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Abstract 

 
I establish that inflation risk is priced in the cross section of stock returns: Stocks that have low 

returns during inflationary times command a risk premium. I estimate a market price of inflation 

risk that is comparable in magnitude to the price of risk for the aggregate market. Inflation is 

therefore a key determinant of risk in the cross section of stocks. The inflation premium cannot be 

explained by either the Fama-French factors or industry effects. Instead, I argue the premium 

arises because high inflation lowers expectations of future real consumption growth. To formalize 

and test this hypothesis, I develop a consumption-based general equilibrium model. The model 

generates a price of inflation risk consistent with my empirical estimates, while simultaneously 

matching the joint dynamics of consumption and inflation, the aggregate equity premium, and the 

level and slope of the yield curve. My model suggests that the costs of inflation are significant: A 

representative agent would be willing to give up 1.5 percent of lifetime consumption to eliminate 

all inflation risk. 
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1 Introduction

In this paper, I document how and why inflation risk is priced in the cross-section of

stock returns. Using a Fama-MacBeth (1973) procedure, I find that stocks whose re-

turns are negatively correlated to inflation shocks command a risk premium. I estimate

the market price of inflation risk to be -0.33 when measured as the Sharpe ratio of

an inflation-mimicking portfolio. The price of inflation risk is therefore comparable in

magnitude to the price of risk for the aggregate market. The negative price of risk

means that inflationary periods correspond to bad states of nature: investors are will-

ing to accept lower unconditional returns when holding securities that are good hedges

against inflation. I argue the premium arises because high inflation today predicts low

real consumption growth over many subsequent periods. I develop a model that uses

the relationship between inflation and consumption to generate a price of inflation risk

consistent with my empirical estimates.

By studying the cross-section of stock returns, I not only uncover a new source

of information about the inflation premium in the economy, but also provide insights

about the distribution and pricing of inflation risk of individual firms. Measures of

the inflation risk premium have had a natural starting point in the yield curve. With

the development of sophisticated no-arbitrage models of the term structure and the

emergence of Treasury Protected Inflation Securities (TIPS), estimates of the inflation

risk in the bond market have become more reliable and widely available1. Another

conventional way to estimate the inflation premium is to study the joint time-series

behavior of inflation and aggregate market returns. A landmark example is Modigliani

and Cohn (1979), who find a negative correlation between inflation and the S&P500

over the 1970’s and propose an explanation based on inflation illusion. Other recent

economic explanations of the inflation premium in the aggregate market are based

on important contributions by Wachter (2006) using habit formation, Gabaix (2008)

1Ang and Piazzesi (2003), Ang, Piazzesi and Wei (2006), Ang, Bekaert and Wei (2007, 2008),
Singleton, Dai and Yang (2007), Singleton, Le and Qiang (2010), Singleton and Le (2010), Haubrick,
Pennacchi, and Ritchken (2008), Gurkaynak, Sack, and Wright (2010), Chen, Liu, Cheng (2010).
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using rare disasters and Bansal and Shaliastovich (2010), who use long-run risk. If the

fundamental mechanisms of the real effects of inflation originate at the level of individual

households or firms, studying the cross-section of stocks can provide valuable additional

information that is masked in the aggregate market and the yield curve.

The variation cross-sectional returns associated with inflation is not well described

by any of the risk factors most commonly used to price assets. For example, the Fama-

French factors have a pricing error of 2.8% per year when confronted with portfolios

sorted on exposure to inflation. Industry effects also fail to explain a significant fraction

of the spread in returns of inflation-sorted portfolios. Consequently, firm characteristics

that differ across sectors of the economy —like menu costs, leverage, tax liabilities or

labor relations— although important, should be supplemented by further factors to

fully understand stocks’ cross-sectional heterogeneity in inflation risk.

I propose an explanation of the cross-sectional inflation premium by arguing that

high inflation is a bad state of nature because it predicts low future real consumption

growth. I formalize and test this hypothesis by developing a consumption-based equi-

librium model. The model takes the stochastic processes for consumption and inflation

as given and asset prices are then determined endogenously through the representa-

tive agent’s Euler equation. After estimating parameters using generalized method of

moments (GMM), I show that the model can quantitatively replicate the observed infla-

tion premium while simultaneously matching key empirical moments of consumption,

inflation, bond yields and the aggregate stock market.

