enforce

the exact repricing of the basis assets and absence of arbitrage. The final constraint limits

the variance of candidate pricing kernels and implies (see Hansen and Jagannathan [1991]) a

maximal available Sharpe ratio. Notice that the limit on the variance of the candidate pricing

2See e. g. Cochrane [2005].
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kernel must be large enough to allow for exact pricing of the basis assets; in particular, we

assume in this Section that A2 ≥ A?NoMU 2 where

A?NoMU 2 = inf
m

{
EP[m2] such that EP[mx] = p,m ≥ 0

}
. (2)

To solve for the lower and upper good deal bounds, consider two cases: (1) E[m2] ≤ A2

binds and (2) EP[m2] ≤ A2 is slack.3 Rearranging the solutions of Cochrane and Saá-Requejo

[2000], we can express the lower and upper bounds in the two cases as follows.

Case (1) EP[m2] ≤ A2 binds:

CNoMU solves: A2 = max
µ>0,v

{
2v
′
p− 2µCNoMU + EP[UT (µxc − v

′
x)]
}
, (3)

C
NoMU

solves: A2 = max
µ<0,v

{
2v
′
p− 2µC

NoMU
+ EP[UT (µxc − v

′
x)]
}
. (4)

Case (2) EP[m2] ≤ A2 slack:

If A2 > max
v,µ

{
2v
′
p− 2µCArb + EP[UT (µxc − v

′
x)]
}
, then

CNoMU (C
NoMU

) equals the lower (or upper) arbitrage bound CArb. (5)

In equations (3) to (5), UT (V ) ≡ −(max(−V, 0))2, v is a Nb - dimensional vector and µ

is a scalar. The maximizations are made over choices of µ and v which play the role of

positions taken in the focus asset and in the basis assets. The restriction µ > 0 in (3)

(respectively, µ < 0 in (4)) corresponds to taking a long position (a short position of size

|µ|), at time 0, at a price of CNoMU (respectively, C
NoMU

) to solve for the lower (upper)

good deal bound. Notice that we can reinterpret (3) to (5) in terms of utility maximization.

3Cochrane and Saá-Requejo [2000] consider three different cases: (a) m ≥ 0 slack, EP[m2] ≤ A2 binds,
(b) both bind and (c) m ≥ 0 binds, EP[m2] ≤ A2 slack. It was convenient for Cochrane and Saá-Requejo
[2000] to do so because case (a) yields an analytical solution. However, it suits our purpose to combine cases
(a) and (b) into one because the analytical solution available in case (a) is a special case of the (numerical)
solution in case (b).
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Consider, for example, the lower bound in the case when EP[m2] ≤ A2 binds. The investor

allocates her time 0 wealth between the basis assets and a long position in the focus asset

to maximize her expected utility at time 1, subject to the time 0 budget constraint, and

evaluates possible outcomes using a (truncated) quadratic utility function. More generally,

the “No Good Deals” methodology computes lower and upper good deal bounds which (1)

solve for a specified level A2 of reward-for-risk when such a solution exists or (2) are the

arbitrage bounds CArb when the maximum achievable reward-for-risk is insufficient to reach

the specified level A2.

The link between the restriction on the volatility of the pricing kernel and (truncated)

quadratic utility is a consequence of convex duality.4 Using this intuition, Černý [2003]

derives restrictions on the pricing kernel corresponding to exponential and CRRA (including

log) utility functions. These restrictions can also be viewed as restrictions on the certainty

equivalent associated with the relevant utility function or on the optimal level of expected

utility. Furthermore, just like the restriction on the pricing kernel EP[m2] ≤ A2 is equivalent

to a bound on the maximum Sharpe ratio in the economy, the restrictions that Černý [2003]5

derives for exponential, CRRA and log utility functions are equivalent to bounds on the

maximum “generalized” Sharpe ratios.

To link restrictions on the pricing kernel with utility functions, Černý [2003] considers

an investor endowed with wealth V0 at time 0. The investor, without a concern for model

uncertainty, maximizes her expected utility of time 1 wealth V subject to the time 0 budget

constraint

sup
V

EP[U(V )] such that EP[mV ] = V0, (6)

where U(V ) is the investor’s utility function. Černý [2003] introduces Lagrange multipliers

to solve this problem for various utility functions. In particular, for truncated quadratic

4See Cox and Huang [1989] for one of the first applications in utility maximization problems.
5See also Hodges [1998], Černý and Hodges [2001]
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utility U(V ) = −(max(V − V, 0))2, the maximum achievable value of EP[U(V )], subject to

the constraint EP[mV ] = V0, is

sup
V

EP[U(V )] = −(V − V0)2

EP[m2]
=

U(V0)

EP[m2]
≡ U(V0 + CE), (7)

with the certainty equivalent associated with truncated quadratic utility given by

CE = (V − V0)

(
1− 1√

EP[m2]

)
.

Thus, the bound on the volatility of the pricing kernel implies a bound on the maximum

achievable certainty equivalent

EP[m2] ≤ A2 ⇐⇒ sup
V

EP[U(V )] ≤ U(V0)/A2 ⇐⇒ CE ≤ (V − V0)(1− 1/
√
A2). (8)

This gives us a dual interpretation on “No Good Deals”: “No Good Deals” can be seen either

as ruling out Sharpe ratios which are too high or as ruling out too high levels of expected

utility (or certainty equivalent) relative to U(V0) (or V0). While the first interpretation

has the advantage of being independent from the specification of a utility function for the

investor in question, the second interpretation allows us to connect good deal bounds with

model uncertainty.

We conclude this section by summarizing the basic assumptions that we maintain through-

out the paper. We assume that there are S possible time 1 states of the world. We denote

the probability, under P, of attaining state s by P(s), for each s = 1, . . . , S. Finally, we

assume that

Assumption 1 (1) S, the number of possible state of the economy at time 1, is finite,

(2) P(s) > 0 ∀s = 1, . . . , S, so that the zero probability states have been pruned,

(3) the time 1 payoffs are finite in each state
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(4) there are no arbitrage opportunities amongst the basis assets, and

(5) redundant basis assets have been pruned.

3 Introducing model uncertainty

In this section, we introduce the notion of an uncertainty-induced utility function and, sim-

ilarly to Černý [2003], derive the implied bounds on candidate pricing kernels. Throughout

the rest of the paper, we assume

Assumption 2 (1) The utility over wealth, U(V ), is bounded above by a finite positive

constant6 which, without loss of generality, can be taken to be zero. Hence, U(V ) takes

on negative values i.e. U(V ) ≤ 0, for all V .

(2) U(V ) is non-decreasing, continuous, concave and differentiable with U
′
(V ) ≥ 0, U

′′
(V ) ≤

0, limV→−∞ V/U(V ) = 0 and limV→∞ U
′
(V ) = 0.

For future use, we introduce also

CARA(U(V )) = −U
′′
(V )

U ′(V )

to be the coefficient of absolute risk aversion of U(V ).

3.1 Model uncertainty

We begin by describing the economic setting considered in this paper. As in the previ-

ous Section, denote by P the reference probability measure over the possible states in the

economy. While the optimizing agent knows the model P to be the best estimate of the

data-generating process given the information at her disposal, she recognizes that the model

6This precludes log utility since it is unbounded. However, it is satisfied by the three utility functions that

we will be interested in: Quadratic, exponential and CRRA: U(V ) = β V
1−γ

1−γ , for (the empirically relevant)
γ > 1.
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is estimated from a finite data set. Thus, she worries that the true model may be in a set

of alternative models P that are difficult for her to reject empirically. The investor guards

against model uncertainty by considering asset allocations that are robust across the set of

alternative models. As shown in Hansen and Sargent [1995, 2001, 2008], Hansen et al. [1999]

and Anderson, Hansen, and Sargent [2003], this is equivalent to evaluating future prospects

under the worst-case model in the alternative set.

More formally, we index a member Pξ of the set of alternative models P by its Radon-

Nikodym derivative ξ = dPξ/dP. Notice that ξ captures the likelihood ratio between the

two models, and that the reference model P corresponds to the case ξ = 1. To keep the

interpretation of a likelihood ratio, we assume that ξ is strictly positive, ξ > 0, and integrates

to 1, EP[ξ] = 1. The model uncertainty averse agent then solves

inf
Pξ∈P

{
sup
V

{
EPξ [f(ξ)U(V )] such that EPξ [mξV ] = V0

}}
. (9)

That is, the investor maximizes her expected utility of future wealth subject to the ini-

tial budget constraint, while expressing her model uncertainty and desire for robustness by

evaluating her future prospects under the worst-case (minimizing) model within the set of

alternatives. The multiplicative penalty f (ξ) disciplines the agent’s decision making and

restricts the set of alternative measures. We assume that

f(ξ) ≡ 1− Ω log ξ, (10)

where the constant Ω satisfies 1 ≤ Ω <∞. The constant Ω captures the degree of investor’s

aversion to model uncertainty. As Ω increases, the agent becomes more averse to model

uncertainty, and considers a larger set of alternative models. In the limit Ω→ 1, the agent
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only considers the reference model P, corresponding to the case of no model uncertainty.

