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Abstract 
 
A rich literature from the 1970s shows that as inflation expectations become more and more 
ingrained, monetary policy loses its stimulative effect. In the extreme, with perfectly anticipated 
inflation, there is no trade-off between inflation and output. A recent literature on the interest-rate 
zero lower bound, however, suggests there may be some benefits from anticipated inflation when 
the economy is in a liquidity trap. In this paper, we reconcile these two views by showing that 
while it is true that, at positive interest rates, the greater the anticipated inflation the less 
stimulative are the effects, the opposite holds true at the zero bound. Indeed, at the zero bound, 
the more the public anticipates inflation, the greater is the expansionary effect of inflation on 
output. This leads us to revisit the trade-off between inflation and output and to show how 
radically it changes in the face of demand shocks large enough to bring the economy into a 
liquidity trap. Instead of vanishing once inflation becomes anticipated, the trade-off between 
inflation and output increases substantially and may become arbitrarily large. In such cases,  
raising the inflation target in a liquidity trap can be very stimulative. 
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1 Introduction

“What we know, or should know, from the past is that once inflation becomes anticipated and

ingrained – as it eventually would – then the stimulating effects are lost.” (Paul Volcker,

former Chairman of the Federal Reserve, NY Times, 9/19/11)

Once the central bank lowers the nominal interest rate down to zero, it cannot provide more stimulus

via nominal interest rate cuts. It can however make monetary policy more expansionary by increasing

inflation expectations, as a recent literature has suggested. This mechanism works in virtually all modern

macroeconomic models because aggregate demand depends not on the level of the nominal interest rate

but instead on the real interest rate – the difference between the nominal rate and expected inflation.

Hence even if the real rate cannot be lowered by nominal interest rate cuts at the zero bound, it can still be

reduced through increases in inflation expectations, thus making spending today more attractive relative

to the future. This is, for example, highlighted in Krugman (1998) and Eggertsson and Woodford (2003),

but a large literature finds similar conclusions in various settings.

Given this relatively broad consensus in the modern literature, it may seem somewhat surprising that

even though several advanced economies found themselves with interest rates close to zero following the

crisis of 2008, and unemployment at levels not seen in decades, no major central bank has deliberately

attempted to raise inflation (with the possible very recent exception of the Bank of Japan).1 This contrasts

sharply with the response of various policy makers during the Great Depression. At that time, several

economies left the gold standard and some deliberately allowed inflation to rise (see e.g. Eggertsson (2008)

for discussion of the US; Eichengreen and Sachs (1985) present evidence that countries that exited the gold

standard and allowed inflation to rise experienced a much more rapid recovery than those that did not.)

What is the reason for this disconnect? The most obvious reason is summarized by Paul Volcker, former

Chairman of the Federal Reserve, in an editorial in the New York Times (excerpted above). In it, he argued

forcefully against any increase in the inflation target during the recession following the crisis of 2008. Why?

The recovery from the Great Depression is not the only example of increasing inflation. Indeed, it is well

documented that inflation also rose in many countries during the 1970s. And while the countries which left

the gold standard early experienced a more robust recovery from the Great Depression, it is challenging

to make that case for the countries that experienced excessive inflation in the 1970s. If anything, it seems

that those countries that allowed inflation to rise achieved just high inflation with little benefit in terms

of employment. Moreover, once inflation had risen in 1970s, its high level arguably became somewhat of

a hindrance rather than a help for growth.2 Indeed, while Paul Volcker managed to bring down inflation

from double digits to relatively low rates in the early 1980s, he did so by generating a well-documented

1 It is interesting to note that in the US, the Federal Open Market Committee (FOMC) announced following its December

2012 meeting that it intends to maintain short-term interest rates close to zero “at least as long as the unemployment rate

remains above 6-1/2 percent, inflation between one and two years ahead is projected to be no more than a half percentage

point above the Committee’s 2 percent longer-run goal, and longer-term inflation expectations continue to be well anchored.”

So while the FOMC does not explicitly seek to raise inflation above its long-run target, it is willing to tolerate an inflation

rate temporarily above its long-run target provided that the unemployment rate remains high. As we will see, the theoretical

analysis presented here is strongly supportive of a strategy of that kind.
2 John Cochrane (2012), for example, argues, “it’s a rare Phillips curve in which raising expected inflation is a good thing.

It just gives you more inflation, with if anything less output and employment.”

1



recession (Goodfriend and King (2005)) often referred to as the “Volcker recession.” The most obvious

reason for the reluctance of policy makers to embrace positive inflation during the crisis of 2008 is thus

related to the widely perceived lesson from the 1970s, that once anticipated, inflation is at best neutral

and at worst a hindrance for further recovery.3

The purpose of this paper is to reconcile the lessons of the 1970s and 1980s with the more recent

literature which argues that higher inflation is useful to increase demand. Many early rational expectations

models emphasized that monetary policy has real effects because people do not correctly anticipate the

future when setting their prices (hence the preset prices differ from their market clearing levels). Similar

assumptions are also hard-wired in most modern New Keynesian models. It would thus seem that once

one accepts this proposition, anticipated inflation should provide few beneficial effects since money will

be largely neutral once expectations have adjusted, at least at some horizon. What we will illustrate,

however, is that monetary neutrality – as given for example by a New Classical expectations-augmented

Phillips curve (Lucas (1972), Kydland and Prescott (1977), Sargent and Wallace (1975), Barro and Gordon

(1983)) – is not a legitimate argument against increasing inflation expectations as long as the zero bound

is binding. In fact, as long as the zero bound is binding and an equilibrium exists, we will see that even

with the New Classical Phillips curve which embeds a very strong neutrality result, the benefit of inflation

becomes bigger rather than smaller as inflation becomes more and more anticipated. This result turns

Volcker’s argument on its head at the zero bound. It is the main result of the paper.

The basic reason for this result is relatively subtle and relies upon the fact that once the New Classical

framework is amended to incorporate aggregate demand, full neutrality of monetary policy no longer

applies, at least once the zero bound is binding. The notion that monetary policy is neutral when inflation

is perfectly anticipated is simply inconsistent with the demand side of the model if the short-term interest

rate is constrained by the zero lower bound. The two sides of the model – aggregate demand and aggregate

supply – clash so that no equilibrium exists. How should this non-existence result be interpreted? We

suggest an interpretation and a simple extension that generates existence in a natural way and leads us to

revisit the trade-off between inflation and output. This in turn strengthens the case for inflation in large

demand slumps.

In what follows, we start our analysis in Section 2 by revisiting the classic explanation for the coincident

high inflation and high unemployment in the 1970s via a standard New Classical Phillips curve of the form

 = ̂ +−1 (1)

where  is inflation ̂ is output in deviation from steady state (or alternatively a measure of an “output

gap”) and −1 is the expectation of inflation at time  formed at a time when either some prices or

wages were set (we will provide explicit microfoundations for this relationship assuming that some prices

are fixed one period in advance, in Section 3.1). If inflation is fully anticipated, then  = −1 and

this equation says that ̂ = 0. Hence, any positive inflation, once anticipated, would seem to loose its

expansionary effect, as suggested by Volcker in the opening quote of the paper.

We point out in Section 3 that this particular result is obtained by looking exclusively at the “supply

equation” of the model (1). We then introduce a “demand” side, which makes clear that this result is

3 In broad terms, the absence of trade-offs between inflation and output is the main lesson of the rational expectation

revolution of the 1970s and 1980s which arguably resulted in several Nobel prices, e.g. as exemplified by the work by Phelps

(1967), Lucas (1972), Sargent and Wallace (1975) and Kydland and Prescott (1977) cited by the Nobel committee.
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only partial and potentially misleading in general equilibrium. The demand side is standard: Consumers

choose a stream of consumption over the infinite horizon and policy can affect demand via variation in the

nominal interest rate, so that inflation and output are determined in equilibrium. A key result is that if

shocks are large enough for the zero bound on the short-term nominal interest rate to bind then, given

expectations, output is demand determined. In that case, and with a reasonable specification of policy,

output demanded is always below “potential,” i.e. ̂  0, according to aggregate demand. Moreover,

even if inflation is perfectly anticipated, we show that the solution ̂ = 0 implied by the supply side is

inconsistent with the demand-side equilibrium conditions of the model. Hence a key result of this paper

is a non-existence result: The proposed solution of equation (1) suggested above, and implicitly assumed

in Volcker’s commentary – that if inflation is anticipated then ̂ = 0 – leads to non-existence of an

equilibrium in the model. In other words, there is a clash between the demand and the supply side of the

model.

How can this clash be resolved? What is the interpretation of the non-existence result? We propose

one interpretation of the non-existence result in Section 4 by relaxing the assumption of perfect foresight

while still maintaining the assumption of rational expectations. We show that when introducing a little

uncertainty in the model, an equilibrium exists but it leads to very “bad” outcomes: In this equilibrium

the “clash of the two equations” is resolved in favor of the demand side, and the solution features an

output collapse and deflation. Once inflation becomes perfectly anticipated, output and inflation collapse

completely, which ultimately yields non-existence of the equilibrium. We refer to this situation as a

contractionary black hole. Interestingly we show that in this equilibrium– as long as it exists – anticipated

inflation is far from neutral. The benefits of anticipated inflation, in fact, become extremely large and

approach infinity as the model converges towards the contractionary black hole. This turns the Volcker

argument on its head: Rather than finding that inflation becomes less effective for stimulating output

when it becomes more and more anticipated, the reverse is true at the zero bound. This result is closely

related to the “flexibility paradox” illustrated for example in Eggertsson (2011), Christiano Eichenbaum

and Rebelo (2011), Werning (2012) and Bhattarai, Eggertsson and Schoenle (2012). These papers show

that the economy suffers a worse drop in output in a liquidity trap once prices become more flexible,

conditional on a given shock. This is paradoxical since if prices were fully flexible, then output would not

drop at all according to the supply side of the model. Similarly, here, we see that as inflation becomes

more anticipated then higher inflation becomes more stimulative. But paradoxically, if inflation were fully

anticipated then the supply relationship (equation (1)) would seem to suggest that inflation should have

no effect at all.