To generate an inflation premium consistent with the data, my model has three key

ingredients, all of which are necessary. The first ingredient —as already mentioned—

is that high inflation predicts low future real consumption growth. I estimate that an

increase of one percentage point in inflation this month is associated with a decrease

of 2.3 percentage points in real consumption growth over the next two years. Addi-

tionally, I show that several lags of inflation are useful in predicting consumption, even

after controlling for current inflation and current consumption growth. Piazzesi and
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Schneider (2005) also find that inflation is a leading indicator for consumption and use

this relationship to rationalize the inflation premium in the yield curve.

The second ingredient is that inflation is persistent. Inflation persistence is widely

documented in the literature, for example in Fuhrer and Moore (1995), Stock and

Watson (2005), Campbell and Viceira (2001) and Ang, Bekaert and Wei (2007). Ang et

al. show that the first-order autocorrelations of inflation at the monthly and quarterly

frequencies are 0.92 and 0.77 respectively. Furthermore, inflation persistence decays

slowly over the business cycle, with a first-order autocorrelation of 0.35 at 10 quarters.

That inflation is quite persistent will be important in my model to quantitatively match

the large inflation premium: more persistent inflation induces a larger market price of

inflation risk because it affects consumption growth negatively for a longer period of

time.

The third ingredient is a representative agent with recursive Epstein-Zin-Weil (EZ)

utility. With EZ preferences, shocks to expectations about future consumption growth

are priced in addition to shocks to consumption growth itself. Since inflation predicts

consumption growth, inflation shocks are priced in my model. This property of EZ

utility is explored by many authors in the macro-finance literature2.

To give brief intuition of the model, consider what happens when a positive inflation

shock hits a two period economy. Inflation unexpectedly jumps up and remains above

its initial value in the second period. Consumption is unchanged in the first period

and predictably decreases in the second period. The price of the wealth portfolio

—which is simply a claim to future consumption— will change due to income and

substitution effects. The income effect makes the price of period-2 consumption go

down since the representative agent’s wealth has decreased and therefore demands less

consumption. The substitution effect makes the price of period-2 consumption increase

2Bansal and Yaron (2004) use it in the context of long-run risk. Piazzesi and Schneider (2005)
use it for bond pricing. Binsbergen et al. (2008), Caldara et al. (2009), Darracq et al. (2010), and
the references there, use it in the context of dynamic stochastic general equilibrium models (DSGEs).
Andreasen (2009), Rudebusch et al. (2009), Guvenen (2009), Amisano et al. (2009) use it in New
Keynesian frameworks. Levin et al. (2008) use it for optimal Ramsey allocation.
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because the representative agent would like to smooth her consumption path by shifting

consumption away from period 1 and into period 2. When the elasticity of intertemporal

substitution (EIS) is greater than one, which is the relevant case in my model, the

representative agent is not willing to pay a high price to smooth consumption and the

income effect dominates the substitution effect. The wealth portfolio now has lower

returns. An inflation-mimicking portfolio, since it co-varies negatively with the return

on the wealth portfolio, reduces the volatility of expected consumption growth. If the

representative agent is averse to risk in expected consumption growth3, inflation shocks

have a negative market price of risk.

Conceptually, my model builds on Parker and Julliard’s (2005) idea that ultimate

consumption risk depends on an asset’s correlation not only with present consump-

tion but also with consumption growth over many subsequent periods. The particular

mechanism I consider is most closely related to Bansal and Yaron’s (2004) long-run risk

model. In their model, asset prices are driven by a small, persistent long-run predictable

component of consumption. Long-run risk is priced in their model for the same reasons

that inflation is priced in mine. However, there are three important differences. First,

predictability of consumption using inflation, and inflation persistence itself, operate at

business cycle frequencies. Bansal and Yaron’s long-run risk operates at substantially

lower frequencies, of 10 years or more. Second, inflation shocks have a higher variance

than long-run risk shocks. The combination of higher volatility and lower persistence

of inflation shocks makes their inflation premium comparable in magnitude to the pre-

mium earned by the low volatility and high persistence long-run risk shocks. Third,

inflation is directly observable while long-run risk must be inferred from asset prices

using the model’s assumptions. The observability of inflation provides key additional

moments to test my model. In particular, a successful model must match, as I do,

the correlation between asset returns and inflation, while having a realistic process for

3Aversion to risk in expected consumption growth is equivalent to having a preference for early
resolution of uncertainty. For EZ preferences, this happens when the product of the coefficient of
relative risk aversion and the EIS is greater than one.
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inflation with several lags and heteroskedasticity.