Notice also that, with this form of f (ξ), we can express

sup
V

EPξ [f(ξ)U(V )] = sup
V

EPξ [U(V ) + Ω log ξ(−U(V ))] = sup
V

EP[ξU(V ) + Ωξ log ξ(−U(V ))],

(11)

where the last equality uses the fact that ξ is a change of measure. The first term is the

standard expected utility term, computed under the alternative measure Pξ. The quantity

ξ log ξ is the relative entropy between the reference measure P and the alternative measure

Pξ and captures the distance between the two models in log-likelihood space. Unlike Hansen

and Sargent [2008], we scale the relative entropy by next period’s utility.7 Scaling by U (V )

has the dual advantages of preserving the importance of model uncertainty when wealth V

increases and maintaining analytical tractability. In our one period setting, this is the direct

analog of scaling by the agent’s value function, as in Maenhout [2004].

Finally, we can rewrite the optimization problem (9) as

inf
ξ
{sup

V
{EP[ξf(ξ)U(V )] such that EP[yV ] = V0}.

such that EP[ξ] = 1, ξ > 0, ξf(ξ) ≥ 0}, (12)

where y = ξmξ is the pricing kernel of the uncertainty-averse agent under the reference

measure. Of the four constraints in (12), the first corresponds to the time 0 budget constraint,

the second enforces that Pξ is a probability measure, the third that ξ is a valid change of

measure, and the fourth ensures that ξf(ξ)U(V ) is non-decreasing in V . For future use, we

7In the one period version of the set-up of Hansen and Sargent [2008], the investor solves

inf
ξ

sup
V

EP[ξU(V ) + θξ log ξ], θ ∈ [θ,∞], θ > 0,

where θ is a positive constant which controls aversion to model uncertainty. In their setup, finite values of
θ generate aversion to model uncertainty while θ = ∞ corresponds to forcing their (additive) penalty term
θEP[ξ log ξ] to be so large that ξ is forced to be identically equal to one and hence is the limiting case of no
aversion to model uncertainty.
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introduce the set of admissible changes of measure (which parametrizes the set of alternative

models) to be

Ξ =
{
ξ : EP[ξ] = 1, ξ > 0, ξf(ξ) ≥ 0

}
.

3.2 The model uncertainty induced utility function

We turn now to the notion of the model uncertainty induced utility function. Switching the

order8 of min and max, we can rewrite (12) as

sup
V

{
inf
ξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
such that EP[yV ] = V0

}
. (13)

In this subsection, we focus on the inner minimization infξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
. Introduce

Ψ ≡ 1

Ω
− 1, (note Ψ ≤ 0), and g(ξ) ≡ ξ − log ξ − 1,

and let mins {−U(V )} and maxs {−U(V )} denote the minimum and maximum values of

−U(V ) ≡ −U(V (s)) across the S possible states. Before we solve for the worst-case model,

we summarize some properties of infξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
.

Proposition 3 (1) infξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
≤ EP[U(V )].

(2) In the special case of Ω = 1, ξ (s) ≡ 1 in all states s = 1, . . . , Nb and the inequality

above holds with equality.

(3) As Ω increases, infξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
is non-increasing (and strictly decreasing ex-

cept in the degenerate case of U (V ) independent of the state s).

Thus, the expected present value of the agent’s utility is at most that under the reference

measure. Intuitively, since the reference measure P is in the set of possible alternative P ,

8since the argument is concave in V and convex in ξ
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the uncertainty-averse agent cannot do better than her utility under the reference measure.

The second part of the proposition shows that the case Ω = 1 corresponds to no aversion to

model uncertainty, while the last part shows that letting Ω tend towards infinity corresponds

to total aversion to model uncertainty. Hansen and Sargent [2008] show (section 7.4) that

their formulation of robustness has, at high enough levels of aversion to model uncertainty,

a “breakdown point” at which the agent’s objective is no longer concave in her wealth. Our

formulation does not suffer from this complication. In fact, in the next proposition, we show

that ξ is bounded, implying that infξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
is bounded below.

Proposition 4 The worst-case likelihood satisfies

inf
ξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
= max

η

{
S∑
s=1

P(s) [(1 + Ωg(ξ(s))) (U(V )− β(s))]

}
, (14)

where β (s) is the Lagrange multiplier on the constraint ξ (s) f (ξ (s)) > 0 and

ξ(s) = exp

((
1 +

η

(U(V )− β(s))

)
Ψ

)
. (15)

In the degenerate case that mins {−U(V )} = maxs {−U(V )}, ξ(s) ≡ 1 and we set β(s) ≡ 0.

Otherwise,

β (s) =


0, if U(V ) 6= 0 and

(
1 + η

U(V )

)
Ψ ≤ log ξcrit;

ηΨ
(Ψ−log ξcrit)

+ U (V ) , otherwise.

(16)

Furthermore, η satisfies η ≥ 0 and η and ξ(s) are bounded by

min
s
{−U(V )} ≤ η ≤ max

s
{−U(V )} , (17)

and for all s = 1, . . . , S: ξ(s) ∈ [exp(Ψ), ξcrit], (18)
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with ξcrit the unique point for which f(ξcrit) = 0.9

Using the results of Proposition 4, we can now define the model uncertainty induced

utility function to be

UMU(V ) = (1 + Ωg(ξ)) (U(V )− β) , (19)

where ξ is the worst-case distortion given by (14) (evaluated at the maximizing value η̂ of η

in (14)). The optimization in (13) thus becomes

sup
V

{
EP[UMU(V )] such that EP[yV ] = V0

}
. (20)

Notice that, since the worst-case distortion ξ depends both on the reference measure P and

the space of basis assets, the induced utility function is also setting-specific. The following

proposition confirms that UMU is a valid utility function and establishes some of its other

properties.

Proposition 5 UMU(V ) satisfies Assumption 2; in particular, UMU(V ) ≤ 0. Furthermore,

UMU ′(V ) = ξf(ξ)U
′
(V ) ≥ 0, (21)

and the coefficient of absolute risk aversion of UMU(V ) satisfies

− UMU ′′(V )

UMU ′(V )
≡ CARA(UMU((V )) ≥ CARA(U((V )) ≡ −U

′′
(V )

U ′(V )
, (22)

with equality holding if Ω = 1.

Thus, model uncertainty increases the effective coefficient of absolute risk aversion. Intu-

itively, the uncertainty-averse agent places higher probabilities on lower utility outcomes (see

9The point is unique since f
′
(ξ) = −Ω/ξ < 0, limξ→0 f(ξ) > 0 and limξ→∞ f(ξ) < 0. Notice also that,

since f(1) = 1, ξcrit > 1.
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(15)), so that ξ deviates more from 1 for worse outcomes. This increases the curvature and,

hence, the coefficient of absolute risk aversion, of the effective utility function UMU. This

is a direct analog to the intuition of Barillas et al. [2009] that the optimizing decisions of

an uncertainty-averse agent is observationally equivalent to one with Epstein and Zin [1989]

preferences.

3.3 Restriction on the pricing kernel under model uncertainty

We now return to considering problem (12). The certainty equivalent CE of problem (12) is

the solution to

sup
V

{
inf
ξ∈Ξ

{
EP[ξf(ξ)U(V )]

}
such that EP[yV ] = V0

}
= inf

ξ∈Ξ

{
EP[ξf(ξ)U(V0 + CE)]

}
.

Using the results of the Propositions 3 and 4, we can rewrite the above as

sup
V

{
EP[UMU(V )] such that EP[mV ] = V0

}
= U(V0 + CE). (23)

To solve for the certainty equivalent CE in equation (23), we use the methodology of Cox

and Huang [1989] (or section 2 of Černý [2003]). We state the result for three different

specifications of the utility function U(V ) in the following proposition.

Proposition 6 Let β̄ > 0 be the investor’s subjective discount factor and ξ be the worst-case

distortion.

(1) For the case of truncated quadratic utility with bliss point V̄

U(V ) = −β(max(V − V, 0))2,
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the certainty equivalent is

CE =
1

CARA(U(V0))

1− 1√
EP
[

y2

ξf(ξ)

]
 , and furthermore (24)

CE ≤ C ⇐⇒ EP
[

y2

ξf(ξ)

]
≤
(

1

1− (CARA(U(V0))C)

)2

, (25)

where we have assumed that V0 + CE < V̄ .

(2) For the case of exponential utility with constant absolute risk aversion B > 0

U(V ) = −β exp(−BV ),

the certainty equivalent is

CE =
1

CARA(U(V0))
EP
[
y log

( y

ξf(ξ)

)]
, and furthermore (26)

CE ≤ C ⇐⇒ EP
[
y log

( y

ξf(ξ)

)]
≤ CARA(U(V0))C. (27)

(3) For the case of constant relative risk aversion (CRRA) utility with CRRA coefficient

γ > 1

U(V ) = β
V 1−γ

1− γ
,

the certainty equivalent is

CE = V0

(
EP
[
y
( y

ξf(ξ)

)−1
γ

]) γ
1−γ − V0, and furthermore (28)

CE ≤ C ⇐⇒ EP
[
y
( y

ξf(ξ)

)−1
γ

]
≤
(

1 + CARA(U(V0))
C

γ

) 1
γ
−1

. (29)

Equations (25), (27) and (29) simply re-express bounds on CE in terms of bounds on expec-

tations of simple functions of y and ξf(ξ). Equation (25) is the analogue to the Cochrane
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and Saá-Requejo [2000] bound and clearly, our bound reduces to theirs if ξ ≡ 1. Equations

(27) and (29) extend bounds in Černý [2003] to the presence of model uncertainty.