Section 5 analyzes the short-run equilibrium and shows that when the equilibrium exists in the medium

and long run, a sufficiently long-lasting adverse shock may result in a collapse in prices and output in

the short run. Section 6 revisits the inflation output trade-off in light of these results. It establishes an

important distinction between traditional static trade-offs between inflation and output in the same period,

and intertemporal trade-offs between output in a period and inflation in a later period. Section 7 reviews

results from earlier sections in the context of a non-linear version of the model, thus guaranteeing that our

findings are not due to the use of a linearized version of the model, which we exploit in parts of the paper

for tractability (and easier comparison with the earlier literature that uses that framework).

We picked the New Classical model as an initial benchmark since it offers the sharpest example of

neutralities when inflation is anticipated, and is often used in popular discussions describing the 1970s or
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to argue that attempting to increase inflation would be futile in current circumstances. In that model, the

“short-run” lasts only one period. Section 8 considers the same issue in the standard New Keynesian model

now popular in the literature. In that model, the short-run is no longer just defined by just one period.

As a result, the non-existence issue also arises but in terms of a constraint on how long the slump can last

without implying an explosion of key variables in the model. In the New Keynesian model, we will also

find that as inflation becomes more anticipated, it becomes more expansionary at the zero bound. This

leads us once again to revisit the trade-off between inflation and output, and to point out how it radically

changes at the zero bound.

Before proceeding, we should make clear two separate points. First, our non-existence result depends

importantly on the monetary policy commitment assumed. Our assumed policy implies that the central

bank would never allow inflation to increase above its implicit inflation target. Since the zero bound

imposes no restriction on raising the nominal interest rate (and thus on curbing too high inflation) this

implies that in equilibrium the inflation rate will always be at or below (when the zero bound is binding)

the central bank’s implicit inflation target. This kind of equilibrium is implied by both optimal policy

under discretion (Eggertsson (2006)) and a standard Taylor rule (Eggertsson and Woodford (2003)). With

different types of policy commitments, for example if the central bank followed a price level target or its

fully optimal policy, the problem of non-existence of the equilibrium may not arise. Indeed, a commitment

to a price level target would imply that any deflation at the zero bound will eventually be undone with

future inflation, once the zero bound is no longer binding. This highlights the importance of a policy rule

that accommodates some short-term expected inflation at the zero bound, which is consistent with our

main point.

Second, the benefits of inflation that we highlight here stem from increasing inflation in the medium

run, i.e., in a relatively short period after the shock which brought the economy to the zero bound has

subsided. Hence if the shock does not last very long, there is no need for a permanent rise in the long-term

inflation target. The results presented here suggest that it may be beneficial to let the near-term inflation

target move over time in a way that depends on the state of the economy, when the zero bound constrains

the economy.4

2 The Phelps problem

Before presenting a more detailed microfounded model, it is useful to remind the reader of what Sargent

(1999) refers to as the “Phelps problem,” a problem made classic in the seminal papers of Kydland and

Prescott (1977) and Barro and Gordon (1983). Consider a government that minimizes

min


0

∞X
=0


n
2 + (̂ − ̂ ∗)2

o
(2)

subject to

 = ̂ +−1 (3)

4Of course, it may be desirable to let near-term inflation deviate from the long-run target even if the zero lower bound is

not binding, when other kinds of frictions exist (see, e.g., Giannoni and Woodford (2005) for an analysis of optimal monetary

policy in models incorporating various frictions).
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SŶ
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Figure 1: The tradeoff between inflation and output when inflation expectations are fixed.

where  is inflation, ̂ is output in percent deviation from steady state, ̂
∗ is the first-best level of output

in percent deviation from steady state, and −1 is the expectation of inflation at time  formed at

time  − 1. As we shall see, the Phillips curve restriction (3) emerges naturally as a approximation to
our microfounded model in Section 3.1.5 Let us define the short run as a period  =  in which inflation

expectations have not adjusted, but are instead at zero so that −1 = 0 Let us define a medium run

as the period in which expectations have adjusted so that  = −1 =   For now, there is no

difference between long and medium run but we will make a sharper distinction between these shortly.

Figure 1 shows the output and interest rates in the model in the short run, given by the schedule

 = ̂ . We see that in the short run the government can achieve higher output by creating (unexpected)

inflation, and the trade-off between inflation and output is given by −1 i.e. a one percentage point increase

in inflation increases output by −1 percent. Hence in the short run the government has a menu of choices

of inflation output pairs on the solid line dotted by  and . For large enough inflation, the government

can even achieve the first best output ̂ ∗ that minimizes the objective (2).

The key point of the literature from the 1970’s is that this menu of choices is an illusion once expectations

adjust. In particular, once inflation becomes fully anticipated,  = −1 and the AS equation (3)

becomes  = ̂ +  which implies that ̂ = 0 Once the policy is anticipated the government

can only choose between different inflation rates on dashed curve from  to  in Figure 2 without any

improvement in output. In particular, suppose the private sector anticipated that the government would

5Depending on the types of exogenous shocks considered, the variable ̂ may alternatively be interpreted as capturing an

“output gap” expressed in deviations from steady state.
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Figure 2: If inflation expectations adjust fully they eliminate any output gains from inflation.

try to achieve point B (where output is at potential). In this case  =  and the AS curve shifts as

shown in the figure so that once the government chooses  there are no gains in output, only excessive

inflation. This is at core the Volcker’s remark “What we know, or should know, from the past is that once

inflation becomes anticipated and ingrained – as it eventually would – then the stimulating effects are

lost.”

3 Introducing demand into the Phelps problem: The problem of

non-existence

In the last section we reviewed a classic example of how an expectations-augmented Phillips curve suggest

that there is no medium run trade-off between inflation and output, where the medium run is defined by

the fact that expectations have adjusted. Missing in this picture, however, is a demand side. How does

the government “select” an inflation rate? Does the modeling of how this is accomplished change the basic

picture? In this section we extend the model to explicitly take account of the aggregate demand side, which

then leads us to explore how the equilibrium is achieved. The key point is that once the demand side is

introduced, then the benign solution described above, derived from the supply side with ̂ = 0 (at any

anticipated rate of inflation) can no longer be achieved under certain conditions. It clashes directly with

the demand side of the model. Resolving the clash between the demand and supply sides of this model

leads to some interesting findings.
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3.1 Microfoundations

This subsection summarizes the microfoundations of the model. The impatient or experienced reader can

move directly to the next section (the microfoundations spelled out are largely covered, e.g., in Woodford

(2003)). There is a continuum of households of measure 1. The representative household maximizes utility



∞X
=

− [( )− ( )]  (4)

where  ∈ (0 1) is a discount factor,  is a Dixit-Stiglitz aggregate of consumption of each of a continuum

of differentiated goods,  ≡
hR 1
0
()

−1
 

i 
−1
with an elasticity of substitution equal to   1,  is the

Dixit-Stiglitz price index,  ≡
hR 1
0
()

1−
i 1
1−
, and  is an aggregate measuring the quantity of labor

supplied. The disturbance  is a preference shock, and () is an increasing concave function while () is

an increasing convex function. The period budget constraint can be written as

 + = (1 + −1)−1 +
Z 1

0

() +  −  (5)

where  denotes the quantity of one-period riskless bonds,  is the nominal interest rate () corresponds

to profits that are distributed lump sum to the households, and  is the real wage rate. For the budget

constraint to be well defined, and Ponzi schemes not possible, we require that6

(1 + )  −
∞X

=+1

+1

∙
+1

µZ 1

0

 () +   − 

¶¸
(6)

and ∞X
=



∙


µZ 1

0

 () +   − 

¶¸
∞ (7)

where  ≡
Q

=+1

−1 denotes the stochastic discount factor.

Households take prices and wages as given and maximize utility subject to the budget constraint. This

gives rise to the first-order conditions for the optimal consumption allocation

() = (1 + )

£
(+1)+1Π

−1
+1

¤
(8)

where we define Π ≡ −1 and we note that (1 + )
−1
= +1 and the condition for the optimal

labor decision

 =
()

()
 (9)

Furthermore we impose the constraint that the nominal interest rate has to be positive7

 ≥ 0 (10)

There is a continuum of firms of measure 1. A fraction  of the firms sets prices freely every period while

a fraction 1−  sets prices one period in advance. Each firm sets its price and then hires the labor inputs

6See Woodford (2003, Chap 2.) for discussion.
7This constraint can be interpreted as a consequence of the household maximization problem if there exists money in the

economy as a nominal store of value.
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necessary to meet any demand that may be realized taking wages as given. A unit of labor produces one

unit of output. The preferences of households imply a demand for good  of the form () = (
()


)−,

where  =  is aggregate output. We assume that all profits are paid out as dividends and that the firm

seeks to maximize profits. Profits can be written as () = ()(())
− −(())

−

where  indexes the firm. The first-order condition for the firms that set their prices freely every period is

given by
(1)


=



 − 1 (11)

while the first-order condition of the firms that set their prices one period in advance is

−1

"
 ()

µ
(2)



¶− µ
(2)


− 

 − 1

¶#
= 0 (12)

where we have used

 =  =  (13)

The aggregate price level then implies

1 = 
(1)


+ (1− )

(2)


 (14)

After using (13) to substitute for  and  in the above equations, we can define an equilibrium as a

set of stochastic processes {(1)



(2)


Π  } that satisfy equations (8)—(12), (14) for a given shock

process {} and for given fiscal and monetary policies that satisfy equations (6)—(7).