Related literature Almost all studies of the inflation premium look at the time

series of aggregate stock returns and the yield curve instead of the cross-section of stock

returns. Bansal and Shaliastovich (2010) attach to the canonical long-run risk model a

process for inflation and use it to price nominal bonds. The inflation premium in their

model arises not because inflation feeds back into consumption, but because inflation

is exposed to the same real shocks that drive consumption and long-run risk. Gabaix

(2008) explains the inflation premium in a model with rare disasters. Inflation is priced

because when a disaster occurs, inflation tends to increase. Wachter (2006) explains

the inflation premium using i.i.d. consumption and habit-formation. All three models,

unlike the one I propose, were originally designed to explain classic pricing puzzles such

as the equity premium puzzle and the failure of the expectations hypothesis.

A notable exception to using time-series estimates is Chen, Roll and Ross (1986).

They postulate a model with many macroeconomic and aggregate factors, including

inflation innovations. The emphasis is not in estimating risk premia precisely but

to find plausible state variables for asset prices. They find that inflation is priced

only for the 1968-1977 subsample and, in contrast to my results, that stocks are weak

hedges against inflation. Their study differs from mine in several respects. They use 20

portfolios sorted on size as their test assets, while I use individual stocks and portfolios

sorted on inflation risk, which is the relevant variable. Their sample ends in 1984 and

contains many fewer securities than mine. Finally, they use yearly instead of monthly

data and a different Fama-MacBeth procedure.

Piazzesi and Schneider (2005) analyze how the fact that inflation predicts future

consumption growth affects the pricing of nominal bonds. Their paper can be viewed

as the counterpart of my paper in the bond market. They argue, consistent with my

findings, that inflation is bad news for future consumption, producing an upward slop-

ing yield curve. While I use rational expectations throughout, they study the impact of

changing investors’ beliefs. They find that learning is important in an environment in
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which investors cannot easily distinguish permanent and transitory movements in infla-

tion. While I do not allow for learning or endogenously changing beliefs, I do analyze

exogenous structural changes in the relationship between inflation and consumption

over my sample. Another important difference is that I allow for heteroskedasticity in

the inflation process.

2 Measuring Inflation Risk

In this section, I estimate that the price of risk of inflation shocks is -0.33 using a two-

step Fama-MacBeth procedure. The differences in stock returns arising from inflation

risk are captured neither by the Fama-French factors nor by other standard pricing

models. Industry effects play a limited role in explaining the large heterogeneity in

inflation exposures present in the cross-section of stocks.

2.1 Data

I use monthly data for the period 1959-2009. For inflation, I use the consumer price

index (CPI) from the Bureau of Labor Statistics. For consumption growth, I use real

personal consumption expenditures (PCE) in non-durables and services from the Bu-

reau of Economic Analysis. Individual stock returns are from the Center for Research

in Security Prices (CRSP) and I use the CRSP value weighted index for aggregate

market returns. I use the entire universe of CRSP, which for my sample has 27,688

companies represented and 3,262,429 total month-company observations4. Yields for

bonds are obtained from the Fama-Bliss bond files, and the risk-free rate is from the

Fama risk-free rate files, both available in CRSP. Fama-French and momentum factors,

industry portfolios, short and long-term reversal factors are all obtained from Professor

French’s website. The Cochrane-Piazzesi factor is from Professor Piazzesi’s website.

Oil prices are from the International Monetary Fund. I chose 1959 as the start of my

sample to coincide with availability of PCE data.