4 Good Deal bounds

In this section, we develop the good deal bounds that are implied by the pricing kernel

restrictions derived in Proposition 6. While we focus on the case of truncated quadratic

utility, Section 4.3 considers the exponential and CRRA utility cases.

The setup is the same as in Section 2. Briefly, there are Nb basis assets. The time 0 price

of basis asset i is pi and, at time 1, it pays xi ≡ xi(s), in state s, for each i = 1, . . . , Nb.

The pricing kernel y must reprice the basis assets exactly. There is a focus asset which pays

xc ≡ xc(s), at time 1. We continue to make Assumption 1.

Notice that the model uncertainty induced utility function UMU (V ) satisfies the technical

assumptions that Černý [2003]10 imposes to derive the relationship (in the absence of model

uncertainty) between bounds on the certainty equivalent and bounds on the pricing kernel.

This leads us to our definition of good deal bounds under model uncertainty - which we term

No Good Deals - No Bad Models.

Definition 7 Under model uncertainty, the lower C and upper C good deal bounds on the

time 0 price of the focus asset solve

C = inf
ξ∈Ξ

{
inf
y

{
EP[yxc] such that EP[yx] = p, y ≥ 0,EP

[
y2

ξf(ξ)

]
≤ A2

}}
C = sup

ξ∈Ξ

{
sup
y

{
EP[yxc] such that EP[yx] = p, y ≥ 0,EP

[
y2

ξf(ξ)

]
≤ A2

}}
. (30)

The first two restrictions are the same as in the traditional good deal bounds and enforce,

respectively, that the candidate pricing kernel prices the basis assets and implies absence

of arbitrage opportunities. The third restriction is new and replaces the bound on the

10See Černý [2003] Theorems 2 and 3.
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volatility of the pricing kernel by the bound on EP [y2/ (ξf (ξ))]. Notice that the infimum

(respectively, supremum) over admissible distortions ξ in the expression for the lower bound

C (upper bound C̄) is equivalent to taking the worst-case distortion in maximizing the

expected future utility of wealth, as we show below. Notice also that, for (30) to have a

solution, the bound A2 has to be large enough to reprice the base assets. In particular, we

require that A2 ≥ A? 2, with

A? 2 = inf
ξ∈Ξ

{
inf
y

{
EP
[

y2

ξf(ξ)

]
such that EP[yx] = p and y ≥ 0

}}
. (31)

Equation (31) ensures that the set Ξ of admissible distortions in non-empty.

Similarly to Cochrane and Saá-Requejo [2000], we consider two different combinations of

slack and binding constraints. In

Case (1) The constraint EP
[

y2

ξf(ξ)

]
≤ A2 binds (the constraint y ≥ 0 may be binding or slack).

The solution is stated in Proposition 8.

Case (2) The constraint EP
[

y2

ξf(ξ)

]
≤ A2 is slack. The solution is stated in Proposition 9.

To simplifying the solution for the upper and lower bounds, we introduce a binary vari-

able 1L/U which takes the value 1 (respectively, −1) if we are computing the lower (up-

per) good deal bound C (respectively, C). Denoting by δ the Lagrange multiplier on the

bound EP
[

y2

ξf(ξ)

]
≤ A2 and by ϕ a normalization constant, we define the quadratic loss

Z(s,1L/U ,w, ϕ, δ) in state s as

Y (s,1L/U ,w, ϕ, δ) ≡ max

[
−1L/U

(ϕxc(s)−w
′
x(s))

δ
, 0

]
, (32)

Z(s,1L/U ,w, ϕ, δ) ≡ (Y (s,1L/U ,w, ϕ, δ))
2, (33)

where w is the Nb - dimensional vector of Lagrange multipliers on the constraint EP [yx] = p.

We denote the minimum (maximum) value of Z(s,1L/U ,w, ϕ, δ) across the S possible states

by mins
{
Z(s,1L/U ,w, ϕ, δ)

}
(maxs

{
Z(s,1L/U ,w, ϕ, δ)

}
) and UT (V ) ≡ −(max(−V, 0))2.
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4.1 Case (1): EP
[

y2

ξf(ξ)

]
≤ A2 binds

We solve for the good deal bounds C and C by forming the Lagrangian of the constrained

optimization problem.

Proposition 8 When the bound on the pricing kernel binds, the investor’s marginal utility

in state s is

y(s) = ξ(s)f(ξ(s))Y (s,1L/U ,w, 1, δ), (34)

where the worst-case distortion ξ and the Lagrange multiplier β on ξ log f (ξ) > 0 are given

in Proposition 4, with the utility of terminal wealth U (V ) replaced by −Z(s,1L/U ,w, 1, δ).

The corresponding lower C and upper C̄ good deal bounds solve

C = max
δ>0,w

{
w
′
p− 1

2
δA2+

max
η

{
S∑
s=1

P(s)

[
−1

2
δ
(

1 + Ωg(ξ(s))
)(
Z(s,1L/U ,w, 1, δ) + β(s)

)]}}
, (35)

C = min
δ>0,w

{
w
′
p +

1

2
δA2+

min
η

{
S∑
s=1

P(s)

[
1

2
δ
(

1 + Ωg(ξ(s))
)(
Z(s,1L/U ,w, 1, δ) + β(s)

)]}}
. (36)

Equivalently,

C solves : A2 = min
ξ∈Ξ

{
max
µ>0,v

{
2v
′
p− 2µC + EP

[
ξf(ξ)UT (µxc − v

′
x)
]}}

, (37)

C solves : A2 = min
ξ∈Ξ

{
max
µ<0,v

{
2v
′
p− 2µC + EP

[
ξf(ξ)UT (µxc − v

′
x)
]}}

. (38)

Equations (35) and (36) are solved numerically by choice of η and then by choice of δ > 0,

w.
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Consider first the pricing kernel, (34). The quantity Y (s,1L/U ,w, 1, δ) is the Cochrane

and Saá-Requejo [2000] pricing kernel (in the absence of model uncertainty). The uncertainty-

averse investor distorts that pricing kernel, assigning greater marginal utility to states with

worse outcomes. In the special case of Ω = 1 (which corresponds to no aversion to model

uncertainty), ξ (s) = 1 in each state, the pricing kernel (34) reduces to the pricing kernel of

Cochrane and Saá-Requejo [2000] and the lower and upper good deal bounds (35) and (36)

coincide with those of Cochrane and Saá-Requejo [2000]. Similarly, when the loss functional

Z(s,1L/U ,w, 1, δ) is independent of the state s, ξ (s) = 1 in each state and the solution

reduces once gain to the solution of Cochrane and Saá-Requejo [2000].

In the more general case of Ω strictly greater than one (so that the investor exhibits aver-

sion to model uncertainty) and mins
{
Z(s,1L/U ,w, 1, δ)

}
6= maxs

{
Z(s,1L/U ,w, 1, δ)

}
(so

that the investor is not indifferent amongst the different states of the world), ξ (s) decreases

when Z(s,1L/U ,w, 1, δ) increases. Since ξ (s) f (ξ (s)) is decreasing in ξ (s), the marginal

utility y (s) of the state s increases as Z(s,1L/U ,w, 1, δ) increases. Thus, the uncertainty-

averse agent assigns higher marginal utility to states with larger losses. The maximization

(respectively, minimization) over δ, w for the lower good deal bound C (respectively, the

upper good deal bound C) then has the effect of minimizing the average weighted losses.

Notice that the Lagrange multipliers w have the interpretation of optimal hedging posi-

tions for the focus asset in the basis assets. This property allows us to interpret Y (s,1L/U ,w, 1, δ)

as the loss in state s after (optimally) hedging the focus asset and Z(s,1L/U ,w, 1, δ) as a

(post-hedge) loss function.

4.2 Case (2): The constraint EP
[

y2

ξf(ξ)

]
≤ A2 is slack

When the constraint on EP
[

y2

ξf(ξ)

]
is slack, the good deal bounds reduce to the arbitrage

bounds (that is, those enforceable by sub- or super-replication). In particular, since the
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infimum (respectively, supremum) over ξ in the case of the lower (respectively, upper) good

deal bound becomes irrelevant, we solve

C = inf
y

{
EP[yxc] such that EP[yx] = p, y ≥ 0

}
, and

C = sup
y

{
EP[yxc] such that EP[yx] = p, y ≥ 0

}
, (39)

the solution of which can always be obtained numerically (see Cochrane and Saá-Requejo

[2000]) since it is a linear program. We denote by CArb(1L/U) the respective arbitrage bound.

The bound CArb(1L/U) is a solution if the implied pricing kernel satisfies the constraint

EP
[

y2

ξf(ξ)

]
. To check, we solve

min
ξ∈Ξ

{
min
y

{
EP
[

y2

ξf(ξ)

]
such that CArb(1L/U) = EP[yxc], EP[yx] = p and y ≥ 0

}}
. (40)

If the minimized objective in (40) is less than A2, then CArb(1L/U) is the good deal bound.