3.2 A Linear Quadratic Approximation

The model just outlined can be approximated via log-linear-quadratic approximation around a deterministic

steady state. We use this form of the model for simplicity and to connect it with the earlier literature. As

we will show, however, nothing is lost with this simplified exposition; the same basic insights carry through

to the nonlinear version of the model discussed in Section 7.

A log-linear approximation of the firm’s optimal pricing decisions given by equations (11)—(14) delivers

the aggregate supply equation (3) where   0 depends on some of the underlying parameters of the model.

In addition, a log-linear approximation of the demand side of the model ((8) using (13)) yields

̂ = ̂+1 − ( −+1 −  ) (15)

where ̂ ≡ log
¡
̄

¢
,  ≡ log (−1)   now refers to log(1 + ) in terms of our previous notation,

and   0. The “natural” rate of interest  ≡ ̄ +  log
¡
+1

¢
is an exogenous variable that depends

on ̄ ≡ log −1  0 and the preference shock  and that reflects the desirability of consuming in the

present relative to the future. The interest rate bound can once again be expressed as

 ≥ 0

Reviewing the “Phelps problem” characterized above, it should be clear why previous authors have

often abstracted from the demand side. Since the nominal interest rate does not directly appear in the

objective (2) or in equation (3), there is no loss of generality in assuming that instead of choosing the

nominal interest rate, , the government chooses directly either  or ̂ that satisfy the restriction (3).

8



The nominal interest rate consistent with these levels of inflation and output can then just be backed out

of (15).8 However, nothing in this way of proceeding guarantees that the implied interest rate must be non-

negative. Therefore, when one explicitly accounts for the zero bound, one need to incorporate aggregate

demand in the analysis.

Introducing aggregate demand however requires a more complete specification of monetary policy. As

mentioned in the introduction, we do not focus here on the characterization of the optimal (commitment)

policy.9 Instead, we focus on the implications of a policy that commits to bring inflation to its target level

whenever possible, that is, as long as the zero bound is not binding. A simple way to formulate such a

policy is to model the interest-rate setting according to the simple rule:

 = max{0  + ∗ + ( − ∗ )} (16)

where ∗ is the inflation target of the government and where we assume that   1 so that the so-called

“Taylor principle” applies, whereby the nominal interest rate is raised more than one-for-one with inflation

around the inflation target.10 If inflation is perfectly anticipated, then  = ∗ = −1 Moreover, if

the zero bound is not binding then (16) will implement the inflation target in every period (this result is

special to the fact that  is the only shock in the model).

In the case considered in Section 2, as inflation becomes anticipated, the equilibrium moves from point

 to : Higher inflation leads to no output gains once fully anticipated. We see from equation (15) that

the net effect of this is simply an increase in the nominal interest rate, i.e.,  =   This is arguably –

in broad terms – what happened during the “great inflation” of the 1970s: as inflation expectations rose,

nominal rates rose as well, while output remained depressed. It would seem, then, at least when studying

the 1970s, that the demand side is only relevant to “back out” the nominal interest rate implied by the

equilibrium.

However, when the zero bound becomes binding, the demand side of the model affects the equilibrium

as well. Once the nominal interest rate drops to zero, equation (15) is no longer just a pricing equation for

the nominal interest rate. Instead, it starts playing a role in determining the overall number good demanded

which will have critical effects on the equilibrium determination. This is the case that we now turn to.

3.3 Short, medium, long run and non-existence

We now consider the case in which the zero bound can be binding, and explore how that changes the basic

picture. To do so we assume that there is an unexpected negative shock   ̄ in period zero that we call

the “short run.” The short run is defined by the fact that at that time expectations have not adjusted in

the model; they remain at “steady state” so that −1 = ∗We then assume that the shock stays at its

negative level in the next period (which we call the medium run) and then reverts back to normal in the

third period which we call the “long run.” Expectations have fully adjusted in the medium and the long

8A similar argument can also be made for the money supply. We can add money in the utility function into our framework,

so that the government’s choice of the nominal interest rate is then modeled via its choice of the money supply. We omit this

detail here.
9 Such an analysis can be found, e.g., in Eggertsson and Woodford (2003).
10We could alternatively write the policy rule as  = max {0  +  + ( − ∗ )}  All the results presented below

remain valid with appropriate modifications to some of the parameters. Note that in this case, the Taylor principle would

require   0
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Figure 3: Time protocol according to Assumption 1.

run so that the only difference between the medium and the long run is the absence of the shock in the

long run. Similarly the only difference between the medium and the short run is that expectations have

adjusted in the medium run, but not in the short run. To summarize:

A1 Consider the three periods  = . In period  =  there is an unexpected shock  =   ̄.

In period  =  the shock is still  =  . In periods  ≥  the shock is back at steady state

 =  = ̄. While the shock is unexpected in period  = , so that −1 = ∗ there is perfect

foresight between   and  Periods    are identical to : there are no shocks and agents have

perfect foresight.

Let us start with some preliminaries, namely proving that in the long run,  ≥  with the policy rule

(16), there is a unique bounded solution in which  = ∗ = ∗For simplicity, we assume that the zero

bound is not binding in the long run and thus we exclude the possibility of self-fulfilling liquidity traps

which is a subject of another branch of the literature.11 We relax this restriction in Section 7 below and

show that our main results are not affected by it.

Proposition 1 Suppose A1, that ̄  −∗,   1 and that the nominal interest rate is always positive

in the long run  ≥ . Then the model (3), (15)—16) implies a unique bounded long-run equilibrium

{ ̂  +1 ̂+1} given by  = +1 = ∗  = ̄ + ∗ and ̂ = ̂+1 = 0

Proof. Given Assumption A1, perfect foresight between periods  and  implies that −1 =

 = . It follows from equation (3) that for all  ≥ 

 = ̂ + 

or simply that that ̂ = 0 for  ≥  This implies that for any  ≥  (15) simplifies to

 = +1 + ̄ (17)

It follows from (16) and (17) that

+1 + ̄ = ̄ + ∗ + ( − ∗)
11Eggertsson and Woodford (2003), for instance, suggest some policies which can explude these type of equilibria.
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Figure 4: Equilibrium at positive interest rate.

or equivalently that

 = −1 +1 + (1− −1 )∗

Iterating this forward yields

 = − + + (1− −1 )∗

X
=1

−(−1) = ∗

for any bounded {}≥ since   1 and lim→∞ − + = 0

Our focus, next, is on the equilibrium determination in the medium run given our specification for

policy, before we move to the short-run. Consider the aggregate supply (AS) equation (3) in the medium

run. It is given by a vertical line

̂ = −1( − ) = −1( −  ) = 0

where the last equation follows from the fact that we assume perfect foresight between the short and

medium run in A1.

The aggregate demand (AD) equation, obtained by combining (16) with (15), yields

̂ =

(
−( − ∗ ) + (∗ − ∗ ) if  + ∗ + ( − ∗ )  0

 + ∗ if  + ∗ + ( − ∗ ) ≤ 0
(18)

The two curves are plotted up in Figure 4 for a realization of the shock  satisfying  + ∗ +

( − ∗ )  0 Since inflation is perfectly anticipated in the medium run, we see that that the AS

11
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Figure 5: A shock to  has no effect on output or inflation as long as the zero bound is not binding.

curve is vertical. Meanwhile, the AD curve is downward sloping in inflation. This is due to the fact that

  1 so that the central bank will reduce the nominal interest rate more than one-to-one with a fall in

inflation (and vice versa), thus stimulating spending as inflation drops as shown in the first row of (18).

Yet, there is a limit to how much the central bank can stimulate spending by cutting the nominal interest

rate. If medium term inflation,   is low enough so that the zero bound is binding then ̂ is given by the

second row of (18), i.e. ̂ =  +∗ In this case the output demanded does not depend upon realized

inflation (the ratio of prices today relative to yesterday). Instead demand only depends upon expected

inflation,  (= ∗)  which determines the price of goods tomorrow relative to the price today. In the

previous case, this relative price was also affected through realized inflation because inflation affected the

nominal interest rate setting of the central bank; this is no longer the case once the interest rate is pinned

at zero. An equilibrium is determined by the intersection of the AS and AD equation. At positive interest

rate we see that this equilibrium determination happens at  = ∗ and ̂ = 0

Figure 5 shows the effect of the shock  being more negative. This shifts the AD curve leftward. If

this shock is small enough, then the only thing that happens is that the nominal interest rate is reduced

but inflation stays at ∗ and output at potential.

There is nothing in the model, however, that prevents the AD curve from shifting even further than in

Figure 5. In particular consider the following shock:   −∗  This size of the shock shifts the AD curve

to the left of the AS curve. Clearly the two curves do not intersect. In other words there is no equilibrium.

To summarize:

Proposition 2 Suppose A1,   −∗ ̄  −∗,   1 and that the nominal interest rate is always

12
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Figure 6: Aggregate demand and aggregate supply clash: No equilibrium.

positive in the long run. Then there exists no bounded equilibrium in the medium run that satisfies equations

(3) and (15)—(16).

Proof. See Appendix.

How should this proposition, that no solution exist, be interpreted? That is the issue we now turn to.