4In the following section, I will eliminate 1% of the sample due to outliers.
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2.2 Inflation betas

In the first step of the Fama-MacBeth procedure, I measure firms’ exposure to inflation

by estimating their “beta”, just as one would do in a CAPM setting. Instead of market

returns, I use inflation innovations as the risk factor. I only use past information

when estimating risk exposures to eliminate look-ahead bias when I later form inflation

portfolios —an investor living in any period of my sample could have replicated my

results in real time. For each stock n = 1, . . . , N and each time period t = 1, . . . , T, I

find an estimate of the inflation beta β̂n,t by running a weighted least-squares regression

of excess returns5 Re
n,t on inflation innovations ∆πt = πt−πt−1, using all observations in

the interval [1, t−1]. Since the dependent variables are excess returns, I am considering

the exposure of real returns to inflation6. I use weights that decay exponentially with the

distance between observations and have a half-life of five years. This estimator efficiently

captures time variation in betas by using all available past information. I choose to have

decaying weights because recent observations are more likely to contain information

about inflation exposure going forward. The weighted-least squares estimator resembles

the original 5-year rolling window estimator used in Fama and French (1992), with the

advantage of using more information to produce smoother estimates7. The estimator

is given by

(
α̂n,t, β̂n,t

)
= argmin

α,β

t−1∑
τ=1

K (t− τ)
(
Ri,τ −Rf

τ − α− β∆πτ

)2
(1)

with weights

K (t− τ) =
exp (− |t− τ − 1|h)∑t−1
τ=1 exp (− |t− τ − 1|h)

. (2)

5Throughout the paper, I will use a superscript “e” to denote excess returns, so for example, if the
risk free rate is Rf

t , excess returns for stock n at time t is Re
n,t = Rn,t −Rf

t .
6Rnominal

n,s −Rnominal
f,s = (Rnominal

n,s − πs)− (Rnominal
f,s − πs) = Rreal

n,s −Rreal
f,s

7I later report that estimates for the market price of inflation risk are similar when using the
weighted-least squares and the 5-year rolling window. The main difference is in the standard error.
The weighted least squares estimator also performs better when predicting ex-post exposures, which I
attribute to the reduction in noise coming from using more observations.
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I use h = log(2)/60 to get a half-life of 5-years. The least squares estimator in

(1) can also be thought of as a kernel estimator with exponential kernel given by (2)

and bandwidth8 h. The 5-year rolling window estimator also satisfies (1) but uses

a flat kernel that becomes zero after 5 years. The interpretation of the estimates is

straightforward: A value of β̂n,t = −2, for example, means that a change in inflation of

one percentage point is associated with a decrease in excess returns of two percentage

points over the same time period. Ex-ante (backward-looking) betas are useful as

a measure of risk insofar as they also capture risk exposure going forward. Elton,

Gruber, and Thomas (1978) show that making a simple Vasicek adjustment to the

ex-ante betas can make ex-ante exposures better predictors of ex-post exposures. The

Vasicek adjustment is a Bayesian updating procedure in which the prior distribution is

given by the beta β̂n,t estimated from the time-series and the posterior distribution is

obtained by incorporating information about the cross-sectional distribution of β̂n,t for

fixed t. The formula is:

β̂adj
n,t = wn,tβ̂n,t + (1− wn,t)EXS

[
β̂n,t

]
(3)

wn,t = 1− varTS(β̂n,t)

varTS(β̂n,t) + varXS(β̂n,t)
, (4)

where the subscripts TS and XS denote means and standard deviations taken over the

time series (over the variable t) and the cross section (over the variable n) respectively.

Vasicek betas are a weighted sum of each stock’s beta and the mean beta in the cross-

section. The adjustment places higher weight on individual betas that are more precisely

estimated and higher weight on the cross-sectional mean when the cross-section has less

dispersion. From this point forward, inflation betas refer to estimated Vasicek-adjusted

betas and I will drop the superscript adj and the hat.

Figure 1 depicts the histogram of inflation betas for four different time periods. I

have selected January of 1979, 1983, 1994 and 2009 to portray the shape of the distri-

bution of betas in different macroeconomic conditions and inflationary regimes. Betas

8See Ang and Christensen (2010).
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have significant dispersion in all four time periods, with values9 ranging from -25 to

+15. The mean of the distribution moves considerably through time. Strikingly, dur-

ing the downturn of 2009 the mean inflation beta is positive. Campbell, Sunderam and

Viceira (2010) document, consistent with Figure 1, that the “nominal-real” covariance

of inflation with the real economy is positive on average but has been negative since

the downturn of 2001.