Otherwise, the constraint is binding and case (1) is the relevant one. The solution is sum-

marized below, with v the Lagrange multiplier on the constraint EP [yx] = p.

Proposition 9 When the bound on the pricing kernel is slack, the investor’s marginal utility

in state s is

y(s) = ξ(s)f(ξ(s))Y (s, 1, v, µ, 1), (41)

where the worst-case distortion ξ and the Lagrange multiplier β on ξ log f (ξ) > 0 are given

in Proposition 4, with the utility of terminal wealth U (V ) replaced by −Z(s, 1, v, µ, 1). The

implied bound on the pricing kernel satisfies

max
v,µ

{
2v
′
p− 2µCArb(1L/U) + max

η

{
S∑
s=1

P(s)
[
−
(

1 + Ωg(ξ(s))
)(
Z(s, 1, v, µ, 1) + β(s)

)]}}
. (42)
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Equivalently, if

A2 > min
ξ∈Ξ

{
max
v,µ

{
2v
′
p− 2µCArb(1L/U) + EP[ξf(ξ)UT (µxc − v

′
x)]
}}

, (43)

then C (or respectively, C) equals the lower (or upper) arbitrage bound CArb(1L/U).

Problem (42) is solved numerically by choice of η and then by choice of v, µ.

Similarly to case (1), the uncertainty-averse agent assigns higher marginal utility to states

with greater losses. Unlike case (1), however, the Lagrange multipliers v do not have the

interpretation of optimal hedges for the focus asset. Instead, the optimal hedges w enforce

the arbitrage bounds in (39) and can be computed explicitly by solving the dual to the linear

program. In particular, denoting by wi the ith element for i = 1, . . . , Nb, w satisfies

max
w

Nb∑
i=1

wipi such that

Nb∑
i=1

wixi(s) ≤ xc(s), for each state s, s = 1, . . . , S, (44)

for the lower bound (for the upper bound, replace max by min and ≤ by ≥).

Notice also that the impact of model uncertainty on the good deal bounds depends on

the dispersion in the loss function Z across the S possible states on the economy. To make

the argument more concrete, define

Zadj ≡ Z + β

F
(
Zadj

)
≡ (1 + Ωg (ξ))Zadj.

Notice that Z can refer to either Z(s,1L/U ,w, 1, δ) or Z(s, 1,v, µ, 1) and that g(ξ) depends on

Zadj through ξ. It is straightforward (the calculations are similar to the proof of Proposition
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5) to verify that F
′′
(Zadj) ≥ 0 and F

′′′
(Zadj) ≤ 0. By a Taylor expansion with exact

remainder:

EP[F (Zadj)] = EP[Z] +
1

2

S∑
s=1

P(s)[(Zadj − EP[Zadj])2F
′′
(Zadj ?), or

EP[F (Zadj)] = EP[Z] +
1

2
VarP[Zadj]F

′′
(EP[Zadj])

+
1

6

S∑
s=1

P(s)[(Zadj − EP[Zadj])3F
′′′

(Zadj ??), (45)

for some Zadj ? and Zadj ??. Now comparing with (35), (36) and (42), we see the sense in

which a wide dispersion in Z increases, in magnitude, the difference between good deal

bounds in the presence of model uncertainty and in its absence. In the latter case, good deal

bounds depend only upon EP[Z(s,1L/U ,w, 1, δ)] (or EP[Z(s, 1,v, µ, 1)] in determining if the

constraint EP
[

y2

ξf(ξ)

]
≤ A2 is slack), but in the presence of model uncertainty, they depend

upon higher moments. Ceteris paribus, the larger the variance of (and/or the more negatively

skewed) Z(s,1L/U ,w, 1, δ), the wider the good deal bounds become. Similar comments apply

in making lower, the solution to problem (42). When the constraint EP
[

y2

ξf(ξ)

]
≤ A2 is slack

(case (2)), the good deal bounds can widen out no more and are equal to the arbitrage

bounds CArb(1L/U).

To conclude this subsection, we reemphasize the intuition of the “No Good Deals”

methodology. Interpreting A2 as the target level of a reward-for-risk measure (a Sharpe

ratio or certainty equivalent), the “No Good Deals” methodology computes lower and upper

good deals bounds which either (1) achieve the target level of the reward-for-risk measure

under the worst-case likelihood, or (2) are the arbitrage bounds CArb(1L/U) when the target

level cannot be achieved. Furthermore, by analogy with (40) and (43), the minimum level

of the restriction on the pricing kernel A?2 (see equation 31) has the dual representation

A?2 = min
ξ∈Ξ

{
max

v

{
2v
′
p + EP

[
ξf (ξ)UT

(
−v

′
x
)]}}

.
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Thus, A?2 is the maximum reward-for-risk available under the worst-case measure from trad-

ing in the basis assets. The restriction A2 ≥ A?2 can then be interpreted as the requirement

that the reward-for-risk exceeds that available from trading in the basis assets.

4.3 Pricing kernel restrictions under exponential utility

Using the results of Proposition (6), we can also derive the restrictions on the pricing kernel

for exponential utility, as well as the associated good deal bounds. For the case of exponential

utility, we replace the constraint EP
[

y2

ξf(ξ)

]
≤ A2 by EP

[
y log

(
y

ξf(ξ)

)]
≤ A2. Similarly

to (32) and (33), define Y E(s,1L/U ,w, ϕ, δ) and ZE(s,1L/U ,w, ϕ, δ) (where “E” denotes

exponential) as

Y E(s,1L/U ,w, ϕ, δ) ≡ exp

((
−1L/U

(ϕxc(s)−w
′
x(s))

δ

)
− 1

)
,

ZE(s,1L/U ,w, ϕ, δ) ≡ Y E(s,1L/U ,w, ϕ, δ). (46)

The solution to the good deals problem is similar to that given in Propositions 8 and 9,

except that

(1) the truncated loss function Y and the quadratic loss function Z are replaced by Y E

and ZE, respectively;

(2) the factors 1/2 and 2 are replaced by 1;

(3) the dual utility function UT for truncated utility is replaced by the dual utility function

for exponential utility, UE(V ) ≡ − exp(−V − 1).

Notice that, the investor with exponential utility assigns greater weight to the tails of the loss

distribution. In particular, while for the truncated quadratic utility case the loss function Z

computes the squared deviations from zero profit, the loss function ZE for the case of ex-

ponential utility computes the exponential deviation from the profit obtainable by investing
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in the basis assets only. Thus, the loss functions inherit the structure of the utility function

used to derive the restriction of the pricing kernel. Finally, similar results can be derived for

the CRRA utility case, but we omit them here for brevity.

4.4 General properties of the good deal bounds

In Propositions 8 and 9, we noted that the gain functions −Z and −ZE take the role of the

utility of terminal wealth U (V ) in computing the good deal bounds. In this subsection, we

develop some general properties of the good deal bounds stemming from convexity of the

loss function. Since the loss functions Z and ZE are convex, the results of this subsection are

equally applicable to good deal bounds constructed from restrictions on the pricing kernel

in (25), (27) or (29).

Proposition 10 (a) Good deal bounds in the presence of model uncertainty are never

narrower than those in its absence.

(b) As either A2 increases or Ω increase, the lower good deal bound C is non-increasing

and the upper good deal bound C̄ is non-decreasing.

Property (a) is intuitive: Since the investor can always choose the reference model P as the

worst-case model, the no good deals -no bad models arbitrage bounds must be at least as

wide as the good deals bounds. Similarly, as the restriction on the pricing kernel is relaxed

(A2 increases) or the investor becomes more averse to model uncertainty (Ω increases), the

good deal bounds widen (until they reach the arbitrage bounds).

For the following, let u denote an arbitrary Nb - dimensional vector.

Proposition 11 Let λ be a strictly positive constant. If the lower and upper good deal

bounds for a focus payoff xc are C and C̄, respectively, with corresponding optimal hedges w

and w̄, then the lower and upper good deal bounds for a focus payoff λxc + u
′
x are λC + u

′
p

and λC̄ + u
′
p, respectively, with corresponding optimal hedges λw + u and λw̄ + u.
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Corollary 12 Consider a focus payoff of the form u
′
x. Then the lower and upper good deal

bounds coincide and are both equal to u
′
p, and the optimal hedges are u.

Thus, the good deal bounds satisfy linearity with respect to adding portfolios of basis assets

and homogeneity with respect to positive multiples of the focus asset payoff. Furthermore,

as show in Corollary 12, redundant assets are priced exactly. Proposition 13 shows that the

good deal bounds satisfy also a dominance property.

Proposition 13 Consider two focus assets, A and B, with payoffs xAc and xBc , respectively,

with corresponding lower and upper good deal bounds CA, C̄A, CB and C̄B. If xAc (s) ≤ xBc (s)

for each state s, and the good deal bounds are computed using the same basis assets, then

CA ≤ CB and C
A ≤ C

B
. (47)

The last three results are direct counterparts of the properties (see Hodges [1998]) of good

deal bounds in the absence of model uncertainty.