4 Generating existence: Demand wins

The aggregate supply equation and the aggregate demand equation in Figure 5 are pointing in two different

directions. On the one hand the aggregate supply equation simply imposes that ̂ = 0 If everybody

perfectly anticipates the future, then prices act as if they are perfectly flexible and output is thus at

potential. Meanwhile, the aggregate demand equation imposes that demand must be below its steady

state, i.e., ̂  0 For households to be willing to buy all supplied goods, the real interest rate must be

sufficiently negative, but this is not possible if expected inflation is below ∗ without a negative nominal

interest rate. Evidently demand and supply clash — no level of output and inflation satisfy both equations

at the same time. What is particularly noteworthy here is that some of the policy discussion reviewed in

the introduction — and professional consensus — seems to be driven by an intuition which is derived exactly

when this clash occurs but by only using the AS equation.

At heart of the issue is the strong neutrality imposed by the AS equation in combination with a

temporary shock to the AD equation that reduces demand. Once inflation is anticipated, then output

cannot deviate from potential according to the AS equation, thus hard-wiring no trade-off between inflation

13
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Figure 7: Introducing uncertainty. With probability  the natural rate  in the medium run reaches its

long run value   0 With probability 1−  it remains at   −∗

and output. This excludes – by assumption – the possibility of a long protracted demand driven slump,

a situation in which those firms with preset prices produce less than the others. Given that we have some

prices set one period in advance (so output is demand determined in equilibrium) a critical property of the

model is perfect foresight by the agents, i.e. no uncertainty and rational expectations. Here we will deviate

from this assumption in a way that seems quite reasonable – while still maintaining rational expectations

– and show how the equilibrium is determined. This, we argue, gives some insight into the interpretation

of the non-existence result.

Recall our previous assumption that there is a shock in the short-run that stays “on” in the medium

run and finally reverts back to steady state in the long run. Let us now deviate from perfect foresight by

assuming that there is a probability,  that the shock reverts back to steady state in the medium run

rather than in the long run. This seemingly minor extension generates existence in the model. Moreover,

it clarifies how the model should be interpreted which has important policy implications.

A2 Consider three periods  = . In period  =  there is an unexpected shock  =   ̄ In

period  = the shock is still  =  with probability (1− ) and  =   0 with probability .

In periods  ≥  the shock is back at steady state  =  = ̄. The shock is unexpected in period

 =  but people form rational expectations about the shock in period  =  using the correct

probability distribution of the model () 

The long run is as before ̂ = 0  = ∗ and  = +∗ Moving to the medium run, we now have

two possible states, i) that the shock reverts back to steady state  =   0 (which we call “high”) or

ii) that the shock remains at  =   −∗  in which case the nominal interest rate is constrained to

be at zero. The model then solves the following six equations in the medium run



 = ̂


 + 


 + (1− ) , for  =  or  (19)
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̂ 
 = ̂ − ( − ∗ − ) (20)

̂

 = ̂ − (


 − ∗ − ) (21)

 = 0 and 

 =  + ∗ + (


 − ∗ ) (22)

while in the short run it solves

̂ = ̂

 + (1− )̂ 

 + 

 + (1− ) +  (23)

 = ̂  (24)

The model’s equilibrium is described in the following proposition:

Proposition 3 Suppose A2, that   −∗  ̄  −∗,   1 and that the nominal interest rate is

always positive in the long run  ≥ . Then with   0 there exists a unique bounded solution to (19)—(24)

given by

̂

 = −1− 


 ( + ∗)



 =

1− 


 +

1


∗ +

 − 1


∗

̂ 
 =  ( + ∗)

 =
1− + 


 +

1 + 


∗ +

 − 1


∗

̂ = 

µ
1− 



1 + 


+ 1

¶
 + 

(1− ) + 1


∗ + 

 − 1


∗

 = ̂ 

Proof. The solution is obtained by solving (19)—(24) (see Appendix for details).

The model equilibrium exists in the medium run, now that there is no longer perfect foresight. For

instance, if the shock is in the low state, then the AS equation is given by

 = ̂ 
 + 


 + (1− )

or

 =



̂ 
 + 




We can now use our solution for 

 to show that inflation and output are related in the medium run

according to

 =
1− + 


−1̂ 

 + −1 ∗ +
¡
1− −1

¢
∗  (25)

Equation (25) shows that now the AS curve is now no longer vertical in the medium run in the low

state, once we take into account the equilibrium determination in the “high state” using the equilibrium

conditions from last proposition. Instead, it is upward sloping in the inflation output space as shown in

Figure 8. This figure shows the AS and AD curves conditional on the shock remaining at its short-run

15



low
MŶ
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Figure 8: The clash between aggregate demand and aggregate supply resolved: Demand wins.

value, i.e.  =  , hence the value of the shock is the same as in our previous exercise when no solution

existed. What generates existence here is the fact that inflation is no longer perfectly anticipated, as there

is more than one state of the world in the medium run and there is a probability  to reach the “high”

state where the zero bound is no longer binding. As long as there is some uncertainty about outcomes,

actual inflation is no longer equal to its anticipated level and the AS curve is upward sloping in the output-

inflation space as shown in Figure 8. The reason is simple. In the microfounded model, the firms which

have their prices fixed in advance are committed to supply whatever is demanded by the consumers. As

people start demanding fewer goods and services, for some prices given, less labor is hired, which depresses

wages. Lower wages reduce in turn the firms’ marginal costs, so that the firms that can freely adjust their

prices choose to lower them. It follows that the fewer output is bought from firms, the greater the price

deflation. This basic logic is only broken in the knife-edge case when all prices are perfectly anticipated.

In that case demand does not have any bite, since the economy acts “as if” prices are perfectly flexible.

Plotting the downward sloping AD curve and the upward sloping AS curve in Figure 8 reveals an

equilibrium in point A. As people reduce their demand for goods and services, AD shifts left, reducing

output, while the AS curve determines the degree of deflation associated with that level of aggregate

demand. In other words, in the clash between demand and supply in the medium run, the aggregate

demand wins.
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5 Uncertainty and contractionary black holes in the short run

While output is pinned down by aggregate demand in the medium run, the amount of deflation “needed”

to clear the market depends on the AS curve. Thus deflation in the medium run – conditional on the

shock being in the “low state” so that the zero bound is still binding – plays no role for medium-run

output, as the latter is already pegged down by the vertical AD curve. As we have seen in Figure 8 the

degree of deflation needed to clear the market in the medium run depends on the slope of the AS equation.

This slope depends on  In particular as the probability people assigned to being in the “low” state in the

medium run goes up (i.e. → 0) the deflation needed increases (see point B in Figure 8). Eventually the

AS curve becomes vertical – the model converges to perfect foresight – and no solution exists.

How much deflation is needed? That depends on the coefficient
1−+


 As we have already indicated,

this slope becomes steeper with lower values of  Some uncertainty will therefore in general lead to

a “static” trade-off between inflation and output (more on this in the next section). Beyond that, an

important determinant of this slope is the coefficient  Let us just emphasize two key components of

this coefficient which we decompose as  ≡ 
1−

−1. First, we see that  depends on the overall level

of nominal rigidities – which is here indexed by the fraction of firms that set their prices one period in

advance 1−  If prices are very “sticky” then the AS curve is very flat, hence a small decline in inflation

below target inflation is needed to equilibrate the market. Second, the degree of real rigidities  This

coefficient measures the strategic complementarities in the model, i.e., the extent to which firms tend to

cut their own prices in response to declines in other firms’ prices. To the extent that these rigidities are

high and the price adjustment is asynchronous, firms that face a drop in demand may not lower their prices

much even if they can, as other firms are constrained to maintain their prices unchanged. In such a case,

even a large drop in output will generate only a modest decline in the price level. These points are worth

making in the context of the recent world economic crisis, where many countries have seen downward drops

in inflation pressures, yet those have been relatively contained. This can be viewed as evidence in favor of

high degree of nominal and/or real rigidities in the context of this model.12

While the amount of deflation in the medium run has no effect on output in the medium run, it

has important consequences for output in the short run. In particular, we will now see that the higher

the degree of deflation, the bigger the drop in output in the short-run. What is interesting here is to

note that what will in general trigger a great drop in inflation in the medium run are things one would

typically associate with a stabilizing force, namely anything that makes the AS curve more vertical, be it

real or nominal rigidity or a movement towards inflation becoming more anticipated (i.e.  is closer to

0). But now we will obtain precisely the opposite conclusion, higher real or nominal rigidities, or more

anticipated inflation/deflation is destabilizing (this is reminiscent of the result documented in Eggertsson

(2012), Christiano, Eichenbaum and Rebelo (2011) and Werning (2012)). Provided   0, the solution in

the short run is now well defined. Consider the solution in the short-run, taking the medium term solution

derived in the last section as given. Given  and ̂  the solution is given by solving together (23) and

(24), i.e.,

̂ = ̂ +  + 

12As noted by Eggertsson and Krugman (2012), another reason for relatively modest drop in inflation is that the underlying

shock that triggers the zero bound leads to a simultaneous "cost push" shock. They show how a debt deleveraging shock can

have this effect.
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Figure 9: Deflation in the medium run reduces short run output since expected deflation increases the real

interest rate and thus contracts demand.

 = ̂

which are plotted in Figure 9.