Figure 2 shows the time series of inflation beta for the aggregate market, a five-

year zero-coupon nominal Treasury bond and four well-known firms representative of

different sectors of the economy. The market’s inflation beta is a good proxy for the

mean of the distribution of betas shown in Figure 1. Figure 2 displays mostly negative

betas for the aggregate market in the 1980’s and 1990’s, with positive values at the

beginning and end of the time series. Compared to the market, the excess returns on

the 5-year bond have a small and almost constant beta. This means that the spread of

the 5-year real risk-less rate over the 1-month real risk-less rate has little exposure to

inflation. Figure 2 also shows that individual companies’ betas tend to move together

with the market, especially at lower frequencies, yet still exhibit considerable cross-

sectional heterogeneity. The correlation between firms’ betas is also time varying. For

example, Coca-Cola and General Electric move in lockstep in the 1970’s but move

in opposite directions in the 1980’s. I focus exactly on exploiting this type of cross-

sectional variation to identify the inflation premium. In this respect, my research differs

substantially from Campbell, Sunderam and Viceira (2010) and from most other studies

of the inflation premium, as explained in the introduction.

2.3 Inflation-sorted portfolios

Figure 2 makes clear that individual estimates of inflation betas have substantial high

frequency variation. If some of that variation is due to noise (e.g. measurement error),

statistical inference of the inflation premium or the distribution of betas can be chal-

9I cut from the sample stocks with betas in the top and bottom 0.5% of the distribution because
their betas are extreme. Results are robust to windorizing with a threshold for betas of ±25.
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lenging. Following Fama and MacBeth (1973), and Black, Jensen and Scholes (1972), I

address this problem by forming portfolios, in the hope that idiosyncratic variation will

average out within each portfolio. To form portfolios, I perform a double-sort based on

inflation betas and size. Size is measured by market equity (price multiplied by shares

outstanding) in June of the previous year, just as in the construction of the Fama-

French factors. At time t, each firm belongs to one of 10 deciles of the inflation beta

distribution and one of 10 deciles of the size distribution. I create 100 value-weighted

portfolios by grouping stocks that belong to the same beta and size deciles. This pro-

cedure implies rebalancing portfolios every month. In practice, however, around 80%

of the firms remain in the same portfolio after one year and about 30% after 5 years,

which is not surprising given that estimates in betas for two consecutive months only

differ by one observation. As when creating size and book-to-market factors in Fama-

French, I reduce the 100 inflation-and-size portfolios to 10 inflation-only portfolios by

collapsing the size dimension. Specifically, I create 10 new value-weighted portfolios

from the original 100 value-weighted portfolios by grouping together portfolios that

belong to the same decile of inflation betas. The resulting portfolios have differential

ex-ante exposure to inflation innovations but little variation in size. Ideal test assets

have identical exposure to every risk factor except for inflation. In that case, any dif-

ference in mean returns can be interpreted as compensation for inflation risk. When

reducing the original 100 portfolios to the new 10 portfolios, I eliminate most of the

differential exposure to size. Conveniently, size smoothing also makes exposures to the

market and other risk factors much more homogeneous across portfolios. The resulting

portfolios are therefore much closer to ideal test assets and allow me to better isolate

the effects of inflation10.

One main feature of the 10 inflation portfolios is that they exhibit a spread in returns:

10There are other advantages to averaging along size. The model I develop does not have any size or
book-to-market effects, so using assets that have size and book-to-market exposure will only complicate
estimation and make results difficult to interpret.
Having 10 instead of 100 portfolios also makes it feasible to estimate non-linear standard errors with

GMM when I test factor models.

1110



the highest beta portfolio has a mean return of 5.16% per year, compared to 6.91% for

the lowest beta portfolio. To put the spread of 1.75% in perspective, the analogous

spread induced by size and book-to-market differences are 2.6% and 4.8% respectively.

