A Service of Leibniz-Informationszentrum Wirtschaft Leibniz Information Centre Cúrdia, Vasco; Del Negro, Marco; Greenwald, Daniel L. Working Paper Rare shocks, great recessions Staff Report, No. 585 #### **Provided in Cooperation with:** Federal Reserve Bank of New York Suggested Citation: Cúrdia, Vasco; Del Negro, Marco; Greenwald, Daniel L. (2012): Rare shocks, great recessions, Staff Report, No. 585, Federal Reserve Bank of New York, New York, NY This Version is available at: https://hdl.handle.net/10419/93650 #### Standard-Nutzungsbedingungen: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. #### Terms of use: Documents in EconStor may be saved and copied for your personal and scholarly purposes. You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public. If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence. # Federal Reserve Bank of New York Staff Reports # Rare Shocks, Great Recessions Vasco Cúrdia Marco Del Negro Daniel L. Greenwald Staff Report No. 585 December 2012 This paper presents preliminary findings and is being distributed to economists and other interested readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of the authors and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System. Any errors or omissions are the responsibility of the authors. #### Rare Shocks, Great Recessions Vasco Cúrdia, Marco Del Negro, and Daniel L. Greenwald *Federal Reserve Bank of New York Staff Reports*, no. 585 December 2012 JEL classification: C32, E32 #### **Abstract** We estimate a DSGE model where rare large shocks can occur, but replace the commonly used Gaussian assumption with a Student's *t*-distribution. Results from the Smets and Wouters (2007) model estimated on the usual set of macroeconomic time series over the 1964-2011 period indicate that 1) the Student's *t* specification is strongly favored by the data, even when we allow for low-frequency variation in the volatility of the shocks, and 2) the estimated degrees of freedom are quite low for several shocks that drive U.S. business cycles, implying an important role for rare large shocks. This result holds even if we exclude the Great Recession from the sample. We also show that inference about low-frequency changes in volatility—and, in particular, inference about the magnitude of the Great Moderation—is different once we allow for fat tails. Key words: Bayesian analysis, DSGE models, fat tails, stochastic volatility, Great Recession Cúrdia: Federal Reserve Bank of San Francisco (e-mail: vasco.curdia@sf.frb.org). Del Negro: Federal Reserve Bank of New York (e-mail: marco.delnegro@ny.frb.org). Greenwald: New York University (e-mail: dlg340@nyu.edu). For useful comments and suggestions, the authors thank Marek Jarocinski, Alejandro Justiniano, Ulrich Mueller, and Andriy Norets, as well as seminar participants at the Bank of France, the 2011 Eastern Economic Association conference, the European Central Bank, the 2011 conference of the European Society of Bayesian Econometrics, the 2012 European Summer Symposium in International Macroeconomics, the Federal Reserve Bank of Chicago, the Federal Reserve Bank of St. Louis Econometrics Workshop, the 2012 fall meeting of the National Bureau of Economic Research DSGE Group, the 2012 Rimini Conference in Economics and Finance, Seoul National University (conference in honor of Chris Sims), and the 2011conference of the Society for Computational Economics. The views expressed in this paper are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System. # 1 Introduction Great Recessions do not happen every decade — this is why they are dubbed "great" in the first place. To the extent that DSGE models rely on shocks in order to generate macroeconomic fluctuations, they may need to account for the occurrence of rare but very large shocks to generate an event like the Great Recession. For this reason, we estimate a linearized DSGE model assuming that shocks are generated from a Student-t distribution, which is designed to capture fat tails, in place of a Gaussian distribution, which is the standard assumption in the DSGE literature. The number of degrees of freedom in the Student-t distribution, which determines the likelihood of observing rare large shocks (and which we allow to vary across shocks), is estimated from the data. We show that estimating DSGE models with Student-t distributed shocks is a fairly straightforward extension of current methods (described, for instance, in An and Schorfheide (2007)). In fact, the Gibbs sampler is a simple extension of Geweke (1993)'s Gibbs sampler for a linear model to the DSGE framework. The paper is closely related to Chib and Ramamurthy (2011) who, in independent and contemporaneous work, also propose a similar approach to the one developed here for estimating DSGE models with Student-t distributed shocks. One difference between this work and Chib and Ramamurthy (2011)'s is that we also allow for low-frequency changes in the volatility of the shocks, in light of the evidence provided by several papers in the DSGE literature (Justiniano and Primiceri (2008), Fernández-Villaverde and Rubio-Ramírez (2007), Liu et al. (2011), among others). We specifically follow the approach in Justiniano and Primiceri (2008), who postulate a random walk as the law of motion of the log volatilities. We show that ignoring low-frequency movements in volatility biases the results toward finding evidence in favor of fat tails. We apply our methodology to the Smets and Wouters (2007) model (henceforth, ¹Another difference between this paper and Chib and Ramamurthy (2011) is that Chib and Ramamurthy use a simple three equation New Keynesian model, while we use the full Smets and Wouters (2007) model. SW), estimated on the same seven macroeconomic time series used in SW. Our baseline data set starts in 1964Q4 and ends in 2011Q1, but we also consider a subsample ending in 2004Q4 to analyze the extent to which our findings depend on the inclusion of the Great Recession in our sample. We use the SW model both because it is a prototypical medium-scale DSGE model, and because its empirical success has been widely documented.² Models that fit the data poorly will necessarily have large shocks. We therefore chose a DSGE model that is at the frontier in terms of empirical performance to assess the extent to which macro variables have fat tails. The motivation for our work arises from evidence like that displayed in Figure 1. The top two panels of Figure 1 show the time series of the smoothed "discount rate" and "marginal efficiency of investment" shocks (in absolute value) from the SW model estimated under Gaussianity. The shocks are normalized, so that they are expressed in standard deviations units. The solid line is the median, and the dashed lines are the posterior 90% bands. The Figure shows that the size of the shocks is above 3.5 standard deviations on several occasions, one of which is the recent recession. The probability of observing such large shocks under Gaussianity is very low. In addition to this DSGE model-based evidence, existing literature shows that the unconditional distribution of macro variables is not Gaussian (e.g., see Christiano (2007) for pre-Great Recession evidence, and Ascari et al. (2012) for more recent work). While the visual evidence against Gaussianity is strong, there are several reasons to perform a more careful quantitative analysis. First, these shocks are obtained under the counterfactual assumption of Gaussianity, that is, using a misspecified model. Second, a quantitative estimate of the fatness of the tails is an obvious object of interest. Third, it is important to disentangle the relative contribution of fat tails from that of (slow moving) time-varying volatility. The bottom panel of Figure 1, which shows the evolution of the smoothed monetary policy shocks ² The forecasting performance of the SW model was found to be competitive in terms of accuracy relative to private forecasters and reduced-form models not only during the Great Moderation period (see Smets and Wouters (2007) and Edge and Gürkaynak (2010)), but also including data for the Great Recession (Del Negro and Schorfheide (2012)). estimated under Gaussianity (again, normalized, and in absolute value), provides a case in point, as the clustering of large shocks in the late 70s and 80s is quite evident. In general, studying the importance of fat tails by looking only at the kurtosis in the unconditional distribution of either macro variables (as in Ascari et al. (2012)) or of estimated shocks can be misleading, because the evidence against Gaussianity can be due to low-frequency changes in volatility. Conversely, the presence of large shocks can potentially distort the assessment of low-frequency movements in volatility. To see this, imagine estimating a model that allows only for slow moving time variation in volatility, but no fat tails, in presence of shocks that fit the pattern shown in the top panel of Figure 1. As the stochastic volatility will try to fit
the squared residuals, such a model may produce a time series of volatilities peaking around 1980, and then again during the Great Recession. Put differently, very large shocks may be interpreted as persistent changes in volatility, when they may in fact be rare realizations from a process with a time-invariant distribution. For instance, the extent to which the Great Recession can be interpreted as a permanent rise in macroeconomic volatility may depend on whether we allow for rare large shocks. Finally, we expect that the evidence provided in this paper will be further motivation for the study of non-linear models. First, if shocks have fat tails, linearization may simply produce a poor approximation of the full model. Second, non-linearities may explain away the fat tails: what we capture as large rare shocks may in fact be Gaussian shocks whose effect is amplified through a non-linear propagation mechanism. Assessing whether this is the case will be an important line of research. In fact, the extent to which non-linearities can alleviate the need for fat-tailed shocks to explain business cycles could possibly become an additional metric for evaluating their usefulness. Our findings are the following. We provide strong evidence that the Gaussianity assumption in DSGE models is counterfactual, even after allowing for low-frequency changes in the volatility of shocks. Such strong evidence is remarkable considering that our sample consists of macro variables only – it appears from our results that fat tails are not just a feature of financial data, but of macro data as well. This finding is robust to excluding the Great Recession from the sample. We follow two approaches in our analysis: comparing the fit of different specifications using Bayesian marginal likelihoods, and inference on the posterior estimates of the degrees of freedom of the Student-t