5 Estimating the Ω parameter and the choice of A2

In this section, we describe a procedure for estimating the degree of uncertainty aversion,

Ω, and the bound on the pricing kernel A2. The methodology for estimating Ω is based on

the detection error probabilities methodology of Hansen and Sargent [2008], Anderson et al.

[2003] and Maenhout [2004]. In particular, we choose Ω so that the maximum reward-for-risk

achievable under the worst-case likelihood is statistically indistinguishable from the maxi-

mum reward-for-risk under the reference model. While some institutions may exhibit more

uncertainty-aversion than others, in this paper we follow the (conservative) recommendations

of Hansen and Sargent [2008], Anderson et al. [2003] and Maenhout [2004] and choose Ω such

that the detection error probability is between 20% and 10%. Given a confidence level, Ω is
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computed from a historical data-set of asset prices, making the parameter Ω context-specific,

with different data sets or different assets leading to different estimates of Ω.

Consider A? 2 in equation (31). A? 2 is the maximum reward-for-risk available from trading

in the basis assets under the worst-case model and solves (for the case of truncated quadratic

utility; for exponential utility, replace Z by ZE)

A? 2(Ω) ≡ A? 2 = max
v

{
2v
′
p + max

α

{
S∑
s=1

P(s)
[
−
(

1 + Ωg(ξ(s))
)(
Z(s, 1,v, 0, 1) + β(s)

)]}}
,

(48)

where β(s) and ξ(s) are defined as in problem (40) but replacing Z(s, 1,v, µ, 1) by Z(s, 1,v, 0, 1).

Given an estimate Ω, we can solve (48) numerically for A? 2. To estimate Ω, we search nu-

merically for the value of Ω which makes the solution to problem (48) statistically difficult

to distinguish (at the chosen error detection probability) from the solution to the problem

setting ξ (s) ≡ 1

A?NoMU 2 ≡ max
v

{
2v
′
p +

S∑
s=1

P(s)
[
−
(
Z(s, 1,v, 0, 1)

)]}
. (49)

We solve problems (48) and (49) using historical data, setting the number of states S equal

to the number of available observations J and assigning equal probabilities to each state

P(s) = 1/J . We bootstrap the historical data by repeatedly sampling from the data with

replacement. Sampling with replacement means that sometimes we sample a given historical

data point more than once and sometimes not at all. For each bootstraped sample, we solve

problem (49). Using the bootstrapped values from K samples, we compute the required error

detection probability on the solution to the problem (49). We then set Ω to be that value

which gives us the same answer to problem (48) for the full (non-bootstrapped) historical

sample. Note that when solving problems (48) and (49), we work with returns R (i.e.
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we divide each historical observed price by its price at the preceding time point). Hence,

Z(s, 1,v, 0, 1) now reflects “payoffs in return form”. 11

Notice that we now have different alternatives in choosing the level of A2 in the constraint

EP
[

y2

ξf(ξ)

]
≤ A2:

(1) Choose A2 to be some margin over (or some multiple > 1 of) either (a) A?NoMU 2 or

(b) A? 2 (with the former being more conservative).

(2) An annualized Sharpe ratio hAnn.

Expanding upon the latter, Černý [2003] shows that the certainty equivalent CE of any

utility function UG(V ) and its coefficient of absolute risk aversion CARA(UG(V0)) are linked

to investment opportunities, over a time period ∆t, with a small per period Sharpe ratio

hPerP by:

CARA(UG(V0)) CE ≈ 1

2
h 2

PerP =
1

2
h 2

Ann∆t. (51)

Hence, a bound on CE ≤ C in equation (25) is approximately the same as a bound on

EP[ y2

ξf(ξ)
] ≤

(
1

1−(CARA(U(V0))C)

)2

=
(

1
1− 1

2
h 2
PerP

)2

≈ 1 + h 2
PerP = 1 + h 2

Ann∆t, by a Taylor

expansion. This relates the bound on EP[ y2

ξf(ξ)
] to a bound on the annualised Sharpe ratio.

In our numerical results in Section 7, we (following Cochrane and Saá-Requejo [2000]) set

A2 = (1 + hAnn 2∆t)/(1 + r)2, for a time period ∆t years, where r is the per period risk-free

interest-rate.

11As an alternative, we could work with excess (i.e. over and above the risk-free rate) returns which may
be better conditioned. If we denote the excess returns by R, where R is a Nb - dimensional vector whose ith

element is Ri, for each i = 1, . . . , Nb, then problem (48) can be rewritten:

min
ξ∈Ξ

{
min
y

{
EP
[

y2

ξf(ξ)

]
such that EP[yR] = 0, y ≥ 0 and EP[y] = 1/(1 +Rf )

}}
, (50)

where Rf is the average one period risk-free rate. We need the extra condition EP[y] = 1/(1 + Rf ) to
normalise y - without it, the minimizing value of y is zero. The problem is easily solved by analogy to
problems (48) and (49).
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In choosing hAnn, we note that Hansen and Sargent [2008], Anderson et al. [2003] and

Maenhout [2004] find that, for very plausible detection error probabilities, model uncertainty

can account for half or more of the excess return on equity markets.12 The presence of model

uncertainty can thus reduce the maximal admissible Sharpe ratio hAnn of Cochrane and Saá-

Requejo [2000]. Instead, we interpret hAnn as the maximal Sharpe ratio achievable under the

worst-case measure. In our numerical results, we will choose13 the latter with various values

of hAnn between 1/3 and 0.5.

6 Multiple time periods

The previous analysis considered a one period problem. In this section, we extend the results

to a multi-period setting, focusing on the two period case. There are three dates, indexed

by t = 0, 1, 2. At time t = 0, the investor takes a position in the focus asset, which pays xc

dollars at time t = 2. Time t = 1 is an intermediate rebalancing date, when the investors can

adjust their hedging portfolio in the basis assets and update their valuation of the focus asset.

Denote the time t = 0, 1 conditional expectation under the reference measure P by EP
t , and

the time t = 1, 2 pricing kernel and worst-case distortion by yt and ξt, respectively. Finally,

12The impact of model uncertainty on asset returns has also been studied by Epstein and Wang [1994],
Chen and Epstein [2002], Uppal and Wang [2003], Cao et al. [2005], Barillas et al. [2009] and Anderson et al.
[2009].

13In 2000, the then chairman of Barclays bank said he wanted its investment banking arm to achieve a
20% target return on equity (when risk-free interest-rates were around 5% and the volatility of Barclays
shares was around 25%) - which could be interpreted as implying he wanted it to achieve an ex-post Sharpe
ratio of (20 − 5)/25 = 0.6. Choosing hAnn = 0.6 is then equivalent to seeking to achieve his target, even
under the worst-case likelihood.
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denote the time t = 0, 1 lower and upper good deal bounds by Ct and C̄t, respectively. With

this notation, the two period problem (for the lower bound) is

C0 = inf
ξ1,ξ2

{
inf
y1,y2

{
EP

0 [y1y2xc] such that EP
0 [y1p1] = p0, y1 ≥ 0,EP

0

[
y2

1

ξ1f(ξ1)

]
≤ A2

0,

EP
1 [y2x] = p1 ∀=1, y2 ≥ 0,EP

1

[
y2

2

ξ2f(ξ2)

]
≤ A2

1 ∀=1

}
such that EP

0 [ξ1] = 1, ξ1 > 0, ξ1f(ξ1) ≥ 0,EP
1 [ξ2] = 1, ξ2 > 0, ξ2f(ξ2) ≥ 0

}
, (52)

where =1 is the information set at time t = 1. Thus, in a two period setting, the initial

lower good deal bound imposes sequential constraints on the pricing kernels at each date.

Applying the Law of Iterated Expectations (see the detailed proof in Cochrane and Saá-

Requejo [2000]), we can rewrite equation (52) as two (sequential) one period problems

C1 (s1) = inf
ξ2

{
inf
y2

{
EP

1 [y2xc] such that EP
1 [y2x2] = p1, y2 ≥ 0,EP

1

[
y2

2

ξ2f(ξ2)

]
≤ A2

1

}
,

such that EP
1 [ξ2] = 1, ξ2 > 0, ξ2f(ξ2) ≥ 0

}
C0 = inf

ξ1

{
inf
y1

{
EP

0 [y1C1] such that EP
0 [y1x1] = p0, y1 ≥ 0,EP

0

[
y2

1

ξ1f(ξ1)

]
≤ A2

0

}
,

such that EP
0 [ξ1] = 1, ξ1 > 0, ξ1f(ξ1) ≥ 0

}
, (53)

where equation (53) takes the solution to the time 1 problem as given. For the upper bound

C̄0, we solve equation (52) or (53) with the infimum operator replaced by supremum operator.

Notice that this separation of the non-sequential problem (52) into two sequential problems is

possible because the constraints on the pricing kernels and worst-case distortions are applied

sequentially and the pricing kernels preclude arbitrage opportunities. As pointed out in

Hansen and Sargent [2008] and Maccheroni, Marinacci, and Rustichini [2006], the multiplier

problem (11) enforces commitment on the part of the uncertainty-averse agent, making it

possible to express the restrictions on the pricing kernel recursively. Finally, notice that,
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with this formulation, we can easily extend the no good deals methodology to accommodate

more than two periods.