Columns 1 and 3 of Table 1 show the mean ex-ante inflation betas and the mean excess

returns for all portfolios. Column 2 shows the mean post-ranking betas. To construct

the post-ranking beta of a portfolio at time t, I freeze the time-t portfolio weights and

regress the excess returns of the fixed-weights portfolio on inflation innovations, using

the five years of data starting at t+1. The post-ranking betas can be thought of as an

out of sample test for the estimates of the ex-ante betas. Table 1 shows that ex-ante

betas align neatly with post-ranking betas, showing that portfolios do capture ex-post

exposure to inflation. Post-ranking betas are squeezed together compared to ex-ante

betas, which is a well-known effect in this set-up11. The range of post-ranking betas is

also more reasonable than for the noisy ex-ante betas; it is difficult to imagine a stock

whose returns have a systematic 10-fold reaction to inflation.

A first pass “long-short” estimator of the inflation premium can be found by looking

at the last row of Table 1, which computes the spread in betas and returns between

the highest and lowest beta portfolios. Dividing the 1.75% spread in returns by the

difference in their ex-post betas, I find a slope of λLong−Short = −0.74. I divide this

crude non-linear slope estimator by the standard deviation of returns of the long-short

portfolio to find a market price of inflation risk of -0.23. Higher inflation beta is as-

sociated with lower mean returns, which implies a negative market price of risk. The

price of risk obtained in this way is not statistically significant. However, combined

with how well returns align with ex-ante and post-ranking betas, the obtained value for

λLong−Short provides further motivation to more deeply analyze how inflation is priced

in the cross-section of stock returns. The estimator λLong−Short is inefficient because

it discards changes in the cross-section of stocks that occur every period – it simply

averages across time first and then ignores all but the two corner portfolios. In the next

11See Elton and Gruber (1995).
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section, I will formally statistically test whether the spread in returns can be attributed

to the differences in betas by using the entire cross-sectional variation of the 10 portfo-

lios over time. The test will confirm that inflation is priced in the cross-section of stock

returns in a statistically significant manner, with a market price of risk of -0.33.

Table 2 analyzes other characteristics of the portfolios. The first four columns show

that portfolios are not systematically different in terms of their exposure to market,

size, book-to-market or momentum. The last three columns show that portfolios are

only slightly different in terms of their industry composition. Industries are defined by

the first two digits of the Standard Industry Classification code (SICCD). Column 5 is a

Herfindahl industry concentration index obtained by summing the squares of the shares

of firms in each industry within a portfolio. A value of 1 for this index means that all

companies in the portfolio belong to the same industry, and the closer the index is to 0,

the more diversified the portfolio is across industries. Column 6 provides a measure of

distance in the distribution of industries between a given portfolio and the remaining

9 portfolios. The index is normalized so that a value of 1 means that the portfolio in

question has the same exact distribution of industries as the remaining 9 portfolios, and

the measure decreases toward 0 when there is no intersection between industries in the

portfolios. Column 7 uses the same measure as Column 6 to compare each portfolio’s

industry distribution with the distribution of the same portfolio five years later. Low

beta, high return portfolios have slightly higher industry concentration and persistence

but the message of Columns 5-7 is that portfolios are by and large well-diversified, simi-

lar to each other and not very persistent in their industry composition. Hence, there are

no large industry differences within portfolios, across portfolios or along different time

periods. The observed pattern implies that the bulk of the heterogeneity of inflation

risk in the cross-section of stock returns cannot be ascribed to industry effects. Table

2 has important implications for any theory that attempts to explain the variation of

stock returns induced by their differential exposures to inflation. For example, menu

costs, taxes, leverage, or labor relations between a firm and its employees, although im-
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portant, cannot provide a complete explanation of why different firms react differently

to inflation, as these characteristics vary strongly by industry while inflation-sorted

portfolios don’t.

To further confirm that the spread in returns of inflation portfolios are not driven

by market exposure, size, industry effects or other standard factors that are commonly

used to explain returns, I run time-series regressions of inflation portfolios’ returns

on different risk factors. I consider the Fama-French factors, momentum, short and

long-term reversal factors, liquidity, oil, industry portfolios and the Cochrane-Piazzesi

factor. Table 3 shows results for different combinations of the factors. The mean

absolute pricing errors –the average of the absolute value of the intercepts or “alphas”–

are on the order of 1.88% to 4.28% per year, which is of the same order of magnitude

as the difference in returns between the lowest and highest inflation beta portfolios. In

addition to being economically sizable, I show in Table 3 that the pricing errors are

also statistically different from zero by performing a Gibbons-Ross-Shanken (GRS) test

(1989). The GRS test is an F-test adjusted for finite sample bias for the hypothesis

that the pricing errors for the 10 portfolios are jointly zero. Oil and industry portfolios

perform better than other factors under the GRS measure but still have large pricing

errors that are statistically different from zero at the 1% level.