distribution. We demonstrate that the model fit improves considerably if we allow for Student-t shocks in addition to stochastic volatility. Further, we show that the posterior estimates of the Student-t distribution's degrees of freedom for some shocks are quite low, indicating a substantial degree of fat tails. From our results, we can cluster the shocks in the model into three broad categories. Shocks to productivity, to the household's discount rate, to the marginal efficiency of investment, and to the wage markup all have fat tails, even in the case with stochastic volatility. Conversely, shocks to government expenditures and to price markups have posterior means for the degrees of freedom that are somewhat high, indicating that their distribution is not far from Gaussian, regardless of whether we allow for stochastic volatility. Finally, the degrees of freedom for monetary policy shocks are estimated to be extremely low in the case with constant volatility, but shift dramatically toward higher values when we allow for stochastic volatility. In order to evaluate the importance of fat tails in the study of the business cycle, we consider an experiment in which we shut down the fat tails, and recreate a counterfactual path of the economy in their absence. We show that in this case almost all recessions in the sample would have been of roughly the same magnitude, and the Great Recession would have been essentially a "run-of-the-mill" recession. Finally, we show that allowing for fat tails changes the inference about slow moving stochastic volatility. Specifically, we reevaluate the evidence in favor of the Great Moderation hypothesis, discussed for example in Justiniano and Primiceri (2008), and find that when we consider Student-t shocks, the magnitude of the reduction in the volatility of output and other variables is smaller. Similarly, we show that the evidence in favor of a permanent increase in volatility following the Great Recession is weaker when we consider the possibility that shocks have a Student-t distribution. The rest of the paper proceeds as follows. Section 2 discusses Bayesian inference. Section 3 describes the model, as well as our set of observables. Section 4 describes the results. We conclude in section 5. # 2 Bayesian Inference This section begins with a description of the estimation procedure for a DSGE model with both Student-t distributed shocks and time-varying volatilities. The Gibbs sampler combines the algorithm proposed by Geweke (1993)'s for a linear model with Student-t distributed shocks (see also Geweke (1994), and Geweke (2005) for a textbook exposition) with the approach for sampling the parameters of DSGE models with time-varying volatilities discussed in Justiniano and Primiceri (2008). Section A.2 discusses the computation of the marginal likelihood. The model consists of the standard measurement and transition equations: $$y_t = Z(\theta)s_t, \tag{1}$$ $$s_{t+1} = T(\theta)s_t + R(\theta)\varepsilon_t, \tag{2}$$ for t = 1, ..., T, where y_t , s_t , and ε_t are $n \times 1$, $k \times 1$, and $\bar{q} \times 1$ vectors of observables, states, and shocks, respectively. Call $p(\theta)$ the prior on the vector of DSGE model parameters θ . We assume that: $$\varepsilon_{q,t} = \sigma_{q,t} \tilde{h}_{q,t}^{-1/2} \eta_{q,t}, \text{ all } q, t, \tag{3}$$ where $$\eta_{a,t} \sim \mathcal{N}(0,1)$$, i.i.d. across $q, t,$ (4) $$\lambda_q \tilde{h}_{q,t} \sim \chi^2(\lambda_q)$$, i.i.d. across q, t . (5) For the prior on the parameters λ_q we assume Gamma distributions with parameters $\underline{\lambda}/\underline{\nu}$ and $\underline{\nu}$: $$p(\lambda_q|\underline{\lambda},\underline{\nu}) = \frac{(\underline{\lambda}/\underline{\nu})^{-\underline{\nu}}}{\Gamma(\underline{\nu})} \lambda_q^{\underline{\nu}-1} exp(-\underline{\nu}\frac{\lambda_q}{\underline{\lambda}}), \text{ i.i.d. across } q.$$ (6) where $\underline{\lambda}$ is the mean and $\underline{\nu}$ is the number of degrees of freedom (Geweke (2005) assumes a Gamma with one degree of freedom). Define $$\tilde{\sigma}_{q,t} = \log\left(\sigma_{q,t}/\sigma_q\right),\tag{7}$$ where the parameters $\sigma_{1:\bar{q}}$ (the non-time varying component of the shock variances) are included in the vector of DSGE parameters θ . We assume that the $\tilde{\sigma}_{q,t}$ follows an autoregressive process: $$\tilde{\sigma}_{q,t} = \rho_q \tilde{\sigma}_{q,t-1} + \zeta_{q,t}, \ \zeta_{q,t} \sim \mathcal{N}(0, \omega_q^2), \text{ i.i.d. across } q, t.$$ (8) The prior distribution for ω_q^2 is an inverse Gamma $\mathcal{IG}(\nu_\omega/2, \nu_\omega \underline{\omega}^2/2)$, that is: $$p(\omega_q^2|\nu_\omega,\underline{\omega}^2) = \frac{\left(\nu_\omega\underline{\omega}^2/2\right)^{\frac{\nu_\omega}{2}}}{\Gamma(\nu_\omega/2)}(\omega_q^2)^{-\frac{\nu_\omega}{2}-1}exp\left[-\frac{\nu_\omega\underline{\omega}^2}{2\omega_q^2}\right], \text{ i.i.d. across } q.$$ (9) We consider two types of priors for ρ_q : $$p(\rho_q|\omega_q^2) = \begin{cases} 1 & \text{SV-UR} \\ \mathcal{N}(\bar{\rho}, \omega_q^2 \bar{v}_\rho) \mathcal{I}(\rho_q), \text{ i.i.d. across } q, \ \mathcal{I}(\rho_q) = \begin{cases} 1 \text{ if } |\rho_q| < 1 \\ 0 \text{ otherwise,} \end{cases} & \text{SV-S} \end{cases}$$ (10) In the SV-UR case $\tilde{\sigma}_{q,t}$ follows a random walk as in Justiniano and Primiceri (2008), while in the SV-S it follows a stationary process as in Fernández-Villaverde and Rubio-Ramírez (2007). In both cases the $\sigma_{q,t}$ process is very persistent: in the SV-UR case the persistence is wired into the assumed law of motion for $\tilde{\sigma}_{q,t}$, while in the SV-S case it is enforced by choosing the hyperparameters $\bar{\rho}$ and $\bar{\sigma}_{\rho}$ in such a way that the prior for ρ_q puts most mass on high values of ρ_q . As a consequence, $\sigma_{q,t}$ and $\tilde{h}_{q,t}$ play very different roles in (3): $\sigma_{q,t}$ allows for slow-moving trends in volatility, while $\tilde{h}_{q,t}$ allows for large transitory shocks. Finally, to close the model we make the following distributional assumptions on the initial conditions $\tilde{\sigma}_{q,0}$, $q = 1, ..., \bar{q}$: $$p(\tilde{\sigma}_{q,0}|\rho_q,\omega_q^2) = \begin{cases} 0 & \text{SV-UR} \\ \mathcal{N}(0,\omega_q^2/(1-\rho_q^2)), \text{ i.i.d. across } q & \text{SV-S} \end{cases}$$ (11) where the restriction under the SV-UR case is needed to obtain identification. In the stationary case we have assumed that $\tilde{\sigma}_{q,0}$ is drawn from the ergodic distribution. # 2.1 The Gibbs-Sampler The joint distribution of data and unobservables (parameters and latent variables) is given by: $$p(y_{1:T}|s_{1:T},\theta)p(s_{1:T}|\varepsilon_{1:T},\theta)p(\varepsilon_{1:T}|\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\theta)p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})$$ $$p(\tilde{\sigma}_{1:T}|\rho_{1:\bar{q}},\omega_{1:\bar{q}}^{2})p(\lambda_{1:\bar{q}})p(\rho_{1:\bar{q}}|\omega_{1:\bar{q}}^{2})p(\omega_{1:\bar{q}}^{2})p(\theta), \quad (12)$$ where $p(y_{1:T}|s_{1:T}, \theta)$ and $p(s_{1:T}|\varepsilon_{1:T}, \theta)$ come from the measurement and transition equation, respectively, $p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta)$ obtains from (3) and (4): $$p(\varepsilon_{1:T}|\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\theta) \propto \prod_{q=1}^{\bar{q}} \left(\prod_{t=1}^{T} \tilde{h}_{q,t}^{-1/2} \sigma_{q,t} \right) exp \left[-\sum_{t=1}^{T} \tilde{h}_{q,t} \varepsilon_{q,t}^{2} / 2\sigma_{q,t}^{2} \right], \tag{13}$$ $p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})$ obtains from (5) $$p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}}) = \prod_{q=1}^{\bar{q}} \prod_{t=1}^{T} \left(2^{\lambda_q/2} \Gamma(\lambda_q/2) \right)^{-1} \lambda_q^{\lambda_q/2} \tilde{h}_{q,t}^{(\lambda_q-2)/2} \exp(-\lambda_q \tilde{h}_{q,t}/2), \tag{14}$$ and $p(\tilde{\sigma}_{1:T}|\omega_{1:\bar{q}}^2)$ obtains from expressions (8) and (11): $$p(\tilde{\sigma}_{1:T}|\rho_{1:\bar{q}},\omega_{1:\bar{q}}^2) \propto \prod_{q=1}^{\bar{q}} (\omega_q^2)^{-(T-1)/2}
exp\left[-\sum_{t=2}^T (\tilde{\sigma}_{q,t} - \rho_q \tilde{\sigma}_{q,t-1})^2 / 2\omega_q^2\right] p(\tilde{\sigma}_{q,1}|\rho_q,\omega_q^2),$$ (15) where $$p(\tilde{\sigma}_{q,1}|\rho_q,\omega_q^2) \propto \begin{cases} (\omega_q^2)^{-1/2} exp\left(-\frac{\tilde{\sigma}_{q,1}^2}{2\omega_q^2}\right), & \text{SV-UR} \\ (\omega_q^2 (1-\rho_q^2))^{-1/2} exp\left(-\frac{\tilde{\sigma}_{q,1}^2}{2\omega_q^2 (1-\rho_q^2)}\right). & \text{SV-S} \end{cases}$$ (16) Finally, $p(\lambda_{1:\bar{q}}) = \prod_{q=1}^{\bar{q}} p(\lambda_q | \underline{\lambda}), \ p(\omega_{1:\bar{q}}^2) = \prod_{q=1}^{\bar{q}} p(\omega_q^2 | \nu, \underline{\omega}^2).$ The sampler consists of six blocks. (1) Draw from $p(\theta, s_{1:T}, \varepsilon_{1:T} | \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$. This is accomplished in two steps: (1.1) Draw from the marginal $p(\theta|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$, where $$p(\theta|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^{2}, y_{1:T})$$ $$\propto \left[\int p(y_{1:T}|s_{1:T}, \theta) p(s_{1:T}|\varepsilon_{1:T}, \theta) p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) \cdot d(s_{1:T}, \varepsilon_{1:T}) \right] p(\theta)$$ $$= p(y_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) p(\theta)$$ $$(17)$$ where $$p(y_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) = \int p(y_{1:T}|s_{1:T}, \theta)p(s_{1:T}|\varepsilon_{1:T}, \theta)p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) \cdot d(s_{1:T}, \varepsilon_{1:T})$$ is computed using the Kalman filter with (1) as the measurement equation and (2) as transition equation, with $$\varepsilon_t | \tilde{h}_{1:T}, \tilde{\sigma}_{1:T} \sim \mathcal{N}(0, \Delta_t),$$ (18) where Δ_t are $\bar{q} \times \bar{q}$ diagonal matrices with $\sigma_{q,t}^2 \cdot \tilde{h}_{q,t}^{-1}$ on the diagonal. The draw is obtained from a Metropolis-Hastings step. - (1.2) Draw from the conditional $p(s_{1:T}, \varepsilon_{1:T} | \theta, \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$. This is accomplished using the simulation smoother of Durbin and Koopman (2002). - (2) Draw from $p(\tilde{h}_{1:T}|\theta, s_{1:T}, \varepsilon_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$. This is accomplished by drawing from $$p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta)p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})$$ $$\propto \prod_{q=1}^{\bar{q}} \prod_{t=1}^{T} \tilde{h}_{q,t}^{(\lambda_q-1)/2} \exp(-\left[\lambda_q + \varepsilon_{q,t}^2/\sigma_{q,t}^2\right] \tilde{h}_{q,t}/2), \quad (19)$$ which implies $$\left[\lambda_q + \varepsilon_{q,t}^2 / \sigma_{q,t}^2\right] \tilde{h}_{q,t} | \theta, \varepsilon_{1:T}, \tilde{\sigma}_{1:T}, \lambda_q \sim \chi^2(\lambda_q + 1). \tag{20}$$ (3) Draw from $p(\lambda_{1:\bar{q}}|\tilde{h}_{1:T}, \theta, s_{1:T}, \varepsilon_{1:T}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$. This is accomplished by drawing from $$p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})p(\lambda_{1:\bar{q}}) \propto \prod_{q=1}^{\bar{q}} \left((\underline{\lambda}/\underline{\nu})^{\underline{\nu}} \Gamma(\underline{\nu}) \right)^{-1} \left[2^{\lambda_q/2} \Gamma(\lambda_q/2) \right]^{-T} \lambda_q^{T\lambda_q/2 + \underline{\nu} - 1}$$ $$\left(\prod_{t=1}^T \tilde{h}_{q,t}^{(\lambda_q - 2)/2} \right) \exp \left[-\left(\frac{\underline{\nu}}{\underline{\lambda}} + \frac{1}{2} \sum_{t=1}^T \tilde{h}_{q,t} \right) \lambda_q \right]. \quad (21)$$ This is a non-standard distribution, hence the draw is obtained from a Metropolis-Hastings step. (4) Draw from $p(\tilde{\sigma}_{1:T}|\theta, s_{1:T}, \varepsilon_{1:T}, \tilde{h}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$. This is accomplished by drawing from $$p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta)p(\tilde{\sigma}_{1:T}|\rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2)$$ (22) using the algorithm developed by Kim et al. (1998), which we briefly describe in Appendix A.3. (5) Draw from $p(\omega_{1:\bar{q}}^2, \rho_{1:\bar{q}}|\tilde{\sigma}_{1:T}, \theta, s_{1:T}, \varepsilon_{1:T}, \tilde{h}_{1:T}, \lambda_{1:\bar{q}}, y_{1:T})$ using $$p(\tilde{\sigma}_{1:T}|\rho_{1:\bar{q}},\omega_{1:\bar{q}}^{2})p(\omega_{1:\bar{q}}^{2})p(\rho_{1:\bar{q}}|\omega_{1:\bar{q}}^{2}) \propto \prod_{q=1}^{\bar{q}} (\omega_{q}^{2})^{-\frac{\nu+T-1}{2}-1}$$ $$exp\left[-\frac{\nu\underline{\omega}^{2} + \sum_{t=2}^{T} (\tilde{\sigma}_{q,t} - \rho_{q}\tilde{\sigma}_{q,t-1})^{2}}{2\omega_{q}^{2}}\right]p(\tilde{\sigma}_{q,1}|\rho_{q},\omega_{q}^{2})p(\rho_{q}|\omega_{q}^{2}), \quad (23)$$ where $p(\tilde{\sigma}_{q,1}|\rho_q,\omega_q^2)$ is given by equation (16). In the SV-UR case ρ_q is fixed to 1, and we can draw ω_q^2 (i.i.d. across q) from: $$\omega_q^2 | \tilde{\sigma}_{1:T}, \dots \sim \mathcal{IG}\left(\frac{\nu+T}{2}, \frac{1}{2}\left(\nu\underline{\omega}^2 + \sum_{t=2}^T (\tilde{\sigma}_{q,t} - \tilde{\sigma}_{q,t-1})^2 + \tilde{\sigma}_{q,1}^2\right)\right).$$ (24) In the SV-S case the joint posterior of ρ_q , ω_q^2 is non-standard because of the likelihood of the first observation $p(\tilde{\sigma}_1|\rho_q,\omega_q^2)$. We therefore use the Metropolis-Hastings step proposed by Chib and Greenberg (1994). Specifically, we use as proposal density the standard Normal-Inverted Gamma distribution, that is, $$\omega_q^2 | \tilde{\sigma}_{1:T}, \dots \sim \mathcal{IG}\left(\frac{\nu + T - 1}{2}, \frac{1}{2}\left(\nu\underline{\omega}^2 + \sum_{t=2}^T \tilde{\sigma}_{q,t}^2 + \bar{v}_\rho^{-1}\bar{\rho}^2 - \hat{V}_q^{-1}\hat{\rho}_q^2\right)\right), \rho_q | \omega_q^2, \tilde{\sigma}_{1:T}, \dots \sim \mathcal{N}\left(\hat{\rho}_q, \omega_q^2 \hat{V}_q\right), \text{i.i.d. across } q,$$ (25) where $\hat{\rho}_q = \hat{V}_q \left(\bar{v}_\rho^{-1} \bar{\rho} + \sum_{t=2}^T \tilde{\sigma}_{q,t} \tilde{\sigma}_{q,t-1} \right)$, $\hat{V}_q = (\bar{v}_\rho^{-1} + \sum_{t=2}^T \tilde{\sigma}_{q,t-1}^2)^{-1}$. We then accept/reject this draw using the proposal density and the acceptance ratio $\frac{p(\tilde{\sigma}_1, \rho_q^{(*)}, \omega_q^2)^{(*)} \mathcal{I}(\rho_q^{(*)})}{p(\tilde{\sigma}_1, \rho_q^{(j-1)}, \omega_q^2)^{(j-1)} \mathcal{I}(\rho_q^{(j-1)})}$, with $(\rho^{(j-1)}, \omega_q^2)^{(j-1)}$ and $(\rho^{(*)}, \omega_q^2)^{(*)}$ being the draw at the $(j-1)^{\text{th}}$ iteration and the proposed draw, respectively. # 3 The DSGE Model The model considered is the one used in Smets and Wouters (2007), which is based on earlier work by Christiano et al. (2005) and Smets and Wouters (2003). It is a medium-scale DSGE model, which augments the standard neoclassical stochastic growth model with nominal price and wage rigidities as well as habit formation in consumption and investment adjustment costs. #### 3.1 The Smets-Wouters Model We begin by briefly describing the log-linearized equilibrium conditions of the Smets and Wouters (2007) model. We follow Del Negro and Schorfheide (2012) and detrend the non-stationary model variables by a stochastic rather than a deterministic trend.³ Let \tilde{z}_t be the linearly detrended log productivity process which follows the autoregressive law of motion $$\tilde{z}_t = \rho_z \tilde{z}_{t-1} + \sigma_z \varepsilon_{z,t}. \tag{26}$$ We detrend all non stationary variables by $Z_t = e^{\gamma t + \frac{1}{1-\alpha}\tilde{z}_t}$, where γ is the steady state growth rate of the economy. The growth rate of Z_t in deviations from γ , denoted by z_t , follows the process: $$z_{t} = \ln(Z_{t}/Z_{t-1}) - \gamma = \frac{1}{1-\alpha}(\rho_{z} - 1)\tilde{z}_{t-1} + \frac{1}{1-\alpha}\sigma_{z}\epsilon_{z,t}.$$ (27) All variables in the following equations are expressed in log deviations from their non-stochastic steady state. Steady state values are denoted by *-subscripts and steady state formulas are provided in the technical appendix of Del Negro and ³This approach makes it possible to express almost all equilibrium conditions in a way that encompasses both the trend-stationary total factor productivity process in Smets and Wouters (2007), as well as the case where technology follows a unit root process. Schorfheide (2012).⁴ The consumption Euler equation is given by: $$c_{t} = -\frac{(1 - he^{-\gamma})}{\sigma_{c}(1 + he^{-\gamma})} (R_{t} - \mathbb{E}_{t}[\pi_{t+1}] + b_{t}) + \frac{he^{-\gamma}}{(1 + he^{-\gamma})} (c_{t-1} - z_{t}) + \frac{1}{(1 + he^{-\gamma})} \mathbb{E}_{t} [c_{t+1} + z_{t+1}] + \frac{(\sigma_{c} - 1)}{\sigma_{c}(1 + he^{-\gamma})} \frac{w_{*}L_{*}}{c_{*}} (L_{t} - \mathbb{E}_{t}[L_{t+1}]), \quad (28)$$ where c_t is consumption, L_t is labor supply, R_t is the nominal interest rate, and π_t is inflation. The exogenous process b_t drives a wedge between the intertemporal ratio of the marginal utility of consumption and the riskless real return $R_t - \mathbb{E}_t[\pi_{t+1}]$, and follows an AR(1) process with parameters ρ_b and σ_b . The parameters σ_c and h capture the relative degree of risk aversion and the degree of habit persistence in the utility function, respectively. The following condition expresses the relationship between the value of capital in terms of consumption q_t^k and the level of investment i_t measured in terms of consumption goods: $$q_{t}^{k} = S''e^{2\gamma}(1 + \beta e^{(1-\sigma_{c})\gamma}) \left(i_{t} - \frac{1}{1 + \beta e^{(1-\sigma_{c})\gamma}} (i_{t-1} - z_{t}) - \frac{\beta e^{(1-\sigma_{c})\gamma}}{1 + \beta e^{(1-\sigma_{c})\gamma}} \mathbb{E}_{t} \left[i_{t+1} + z_{t+1}\right] - \mu_{t}\right), \quad (29)$$ which is affected by both investment adjustment cost (S'' is the second derivative of the adjustment cost function) and by μ_t , an
exogenous process called the "marginal efficiency of investment" that affects the rate of transformation between consumption and installed capital (see Greenwood et al. (1998)). The exogenous process μ_t follows an AR(1) process with parameters ρ_{μ} and σ_{μ} . The parameter β captures the intertemporal discount rate in the utility function of the households. The capital stock, \bar{k}_t , evolves as $$\bar{k}_t = \left(1 - \frac{i_*}{\bar{k}_*}\right) \left(\bar{k}_{t-1} - z_t\right) + \frac{i_*}{\bar{k}_*} i_t + \frac{i_*}{\bar{k}_*} S'' e^{2\gamma} \left(1 + \beta e^{(1-\sigma_c)\gamma}\right) \mu_t, \tag{30}$$ where i_*/\bar{k}_* is the steady state ratio of investment to capital. The arbitrage condition between the return to capital and the riskless rate is: $$\frac{r_*^k}{r_*^k + (1 - \delta)} \mathbb{E}_t[r_{t+1}^k] + \frac{1 - \delta}{r_*^k + (1 - \delta)} \mathbb{E}_t[q_{t+1}^k] - q_t^k = R_t + b_t - \mathbb{E}_t[\pi_{t+1}], \quad (31)$$ ⁴Available at http://economics.sas.upenn.edu/~schorf/research.htm. where r_t^k is the rental rate of capital, r_*^k its steady state value, and δ the depreciation rate. Given that capital is subject to variable capacity utilization u_t , the relationship between \bar{k}_t and the amount of capital effectively rented out to firms k_t is $$k_t = u_t - z_t + \bar{k}_{t-1}. (32)$$ The optimality condition determining the rate of utilization is given by $$\frac{1-\psi}{\psi}r_t^k = u_t,\tag{33}$$ where ψ captures the utilization costs in terms of foregone consumption. Real marginal costs for firms are given by $$mc_t = w_t + \alpha L_t - \alpha k_t, \tag{34}$$ where α is the income share of capital (after paying markups and fixed costs) in the production function. From the optimality conditions of goods producers it follows that all firms have the same capital-labor ratio: $$k_t = w_t - r_t^k + L_t. (35)$$ The production function is: $$y_t = \Phi_p(\alpha k_t + (1 - \alpha)L_t) + \mathcal{I}\{\rho_z < 1\}(\Phi_p - 1)\frac{1}{1 - \alpha}\tilde{z}_t,$$ (36) under trend stationarity. The last term $(\Phi_p - 1)\frac{1}{1-\alpha}\tilde{z}_t$ drops out if technology has a stochastic trend, because in this case one has to assume that the fixed costs are proportional to the trend. Similarly, the resource constraint is: $$y_t = g_t + \frac{c_*}{y_*}c_t + \frac{i_*}{y_*}i_t + \frac{r_*^k k_*}{y_*}u_t - \mathcal{I}\{\rho_z < 1\}\frac{1}{1-\alpha}\tilde{z}_t, \tag{37}$$ where again the term $-\frac{1}{1-\alpha}\tilde{z}_t$ disappears if technology follows a unit root process. Government spending g_t is assumed to follow the exogenous process: $$g_t = \rho_g g_{t-1} + \sigma_g \varepsilon_{g,t} + \eta_{gz} \sigma_z \varepsilon_{z,t}.