We see that this figure is essentially the same as Figure 8. There is one important new element, however,

lurking in the background. The AD curve will now shift not only due to the shock   It will also shift due

to expected deflation – given by  – which is no longer only given by the exogenous inflation target

∗ . Instead, expected inflation/deflation is a function of the endogenous deflation in medium run which

we saw in Figure 8. It can be expressed as

 =
(1− ) ( + 1)


 +

 − 1


∗ +
(1− ) + 1


∗ (26)

This illustrates that the backward shift in aggregate demand is now amplified by the expected deflation

in the medium run, resulting in further backward shift in aggregate demand as shown in Figure 9. Most

importantly, perhaps, medium term inflation expectation are declining in the probability  That is, the

more likely the “low” state 1 −  then the higher the deflation in the low state, and thus the larger the

expected deflation in the short run, as captured by the first term in (26). The expected deflation increases

without a bound, i.e., as → 0 then  → −∞ leading to an output collapse (̂ → −∞) Note that
an increase in  works in the same direction (e.g. due to higher real or nominal flexibility). This is what

we refer to as a contractionary black hole. To summarize

Proposition 4 Assume A2,  + ∗  0 and   1. As the probability of the medium-run recession

increases, i.e., → 0 the recession in the short run increases without a bound ̂ → −∞

Proof. The expression for ̂ in proposition 3 can be rewritten as ̂ = 
³
(1−)+1



´
( + ∗) +


¡
1− −1

¢
( + ∗ )  Since 


 + ∗  0 by assumption, lim→0 ̂ = −∞
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Figure 10: Output in the short run collapses as → 0

The last proposition is illustrated in Figure 10. We see that as the probability  converges to zero,

the model explodes. Meanwhile as this probability approaches 1, output converges to ( + −1 ∗ +¡
1− −1

¢
∗ ) This proposition above will have important implications for the inflation output trade-off,

as we now will see.

6 The inflation output trade-off revisited

We now come to the heart of the paper. Let us start with the definition:

Definition 5 The static trade-off between inflation and output is defined in the short, medium and long

run as ̂


where  =  and expectations may have adjusted or not. The intertemporal trade-off

between expected future inflation and output is defined as ̂


 ̂


in the short term and
̂ 





( =  ) in the medium term, where expected inflation increases due to variations in ∗ or ∗
under rational expectations

The popular discussion of the inflation output trade-off focuses on the trade-off between current inflation

and current output. We call this the static trade-off between inflation and output. As we saw already in

Section 2 the static trade-off between inflation and output is −1 in the short-run for given inflation

expectations. This statistic has the interpretation of telling us how much output is gained in percentage

terms for each percentage point increase in inflation. Once inflation expectations have fully adjusted, as

is the case in the medium and long-run, in perfect foresight, then there is no static trade-off in the model
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considered thus far.

There is another well defined trade-off between output and inflation in the model which becomes very

important once the nominal interest rate hits zero. This is the trade-off between expected inflation in the

future and output today. We call this the intertemporal trade-off between inflation and output. In our

simple example, this trade-off is given by ̂


and ̂


in short run and by
̂ 




in the medium

run, where  =   indexes the state of the world in the medium run depending on whether the shock

has turned back to steady state (“”) or not (“”).

Let us first observe that in the absence of the zero bound, the intertemporal trade-off between inflation

and output is not of principal importance, at least not in the medium run. To see why, observe first that

under our policy rule (16), the central bank will fully offset  in the absence of the zero bound. Hence to

the extent  is the only source of uncertainty, policy can achieve ̂ = ̂ = 0 in the medium and long

run for any value of the inflation targets ∗ and ∗. Recall that in the medium run we have assumed that

inflation expectations have adjusted to policy. In the short-run, however, we take expectations 0 = 0

as given. This implies some intertemporal trade-off in the short-run as summarized below.

Proposition 6 Suppose A2,   −∗  ̄  −∗,   1 and that the nominal interest rate is always

positive in the long run. Then the zero bound is not binding, and the intertemporal trade-off between

inflation and output in the medium run is
̂ 




= 0 and it is given by ̂


= 

1+
in the short run.

Proof. See Appendix.

To obtain some further intuition for this result consider first the medium run. Note that the shock to

the natural rate of interest is small enough so that the zero bound is not binding. This implies that the

shock  is fully offset, so it makes no difference if it is in the “high” or “low” state – the equilibrium

output and inflation is the same. It follows, given our policy rule, that

 =  = −1 ∗ + (1− −1 )∗ (27)

and ̂ = 0 while 

 =  () + ∗ + ( − ∗ )  =  . This shows that increasing the long

run inflation target has no effect on the medium-run output; it only increases the nominal interest rate in

the medium run. This is the first part of the proposition which says there is no intertemporal trade-off in

the medium run.

Consider now the effect of increasing the medium or long-term inflation target in the short run – this

is the second part of the proposition – while taking the initial expectations as given, i.e. 0 = 0. The

solution then satisfies the two equations

̂ = − +  +  = − +  + ( − 1)∗
 = ̂ 

The short-run equilibrium determination is plotted up in Figure 11. We see that in the first panel that

any increase in medium-term inflation expectations – or in the long-term inflation target, which feeds

directly into the medium term via (27) – results in a shift out in demand and thus output. Note that

the shift out in demand occurs because an increase in inflation expectations reduces the real interest rate

which stimulates spending. This increase is offset to some extent via the increase in the nominal interest

rate and thus the increase in demand is less than the increase in inflation expectations depending on the
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Figure 11: There is no intertemporal tradeoff between expected inflation and output if the central bank is

responsive enough in the short run at positive interest rate.

value of  which measures the sensitivity of the nominal interest rate to inflation. To make this clear, the

second panel shows the case when the central bank strictly targets inflation ∗ which corresponds to the

case  →∞ In this case we see that the increase in demand due to the increase in medium term inflation

expectations is fully offset by the response of the central bank via the nominal interest rate, so that inflation

expectations don’t change and hence the intertemporal trade-off disappears, i.e., lim→∞


1+
= 0 To

summarize, we see that while in the medium run there is no intertemporal trade-off between inflation and

output, such trade-off does exist in the short-run but its size depends entirely on how much short-run

inflation the central bank is willing to tolerate. If it targets a particular inflation rate in the short-run then

the intertemporal trade-off also disappears.

We now consider the intertemporal trade-off when the zero bound is binding. In that case, not only is the

intertemporal trade-off positive in the medium run. In the short-run, instead of possibly disappearing under

some parameter configurations, it may become arbitrarily large. A key result of the paper is summarized

next.

Proposition 7 Suppose A2,   −∗  ̄  −∗,   1 and that the nominal interest rate is always

positive in the long run. Then the zero bound is binding and the intertemporal trade-off between medium

term output and long term inflation
̂ 




, conditional on the zero bound being binding is  ( = )

while the intertemporal trade-off between short term output and medium term inflation ̂


is  and

between short-run output and long-run inflation, ̂


 is 
(1−)+1




Proof. See Appendix.
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In sharp contrast to our previous proposition, we now see that long-term inflation increases medium-

term output conditional on the zero bound binding. This is because with the nominal interest rate pinned

at zero in the medium term, output is demand determined and given by

̂ 
 =  +  

This makes clear that the intertemporal trade-off in the medium run is given by  Meanwhile, the amount

of deflation in the “low” state is given by

 =



̂ 
 + 


 (28)

where we used the fact that  = 

 + (1− ) .

Let us now move to the short-run determination of output. It is given by

̂ =  +   (29)

and inflation is determined by  = ̂ . From (29) we see immediately that the intertemporal trade-

off between ̂ and  is again  What is perhaps even more interesting is the trade-off between

short term output and long term inflation, i.e.,  As the proposition shows this trade-off is given by


(1−)+1


 0 so that higher long-term inflation expectations tend to stimulate short-term output, in

the face of the zero lower bound. Note that long-run inflation expectations can be completely controlled by

the long-run inflation target, i.e.  = ∗ In the limit, as the probability of exiting the zero bound in

the medium term diminishes, i.e., as → 0 the trade-off becomes arbitrarily large. This is the opposite of

the contractionary spiral we just saw in the last section; it works here in a virtuous direction. The reason

is that as  approaches 0, then a greater deal of deflation is needed in the medium run by equation (28) in

order to accommodate a given output gap ̂ 
 (given by ̂ 

 =  +) The amount of deflation

needed is greater the smaller is  as we saw in Figure 8, which led to a collapse in the short-run. But this

also implies that the benefit of increasing long run inflation (and thus ̂ 
 ) is greater the lower is  as

shown in Figure 12.

It is worth noting that one does not require inflation to increase permanently to stimulate short-term

output, even though we label “long-run inflation” the inflation rate obtained once the shock has subsided.

Instead, what is important, is that inflation is increased in the period immediately after the shock has

subsided; this is in fact how long-run is defined in our model.

7 Non-existence of the equilibrium in a non-linear version of the

model

While our analysis has been conducted in the context of a linearized model, it is important to realize that

our results are not merely a feature of the linear approximation. In fact, many of the results discussed

above carry through in the non-linear model described in Section 3.1. To show this, we briefly mention a

few results, leaving the proofs in the Appendix.

The following proposition, which relates to Benhabib, Schmitt-Grohé and Uribe (2001), establishes the

existence of multiple long-run steady states.
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Figure 12: The intertemporal tradeoff between output and expected long term inflation goes to infinity as

→ 0

Proposition 8 Consider the model given by (6)—(14) for all  ≥ 0 Suppose that monetary policy is given

by an interest-rate reaction function

 =  (ΠΠ
∗
  ) (30)

where Π ≡ −1 denotes inflation, Π∗ is the inflation target and that the policy rule  () is non-negative

for all values of its arguments, is increasing in its first argument, and that  (Π∗ Π
∗
  ) Π  1, so

that the “Taylor principle” applies around the inflation target. Suppose furthermore that agents know at

some date 1 ≥ 0 that the inflation target Π
∗
 will remain constant at Π

∗
 = Π

∗   for all  ≥ 1

Then the model (6)—(14), (30) admits at least two possible steady states characterized by constant values

̄ ̄ ̄ ̄ Π̄ ̄ as well as paths for the price levels ̄(1) ̄(2) ̄ in all periods  ≥ 1.