2.4 Market price of inflation risk

In this section, I use the inflation portfolios of the last section to perform the second

step of the Fama-MacBeth procedure. The goal of this section is to produce an estimate

for the market price of inflation risk implied by the cross-section of stock returns.

To do so, I start by running one cross-sectional regression for each time period t.

The dependent variables are the time t returns for the 10 inflation portfolios and the

independent variables are the estimated time t post-ranking inflation betas obtained in
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the first stage of Fama-MacBeth 12:

Re
p,t = at + λtβp,t + εt (5)

p = 1, ..., 10.

The estimated coefficient λ̂t measures the average extra returns earned by assuming

one extra unit of inflation beta at time t. Table 4 reports the average annualized

price of inflation risk in my sample. I show both the average λ̄ of λt, which gives

the risk premium per unit of inflation beta, and λ̄/std (∆πt) , which gives the risk

premium associated with a one standard deviation shock in inflation innovations. Since

λt is persistent over time, I use Newey-West standard errors with 12 lags to construct

standard errors and verify that both estimates for the price of risk are statistically

different from zero.

The negative value of λ̄ implies that inflation shocks correspond, on average, to bad

states of nature. Holding assets that have low excess returns when inflation is increasing

must offer higher mean returns as compensation for bearing inflation risk. Another way

to understand the inflation premium is to imagine that each period we move from the

first to the last decile in the distribution of ex-post betas. In this case, the associated

expected increase in returns is 8.79%. This exercise is not the same as moving from

portfolio 1 to 10 every period. When moving from decile to decile in the distribution

of individual betas, we do it unconditionally, while portfolios are conditioned on size

because of the initial double-sort. Stocks with lower inflation beta are also smaller

on average. When moving unconditionally across the distribution, both effects are

captured in the extra returns. The 8.79% can then be thought of as a total derivative,

while the 1.75% spread in returns is closer to a partial derivative.

To compare the market price of inflation risk to the aggregate market’s price of risk,

it is more useful to look at the normalized λ̄/std (∆πt) . Table 4 shows that under this

measure, the price of risk of inflation is comparable to the market’s, for which 0.3 is a

12Thus, the independent variables in this regression are themselves regression coefficients.
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good approximation. This means that an inflation-mimicking portfolio has about the

same Sharpe ratio as the market. Inflation is therefore an important component of risk

in the cross-section of stock returns.

An alternative to forming portfolios when measuring prices of risk, advocated by

Ang, Liu and Schwarz (2010), is to use individual betas in the second stage regression

(5). The rationale is that while betas may be more precisely estimated when forming

portfolios, efficiency in the estimate for λ̄ is increased when no information about the

cross-section is destroyed. Column 2 of Table 4 reports the estimates for the inflation

premium using individual stocks. As a robustness check, Column 3 reports the estimate

for λ̄ obtained when creating portfolios using a 5-year rolling window instead of an

exponential kernel. All three measures are similar, especially the ones in Columns 2

and 3. The estimator using individual stocks does have a smaller variance, confirming

the message of Ang, Liu and Schwarz (2010).

3 Model

In this section, I present a consumption-based model that can explain and quantitatively

match the inflation premium I estimated in the last section. I first consider a simple

version to illustrate how assets are priced. This version is similar in its mechanics to

Bansal and Yaron’s (2004) long-run risk model. I then present a version of the model

that has richer processes for inflation, consumption and dividends, that is more suitable

for quantitatively estimating and testing of the model.

3.1 Set-up

Environment The model is an exchange economy with a single representative agent.

Time is discrete and indexed by t ∈ {0, 1, . . .} . For each period t, there is one consump-

tion good denoted by Ct which represents the economy’s real aggregate consumption.

I will use lower-case letters to denote the logarithm of the corresponding variable, so

for example ct = lnCt.
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The joint process for consumption growth ∆ct+1 = lnCt+1 − lnCt and inflation πt

is exogenous and given by

πt+1 = µπ + ρπ (πt − µπ) + σπεt+1 (6)

∆ct+1 = µc + ρc (πt − µπ) + σcηt+1 (7)

The stochastic disturbances εs, ηr are i.i.d. standard normal for all s, r ∈ {0, 1, . . .}.