$$ Finally, the price and wage Phillips curves are, respectively: $$\pi_{t} = \frac{(1 - \zeta_{p}\beta e^{(1-\sigma_{c})\gamma})(1 - \zeta_{p})}{(1 + \iota_{p}\beta e^{(1-\sigma_{c})\gamma})\zeta_{p}((\Phi_{p} - 1)\epsilon_{p} + 1)} mc_{t} + \frac{\iota_{p}}{1 + \iota_{p}\beta e^{(1-\sigma_{c})\gamma}} \pi_{t-1} + \frac{\beta e^{(1-\sigma_{c})\gamma}}{1 + \iota_{p}\beta e^{(1-\sigma_{c})\gamma}} \mathbb{E}_{t}[\pi_{t+1}] + \lambda_{f,t}, \quad (38)$$ and $$w_{t} = \frac{(1 - \zeta_{w}\beta e^{(1 - \sigma_{c})\gamma})(1 - \zeta_{w})}{(1 + \beta e^{(1 - \sigma_{c})\gamma})\zeta_{w}((\lambda_{w} - 1)\epsilon_{w} + 1)} \left(w_{t}^{h} - w_{t}\right)$$ $$- \frac{1 + \iota_{w}\beta e^{(1 - \sigma_{c})\gamma}}{1 + \beta e^{(1 - \sigma_{c})\gamma}} \pi_{t} + \frac{1}{1 + \beta e^{(1 - \sigma_{c})\gamma}} \left(w_{t-1} - z_{t} - \iota_{w}\pi_{t-1}\right)$$ $$+ \frac{\beta e^{(1 - \sigma_{c})\gamma}}{1 + \beta e^{(1 - \sigma_{c})\gamma}} \mathbb{E}_{t} \left[w_{t+1} + z_{t+1} + \pi_{t+1}\right] + \lambda_{w,t}, \quad (39)$$ where ζ_p , ι_p , and ϵ_p are the Calvo parameter, the degree of indexation, and the curvature parameters in the Kimball aggregator for prices, and ζ_w , ι_w , and ϵ_w are the corresponding parameters for wages. w_t^h measures the household's marginal rate of substitution between consumption and labor, and is given by: $$w_t^h = \frac{1}{1 - he^{-\gamma}} \left(c_t - he^{-\gamma} c_{t-1} + he^{-\gamma} z_t \right) + \nu_l L_t, \tag{40}$$ where ν_l characterizes the curvature of the disutility of labor (and would equal the inverse of the Frisch elasticity in absence of wage rigidities). The mark-ups $\lambda_{f,t}$ and $\lambda_{w,t}$ follow exogenous ARMA(1,1) processes $$\lambda_{f,t} = \rho_{\lambda_f} \lambda_{f,t-1} + \sigma_{\lambda_f} \varepsilon_{\lambda_f,t} + \eta_{\lambda_f} \sigma_{\lambda_f} \varepsilon_{\lambda_f,t-1}, \text{ and}$$ $$\lambda_{w,t} = \rho_{\lambda_w} \lambda_{w,t-1} + \sigma_{\lambda_w} \varepsilon_{\lambda_w,t} + \eta_{\lambda_w} \sigma_{\lambda_w} \varepsilon_{\lambda_w,t-1},$$ respectively. Finally, the monetary authority follows a generalized feedback rule: $$R_{t} = \rho_{R}R_{t-1} + (1 - \rho_{R}) \left(\psi_{1}\pi_{t} + \psi_{2}(y_{t} - y_{t}^{f}) \right)$$ $$+ \psi_{3} \left((y_{t} - y_{t}^{f}) - (y_{t-1} - y_{t-1}^{f}) \right) + r_{t}^{m},$$ $$(41)$$ where the flexible price/wage output y_t^f is obtained from solving the version of the model without nominal rigidities (that is, Equations (28) through (37) and (40)), and the residual r_t^m follows an AR(1) process with parameters ρ_{r^m} and σ_{r^m} . # 3.2 Observation Equation, Data, and Priors We use the method in Sims (2002) to solve the log-linear approximation of the DSGE model. We collect all the DSGE model parameters in the vector θ , stack the structural shocks in the vector ϵ_t , and derive a state-space representation for our vector of observables y_t , which is composed of the transition equation: $$s_t = \mathcal{T}(\theta)s_{t-1} + \mathcal{R}(\theta)\epsilon_t, \tag{42}$$ which summarizes the evolution of the states s_t , and the measurement equation: $$y_t = \mathcal{Z}(\theta)s_t + \mathcal{D}(\theta), \tag{43}$$ which maps the states onto the vector of observables y_t , where $\mathcal{D}(\theta)$ represents the vector of steady state values for these observables. Specifically, the SW model is estimated based on seven quarterly macroeconomic time series. The measurement equations for real output, consumption, investment, and real wage growth, hours, inflation, interest rates and long-run inflation expectations are given by: $$Output \ growth = \gamma + 100 \left(y_t - y_{t-1} + z_t \right)$$ $$Consumption \ growth = \gamma + 100 \left(c_t - c_{t-1} + z_t \right)$$ $$Investment \ growth = \gamma + 100 \left(i_t - i_{t-1} + z_t \right)$$ $$Real \ Wage \ growth = \gamma + 100 \left(w_t - w_{t-1} + z_t \right) ,$$ $$Hours = \bar{l} + 100l_t$$ $$Inflation = \pi_* + 100\pi_t$$ $$FFR = R_* + 100R_t$$ where all variables are measured in percent, where π_* and R_* measure the steady state level of net inflation and short term nominal interest rates, respectively and where \bar{l} captures the mean of hours (this variable is measured as an index). Appendix A.1 provides further details on the data. In our benchmark specification we use data from 1964Q4 to 2011Q1, but we also consider a shorter sample in which end the sample in 2004Q4, so that we exclude the Great Recession. Table 1 shows the priors for the DSGE model parameters, which coincide with those used in Smets and Wouters (2007). This Version: November 25, 2012 #### 4 Results This section describes our findings. First, we present the evidence in favor of Student-t distributed shocks. Second, we quantify the impact of rare shocks on the macroeconomy. Third, we show the extent to which allowing for Student-t shocks affects the inference about time-variation in volatility. Finally, we discuss the posterior estimates for the DSGE model parameters and the variance decomposition for real GDP growth.⁵ #### 4.1 Evidence of Fat Tails In the introduction we showed that shocks extracted from standard Gaussian estimation are sometimes quite large — four standard deviations or more in size. In this section we consider more formal evidence against Gaussianity. Specifically, this section addresses two questions. First, do we still need fat-tailed shocks once we allow for low-frequency movements in volatility? Second, which shocks are fat-tailed, and how fat are the tails? We address these questions by: i) assessing the improvement in fit obtained by allowing for Student-t distributed shocks relative to both the standard model as well as models with low-frequency movements in the volatility; ii) presenting the posterior distribution of the degrees of freedom for each shock. Before we delve into the results, we provide an intuitive description of the relationship between the degrees of freedom of the Student-t distribution and the likelihood of observing large shocks. Recall from equation (3) that a Student-tdistributed shock ε_t can be decomposed as $$\varepsilon_t = \sigma_t \tilde{h}_t^{-1/2} \eta_t,$$ where η_t is drawn from a standard Gaussian distribution (we omit the q subscript for ease of exposition). Therefore, given σ_t , the chances of observing a very large ε_t ⁵There are many more objects of interest than we have space to show and discuss here. In particular, one may want to analyze the time series for the time-varying volatilities $\sigma_{q,t}$, the Student-t components $\tilde{h}_{q,t}$, and the standardized shocks $\eta_{q,t}$, for each shock q. We show all these quantities in the appendix of the working paper version. depend on the chances of \tilde{h}_t being small. The prior for \tilde{h}_t is given by (5): $$\lambda \tilde{h}_t \sim \chi^2(\lambda)$$. If λ is high, this prior concentrates around one, and the likelihood of observing large shocks is slim (the $\lambda \to \infty$ limit represents Gaussianity). As λ drops, the distribution of \tilde{h}_t spreads out and
the chances of observing a low \tilde{h}_t increase. The following table provides a quantitative feel for what different λ s imply in terms of the model's ability to generate fat-tailed shocks. Specifically, the table shows the number of shocks larger (in absolute value) than x standard deviations per 200 periods, which is the size of our sample. The table shows that even with 9 degrees of freedom the chances of seeing even a single shock as large as those shown in Figure 1 are not high (.28 for shocks larger than 4 standard deviations), and become negligible for 15 or more degrees of freedom. In what follows, we consider three different Gamma priors of the form (6) for the degrees of freedom parameter λ , which capture different *a priori* views on the importance of fat tails. The first prior, $\underline{\lambda}=15$, captures the view that the world is not quite Gaussian, but not too far from Gaussianity either. The second prior, $\underline{\lambda}=9$, embodies the idea that the world is quite far from Gaussian, yet not too extreme. The last prior, $\underline{\lambda}=6$, implies prior belief in a model with fairly heavy tails. The tightness of these priors depends on the degrees of freedom parameter $\underline{\nu}$ in equation (6), which we set equal to 4.⁶ Figure 2 shows the three priors for $\underline{\lambda} = 6$, 9, and 15. Since the variance of the prior is $\underline{\lambda}^2/\underline{\nu}$, lower values of $\underline{\lambda}$ correspond to a tighter prior. Note however that the prior with higher variance ($\underline{\lambda} = 15$) puts most of the mass on high values of the degrees of freedom. For instance, the prior ⁶In an appendix not for publication we also report the results for $\nu = 1$, which are very similar. probability put on the regions $\{\lambda < 6\}$ and $\{\lambda < 4\}$ by the $\underline{\lambda} = 15$ prior is less than 8 and 2.5%, respectively. With the description of the prior in hand, we are now ready to discuss our evidence on the importance of fat tails. Table 2 shows the log marginal likelihood — the standard measure of fit in a Bayesian framework — for models with different assumptions on the shocks distribution. We consider four different combinations: i) Gaussian shocks with constant volatility (baseline), ii) Gaussian shocks with time-varying volatility, iii) Student-t distributed shocks with constant volatility, and iv) both Student-t shocks and time-variation in volatility. For the remainder of the paper we will focus on the specification where the volatilities follow a random walk (SV-UR case in equation (10)), as in Justiniano and Primiceri (2008). We find that this specification obtains a better fit of the data than the specification where the volatility follow a stationary autoregressive process (SV-S case), and that in the SV-S case the posterior estimates of the autoregressive parameters are often close to unity. Finally, our prior for the innovations in stochastic volatility is an \mathcal{IG} prior with mode at $(.01)^2$ and .1 degrees of freedom. The Gaussian/constant-volatility model is clearly rejected by the data. This is not surprising in light of the evidence contained in Justiniano and Primiceri (2008), Fernández-Villaverde and Rubio-Ramírez (2007), and Liu et al. (2011). What is perhaps more surprising is that the marginal likelihood indicates that if one had to choose between the two features, a random walk in volatility (SV) or Student-t shocks, the data unequivocally point to the latter feature as the more important: ⁷Our results are based on 4 chains, each beginning from a different starting point, of 220 thousand draws each, of which we discard the first 20 thousand draws. We checked for convergence across chains. ⁸For details on the computation of these marginal likelihoods, see the appendix. ⁹Specifically, in the $\mathcal{IG}(\nu_{\omega}/2, \nu_{\omega}\underline{\omega}^2/2)$ prior (see equation (9)) we set $\nu_{\omega}/2 = .1$ and choose $\underline{\omega}^2$ so that the mode, given by $\frac{\nu_{\omega}\underline{\omega}^2/2}{1+\nu_{\omega}/2}$, equals $(.01)^2$. It is well known that when $\underline{\omega}^2$ is very low, as is the case here, designing a prior that is not too informative is challenging. In Montecarlo experiments we found that using very low degrees of freedom $(\nu_{\omega}/2 = .1)$ led to good performance regardless of whether the true value of ω^2 was 10^{-4} , 10^{-3} , or 10^{-2} , and therefore settled on this value. In the working paper version of the paper we provide a plot of the prior distribution for ω^2 . the difference in marginal likelihood between the SV and the best fitting model with Student-t shocks is very large, about 71 log points. Of course one does not have to choose between the two features, and the marginal likelihoods indicate that even after accounting for fat-tailed shocks, allowing for time-variation in the volatility improves fit: for any row in Table 2, the marginal likelihood increases moving from the left (no SV) to the right (SV) column. From the perspective of this paper, however, the main finding is provided by the fact that the fit improves as the prior puts more weight on fat tails, regardless of whether we include SV. In summary, the data strongly favor Student-t distributed shocks