(i) In the first (regular) steady state, the nominal interest rate ̄ reaches a positive value ̄ = (Π∗Π
∗
 ̄) =

Π∗
−1 − 1  0 inflation is equal to the target rate Π̄ = Π∗ the price indices ̄(1) ̄(2) ̄ grow at rate

Π∗ and ̄ = ̄ = ̄ and ̄ are given by

(̄)

(̄)
=

 − 1


= ̄ (31)

(ii) In the second (Friedman) steady state, the nominal interest rate is at the zero lower bound, ̄ = 0 the

steady-state value Π̄ shows perpetual deflation at the rate of time preference, Π̄ =  the price indices

(in log) fall at rate Π̄ and ̄ = ̄ = ̄ and ̄ are again given by (31).

Proof. See Appendix.

As stated, at least two long-run steady states are possible in this model: one with constant inflation

at the central bank’s target level and a positive nominal interest rate, and one with zero nominal interest

rate (as in the Friedman rule) and perpetual deflation. Our earlier analysis took the first steady state as
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given. Importantly, however, the lack of existence of a medium run equilibrium does not depend on such

an assumption. In fact, as established in the next proposition, if the preference shock takes a low enough

value in the medium run, then no medium run equilibrium exists in the non-linear version of the model,

under perfect foresight. We modify slightly Assumption A1 as follows:

A1’ Consider the three periods  = . In period  =  there is an unexpected shock   Π̄−1 ̄,

where ̄ is the steady-state value of the preference shock and Π̄ is the steady state inflation rate.

In period  =  the shock is still  =  . In periods  ≥  the shock is back at its steady state

̄. While the shock is unexpected in period  = , there is perfect foresight between   and 

Periods    are identical to : there are no shocks and agents have perfect foresight.

Proposition 9 Under Assumption A1’, for any given long-run equilibrium ̄ ̄ ̄ ̄ Π̄ ̄ satisfy-

ing (6)—(30), there exists no medium-term equilibrium for small enough value of the exogenous disturbance

  i.e., if

  Π̄−1 ̄ (32)

Proof. See Appendix.

The condition (32) causing the absence of any medium-term equilibrium is analogous to the requirement

that the natural rate of interest be low enough for the nominal rate to be constrained by the zero lower

bound, as seen in our analysis above. It requires  to be low enough, so that the representative consumer

finds it preferable to consume less in the present (i.e., in the medium term) than in the future (i.e., the

long run). Equivalently, the household prefers to save in the medium term. Doing so, reduces aggregate

demand in the medium run, leading firms to lower their prices. This lowers inflation and increases the real

interest rate. That increase in the medium-term real rate discourages households further from consuming,

thereby leading to a collapse of the economy.

Note that if we are in the regular steady state with Π̄ = Π
∗
 (and Π̄∗−1  1) then the higher the

long-run inflation target Π∗ the easier it is for the medium-term equilibrium to exist. Indeed, the higher

the long-run inflation target, the more difficult it is for the condition (32) to be satisfied, as  needs to

fall possibly much below ̄ for the medium run equilibrium to cease to exist. Instead, if we are in the

“Friedman” steady state, where Π̄ =  then the medium-run equilibrium ceases to exist and the economy

collapses as soon as  falls below the long-run value of ̄ regardless of the inflation target.

8 Inflation output trade-off in the New Keynesian model

So far we have only studied the inflation output trade-off in the model with New Classical Phillips curve.

Part of the motivation for this, was that the consensus about the absence of a long-run inflation output

trade-off built from the stagflation experience was largely formed around this specification. More recently,

an alternative, the so-called New Keynesian Phillips curve has become more popular, both in quantitative

monetary models and in discussions of monetary policy (see, e.g., Woodford (2003), Christiano et al. (2005),

Smets and Wouters (2007)). Such a relationship can again be obtained from a log-linear approximation to

an optimal price-setting condition in the model described in Section 3.1, but with a different assumption

about price setting, e.g., when prices are staggered as in the Calvo model, so that each firm gets to reset

24



it price with a fixed probability, regardless of its previous history. The resulting Phillips curve can be

expressed as

 = ̂ + +1 (33)

where the relevant expectations are now the expectations at date  of inflation at date + 1

Within that framework, we confirm the two basic insights shown in the context of the previous model.

First that inflation and output may contract dramatically if the nominal interest is constrained by the zero

lower bound for a long time, as emphasized by Eggertsson and Woodford (2003). Second, that at zero

interest rate, even if the static trade-off between inflation and output is small, once expectations adjust,

the intertemporal trade-off can be very large or even explosive.

We start by characterizing the long, medium, and short-term equilibrium in the New Keynesian model.

Regarding the long-run equilibrium, we note from (33) that in the long run

̂ =
1− 




so that an increase in long-run inflation is associated with a (bit) of an increase in long-run output. This

effect is smaller the closer  is to 1. As in the model considered before, assuming that the long-run nominal

interest rate is positive, it follows from the output Euler equation (15) and the policy rule (16) that long-run

inflation is equal to the long-run target,  = ∗ and  = + ∗ (The proof of this result is analogous

to the proof of Proposition 1.)

Having characterized the long run, we can proceed with the medium-term equilibrium:

Proposition 10 Suppose A2, that   −∗  ̄  −∗,   1 and that the nominal interest rate is

always positive in the long run  ≥ . Then for any  ∈ [0 1] there exists a unique bounded solution given
by

̂

 =

1−

−  ( − 1)
 + 1

∗ +
 ( − 1)
 + 1

∗



 =

1 + 

 + 1
∗ +

 ( − 1)
 + 1

∗

̂ 
 =

µ
1− 


+ 

¶
∗ + 

 = (1 + )∗ +  

Proof. See Appendix.

Interestingly in this case, and in contrast to the New Classical Phillips curve, the medium-term equilib-

rium does not depend on the specific value of  the probability of exiting the lower bound in the medium

term. This is because the Phillips curve now takes the form



 = ̂


 + ∗  =  

in the medium term, where inflation expectations are pinned down by the long-run inflation target, rather

than being affected by  So the medium-term equilibrium exists in this case even if  = 0 in this model,

that is, if the natural rate of interest remains in the low state in the medium run,  =   The lower the

natural rate  , the lower equilibrium output and inflation in the medium run. The effect is however, not
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as dramatic as in the previous model, since inflation is largely anchored by future inflation expectations,

which are here assumed unaffected.

In the short run, however, the probability  does play a role in the equilibrium.13 But even if  = 0

there is a well defined equilibrium given by

̂ = −1
³
(1 + )

2 − 
´
∗ +  ( + 2) 

 =
³
(1 + )

2
+ 

´
∗ +  ( +  + 2)  

These expressions make clear that a negative value of  has even stronger adverse effects on short-run

output and inflation than is the case in the medium run. Moreover the adverse effects of a negative  on

inflation and output in the short term are larger the more flexible prices, i.e., the larger 

Extending the model by adding more periods reveals that the short-term impact on inflation and output

grows exponentially with the duration of the binding zero-lower-bound. This is related to the finding by

Carlstrom, Fuerst and Paustian (2012) that an interest rate peg has a larger impact on inflation the long

the duration of the peg, in a similar model. We thus analyze the behavior of the simple New Keynesian

model with discrete periods  = 0 1  and establish the following result.

Proposition 11 Suppose that the shocks are such that  =   ̄ for all  = 0 1   that  = ̄ for

all    and that the inflation target is constant ∗ = ̄∗ for all    . We assume ̄  −̄∗,   1

Moreover, we assume that  is sufficiently low for the lower bound to bind, that is + ̄∗  0, so that  = 0

for all  = 0 1  and that the nominal interest rate is positive in all periods    Then the model

(15)—(16) and (33) implies a unique bounded equilibrium given by

 =

(
− + 1 (1)

−
+ 2 (2)

−
for  = 0 1 

̄∗ for   

̂ =

(
0 +

1
1−1 (1)

−
+ 2

2−1 (2)
−

for  = 0 1 
1−


̄∗ for   

where 0 1, 2 1 2 are constants satisfying 2  0 and 0  1  1  −1  2. In this equilibrium,

output and inflation initially drop and then revert to the long-run steady state after date  . The magnitude

of the initial drop in inflation and output grows exponentially with  the duration of the natural rate of

interest in its low state 

Proof. See Appendix.

While the equilibrium literally continues to exist in the simple New Keynesian model, longer durations of

the zero-lower-bound imply ever larger drops in output and inflation, given the dominant terms 2 (2)
−

,

so that these drops eventually become unboundedly large as  −  becomes very large. Hence, the model

imposes a limit on the duration of the recession to prevent it from exploding. Again, our key result from

13The equilibrium conditions in the short run can be obtained by combining

 = ̂ + 

̂ = ̂



+ (1− )̂ 
 + 




+ (1− ) + 

with the solutions for the medium-term equilibrium listed in Proposition 10. Here we note that  = 0 and −1 = 0

since we assume a zero inflation target in period .
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before applies: increasing the inflation target temporarily mitigates the adverse impact of the shock. We

now consider the intertemporal trade-off under the assumptions of Proposition 11. The main result is

summarized as follows.

Proposition 12 Under the assumptions of Proposition 11, the intertemporal trade-off between output in

periods  = 0 1  and long term inflation is given by

̂

̄∗
=

0

̄∗
+



1 − 1
1

̄∗
(1)

−
+



2 − 1
2

̄∗
(2)

−


which is positive for large enough  since 
2−1  0 2

̄∗  0 and (2)
−

 1 is the dominant term.