Consider now solving for the optimal hedging portfolios that achieve the lower (and

upper) good deal bounds at each date. Denote by wt the optimal hedging portfolio at date

t = 0, 1. Then, similarly to the good deal bounds, the hedging strategy solves the sequential

problems

C1 (s1) = max
δ1(s1)>0,w1(s1)

{
w
′

1(s1)p1(s1)− 1

2
δ1(s1)A2

1 (54)

+ max
η1

{
S∑

s2=1

P(s2)

[
−1

2
δ1(s1)

(
1 + Ωg(ξ2(s2))

)(
Z(s2,1L/U ,w1, 1, δ1(s1)) + β1(s2)

)]}}

C0 = max
δ0>0,w0

{
w
′

0p0 −
1

2
δ0A

2
0

+ max
η0

{
S∑

s1=1

P(s1)

[
−1

2
δ0

(
1 + Ωg(ξ1(s1))

)(
Z(s1,1L/U ,w0, 1, δ0) + β0(s1)

)]}}
,

where

Z(s1,1L/U ,w0, 1, δ0) =

(
max

[
−1L/U

(C1(s1)−w
′
0p1(s1))

δ0

, 0

])2

.

Let η̂1 be the optimal value of η1 and δ̂1 (s1) the optimal value of δ1 (s1) in (54). Thus,

problem (54) reduces to

C1 (s1) = max
w1(s1)

{
w
′

1(s1)p1(s1)− δ̂1(s1)A2
1

}
,

where

A2
1 = A2

1 +
S∑

s2=1,ξ2=ξcrit

[
1

2
(1− ξcrit)Ωη̂1Ψ

]
.
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Define

R̂1(s1) ≡ w
′

0p1(s1)− C1(s1) = − min
w1(s1)

{(
w
′

1(s1)−w
′

0

)
p1(s1)− δ̂1(s1)A2

1

}
,

so that

C0 = max
δ0>0,w0

{
w
′

0p0 −
1

2
δA2

0

+ max
η0


S∑

s1=1

P(s1)

−1

2
δ0 (1 + Ωg(ξ1(s1)))


max

[
R̂1(s1), 0

]
δ0

2

+ β0(s1)




 .

Using the intuition of Section 4.4, model uncertainty has a larger impact on the time 0

good deal bounds if there is more dispersion in the values of max
[
R̂1 (s1) , 0

]
. Assume

(for intuition purposes) that δ̂1 (s1)A2
1 is relatively insensitive to the realization of the

state s1. Then greater dispersion in max
[
R̂1 (s1) , 0

]
corresponds to greater dispersion

in
(
w
′
1(s1)−w

′
0

)
p1(s1). Conversely, the impact of model uncertainty is reduced when(

w
′
1(s1)−w

′
0

)
p1(s1) becomes less sensitive to the realization of the state s1 and, in par-

ticular, the impact of model uncertainty on the time 0 good deal bounds is smallest when

w0 = w1 (s1) for all states s1 ∈ S. The latter corresponds to a static hedging strategy,14

which keeps the hedging portfolio constant across time and shock realizations.

More generally, compare two strategies for hedging the position in a focus asset:

(1) a dynamic hedging strategy in the basis assets, with rebalancing allowed at the inter-

mediate date t = 1

(2) a static hedging strategy in the basis assets, with the positions chosen at date t = 0

maintained at date t = 1.

Clearly, an investor following the first strategy can always choose to maintain the position

in the hedging portfolio at date t = 1, so dynamic hedging is always weakly better than the

14Carr et al. [1998] is a comprehensive reference on static hedging strategies with a number of examples.
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static hedging strategy. Thus, the good deal bounds under the dynamic hedging strategy

are never wider (even in the absence of model uncertainty) than the bounds under the static

hedging strategy. As the investor becomes more uncertainty averse, however, the good deal

bounds widen under both approaches and approach the no arbitrage bounds. Thus, the

distance (and, hence, the benefit to dynamic hedging) between the good deal bounds under

dynamic and static hedging decreases as the investor becomes more uncertainty averse.

7 Numerical examples

In this section, we consider two numerical examples of computing the good deal bounds

and the associated hedging portfolios. The first example prices Arrow-Debreu securities in

a three state, one period model with a risk-free and defaultable bonds as the basis assets.

The second considers the price of a non-traded 2 year call option.

7.1 Defaultable bond

Consider an economy with two basis assets, a defaultable bond and a risk-free bond. At time

1, there are three possible states of the world, labelled “good”, “poor” and “armageddon”.

The defaultable bond has a time 0 price of 1 and a payoff at time 1 equal to 1.2, 0.6 and

0 in states “good”, “poor” and “armageddon” respectively. The “poor” and “armageddon”

states are states in which the issuer of the defaultable bond defaults and the holder of the

bond receives either 60% (partial recovery) or 0% (zero recovery) of the time 0 price. The

risk-free bond has a time 0 price of 1 and a payoff at time 1 equal to 1 in all three states.

To illustrate our theoretical analysis, we simulate a dataset with 2000 data points. The

defaultable bond pays 1.2, 0.6 and 0 on 1700, 200 and 100 dates in the sample, respectively.

Hence, the probability, under P, of states “good”, “poor” and “armageddon” occurring are

set at 0.85, 0.1 and 0.05 respectively. Given the simulated historical dataset, we use the

bootstrap procedure of Section 5 to estimate Ω. We bootstrap the dataset 65000 times, and,
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for the 80% confidence level, we find Ω = 1.51. In Table 1, we report also the estimate of Ω

for simulated datasets with 500, 1000, 4000 and 8000, keeping the same probabilities of the

three states. We see that as the length of the simulated dataset increases, the estimate of Ω

increases, implying greater model uncertainty.

We consider three Arrow-Debreu securities as the focus assets. In particular, Arrow-

Debreu security Fj, for j ∈ {good, poor, armageddon} pays one dollar if state j is realized.

Notice that Farmageddon is a catastrophe insurance contract. It is straightforward to verify

(or by solving (39)) that the lower and upper arbitrage bounds for the three focus assets are

2/3, 5/6 (Fgood), 0, 1/3 (Fpoor) and 0, 1/6 (Farmageddon) respectively. We set the maximum

Sharpe ratio bound hAnn equal to 1/3. In Table 2, we report the lower and upper good deal

bounds, C and C, for different values of Ω. Note that Ω = 1 is the no model uncertainty

case. As Ω increases, the good deal bounds widen and the values of C and C get closer

to the respective lower and upper arbitrage bounds and, for Ω = 8, the good deal bounds

correspond to the arbitrage bounds.

Consider now the catastrophe insurance contract, Farmageddon in detail. In Table 3, we

report the lower C and upper C̄ good deal bounds for different levels of uncertainty aversion,

as well as the hedging positions in the two basis assets that achieve the bounds. The pricing

kernel constraint is slack when Ω = 8 for the lower bound and when Ω ∈ {4, 8} for the upper

bound. For these values of Ω, the good deal bounds correspond to the arbitrage bounds. The

positions in the defaultable bond and risk-free bond respectively (computed from equation

(44)) which enforce the lower and upper arbitrage bounds are 0, 0 and −5/6, 1.15 In Table 3,

w1 and w2 are the optimal hedges for the defaultable bond and risk-free bond respectively.

We see that, as the value of Ω changes, the optimal hedges w1 and w2 change significantly.

In Table 4, we focus just on the lower good deal bound and we consider a wider range of

values of Ω in order to see where the boundary lies between when the constraint EP
[

y2

ξf(ξ)

]
≤

15That is, the upper arbitrage bound 1/6 can be enforced by sellng 5/6 units of the defaultable bond and
buying one unit of the risk-free bond which costs, at time 0, a price of 1− 5/6 = 1/6 dollar while the lower
arbitrage bound is enforced by zero position in each basis asset.
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A2 binds and when it is slack. We see that the boundary lies at a value of Ω of approximately

5.463. Values of Ω less than or equal to 5.4625 give a lower good deal bound where the

constraint binds and values of Ω greater than or equal to 5.46375 give a lower good deal

bound where the constraint is slack and hence the good deal bound is the arbitrage bound.

Notice that, since the nature of the good deal bounds is discontinuous, the optimal hedges

are discontinuous across the critical value of Ω = 5.46375.

7.2 Option on non-traded asset

We now consider an option written on a non-traded asset. This example is similar to one in

Cochrane and Saá-Requejo [2000] (p111-113) except, of course, we also consider the impact

of model uncertainty. There is a traded asset, labelled 1, and a non-traded asset, labelled

2. The price of the traded asset 1 is denoted by S. It is correlated (but not perfectly) with

the non-traded asset. The option (focus asset) payoff is max(V −K, 0), where K is a fixed

strike (we set K = 65) and V is the value of the non-traded asset 2 and the option maturity

is 2 years. We can use the traded asset 1 to partially hedge the option.