with a non-negligible degree of fat tails, whether or not we allow for low-frequency movements in volatility. Our second piece of evidence comes from the posterior distribution of the degrees of freedom λ . Table 4 shows the posterior mean and 90% bands for the degrees of freedom for each shock, in the specifications with and without stochastic volatility. Two results emerge. First, for quite a few shocks the estimated degrees of freedom are small, even when we allow for low-frequency movements in volatility. Second, allowing for low-frequency movements in volatility substantially changes the inference about the degrees of freedom, implying that this feature is necessary for a proper assessment of how fat-tailed macroeconomic shocks are. As for the first result, Table 4 shows that four shocks have a mean below 6 for the best-fitting prior on the degrees of freedom according to the marginal likelihood criterion ($\underline{\lambda} = 6$). For priors with higher $\underline{\lambda}$ the posterior mean degrees of freedom for these four shocks increases, but this is mostly because the posterior distribution becomes more skewed to the right (that is, it places some mass on higher values for λ). Still, for many shocks the posterior distribution puts sizable mass on the { $\lambda < 6$ } region even for $\underline{\lambda} = 15$. It is also worth noting that in four cases the 5th percentile of the posterior distribution barely changes as a function of $\underline{\lambda}$. The shocks with the fattest tails (lowest posterior degrees of freedom) are those affecting the discount rate (b), TFP (z), the marginal efficiency of investment (μ), and the wage markup (λ_w). Not surprisingly, these shocks are the usual suspects as key drivers of business cycles (see Smets and Wouters (2007), Justiniano et al. (2009)). As for the result that allowing for low-frequency movements in volatility substantially changes the inference about the degrees of freedom, the monetary policy shock r^m is a case in point. Its estimated degrees of freedom are very low when one ignores time variations in volatility apparent in Figure 1. Ignoring time-variation in volatility, the model interprets the large shocks of the late seventies/early eighties as evidence of fat tails. Once these secular changes in volatility are taken into account, the posterior estimates of the degrees of freedom increases substantially. What is the intuition for this finding? The posterior distribution of \tilde{h}_t , which determines how fat the tails are, is given by (20): $$\left[\lambda + \varepsilon_t^2/\sigma_t^2\right] \tilde{h}_t |\theta, \varepsilon_{1:T}, \tilde{\sigma}_{1:T}, \lambda \sim \chi^2(\lambda + 1).$$ For a given value of σ_t , the a larger estimated shock ε_t implies a smaller posterior value of \tilde{h}_t . Not surprisingly, large shocks are interpreted by the model as evidence for fat tails. However, the shock is standardized by σ_t : if a large shock occurs during a period where all shocks tend to be large, it is discounted, and the posterior value of \tilde{h}_t may not be particularly small. A question of obvious interest is whether this evidence in favor of fat-tailed shocks depends on whether the Great Recession is included in the estimation sample. To address this, we re-estimate the model for the sub-sample ending in the fourth quarter of 2004—the same sample used in Justiniano and Primiceri (2008). Table 3 shows the marginal likelihood for all the specifications considered above but estimated on the shorter sub-sample. The results for this specification, displayed in Table 3, are in line with the results for the full sample: having Student-t distributed shocks improves fit, regardless of whether we also consider stochastic volatility, and the lower the prior mean for the degrees of freedom the higher the marginal likelihood we obtain. The posterior means of the degrees of freedom of the Student-t distribution are shown in Table 5 and are mostly in line with those for the full sample. # 4.2 Large Shocks and Macroeconomic Fluctuations We have shown that quite a few important shocks in the SW model have fat tails. What does this mean in terms of business cycle fluctuations? This section tries to provide a quantitative answer to this question by performing a counterfactual experiment. Recall again from equation (3) that $$\varepsilon_t = \sigma_t \tilde{h}_t^{-1/2} \eta_t.$$ Therefore, once we compute the posterior distribution of ε_t (the smoothed shocks) and \tilde{h}_t , we can
purge the Student-t component from ε_t using $$\tilde{\varepsilon}_t = \sigma_t \eta_t.$$ We can then compute counterfactual histories that would have occurred had the shocks been $\tilde{\varepsilon}_t$ instead of ε_t . All these counterfactuals are computed for the best fitting model: with stochastic volatility and Student-t shocks, and with the prior for λ centered at 6. The left panel of Figure 3 shows these counterfactual histories for output, consumption, and investment growth. For all plots the pink solid lines are the median counterfactual paths, the pink dashed lines represent the 90% bands, and the solid black lines represent the actual data. The right panel uses actual and counterfactual histories to compute a rolling window standard deviation, where each window contains the prior 20 quarters as well as the following 20 quarters, for a total of 41 quarters. These rolling window standard deviations are commonly used measures of time-variation in the volatility of the series. The difference between actual and counterfactual standard deviations measures the extent to which the change in volatility is accounted for by fat-tailed shocks. ¹⁰ The left panels suggest that fat-tailed shocks account for a non negligible part of fluctuations in the three variables. For output growth, the Student-t component accounted for a sizable fraction of the contraction in output growth during the Great ¹⁰The distribution of \tilde{h}_t is non-time varying. However, since large shocks rarely occur, they may account for changes in the rolling window volatility. Recession. In particular, if the fat tail component were absent the Great Recession would have been of about the same size as more mild recessions, such as the 1990-91 recession. In general, without the fat-tailed component of the shocks all recessions (with the exception of the 2001 recession) would be of roughly the same magnitude in terms of output growth. Further, the rolling window standard deviation shown in the right panel shows that the Student-t component explains a non-negligible part of changes in the realized volatility in the data. One can interpret this evidence as saying that the '70s and early '80s were more volatile than the Great Moderation period at least in part because rare shocks took place. For example at the peak of the volatility in 1978, the rolling window standard deviation of output growth is about 1.25 in the data, but once we shut down the Student-t component it drops to 1.05, which is a reduction of about 16% in volatility. Similar conclusions apply to the decomposition of consumption and investment growth (middle and bottom panels, respectively). It is notable that in the case of investment, and to a lesser extent of consumption, the rolling-window volatility computed from the data has spiked up recently to levels near those prior to the Great Moderation. When we take the Student-t component into account, however, the recent increase in the rolling-window volatility appears much milder. # 4.3 Student-t Shocks and Inference about Time-Variation in Volatility This section discusses the extent to which accounting for fat tails makes us reevaluate the magnitude of low-frequency changes in volatility. Inference about the stochastic volatility is conducted using state-space methods, where $$\log(\sigma^{-2}\tilde{h}_t\varepsilon_t^2 + c) = 2\tilde{\sigma}_t + \eta_t^*,$$ is the measurement equation (with c a small constant), and equation (8) is the transition equation. Intuitively, the estimated time-varying volatilities will try to fit the time series $\log(\sigma^{-2}\tilde{h}_t\varepsilon_t^2 + c)$. Since this quantity depends on ε_t^2 , the model will interpret changes over time in the size of the squared shocks ε_t^2 as evidence of time variation in the volatilities $\tilde{\sigma}_t$. In a world with fat tails, ε_t^2 will vary over time simply because \tilde{h}_t changes. If one ignores variations in \tilde{h}_t by assuming Gaussian shocks, one may obtain the wrong inference about the time variation in the σ_t s. For instance, one may conclude that the Great Recession signals a permanent change in the level of macroeconomic volatility, when in fact it may be (at least in part) the result of a particularly large realization of the shocks. Does all of this matter in practice? An implication of stochastic volatility is that the model-implied variance of the endogenous variables changes over time. Therefore, rather than looking at the posterior estimates of the stochastic volatility component for individual shocks (which we show in the appendix of the working paper version) we focus here on the time-variation of the standard deviation of output and consumption. Specifically, Figure 4 shows the model-implied volatility of output and consumption growth, as measured by the unconditional standard deviation of the series computed at each point in time t assuming that the standard deviations of the shocks is going to remain equal to the estimated value of $\sigma \sigma_t$ forever after (that is, abstracting from the fact that future σ_t s will evolve according to equation (8); this is the same object computed in Figure 5 of Justiniano and Primiceri (2008)). In the top panel, the red line shows this measure for the estimation with stochastic volatility but Gaussian shocks, while the black lines show this volatility for the estimation with both stochastic volatility and Student-t components (with $\underline{\lambda}=6$). As in the other plots, the solid line is the posterior median and the dashed lines correspond to the 90% bands around the median. For both variables the model-implied volatility is generally higher when we account for fat-tailed shocks, which is intuitive. However, the difference between the models is not constant over time. At the peak of the high-volatility period (late 70s and early 80s), the two models agree. However, during the Great Moderation the model that does not allow for fat-tailed shocks seems to overestimate the decline in macroeconomic volatility. The middle panel of Figure 4 hones in on this finding. This panel shows the posterior distribution of the ratio of the volatility in 1981 (roughly, the peak of the volatility series) relative to the volatility in 1994 (roughly, the bottom) for output and consumption growth, respectively. The red bars are for the model with stochastic volatility only, while