This trade-off grows exponentially with  the duration of the natural rate of interest in its low state 

Proof. The result is obtained by differentiating expression in Proposition 11, noting that 1 and 2 do

not depend on ̄∗

The proposition states that in the New Keynesian the model, the intertemporal trade-off between

inflation and output can be arbitrarily large, if the natural rate of interest remains in its low state for a

long time.

9 Conclusion

We have emphasized the positive trade-off between inflation and output in both a standard New Classical

model and a New Keynesian model. In particular, the notion that monetary policy is neutral, once

inflation is fully anticipated, is inconsistent with the demand side of standard models of monetary policy

if the short-term interest rate is constrained by the zero lower bound. When the shocks are such that

the nominal interest rate is constrained by the zero bound, anticipated inflation is far from neutral, with

output increasing if inflation is anticipated to rise. Moreover, contrary to the common belief that inflation

is less effective at stimulating output when inflation becomes more and more anticipated, the benefits of

higher anticipated inflation can be extremely large at the zero bound.

The results presented here suggest that it may be beneficial to let the near-term inflation target move

over time in a way that depends on the state of the economy. In particular, our analysis reveals that

output and inflation can be stabilized more effectively by raising targeted inflation in the medium run, i.e.,

in a relatively short period after the shock which brought the economy to the zero bound has subsided.

However, as in conventional analyses, once the economy has exited from the zero lower bound, there is no

meaningful gain from raising the long-run inflation target.
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A Appendix: Proof of Propositions for the New Classical Model

A.1 Proof of Proposition 2

Proof. Under the assumptions A1, ̄  −∗,   1 and that the nominal interest rate is always positive

in the long run, it follows from Proposition 1 that a long-run equilibrium is well defined with ̂ = 0 and

 = ∗ Next, suppose, as a way of contradiction, that a medium run equilibrium
n
  ̂  

o
satisfying (3) and (15)—(16) exists. Perfect foresight between periods  and  implies  =   so

that the aggregate supply equation (3) in period  implies ̂ = 0 On the demand side, consider two

alternative cases. First, if  + ∗ + ( − ∗ ) ≤ 0 then  = 0 by (16). Since  + ∗  0 by

assumption, it follows from (15) that ̂ =  (∗ +  )  0. Alternatively, if 

+

∗
+(−∗ )  0,

then   0 by (16). In this case, (15) implies

̂ = − ( − ∗ −  ) = − +  (∗ +  )  0

So in both cases (15)—(16) imply that ̂  0 This leads to a contradiction with the implication of (3)

according to which ̂ = 0. Hence no medium run equilibrium
n
  ̂  

o
satisfying (3) and (15)—(16)

exists.

A.2 Proof of Proposition 3

Proof. Under the assumptions A2, ̄  −∗,   1 and that the nominal interest rate is always positive

in the long run, it follows from Proposition 1 that ̂ = 0 Using this, equations (19)—(24) can be written

in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 − − 0 0 0 0 0

− (1− ) 1−  0 − 0 0 0 0

0 0 1 0  0 0 0

0 0 0 1 0  0 0

0 0 0 0 1 0 0 0

0 − 0 0 0 1 0 0

0 0 0 0 0 0 1 −
−(1− ) − −(1− ) − 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣







̂ 


̂











̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

(∗ + )

(∗ + )

0

 − ( − 1)∗
0



⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We note that the determinant of the matrix on the left is  So, provided that   0 and that

  0 we can invert the matrix to obtain the solution expressed in the proposition.

A.3 Proof of Proposition 6

Proof. Under the assumptions A2, ̄  −∗,   1 and that the nominal interest rate is always positive

in the long run, it follows from Proposition 1 that ̂ = 0 and that  = ∗ The assumption   −∗
furthermore implies that the nominal interest rate is not constrained by the zero bound in the short term.

Using this, the equations characterizing the short and medium term equilibrium are given by (19)—(21),
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(24) and

 =  + ∗ + (

 − ∗ ) (34)



 =  + ∗ + (


 − ∗ ) (35)

 =  + ∗ +  ( − ∗) (36)

̂ = ̂

 + (1− )̂ 

 −  + 

 + (1− ) +   (37)

Combining the last two equations yields

̂ = ̂

 + (1− )̂ 

 −  (∗ +  ( − ∗)) + 

 + (1− )  (38)

Equations (19)—(21), (24), (34)—(35), (38) can in turn be written in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

 − − 0 0 0 0 0

− (1− ) 1−  0 − 0 0 0 0

0 0 1 0  0 0 0

0 0 0 1 0  0 0

− 0 0 0 1 0 0 0

0 − 0 0 0 1 0 0

0 0 0 0 0 0 1 −
−(1− ) − −(1− ) − 0 0  1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣







̂ 


̂











̂

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

(∗ + )

(∗ + )

 − ( − 1)∗
 − ( − 1)∗

0

 ( − 1)∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


We note that the determinant of the matrix on the left is  ( + 1)
2
 So, provided that   0

we can invert the matrix to obtain the solution

 =  = 

 =

1


(∗ + ( − 1)∗ )

̂ = ̂ 
 = ̂


 = 0

 = ∗ + 



 = ∗ + 

̂ =


 (1 + )
(∗ + ( − 1)∗ +  ( − 1)∗)

 = ̂

Given that the expression for ̂ can be rewritten as ̂ =


(1+)
( + ( − 1)∗)  and that ̂ = 0

the trade-offs are given by ̂


= 
(1+)

and
̂ 




= 0

A.4 Proof of Proposition 7

Proof. Given the assumptions, Proposition 3 applies and determines the short-run and medium-run

equilibrium. Differentiating the expressions in Proposition 3 and noting that long-run inflation satisfies
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 =  =  = ∗ we obtain the trade-offs:

̂ 


 ()

¯̄̄̄
¯ ∗=∗
=


=0

=
̂ 



∗

¯̄̄̄
¯ ∗=∗
=


=0

µ


∗

¶−1
=   0

̂

 ( )

¯̄̄̄
¯=∗=∗
=


=0

=
̂



µ




¶−1 ¯̄̄̄¯=∗=∗
=


=0

=
̂



Ã







+ (1− )




!−1 ¯̄̄̄¯̄
=∗=

∗


=

=0

=

µ

(1− ) + 1


+ 

 − 1


¶µ


µ
1


+

 − 1


¶
+ (1− )

µ
1 + 


+

 − 1


¶¶−1
=   0

̂



¯̄̄̄
¯=∗=∗
=


=0

=
̂

∗
= 

(1− ) + 1




B Appendix: Nonlinear Model

B.1 Model

The nonlinear model described in the text is repeated here for convenience using (13) to eliminate  and

. The household’s optimal conditions for consumption and leisure are given by

() = (1 + )

£
(+1)+1Π

−1
+1

¤
(39)

 =
()

()
(40)

where

Π ≡ 

−1
(41)

and the nominal interest rate satisfies the zero lower bound constraint

 ≥ 0 (42)

The firms’ optimal conditions for pricing are given by

(1)


=



 − 1 (43)

and

−1

"
 ()

µ
(2)



¶− µ
(2)


− 

 − 1

¶#
= 0 (44)

and the aggregate price level satisfies

1 = 
(1)


+ (1− )

(2)


 (45)

Finally government policy is given by an interest rate reaction function

 = (ΠΠ
∗
  ) (46)
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where we assume that the function  () is non-negative for all values of its arguments (otherwise policy

would not be feasible given the zero bound) and increasing in Π. In addition, fiscal policy is assumed to

be such that (6) and (7) are satisfied. An equilibrium can now be defined as a set of stochastic processes

{(1)



(2)


Π  } and a fiscal policy that satisfy equations (6)—(7), (39)—(46) in all periods  ≥ 0

for given {Π∗ }

B.2 Long-run steady state: Proof of Proposition 8

Proof. Consider the long-run steady states given by constant values ̄ ̄ Π̄ ̄ as well as paths for

the price levels ̄(1) ̄(2) ̄ for given exogenous variables ̄ Π̄
∗
 that satisfy the above equations in all

periods  ≥ 1. Optimal pricing conditions for all  ≥ 1 are given by

̄(1)

̄
=



 − 1̄

and
̄(2)

̄
=



 − 1̄

given that 
¡
̄
¢
̄
¡
̄(2)̄

¢−
 0 by assumption. The two optimal pricing equations combined with

the aggregate price level equation (45)

1 = 
̄(1)

̄
+ (1− )

̄(2)

̄

imply

̄ = ̄(1) = ̄(2)

and

̄ =
 − 1




Next, combining this with (40) determines implicitly steady-state output using

(̄)

(̄)
=

 − 1


 (47)

To determine steady-state inflation, we use the consumption Euler equation (39) at the steady state

(̄)̄ = (1 + ̄)(̄)̄Π̄
−1
+1

for any  ≥ 1 This simplifies to

−1 = (1 + ̄)Π̄
−1
+1 (48)

Combining this with the government’s interest-rate reaction function

̄ = (Π̄ Π̄
∗
  ̄)

we get

Π̄+1 = (1 + (Π̄ Π̄
∗
  ̄)) (49)

for any  ≥ 1 As analyzed in Benhabib, Schmitt-Grohé and Uribe (2001), this equation admits at least

two constant solutions. One solution Π̄ = Π̄
∗
  and ̄ = (Π̄∗  Π̄

∗
  ̄) = −1Π̄∗ − 1  0 for all  ≥ 1 The

other constant solution is Π̄ =   1 and ̄ = 
¡
 Π̄∗  ̄

¢
= 0 for all  ≥ 1 As shown in Woodford (2003,

chap. 2), for any initial inflation Π0 ∈
¡
0 Π̄∗

¢
 one of these steady states will eventually be reached. In

contrast, for any Π0  Π̄
∗
 inflation will increase forever and get unboundedly large. Such an equilibrium

is not consistent with a constant steady state inflation.
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B.3 Non-existence of medium term equilibrium: Proof of Proposition 9

Proof. Given Assumption 1’, there is perfect foresight between periods  and  so that the optimal

pricing conditions (43)—(44) simplify to

 (1)


=



 − 1

and
 (2)


=



 − 1 

given that  ( ) ( (2) )
−

 0 by assumption. Combining this with (45) yields

 =  (1) =  (2)

 =
 − 1




Using (40), we can determine medium-term output supplied

( )

( )
=

 − 1




so that

 = ̄ (50)

On the demand side, however, equilibrium output must satisfy (39) or

( ) = (1 +  )(̄)̄Π̄
−1
 

Using (50), this simplifies to

 = (1 +  )̄Π̄
−1


so that   0 if condition (32) holds. It follows that the zero-lower bound condition (42) is violated and

hence that there is no medium-term equilibrium if (32) holds.