We model the underlying dynamics as double trinomial (a pyramid rather than a triangle)

with steps one month apart (24 steps over 2 years). At each time-step i (i = 0, 1, . . . , 23) of

the trinomial tree, when the price of the traded asset 1 is Si, the price can stay the same,

go up to Si exp(λ1σ1

√
dt) or down to Si exp(−λ1σ1

√
dt) where λ1 =

√
(3/2), σ1 = 0.25 (the

volatility). and dt = 2/24 (one month) is the time period corresponding to each step. The

correlation between log-changes in S and V is ρ (we set ρ = 0.8). When the price of the

non-traded asset 2 is Vi, the value can change to: Vi exp(λ2σ2

√
dt(
√

1− ρ2Z2 + ρZ1)) for

Z1 = −1, 0, 1 and Z2 = −1, 0, 1 and where λ2 =
√

(3/2), σ2 = 0.28 (the volatility). This

is a standard double trinomial tree construction. In the limit of small time-steps, this tree

construction will approximate S and V being jointly log-normal (but we will not be interested

in this small time-step limit - we regard the discrete-time dynamics above as specifying the

actual dynamics, rather than of being an approximation to some continuous-time dynamics).
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The risk-free rate is 0.03 (expressed as an annualised continuously-compounded rate).

Traded asset 1 has an initial price of asset 20 and pays a dividend yield of 2% (expressed as

a continuous yield proportional to its price) or 0.02. We include a non-zero dividend yield

to illustrate that it is straightforward to do so - if asset 1 were a commodity, we could treat

this as its convenience yield. In the latter case, the non-traded asset 2 could be the value of

something which gets embedded in a “real option” (new mine, new oil field or oil refinery

project) which we cannot trade but where we can (partially) hedge with an imperfectly

correlated financial asset. The initial value of non-traded asset 2 is 60.

We can trade in the basis assets (asset 1 and a one period risk-free bond) and rebalance

our hedges at the start of steps 0, 3, 6, 9, 12, 15, 18, 21 (not every step) i.e. we rebalance

every three months. There are two sources of incompleteness: The discrete-time hedging and

the fact that we can only hedge with a partially correlated traded asset. For illustration, we

suppose the excess return on asset 1 is 0.03 and that on the non-traded asset is 0.04. We

then compute the probabilities in the double trinomial tree by requiring that they sum to

one and by matching each of the first two moments of S and V .

We use a maximum Sharpe ratio bound hAnn equal to 0.5. We consider different values of

the Ω parameter (16, 8, 4, 2, 1.75, 1.5, 1.25 and 1). The results are in Table 5, where we also

report the risk-neutral price (meaning with the excess returns set to zero but computed with

the same placements of tree nodes) and the Black and Scholes [1973] price (labelled BS) just

for illustration - the latter price has no real financial meaning here since one cannot even

trade the non-traded asset 2 (but the difference between the former and the latter would

give an idea of the discretization error if there were to be an interest in approximating joint

geometric Brownian motion by the double trinomial tree).

The lower and upper good deal bounds when there is no model uncertainty (labelled No

MU and computed by setting ξ ≡ 1) are, of course, the same as when Ω = 1 - in line with

our theoretical analysis. We observe that as Ω is increased, the good deal bounds widen -

in fact, in this example, changing Ω has a huge impact. This may be partly due to the fact
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that the lower and upper arbitrage bounds are very wide in this example - namely, zero and

infinity.

8 Summary and conclusions

In this paper, we have described a new and practical approach to dealing with model un-

certainty in pricing securities or contingent claims. It is based on combining the “No Good

Deals” methodology of Cochrane and Saá-Requejo [2000] with elements of the robustness

framework of Hansen and Sargent [2008] and of Maenhout [2004]. In an important stepping-

stone, we have introduced the notion of a model uncertainty induced utility function and

shown how model uncertainty increases an investor’s effective risk aversion. We have shown

how the impact of model uncertainty is to give greater weight (i.e. greater than the investor’s

marginal utility) to states in which losses are relatively large. We have shown how static

hedging i.e. hedging an option by taking a static (“buy-and-hold”) position in other options

(as opposed to dynamic hedging with the underlying asset) may become a relatively attrac-

tive hedging strategy in the presence of model uncertainty. Uppal and Wang [2003] consider

the impact of multiple sources of model uncertainty on portfolio selection. As a possible fu-

ture extension of our work, it would be interesting to consider the impact of multiple sources

of model uncertainty (for example, different degrees of uncertainty in the estimates of the

drifts or volatilities of two different assets).
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Appendix A: Proofs of propositions:

Proof of Proposition 3. (1) follows from Jensen’s inequality applied to g(ξ), (2) follows
since ξ(s) ≡ 1 in all states s if Ω = 1. For (3), note that, for any b2 ≥ b1 and any a,
exp(ab2)− (ab2)− 1 ≥ exp(ab1)− (ab1)− 1, with equality only if a = 0 or b2 = b1. Applying
this result with b = Ψ and a = 1 + η/(U(V )− β(s)) gives part (3).

Proof of Proposition 4.

Introducing Lagrangian multipliers α, β(s) ≥ 0 and $(s) ≥ 0, for each s, on the set of
constraints Ξ, the inner minimization in problem (13) becomes:

inf
ξ∈Ξ
{EP[ξf(ξ)U(V )]} = max

$(s)≥0,β(s)≥0,α
{min
ξ(s)
{

S∑
s=1

P(s)[ξ(s)f(ξ(s))U(V ) + α(ξ(s)− 1)

− β(s)ξ(s)f(ξ(s))−$(s)ξ(s)]}}. (A.1)

The first-order condition from taking partial derivatives with respect to ξ(s) in each state s
implies:

α−$(s) =
(
β(s)− U(V )

)
Ω(Ψ− log ξ(s)). (A.2)

Equation (A.2) enables us to solve for ξ(s). If U(V ) is the same in every state s and/or
Ψ = 0, then the only solution is α = 0, $(s) = β(s) = 0, ξ(s) = 1. So now let’s consider
opposing cases. We conjecture that the constraint ξ(s) > 0 is not binding which means we
could set $(s) = 0 for all s (we will check this later). We need β(s) ≥ 0 and ξ(s)f(ξ(s)) ≥ 0
for all s. If f(ξ(s)) > 0, then β(s) = 0 and we can solve for ξ(s) from (A.2), whereas if
f(ξ(s)) = 0 (which means ξ(s) = ξcrit), then β(s) > 0 but this implies that β(s) must be
such that (A.2) holds. This enables us to solve for ξ(s) and β(s) as in the statement of the
proposition, in terms of which

η ≡ α

ΩΨ
=

α

(1− Ω)
for Ψ < 0 . (A.3)

(If Ψ = 0, the maximization over η is irrelevant). With these values of ξ(s), the condition
ξ(s) > 0 is automatically satisfied and hence $(s) ≡ 0 as conjectured.

Substituting from (A.2) implies that (A.1) can be re-written in the form of (14). Equation
(14), with ξ(s) and β(s) substituted, can be solved numerically by choice of η. To see what
values of η are possible, note that since Ψ ≤ 0, for ξ(s) ≥ 1, (Ψ− log ξ(s)) cannot be strictly
positive (and must be strictly negative if Ψ < 0). Since EP[ξ] =

∑S
s=1 P(s)ξ(s) = 1, ξ(s)

must be greater than or equal to 1 in at least one of the S possible states. Hence, α must be
less than or equal to zero (this is implied by the expression for ξ(s) if 1 ≤ ξ(s) < ξcrit and
by the expression for β(s) if ξ(s) = ξcrit). Hence, η ≥ 0. Actually, we can strengthen this
result. Since ξ(s) must be less than or equal to one in at least one state,

(
1 + η

U(V )

)
Ψ must

be less than or equal to zero in at least one state. Hence, η must be less than or equal to
−U(V ) for at least one state s - giving an upper bound. A similar argument gives a lower
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bound and hence (18). The requirement that α ≤ 0, η ≥ 0 implies (from (A.2)) that ξ(s) is
bounded below by exp(Ψ).

Proof of Proposition 5.

Let η̂ denote the maximizing value of η in (14). We differentiate UMU(V ) w.r.t. to V :

UMU ′(V ) =
(

Ω(1− ξ) η̂Ψ

(U(V )− β)
+
(
1 + Ωg(ξ)

))
U
′
(V ) = ξf(ξ)U

′
(V ), (A.4)

after simplification (using (A.2)). Hence UMU ′(V ) ≥ 0 since U
′
(V ) ≥ 0. Differentiating

again:

UMU ′′(V ) = ξf(ξ)U
′′
(V ) + (U

′
(V ))2ΩΨ2 η̂2

(U(V )− β)3
ξ. (A.5)

Since β ≥ 0 and (by Assumption 2), U(V ) ≤ 0, the effective coefficient of absolute risk
aversion −UMU ′′(V )/UMU ′(V ) ≥ −U ′′(V )/U

′
(V ).

Proof of Proposition 6.

For simplicity, within this proof, we interpret V0 as forward initial wealth and normalise
EP[y] = 1 - but nothing depends on this normalization.

By the definition of UMU(V ) in (19), (23) is equivalent to:

sup
V
{EP[UMU(V )] such that EP[yV ] = V0}, (A.6)

where ξ is the minimizing ξ i.e. as in Proposition 4 evaluated at η̂, the maximizing value of
η.