the black bars stand for the model with stochastic volatility and Student-t shocks. Numbers greater than one indicate that volatility was higher in 1981 relative to 1994. There is no doubt that this is the case, as both histograms are well to the right of one. However, the magnitude of the decrease in volatility depends on whether or not we allow for fat-tailed shocks. The posterior distribution for the ratio of the output growth volatility in 1981 relative to the volatility in 1994 in the estimation with Student-t shocks is smaller relative to the case with Gaussian shocks. The median is 1.8 in the former, compared to 2.6 in the latter. For the red bars, most of the mass is to the right of two, implying that volatility dropped by more than half between 1981 and 1994. The converse holds for the black bars, which show a much smaller decline in volatility according to the model with Student-t shocks. This same pattern is also evident for the consumption growth. As a result of the Great Recession there has been an increase in volatility in many macroeconomic variables since 2008, as measured by the rolling window standard deviations shown in Figure 3. To what extent does this increase reflect a permanent increase in the volatility of the underlying shocks, and, potentially, the end of the Great Moderation? The bottom panels of Figure 4 show the ratio of the volatility in 2011 (end of the sample) relative to the volatility in 2005 (pre-Great Recession) for output and consumption growth, respectively, with numbers greater than one indicating a permanent rise in volatility. Under the model with time-varying volatility and Gaussian shocks, the probability that volatility in both output and consumption has increased after the Great Recession is quite high. The probability of the ratio being below one is 4.6% and 8.2% for output and consumption growth, respectively. The model that has, Student-t shocks in addition to time-varying volatility is less confident: the probability of the ratio being below one increases to 12% in the case of output, and 21% in the case of consumption growth. Moreover, this model im- plies that if such an increase took place, it was fairly modest, with most of the mass below 1.25. #### 4.4 Parameter Estimates and Variance Decomposition Does accounting for Student-t shocks and/or stochastic volatility affect the posterior distributions for the DSGE model parameter estimates? In their analysis of DSGE models with stochastic volatility, Justiniano et al. (2008) find that as far as stochastic volatility is concerned the answer is generally no. In our application we broadly reach similar conclusions. Table 6 shows the posterior means for the parameters estimated in the following four cases: 1) Gaussian shocks and constant volatility (Baseline), 2) Gaussian shocks with stochastic volatility (SV), 3) Student-t shocks (St-t), and 4) Student-t shocks with stochastic volatility (St-t+SV). For reference, we also report the prior mean and standard deviation. We find that the parameter capturing investment adjustment costs (S'') is lower in the baseline specifications relative to the alternatives. Interestingly, Justiniano et al. (2008) also find that this is the only parameter sensitive to changing the specification of the shock distribution, in spite of using a slightly different model and a different sample. We also find that the labor disutility is somewhat more convex when we depart from Gaussianity. Table 7 shows the
relative contribution of the different shocks to the unconditional variance of real GDP, for the specification with both stochastic volatility and Student-t components (with $\underline{\lambda} = 6$). Since volatility is time-varying, we compute the unconditional variance at each point in time t assuming that the standard deviations of the shocks is going to remain equal to the estimated value of $\sigma \sigma_t$ forever after, as we did in the previous section. The table shows the relative contribution of each structural shock to this unconditional variance at five different points in time: 1964 (beginning of sample), 1981 (peak of the high volatility period), 1994 (great moderation), 2007 (pre-great recession) and 2011 (end of sample). We find that the shocks that are most important for explaining real GDP growth are those that ¹¹The appendix to the working paper version of the paper shows the variance decomposition for the other specifications as well. exhibits fat tails, like the discount rate (b), marginal efficiency of investment (μ) , and TFP (z) shocks. ### 5 Conclusions We provide strong evidence that the Gaussianity assumption in DSGE models is counterfactual, even after allowing for low-frequency changes in the volatility of shocks. It is important to point out a number of caveats regarding our analysis. First, we allow for excess kurtosis but not for skewness. The plots in in Figure 1 make it plain that most large shocks occur during recessions, implying that skewness may also be an salient feature of the shocks distribution. Müller (2011) describes some of the dangers associated with departures from Gaussianity when the alternative shock distribution is also misspecified. Importantly for our analysis, not allowing for skewness may lead to an underestimation of the importance of fat tails during recessions, as we only estimate the average amount of kurtosis. Second, we allow for permanent (random walk) and i.i.d (Student-t distribution) changes in the variance of the shocks. These assumptions are convenient, but also extreme. Our main point is that together with low-frequency changes in the standard deviation of shocks, there are also short run spikes in volatility. So far, the literature for the U.S. has mainly focused on the former phenomenon; in this paper we emphasize the latter. Still, in future research it may be important to relax the assumption that these short run spikes are identically distributed over time. Finally, in order to study the full implications of fat-tailed shocks on the macroeconomy we need to use non linear models, as we discuss in the introduction. The optimal policy response to rare large shocks is another important issue that deserves attention.¹² We leave these important extensions for future research. ¹²The financial econometrics literature has studied the implication of alternative hedging strategies *vis-á-vis* fat-tailed shocks (e.g., Bos et al. (2000)). # References - An, S. and F. Schorfheide (2007): "Bayesian Analysis of DSGE Models—Rejoinder," *Econometric Reviews*, 26, 211 219. - Ascari, G., G. Fagiolo, and A. Roventini (2012): "Fat Tails Distributions and Business Cycle Models," *Manuscript OFCE-Science-Po*. - Bos, C. S., R. J. Mahieu, and H. K. van Dijk (2000): "Daily Exchange Rate Behaviour and Hedging of Currency Risk," *Journal of Applied Econometrics*, 15, 671–696. - Chib, S. and E. Greenberg (1994): "Bayes inferences in regression models with ARMA(p,q) errors," *Journal of Econometrics*, 64, 183–206. - Chib, S. and S. Ramamurthy (2011): "DSGE Models with Student-t errors," mimeo, Washington University in St. Louis. - CHRISTIANO, L., M. EICHENBAUM, AND C. L. EVANS (2005): "Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy," *Journal of Political Economy*, 113, 1–45. - CHRISTIANO, L. J. (2007): "Comment on 'On the Fit of New Keynesian Models' by Del Negro ,Schorfheide, Smets ,Wouters," *Journal of Business and Economic Statistics*, 25, 143–151. - Del Negro, M. and F. Schorfheide (2012): "DSGE Model-Based Forecasting," FRBNY Working Paper. - Durbin, J. and S. J. Koopman (2002): "A Simple and Efficient Simulation Smoother for State Space Time Series Analysis," *Biometrika*, 89, 603–616. - EDGE, R. AND R. GÜRKAYNAK (2010): "How Useful Are Estimated DSGE Model Forecasts for Central Bankers," *Brookings Papers of Economic Activity*, forthcoming. - Fernández-Villaverde, J. and J. F. Rubio-Ramírez (2007): "Estimating Macroeconomic Models: A Likelihood Approach," *Review of Economic Studies*, 74, 1059–1087. - Geweke, J. (1993): "Bayesian Treatment of the Independent Student-t Linear Model," *Journal of Applied Econometrics*, 8, S19–S40. - ——— (1999): "Using Simulation Methods for Bayesian Econometric Models: Inference, Development, and Communication," *Econometric Reviews*, 18, 1–126. - ——— (2005): Contemporary Bayesian Econometrics and Statistics, Wiley. - Greenwood, J., Z. Hercovitz, and P. Krusell (1998): "Long-Run Implications of Investment-Specific Technological Change," *American Economic Review*, 87, 342–36. - Justiniano, A. and G. Primiceri (2008): "The Time-Varying Volatility of Macroeconomic Fluctuations," *American Economic Review*, 98, 604 641. - Justiniano, A., G. E. Primiceri, and A. Tambalotti (2008): "Investment Shocks and Business Cycles," *Working Paper*. - ——— (2009): "Investment Shocks and Business Cycles," *NBER Working Paper*, 15570. - KIM, S., N. SHEPHARD, AND S. CHIB (1998): "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, 65, 361–393. - LIU, Z., D. F. WAGGONER, AND T. ZHA (2011): "Sources of macroeconomic fluctuations: A regime-switching DSGE approach," Quantitative Economics, 2, 251–301. - MÜLLER, U. K. (2011): "Risk of Bayesian Inference in Misspecified Models, and the Sandwich Covariance Matrix," *Mimeo, Princeton University*. - SIMS, C. A. (2002): "Solving Linear Rational Expectations Models," *Computational Economics*, 20(1-2), 1–20. - SMETS, F. AND R. WOUTERS (2003): "An Estimated Dynamic Stochastic General Equilibrium Model of the Euro Area," Journal of the European Economic Association, 1, 1123 1175. # A Appendix #### A.1 Data The data set is obtained from Haver Analytics (Haver mnemonics are in italics). We compile observations for the variables that appear in the measurement equation (44). Real GDP (GDPC), the GDP price deflator (GDPDEF), nominal personal consumption expenditures (PCEC), and nominal fixed private investment (FPI) are constructed at a quarterly frequency by the Bureau of Economic Analysis (BEA), and are included in the National Income and Product Accounts (NIPA). Average weekly hours of production and non-supervisory employees for total private industries (PRS85006023), civilian employment (CE16OV), and civilian noninstitutional population (LNSINDEX) are produced by the Bureau of Labor Statistics (BLS) at the monthly frequency. The first of these series is obtained from the Establishment Survey, and the remaining from the Household Survey. Both surveys are released in the BLS Employment Situation Summary (ESS). Since our models are estimated on quarterly data, we take averages of the monthly data. Compensation per hour for the non-farm business sector (PRS85006103) is obtained from the Labor Productivity and Costs (LPC) release, and produced by the BLS at the quarterly frequency. Last, the federal funds rate is obtained from the Federal Reserve Board's H.15 release at the business day frequency, and