C Appendix: Proof of Propositions for the NewKeynesianModel

C.1 Proof of Proposition 10

Proof. Under the assumptions A2, ̄  −∗,   1 and that the nominal interest rate is always positive

in the long run, the output level in the long run is given by ̂ =
1−


 and  = ∗  =  + ∗ as

discussed in the text. In addition, we have ̂ =
1−


∗  = +1 = ∗ for any  = 

Moving to the medium run, we have two possible states, i) that the shock reverts back to steady state

 =   0 (which we call “”) and ii) that the shock remains at  =   −∗ The model then
solves the following six equations in the medium run

 = ̂ 
 + ∗



 = ̂


 + ∗

 
 = ̂ − ( − ∗ − )



 = ̂ − (


 − ∗ − )

 = 0



 =  + ∗ + (


 − ∗ )
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These equilibrium conditions can be written in matrix form as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 − 0 0 0

0 1 0 − 0 0

0 0 1 0  0

0 0 0 1 0 

0 0 0 0 1 0

0 − 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣







̂ 


̂









⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗

1−


∗ + ∗ + 
1−


∗ + ∗ + 

0

 − ( − 1)∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We note that the determinant of the matrix on the left hand side is 1 +   0 So we can invert that

matrix to express the equilibrium in the medium term as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣







̂ 


̂









⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 + )∗ + 
1+

+1
∗ +

(−1)
+1

∗³
1−

+ 

´
∗ + 

1−

−(−1)
+1

∗ +
(−1)
+1

∗
0

(1+)

+1
∗ − (−1)

+1
∗ + 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦


C.2 Proof of Proposition 11

We start by characterizing the long-run steady state. We next describe the equilibrium after period  and

finish with a description of the equilibrium for dates  = 0 1 

Long-run steady state. The model given by equations (15)—(16) and (33) admits a long-run steady

state ̄ ̄  ̄ ̄ that satisfies

̄ = ̄ + ̄

̄ = max{0 ̄ + ̄∗ + (̄ − ̄∗)}
(1− ) ̄ = ̄

Combining the first two equations and using the assumption ̄  0 we obtain

̄ + ̄ = ̄ + ̄∗ + (̄ − ̄∗)

which simplifies to ( − 1) (̄−̄∗) = 0 and hence to ̄ = ̄∗, since   1 It follows that the steady-state

level of output (̂) is given by ̄ =
1−


̄∗

Equilibrium after period  After period  , the equations (15)—(16) and (33) reduce to

 = ̂ + +1

̂ = ̂+1 − ( −+1 − ̄)

 = ̄ + ̄∗ + ( − ̄∗)
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using the assumption  ≥ 0 for all    Combining the last two equations to eliminate  we can rewrite

the system in matrix form as"
1 0

 1

#


"
+1

̂+1

#
=

"
−1 −−1
 1

#"


̂

#
+

"
0

 (1− ) ̄
∗

#
or

+1 =  +  (51)

where

 ≡
"


̂

#
  ≡

"
1 0

 1

#−1 "
0

 (1− )
∗


#
=

"
0

 (1− ) ̄
∗

#
and

 =

"
1 0

 1

#−1 "
−1 −−1
 1

#
=

"
−1 −−1


¡
 − −1

¢
1 + −1

#


Note that with   1 we have det () = −1 ( + 1)  1 and  () = −1+−1+1 This implies:

det ()−  () = −1 + −1 ( − 1)  −1 and det () +  () = 1

( +  ( + 1) + 2)  1 It then

follows from Proposition C.1. in Woodford (2003, p. 670) that the matrix  has both eigenvalues outside

the unit circle, so that −1 exists and has both eigenvalues inside the unit circle.

Iterating forward equation (51), we have

 = −−1 +
−1+1

= 

¡−−1 −−2−− +−+
¢


Since lim→∞
−+ = 0 for any bounded process {}  we obtain the unique bounded solution

 = −
∞X
=

−(−+1) = −−1 ¡ −−1
¢−1

 = ( −)
−1

 =

"
̄∗

1−


̄∗

#


so that inflation and output are at their long-run steady state at all dates   

Equilibrium in periods  = 0 1   With the zero lower bound assumed binding in periods  =

0 1   the model reduces to

 = ̂ + +1

̂ = ̂+1 + (+1 + ) (52)

Combining the last two equations yields

 [ − (1 +  + )+1 + +2] =  (53)

Let  be the “steady state” value of  in periods  = 0  It satisfies  − (1 +  + ) +  = 

or  = − We can then rewrite (53) as the homogenous equation

 [ () ̃+2] = 0 (54)

where ̃ ≡  −  the lag polynomial  () is given by

 () ≡ 2 − (1 +  + )+ 

=  (1− 1) (1− 2) (55)
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and 1 2 are the two roots of the characteristic polynomial  () = 2 − (1 +  + )+ 1 Note that

 () is convex, and  (0) = 1  0,  (1) = −  0 
¡
−1

¢
= −−1  0 so that  () = 0 admits

two real solutions 0  1  1  −1  2. Expanding (55) and comparing it to  () reveals that

12 = −1 Using this, we can rewrite (54) as

0 =  [(1− 1) (1− 2) ̃+2]

Defining  ≡ (1− 1) ̃ this can be expressed as

0 = 

£−−12 −1 (1− 2) +2
¤
= 

£¡
1− −12 −1

¢
+1

¤
or

+1 = 

£
−12 +2

¤
= 

h

−(−−1)
2 

i


where the last equality is obtained after iterating forward. Using again the definition of  we can then

write

 [(1− 1) ̃+1] = 

h

−(−−1)
2 (̃ − 1̃−1)

i
or

 [̃+1 − 1̃] = 

h

−(−−1)
2 (̃ − 1̃−1)

i


This expression can be iterated forward to yield

̃ = 

h
−−11 

−(−−1)
2 (̃ − 1̃−1) + −11 ̃+1

i
= 

h
−−(−)1

³
−−11 

−(−−1)
2 + −−21 

−(−−2)
2 + −−31 

−(−−3)
2 + + 01

0
2

´
(̃ − 1̃−1) + 

−(−)
1 ̃

i
= 

−(−)
1 

"
−1−

¡
1
−1
2

¢−
1− ¡1−12 ¢ (̃ − 1̃−1) + ̃

#


Note that (53) implies

 = (1 + ) ̄∗ + 

̃ =  −  = (1 + ) (̄∗ + )

and

−1 = (1 +  + ) − ̄∗ +  =
³
(1 + )

2
+ 

´
̄∗ + (2 +  + )

̃−1 = −1 −  =
³
(1 + )

2
+ 

´
(̄∗ + )

It follows, using 12 = 1 that

̃ = 
−(−)
1

"
−1−

¡
1
−1
2

¢−
1− ¡1−12 ¢

³
(1 + )− 1

³
(1 + )

2
+ 

´´
+ (1 + )

#
(̄∗ + )

=

"
(1)

− − (2)−
1− ¡1−12 ¢

³
(1 + )− 1

³
(1 + )

2
+ 

´´
+ (2)

−
(1 + )

#
(̄∗ + )
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or

 =

(
− + 1 (1)

−
+ 2 (2)

−
for  = 0 1 

̄∗ for   

where

1 =
¡
1− 1

−1
2

¢−1 ³
(1 + )− 1

³
(1 + )

2
+ 

´´
(̄∗ + )

2 =

µ
(1 + )− 1

1− 1
−1
2

³
(1 + )− 1

³
(1 + )

2
+ 

´´¶
(̄∗ + )

=
¡
1− 1

−1
2

¢−1 ¡¡
1 +  − −12

¢
(1 + ) + 

¢
1 (̄

∗ + ) 

Given that  + ̄∗  0 we have 2  0 In addition, 1 + 2 = (1 + ) (̄∗ + )  0 so that in period 

 = − + 1 + 2  −
To solve for output, we iterate forward (52) to obtain

̂ = 

−X
=1

(+ + ) +̂ =

−X
=1

(1 (1)
−−

+ 2 (2)
−−

) + ̄ + (̄∗ + )

= ̄ + 

"
̄∗ +  + 1

1− (1)−
1− 1

+ 2
1− (2)−
1− 2

#

= ̄ + 

"
̄∗ +  +

1

1− 1
+

2

1− 2
− 1

(1)
−

1− 1
− 2

(2)
−

1− 2

#

= 0 − 1
(1)

−

1− 1
− 2

(2)
−

1− 2


where 0 ≡ ̄ + 
³
̄∗ +  + 1

1−1 +
2

1−2

´
 and the second equality is obtained by noting that (52)

implies ̂ = ̄ + (̄∗ + )
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