Case (i). We introduce a Lagrangian multipler λ ≡ λ(s) in state s, for each s =
1, . . . , S and re-express (A.6) in the form: supV {EP[UMU(V ) − λ(yV − V0)]}. Differen-
tiating with respect to V and using the first part of Proposition 5 gives the first order
condition: 2β(V − V )ξf(ξ) = λy and the constraint EP[yV ] = V0 then implies: V0 =

EP[y]V − λ
β
EP[ y2

2ξf(ξ)
]. Hence, solving for λ: λ = (2β(V − V0))/EP[ y2

ξf(ξ)
]. Subsituting for V ,

supV {infξ∈Ξ{EP[ξf(ξ)U(V )]}}, subject to the constraint EP[yV ] = V0, is:

sup
V
{inf
ξ∈Ξ
{EP[ξf(ξ)U(V )]}} = EP[−ξf(ξ)β

1

4

λ2

β
2

y2

(ξf(ξ))2
] = −β (V − V0)2

EP[ y2

ξf(ξ)
]
. (A.7)

Now we solve for the certainty equivalent CE. From (23),

− β(V − (V0 + CE))2 = −β (V − V0)2

EP[ y2

ξf(ξ)
]
. (A.8)

Taking the square root (we need the positive root) gives (24). Cases (ii) and (iii) are similar.

Proof of Proposition 8.
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We focus on the lower good deal bound C (C is similar and omitted). Introducing
Lagrangian multipliers δ > 0, w, α, β(s) ≥ 0 and $(s) ≥ 0, for each s, we can re-express
(30) as:

C = max
$(s)≥0,β(s)≥0,α

{min
ξ(s)
{max
δ>0,w

{ min
y(s)≥0

{
S∑
s=1

P(s)[y(s)xc(s)−w
′
(y(s)x(s)− p)

+
1

2
δ(

y(s)2

ξ(s)f(ξ(s))
− A2)]}}

+
S∑
s=1

P(s)[
1

2
α(ξ(s)− 1)− 1

2
δβ(s)ξ(s)f(ξ(s))− 1

2
$(s)ξ(s)]}}. (A.9)

The first-order condition obtained by taking partial derivatives with respect to y(s) in each
state s and, if necessary, enforcing the condition y(s) ≥ 0 (we say if necessary because this
constraint may or may not bind) implies (34) (we have anticipated the corresponding form
for the case of the upper good deal bound and introduced 1L/U accordingly). Substituting
for y(s) and interchanging the orders of max and min which is justified since the minimand
over ξ(s) is convex and the maximands are concave, we get:

C = max
δ>0,w

{ max
$(s)≥0,β(s)≥0,α

{min
ξ(s)
{w′p− 1

2
δA2

+
S∑
s=1

P(s)[−1

2
δξ(s)f(ξ(s))Z(s,1L/U ,w, 1, δ) +

1

2
α(ξ(s)− 1)

− 1

2
δβ(s)ξ(s)f(ξ(s))− 1

2
$(s)ξ(s)]}}}. (A.10)

The first-order condition from taking partial derivatives with respect to ξ(s) in each state s
implies:

α−$(s) = δ
(
Z(s,1L/U ,w, 1, δ) + β(s)

)
Ω(Ψ− log ξ(s)). (A.11)

The rest of the proof is similar to that of Proposition 4 - in fact, the solution can almost
be read off (identifying Z(s,1L/U ,w, 1, δ) here with −U(V ) there). As in Proposition 4,
$(s) = 0 and we identify η ≡ α/(δΩΨ).

Equation (37) (similarly, (38)) is derived by taking a step back to the first part of (A.10),
removing the Lagrangian multipliers α, β(s) and $(s) and then rearranging (cf (3)).

Proof of Proposition 9.
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Introducing Lagrangian multipliers v, µ, α, β(s) ≥ 0 and $(s) ≥ 0, for each s, problem
(40) is equivalent to:

max
$(s)≥0,β(s)≥0,α

{min
ξ(s)
{max

v,µ
{ min
y(s)≥0

{
S∑
s=1

P(s)[
y(s)2

ξ(s)f(ξ(s))
+ 2µ(y(s)xc(s)− CArb(1L/U))

− 2v
′
(yx(s)− p)]}}+

S∑
s=1

P(s)[α(ξ(s)− 1)− β(s)ξ(s)f(ξ(s))−$(s)ξ(s)]}}. (A.12)

The rest of the proof is similar to that of Proposition 4 (identifying Z(s, 1,v, µ, 1) here with
−U(V ) there) and Proposition 8. Again, $(s) = 0 and we identify η ≡ α/(ΩΨ).

Proof of Proposition 10.

Part (a) follows because (by Jensen’s inequality) 1+Ωg(ξ(s)) = 1+Ω(ξ(s)−log ξ(s)−1) ≥
1 for all ξ(s). Part (b): Part (i) is obvious from (30). Part (ii) is proven in the same way as
part (3) of Proposition 3.

Proofs of Propositions 11, 13 and 12.

These are easily proven by substituting into (35), (36) and (42).
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Table 1: Aversion to model uncertainty

Length of historical data-set 500 1000 2000 4000 8000
Value of Ω 1.83 1.64 1.51 1.41 1.33

Notes: Degree of aversion to model uncertainty as a function of the number of historical observations.
Ω is estimated using the procedure in Section 5, with 65000 bootstrapped samples, setting the confidence
level to 80%. The basis assets are taken to be a risk-free and a defaultable bond.

Table 2: Good deal bounds on Arrow-Debreu securities

Fgood

Ω 1 1.33 1.41 1.51 1.64 1.83 4 8
C 0.7364 0.7334 0.7321 0.7305 0.7282 0.7248 0.6882 0.6667?

C 0.7893 0.7918 0.7929 0.7944 0.7964 0.7997 0.8333? 0.8333?

Fpoor

Ω 1 1.33 1.41 1.51 1.64 1.83 4 8
C 0.0882 0.0831 0.0809 0.0780 0.0738 0.0672 0.0000? 0.0000?

C 0.1939 0.1999 0.2024 0.2057 0.2103 0.2171 0.2903 0.3333?

Farmageddon

Ω 1 1.33 1.41 1.51 1.64 1.83 4 8
C 0.0697 0.0667 0.0655 0.0638 0.0615 0.0581 0.0215 0.0000?

C 0.1226 0.1251 0.1262 0.1277 0.1298 0.1331 0.1667? 0.1667?

Notes: The lower C and upper C̄ good deal bounds as a function of the degree of uncertainty aversion
Ω for the three Arrow-Debreu assets, Fgood, Fpoor and Farmageddon. ? means the good deal bound equals
the relevant arbitrage bound. The basis assets are taken to be a risk-free and a defaultable bond.

Table 3: Optimal hedging portfolios

Ω 1 1.25 1.5 1.75 2 4 8

C 0.0697 0.0678 0.0640 0.0596 0.0551 0.0215 0.0000?

w1 -1.1055 -1.0646 -0.9958 -0.9371 -0.8949 -0.8010 0
w2 1.8624 1.7992 1.6972 1.6168 1.5668 1.6011 0

C 0.1226 0.1242 0.1275 0.1316 0.1361 0.1667? 0.1667?

w1 -0.0483 -0.0730 -0.1070 -0.1302 -0.1454 -0.8333 -0.8333
w2 -0.5163 -0.4804 -0.4377 -0.4191 -0.4175 1 1

Notes: The optimal hedging position in the risk-free (w1) and the defaultable (w2) bond for the lower
C and upper C̄ good deal bounds as a function of the degree of uncertainty aversion Ω. The focus asset
is the Arrow-Debreu security that pays in the “armageddon” state, Farmageddon. ? means the good deal
bound equals the relevant arbitrage bound. The basis assets are taken to be a risk-free and a defaultable
bond.

48



Table 4: Optimal hedging portfolios (detailed)

Ω 5 5.4 5.45 5.46 5.46125 5.4625 5.46375 5.465
C 0.00655 0.00088 0.00019 0.00005 0.00003 0.00001 0.00000? 0.00000?

w1 -0.7875 -0.7832 -0.7827 -0.7826 -0.7826 -0.7826 0.0000 0.0000
w2 1.6799 1.7133 1.7175 1.7184 1.7185 1.7186 0.0000 0.0000

Notes: The optimal hedging position in the risk-free (w1) and the defaultable (w2) bond for the lower
C good deal bound as a function of the degree of uncertainty aversion Ω. The focus asset is the Arrow-
Debreu security that pays in the “armageddon” state, Farmageddon. ? means the good deal bound equals
the relevant arbitrage bound. The basis assets are taken to be a risk-free and a defaultable bond.

Table 5: Good deal bounds on a non-traded call option

Ω 16 8 4 2 1.75 1.5 1.25 1 No MU
C 0.021 0.337 1.340 2.910 3.214 3.542 3.875 4.105 4.105
C 32.657 23.845 17.487 13.098 12.508 11.937 11.436 11.181 11.181

Risk-neutral price (same tree) 8.937 BS 8.917

Notes: The lower C and upper C̄ good deal bounds on a non-traded 2 year call option on the traded
asset as a function of the degree of uncertainty aversion Ω. The basis assets are the traded underlying
and a one period risk-free bond, with hedging rebalancing possible every quarter. “BS” refers to the
Black-Scholes price of the same option.
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