is not revised. We take quarterly averages of the annualized daily data. All data are transformed following Smets and Wouters (2007). Specifically: ``` Output\ growth = LN((GDPC)/LNSINDEX)*100 Consumption\ growth = LN((PCEC/GDPDEF)/LNSINDEX)*100 Investment\ growth = LN((FPI/GDPDEF)/LNSINDEX)*100 Real\ Wage\ growth = LN(PRS85006103/GDPDEF)*100 Hours = LN((PRS85006023*CE16OV/100)/LNSINDEX)*100 Inflation = LN(GDPDEF/GDPDEF(-1))*100 FFR = FEDERAL\ FUNDS\ RATE/4 ``` ### A.2 Marginal likelihood The marginal likelihood is the marginal probability of the observed data, and is computed as the integral of (12) with respect to the unobserved parameters and latent variables: $$p(y_{1:T}) = \int p(y_{1:T}|s_{1:T},\theta)p(s_{1:T}|\varepsilon_{1:T},\theta)p(\varepsilon_{1:T}|\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\theta)$$ $$p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})p(\tilde{\sigma}_{1:T}|\omega_{1:\bar{q}}^{2})p(\lambda_{1:\bar{q}})p(\omega_{1:\bar{q}}^{2})p(\theta)$$ $$d(s_{1:T},\varepsilon_{1:T},\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\lambda_{1:\bar{q}},\rho_{1:\bar{q}},\omega_{1:\bar{q}}^{2},\theta),$$ $$= \int p(y_{1:T}|\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\theta)p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})p(\tilde{\sigma}_{1:T}|\omega_{1:\bar{q}}^{2})$$ $$p(\lambda_{1:\bar{q}})p(\omega_{1:\bar{q}}^{2})p(\theta)d(\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\lambda_{1:\bar{q}},\rho_{1:\bar{q}},\omega_{1:\bar{q}}^{2},\theta)$$ $$(45)$$ where the quantity $$p(y_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) = \int p(y_{1:T}|s_{1:T}, \theta) p(s_{1:T}|\varepsilon_{1:T}, \theta)$$ $$p(\varepsilon_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta) \cdot d(s_{1:T}, \varepsilon_{1:T})$$ is computed at step 1a of the Gibb-sampler described above. We obtain the marginal likelihood using Geweke (1999)'s modified harmonic mean method. If $f(\theta, \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2)$ is any distribution with support contained in the support of the posterior density such that $$\int f(\theta, \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2) \cdot d(\theta, \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2) = 1,$$ it follows from the definition of the posterior density that: $$\begin{array}{lcl} \frac{1}{p(y_{1:T})} & = & \int
\frac{f(\theta,\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\lambda_{1:\bar{q}},\rho_{1:\bar{q}},\omega_{1:\bar{q}}^2)}{p(y_{1:T}|\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\theta)p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})p(\tilde{\sigma}_{1:T}|\omega_{1:\bar{q}}^2)p(\lambda_{1:\bar{q}})p(\omega_{1:\bar{q}}^2)p(\theta)} \\ & & p(\theta,\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\lambda_{1:\bar{q}},\rho_{1:\bar{q}},\omega_{1:\bar{q}}^2|y_{1:T}) \cdot d(\theta,\tilde{h}_{1:T},\tilde{\sigma}_{1:T},\lambda_{1:\bar{q}},\rho_{1:\bar{q}},\omega_{1:\bar{q}}^2) \end{array}$$ We follow Justiniano and Primiceri (2008) in choosing $$f(\theta, \tilde{h}_{1:T}) = f(\theta) \cdot p(\tilde{h}_{1:T} | \lambda_{1:\bar{q}}) p(\tilde{\sigma}_{1:T} | \omega_{1:\bar{q}}^2) p(\lambda_{1:\bar{q}}) p(\omega_{1:\bar{q}}^2), \tag{46}$$ where $f(\theta)$ is a truncate multivariate distribution as proposed by Geweke (1999). Hence we approximate the marginal likelihood as: $$\hat{p}(y_{1:T}) = \left[\frac{1}{n_{sim}} \sum_{j=1}^{n_{sim}} \frac{f(\theta^j)}{p(y_{1:T}|\tilde{h}_{1:T}^j, \tilde{\sigma}_{1:T}^j, \theta^j)p(\theta^j)} \right]^{-1}$$ (47) where θ^j , $\tilde{h}_{1:T}^j$, and $\tilde{\sigma}_{1:T}^j$ are draws from the posterior distribution, and n_{sim} is the total number of draws. We are aware of the problems with (46), namely that it does not ensure that the random variable $$\frac{f(\theta, \tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2)}{p(y_{1:T}|\tilde{h}_{1:T}, \tilde{\sigma}_{1:T}, \theta)p(\tilde{h}_{1:T}|\lambda_{1:\bar{q}})p(\tilde{\sigma}_{1:T}|\omega_{1:\bar{q}}^2)p(\lambda_{1:\bar{q}})p(\omega_{1:\bar{q}}^2)p(\theta)}$$ has finite variance. Nonetheless, like Justiniano and Primiceri (2008) we found that this method delivers very similar results across different chains. ### A.3 Drawing the stochastic volatilities We draw the stochastic volatilities using the procedure in Kim et al. (1998), which we briefly describe. Taking squares and then logs of (3) one obtains: $$\varepsilon_{q,t}^* = 2\tilde{\sigma}_{q,t} + \eta_{q,t}^* \tag{48}$$ where $$\varepsilon_{q,t}^* = \log(\sigma_q^{-2}\tilde{h}_{q,t}\varepsilon_{q,t}^2 + c), \tag{49}$$ c=.001 being an offset constant, and $\eta_{q,t}^* = \log(\eta_{q,t}^2)$. If $\eta_{q,t}^*$ were normally distributed, $\sigma_{q,1:T}$ could be drawn using standard methods for state-space systems. In fact, $\eta_{q,t}^*$ is distributed as a $\log(\chi_1^2)$. Kim et al. (1998) address this problem by approximating the $\log(\chi_1^2)$ with a mixture of normals, that is, expressing the distribution of $\eta_{q,t}^*$ as: $$p(\eta_{q,t}^*) = \sum_{k=1}^K \pi_k^* \mathcal{N}(m_k^* - 1.2704, \nu_k^{*2})$$ (50) The parameters that optimize this approximation, namely $\{\pi_k^*, m_k^*, \nu_k^*\}_{k=1}^K$ and K, are given in Kim et al. (1998). Note that these parameters are independent of the specific application. The mixture of normals can be equivalently expressed as: $$\eta_{q,t}^* | \varsigma_{q,t} = k \sim \mathcal{N}(m_k^* - 1.2704, \nu_k^{*2}), \ Pr(s_{i,t} = k) = \pi_k^*.$$ (51) Hence step (4) of the Gibbs sampler actually consists in two steps: (4.1) Draw from $p(\varsigma_{1:T}|\tilde{\sigma}_{1:T}, \varepsilon_{1:T}, \tilde{h}_{1:T}, s_{1:T}\lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$ using (50) for each q. Specifically: $$Pr\{\varsigma_{q,t} = k | \tilde{\sigma}_{1:T}, \varepsilon_{1:T}, \tilde{h}_{1:T} \dots\} \propto \pi_k^* \nu_k^{-1} \exp\left[-\frac{1}{2\nu_k^{*2}} (\eta_{q,t}^* - m_k^* + 1.2704)^2\right].$$ where from (48) $\eta_{q,t}^* = \varepsilon_{q,t}^* - 2\tilde{\sigma}_{q,t}.$ (4.2) Draw from $p(\tilde{\sigma}_{1:T}|\varsigma_{1:T}, \varepsilon_{1:T}, \tilde{h}_{1:T}, s_{1:T}\lambda_{1:\bar{q}}, \rho_{1:\bar{q}}, \omega_{1:\bar{q}}^2, y_{1:T})$ using Durbin and Koopman (2002), where (48) is the measurement equation and (8) is the transition equation. Note that in principle we should make it explicit that we condition on $\varsigma_{1:T}$ in the other steps of the Gibbs sampler as well. In practice, all other conditional distributions do not depend on $\varsigma_{1:T}$, hence we omit the term for simplicity. Table 1: Priors for the Medium-Scale Model | | Density | Mean | St. Dev. | | Density | Mean | St. Dev. | |--|---------|------|----------|----------------------|---------|------|----------| | Policy Parameters | | | | | | | | | ψ_1 | Normal | 1.50 | 0.25 | $ ho_R$ | Beta | 0.75 | 0.10 | | ψ_2 | Normal | 0.12 | 0.05 | $ ho_{r^m}$ | Beta | 0.50 | 0.20 | | ψ_3 | Normal | 0.12 | 0.05 | σ_{r^m} | InvG | 0.10 | 2.00 | | Nominal Rigidities Parameters | | | | | | | | | ζ_p | Beta | 0.50 | 0.10 | ζ_w | Beta | 0.50 | 0.10 | | Other "Endogenous Propagation and Steady State" Parameters | | | | | | | | | α | Normal | 0.30 | 0.05 | π^* | Gamma | 0.75 | 0.40 | | Φ | Normal | 1.25 | 0.12 | γ | Normal | 0.40 | 0.10 | | h | Beta | 0.70 | 0.10 | S'' | Normal | 4.00 | 1.50 | | $ u_l$ | Normal | 2.00 | 0.75 | σ_c | Normal | 1.50 | 0.37 | | ι_p | Beta | 0.50 | 0.15 | ι_w | Beta | 0.50 | 0.15 | | r_* | Gamma | 0.25 | 0.10 | ψ | Beta | 0.50 | 0.15 | | $\rho s, \ \sigma s, \ and \ \eta s$ | | | | | | | | | $ ho_z$ | Beta | 0.50 | 0.20 | σ_z | InvG | 0.10 | 2.00 | | $ ho_b$ | Beta | 0.50 | 0.20 | σ_b | InvG | 0.10 | 2.00 | | $ ho_{\lambda_f}$ | Beta | 0.50 | 0.20 | σ_{λ_f} | InvG | 0.10 | 2.00 | | $ ho_{\lambda_w}$ | Beta | 0.50 | 0.20 | σ_{λ_w} | InvG | 0.10 | 2.00 | | $ ho_{\mu}$ | Beta | 0.50 | 0.20 | σ_{μ} | InvG | 0.10 | 2.00 | | $ ho_g$ | Beta | 0.50 | 0.20 | σ_g | InvG | 0.10 | 2.00 | | η_{λ_f} | Beta | 0.50 | 0.20 | η_{λ_w} | Beta | 0.50 | 0.20 | | η_{gz} | Beta | 0.50 | 0.20 | | | | | Notes: Note that $\beta=(1/(1+r_*/100))$. The following parameters are fixed in Smets and Wouters (2007): $\delta=0.025,\ g_*=0.18,\ \lambda_w=1.50,\ \varepsilon_w=10.0,$ and $\varepsilon_p=10$. The columns "Mean" and "St. Dev." list the means and the standard deviations for Beta, Gamma, and Normal distributions, and the values s and ν for the Inverse Gamma (InvG) distribution, where $p_{\mathcal{IG}}(\sigma|\nu,s) \propto \sigma^{-\nu-1}e^{-\nu s^2/2\sigma^2}$. The effective prior is truncated at the boundary of the determinacy region. The prior for \bar{l} is $\mathcal{N}(-45,5^2)$. Table 2: Marginal Likelihoods | | Without Stochastic Volatility | With Stochastic Volatility | |----------------------------|-------------------------------|----------------------------| | Gaussia | n shocks | | | | -1117.9 | -1050.9 | | Student | -t distributed shocks | | | $\underline{\lambda} = 15$ | -999.0 | -989.9 | | $\underline{\lambda} = 9$ | -988.1 | -986.0 | | $\underline{\lambda} = 6$ | -980.0 | -966.3 | Notes: The parameter $\underline{\lambda}$ represents the prior mean for the degrees of freedom in the Student-t distribution λ . Table 3: Marginal Likelihoods, Sample Ending in 2004Q4 | | Constant Volatility | Stochastic Volatility | |----------------------------|------------------------|-----------------------| | \overline{Gaussi} | an shocks | | | | -962.8 | -926.7 | | Studen | t-t distributed shocks | | | $\underline{\lambda} = 15$ | -878.4 | -847.9 | | $\underline{\lambda} = 9$ | -866.8 | -842.2 | | $\underline{\lambda} = 6$ | -853.9 | -835.0 | Notes: The parameter $\underline{\lambda}$ represents the prior mean for the degrees of freedom in the Student-t distribution. Table 4: Posterior of the Student's t Degrees of Freedom | | Without | Stochastic | Volatility | With Stochastic Volatility | |----------------------------|----------------------------|---------------------------|---------------------------|---| | | $\underline{\lambda} = 15$ | $\underline{\lambda} = 9$ | $\underline{\lambda} = 6$ | $\underline{\lambda} = 15$ $\underline{\lambda} = 9$ $\underline{\lambda} = 6$ | | Gvmt (g) | 9.8
(3.3,16.6) | | 5.8
(2.8,8.8) | $\begin{array}{ccc} 14.8 & 10.5 & 8.2 \\ (5.5,24.0) & (4.7,16.1) & (4.1,12.2) \end{array}$ | | Discount (b) | | | $4.1 \\ (2.3, 5.8)$ | $\begin{array}{ccc} 9.1 & 6.9 & 5.8 \\ (3.0,15.4) & (3.0,10.9) & (2.8,8.6) \end{array}$ | | $MEI(\mu)$ | 9.9
(3.5,16.5) | | 5.8 (2.9,8.8) | $\begin{array}{ccc} 10.2 & 7.4 & 5.9 \\ (3.3,17.2) & (3.0,11.8) & (2.8,9.0) \end{array}$ | | TFP (z) | | | $4.2 \\ (2.1,6.2)$ | $\begin{array}{cccc} 7.5 & 5.7 & 4.8 \\ (2.4,13.1) & (2.3,9.2) & (2.2,7.3) \end{array}$ | | Price Markup (λ_f) | | | 6.6
(3.2,10.1) | | | Wage Markup (λ_w) | | 7.2
(3.3,11.1) | 6.0 $(3.0,8.9)$ | $\begin{array}{cccc} 7.5 & 6.2 & 5.3 \\ (3.1,12.1) & (3.0,9.3) & (2.9,7.8) \end{array}$ | | Policy (r^m) | | | 3.0
(1.8,4.2) | $\begin{array}{cccc} 15.1 & 10.7 & 8.4 \\ (5.6,24.5) & (4.7,16.6) & (4.1,12.4) \end{array}$ | Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter. Table 5: Posterior of the Student's t Degrees of Freedom, Sample Ending in 2004Q4 | | Without | Stochastic | Volatility | With Stochastic Volatility | |----------------------------|----------------------------|---------------------------|---------------------------|--| | | $\underline{\lambda} = 15$ | $\underline{\lambda} = 9$ | $\underline{\lambda} = 6$ | $\underline{\lambda} = 15$ $\underline{\lambda} = 9$ $\underline{\lambda} = 6$ | | Gvmt (g) | 10.8 | | 6.1 | 12.6 8.8 7.1 | | | (3.5,18.2) | (3.0,12.2) | (2.9, 9.4) | (4.0,21.1) $(3.5,14.2)$ $(3.2,10.8)$ | | Discount (b) | 8.5 | 6.9 | 5.6 | 6.9 7.1 4.6 | | | (3.4, 13.6) | (3.2,10.6) | (2.8, 8.5) | (2.5,11.4) (3.0,11.2) (2.5,6.6) | | $MEI(\mu)$ | 10.9 | 7.8 | 6.4 | 10.9 6.6 7.1 | | | (3.7,18.3) | (3.3,12.4) |
(3.1, 9.7) | (3.3,18.7) $(2.6,10.6)$ $(3.4,10.9)$ | | TFP (z) | 5.2 | 4.4 | 3.9 | 9.9 6.5 3.6 | | | (2.0, 8.4) | (2.1,6.7) | (2.0,5.8) | (3.1,17.0) $(2.2,10.9)$ $(1.7,5.4)$ | | Price Markup (λ_f) | 10.6 | 7.6 | 6.2 | 14.5 10.6 7.9 | | | (3.5,17.9) | (3.2,12.2) | (3.0, 9.5) | (5.4,23.7) $(4.6,16.4)$ $(3.8,11.8)$ | | Wage Markup (λ_w) | 10.2 | 7.7 | 6.1 | 11.4 8.1 6.1 | | 2 (", | (3.4,16.9) | (3.3,12.1) | (3.0, 9.2) | (3.9,18.9) $(3.5,12.7)$ $(3.1,9.2)$ | | Policy (r^m) | 3.2 | 3.0 | 2.9 | 14.4 10.5 8.0 | | | | | | $(5.1, 23.6) \ (4.5, 16.2) \ (4.0, 12.1)$ | Notes: Numbers shown for the posterior mean and the 90% intervals of the degrees of freedom parameter. Table 6: Posterior Means of the DSGE Model Parameters | | Prior Mean | Prior SD | Baseline | SV | St-t | St-t+SV | |-----------------------|------------|----------|----------|--------|--------|---------| | α | 0.300 | 0.050 | 0.150 | 0.127 | 0.149 | 0.143 | | ζ_p | 0.500 | 0.100 | 0.734 | 0.786 | 0.785 | 0.717 | | ι_p | 0.500 | 0.150 | 0.315 | 0.295 | 0.392 | 0.387 | | Φ | 1.250 | 0.120 | 1.580 | 1.539 | 1.583 | 1.575 | | S'' | 4.000 | 1.500 | 4.686 | 5.491 | 5.446 | 5.541 | | h | 0.700 | 0.100 | 0.611 | 0.567 | 0.598 | 0.592 | | ψ | 0.500 | 0.150 | 0.714 | 0.868 | 0.687 | 0.703 | | $ u_l$ | 2.000 | 0.750 | 2.088 | 2.327 | 2.388 | 2.535 | | ζ_w | 0.500 | 0.100 | 0.803 | 0.820 | 0.824 | 0.767 | | ι_w | 0.500 | 0.150 | 0.541 | 0.561 | 0.493 | 0.472 | | β | 0.250 | 0.100 | 0.206 | 0.181 | 0.206 | 0.176 | | ψ_1 | 1.500 | 0.250 | 1.953 | 1.966 | 1.877 | 2.041 | | ψ_2 | 0.120 | 0.050 | 0.083 | 0.083 | 0.105 | 0.064 | | ψ_3 | 0.120 | 0.050 | 0.245 | 0.207 | 0.207 | 0.179 | | π^* | 0.620 | 0.100 | 0.683 | 0.729 | 0.713 | 0.859 | | σ_c | 1.500 | 0.370 | 1.236 | 1.097 | 1.257 | 1.288 | | ho | 0.750 | 0.100 | 0.835 | 0.856 | 0.870 | 0.856 | | γ | 0.400 | 0.100 | 0.306 | 0.350 | 0.335 | 0.298 | | $ rac{\gamma}{ar{l}}$ | -45.00 | 5.000 | -44.17 | -43.29 | -43.30 | -49.01 | | $ ho_g$ | 0.500 | 0.200 | 0.977 | 0.993 | 0.983 | 0.978 | | $ ho_b$ | 0.500 | 0.200 | 0.758 | 0.829 | 0.827 | 0.800 | | $ ho_{\mu}$ | 0.500 | 0.200 | 0.748 | 0.782 | 0.784 | 0.794 | | $ ho_z$ | 0.500 | 0.200 | 0.994 | 0.966 | 0.991 | 0.995 | | $ ho_{\lambda_f}$ | 0.500 | 0.200 | 0.791 | 0.830 | 0.770 | 0.811 | | $ ho_{\lambda_w}$ | 0.500 | 0.200 | 0.981 | 0.924 | 0.962 | 0.951 | | $ ho_{rm}$ | 0.500 | 0.200 | 0.154 | 0.210 | 0.218 | 0.250 | | σ_g | 0.100 | 2.000 | 2.892 | 0.128 | 2.375 | 2.318 | | σ_b | 0.100 | 2.000 | 0.125 | 0.075 | 0.076 | 0.058 | | σ_{μ} | 0.100 | 2.000 | 0.430 | 0.181 | 0.322 | 0.098 | | σ_z | 0.100 | 2.000 | 0.493 | 0.506 | 0.362 | 0.342 | | σ_{λ_f} | 0.100 | 2.000 | 0.164 | 0.071 | 0.147 | 0.049 | | σ_{λ_w} | 0.100 | 2.000 | 0.281 | 0.095 | 0.212 | 0.046 | | σ_{rm} | 0.100 | 2.000 | 0.228 | 0.061 | 0.131 | 0.040 | | η_{gz} | 0.500 | 0.200 | 0.787 | 0.786 | 0.784 | 0.757 | | η_{λ_f} | 0.500 | 0.200 | 0.670 | 0.711 | 0.713 | 0.694 | | η_{λ_w} | 0.500 | 0.200 | 0.948 | 0.867 | 0.919 | 0.868 | Notes: We use a prior mean of 6 degrees of freedom for the Student-t distributed component. The stochastic volatility component assumes a prior mean for the size of the shocks to volatility of $(0.01)^2$. Table 7: Variance Decomposition for Real GDP Growth | | g | b | μ | z | λ_f | λ_w | r^m | |-----------------|-------|-------|-------|-------|-------------|-------------|-------| | σ_{1964} | 0.339 | 0.350 | 0.024 | 0.248 | 0.014 | 0.007 | 0.018 | | σ_{1981} | 0.150 | 0.331 | 0.085 | 0.069 | 0.033 | 0.032 | 0.300 | | σ_{1994} | 0.179 | 0.310 | 0.133 | 0.174 | 0.039 | 0.108 | 0.057 | | σ_{2007} | 0.148 | 0.292 | 0.100 | 0.178 | 0.085 | 0.116 | 0.080 | | σ_{2011} | 0.139 | 0.279 | 0.147 | 0.163 | 0.108 | 0.056 | 0.108 | Notes: The table shows the relative contribution of the different shocks to the unconditional variance of real GDP, for the specification with stochastic volatility and Student-t distributed shocks. Since volatility is time-varying we evaluate this contribution at different points in time: 1964 (beginning of sample), 1981 (peak of the high volatility period), 1994 (great moderation), 2007 (pre-great recession) and 2011 (end of sample). Figure 1: Smoothed Shocks under Gaussianity (Absolute Value, Standardized) Notes: The solid line is the median, and the dashed lines are the posterior 90% bands. The vertical shaded regions identify NBER recession dates. Figure 2: Priors on degrees of freedom of Student-t distribution Notes: Prior density for $\underline{\lambda}=6$ (solid), 9 (dashed), and 15 (dash-and-dotted). All priors have $\underline{\nu}=4$ degrees of freedom. Figure 3: Counterfactual evolution of output, consumption and hours worked when the Student-t distributed component is turned off, estimation with Student-t distributed shocks and stochastic volatility. Notes: Black lines are the historical evolution of the variable, and pink lines are the median counterfactual evolution of the same variable if we shut down the Student-t distributed component of all shocks. The rolling window standard deviation uses 20 quarters before and 20 quarters after a given quarter. Figure 4: Time-Variation in the unconditional variance of output and consumption; models estimated with and without the Student-t distributed component. Notes: Black line in the top panel is the unconditional variance in the estimation with both stochastic volatility and Student-t components, while the red line is the unconditional variance in the estimation with stochastic volatility component only. On the middle panel the black bars correspond to the posterior histogram of the ratio of volatility in 1981 over the variance in 1994 for the estimation with both stochastic volatility and Student-t components, while the red bars are for the estimation with with stochastic volatility component only. The lower panel replicates the same analysis as in the middle panel but for the ratio of volatility in 2011 over the variance in 2005. ## B Appendix – Not intended for publication Table B.1: Marginal Likelihoods, prior with 1 degree of freedom | | Without Stochastic Volatility | With Stochastic Volatility | |----------------------------|-------------------------------|----------------------------| | Student | -t distributed shocks | | | $\underline{\lambda} = 15$ | -994.2 | -987.5 | | $\underline{\lambda} = 9$ | -982.4 | -974.0 | | $\underline{\lambda} = 6$ | -975.6 | -976.0 | Notes: The parameter $\underline{\lambda}$ represents the prior mean for the degrees of freedom in the Student-t distribution. Table B.2: Posterior of the Stochastic Volatility Innovation Variance | | Without Student's t | With Student's t | |----------------|---------------------|------------------| | \overline{g} | 0.098 | 0.003 | | | (0.035, 0.156) | (0.000, 0.006) | | b | 0.008 | 0.004 | | | (0.001, 0.015) | (0.000, 0.009) | | μ | 0.011 | 0.013 | | , | (0.000, 0.024) | (0.001, 0.026) | | z | 0.001 | 0.001 | | | (0.000, 0.003) | (0.000, 0.003) | | λ_f | 0.007 | 0.010 | | , | (0.001, 0.013) | (0.003, 0.016) | | λ_w | 0.007 | 0.013 | | | (0.001, 0.015) | (0.002, 0.023) | | r^m | 0.015 | 0.017 | | | (0.004, 0.025) | (0.006, 0.028) | Notes: Numbers shown for the posterior mean and the 90% intervals of the stochastic volatility innovation variance. Table B.3: Variance Decomposition for Real GDP Growth | | g | b | μ | z | λ_f | λ_w | r^m | |--|-------------------------------------|--|---|------------------------------------|-------------------------------------|-------------------------------|---------------------------| | Withou | t Stock | astic |
Volatili | ity | | | | | | 0.225 | 0.354 | 0.095 | 0.140 | 0.041 | 0.036 | 0.109 | | With S | to chast | ic Vole | atility | | | | | | σ_{1964} | 0.005 | 0.483 | 0.060 | 0.356 | 0.032 | 0.014 | 0.049 | | σ_{1981} | 0.278 | 0.349 | 0.048 | 0.042 | 0.022 | 0.010 | 0.250 | | σ_{1994} | 0.129 | 0.299 | 0.157 | 0.188 | 0.052 | 0.080 | 0.095 | | σ_{2007} | 0.109 | 0.307 | 0.107 | 0.177 | 0.096 | 0.091 | 0.113 | | G | 0.011 | 0.051 | 0.125 | 0.133 | 0.003 | 0.051 | 0.126 | | σ_{2011} | 0.211 | | | | | 0.031 | 0.120 | | 02011 | | Stu | ident | Shock | S | | | | 02011 | g | | | | | λ_w | r^m | | Withou | g | Stu | μ | Shock | S | | | | | g
t Stock | Stu b astic | μ | Shock z | λ_f | λ_w | r^m | | | g
t Stock
0.185 | Stu b astic 1 0.354 | μ Volatili 0.085 | Shock z | λ_f | λ_w | r^m | | Withou | g
t Stock
0.185 | Stu b nastic voic Voice | μ Volatili 0.085 | Shock z ity 0.128 | $\frac{\lambda_f}{\lambda_f}$ | λ_w 0.026 | r^m | | Withou
With Si | g t Stock 0.185 | Stu b nastic voic Voice | μ Volatili 0.085 atility 0.024 | Shock z ity 0.128 | $\frac{\lambda_f}{\lambda_f}$ | λ_w 0.026 0.007 | r^{m} 0.190 | | $Withou$ $With Si$ σ_{1964} | g t Stock 0.185 tochast 0.339 | Stuber St | μ Volatili 0.085 atility 0.024 0.085 | Shock z ity 0.128 0.248 0.069 | $\frac{\lambda_f}{0.032}$ 0.014 | λ_w 0.026 0.007 0.032 | r^{m} 0.190 0.018 | | Withou With S_{0} σ_{1964} σ_{1981} | g t Stock 0.185 tochast 0.339 0.150 | Stu b 0.354 ic Vola 0.350 0.331 | μ Volatili 0.085 atility 0.024 0.085 0.133 | Shock z ity 0.128 0.248 0.069 | λ_f 0.032 0.014 0.033 0.039 | λ_w 0.026 0.007 0.032 | r^{m} 0.190 0.018 0.300 | Notes: The tables show the relative contribution of the different shocks to the unconditional variance of real GDP. In the case with stochastic volatility we evaluate this contribution at different points in time: 1964 (beginning of sample), 1981 (peak of the high volatility period), 1994 (great moderation), 2007 (pre-great recession) and 2011 (end of sample). Figure B.1: Prior on Innovation Variance (ω^2) for Stochastic Volatility Figure B.2: Shocks (absolute values) and smoothed stochastic volatility component, $\sigma_q \sigma_{q,t}$ Figure B.2 – Continued Figure B.3: $\eta_{q,t}$ Figure B.4 – Continued Notes: Estimation with Student-t distribution with $\underline{\lambda}=6$. The solid line is the median, and the dashed lines are the posterior 90% bands. Black line is the absolute value of the shock, and the red line is the stochastic volatility component.