Eq. (6) shows that inflation follows an AR (1) process with constant auto-regressive

coefficient ρπ ∈ (−1, 1) and unconditional moments controlled by the constants µπ and

σ2
π :

Eπt+1 = µπ (8)

V ar (πt+1) =
σ2
π

1− ρ2π
(9)

The AR(1) specification for inflation captures, in a stylized way, the persistent nature

of inflation. Eq. (7) models real consumption growth as being a predictable function

of past inflation. When an inflation shock εt hits the economy, inflation reacts con-

temporaneously and the effect extends into subsequent periods. However, consumption

growth only starts reacting to the inflation shock the next period. Thus, inflation leads

consumption growth and inflation shocks translate not into changes in current con-

sumption, but into shocks to consumption expectations. The sign and magnitude of

the predictability is given by the constant ρc. When |ρc| is large and when ρπ is close to

1, inflation shocks have a large, persistent effect on future consumption growth. When

σ2
π is large, inflation is very volatile and small inflation shocks also have a large effect

on future consumption and consumption expectations.

Table 5 justifies my choice for process (6). Column 1 of Table 5 shows that eq.

(6) is not unreasonable as a first approximation, although it does mask many features

of inflation dynamics. Column 2 shows that inflation has more inertia than hinted

by its first autoregressive coefficient, with several lags significant and comparable in

magnitude to the first lag. Ang, Bekaert and Wei (2007) show that at the ten quarter
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horizon, the first order autocorrelation of inflation is still 0.35. Including multiple lags

in the monthly process, or looking at longer horizons, makes clear that inflation shocks

are active throughout the entire business cycle, spanning a window of 2 to 4 years.

A potentially restrictive assumption in (6) is that the parameters for inflation are not

time-varying. Taylor (1998) argues for a break in inflation regimes before and after the

Volcker era13. Without trying to produce sophisticated econometric analysis of breaks

and switching regimes, Panel A of Table 6 shows basic evidence that inflation was

more volatile and persistent before 1980. Under the interpretation in Taylor (1998),

the reason is that the Federal Open Market Committee accommodated inflation before

Volcker but started leaning against it in the early 1980’s. For both the simple model

and my main specification, I will keep the inflation parameters constant. However, I

will later exploit the time-variation in inflation parameters to test my model. This

will be an important validation of my model, because it focuses on the key mechanism

generating the inflation premium. I will show that the model successfully replicates

the change in inflation premium observed in the data when inflation persistence and

volatility change.

Table 7 addresses the empirical evidence of consumption predictability using infla-

tion. Column 1 shows that an increase in one percentage point in inflation this month

is associated with an expected decrease of 1.5 percentage points in real consumption

growth over the next year. Column 2 shows that up to three lags of inflation contribute

in predicting consumption14. Column 3 shows that if enough lags of inflation are in-

cluded, past consumption need not be included in (7). The last three columns of the

table show the same regressions for a two-year horizon.

I take the process for consumption as exogenous and therefore do not attempt to

explain why inflation predicts consumption. There is already a large and sophisticated

body of literature in Macroeconomics that puts forward several mechanisms that gen-

13On the other side of the argument, Orphanides (2004) uses information available to the FMOC in
real time to argue there was no change in regimes. I consider both cases.

14The two subsequent lags are not significant and get smaller in magnitude.
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erate real effects of inflation and real consumption predictability. For example, Clarida,

Gali and Gertler (1999) provide a reduced-form model that captures a large class of

dynamic equilibrium models of nominal rigidities. After computing expectations that

ultimately come from agents’ optimization, their process for inflation and consumption

can be mapped to eqs. (6) and (7) if I allow for contemporaneous correlation between

inflation and consumption (which I do below). Other explanations for the real ef-

fects of inflation include menu costs, rational inattention and informational frictions15.

I take no position as to which explanations are correct or quantitatively important,

but instead empirically estimate a joint process for consumption and inflation that is

flexible enough to accommodate any of these models and capture their main dynamic

characteristics.

If I substitute inflation for long-run risk in eqs. (6) and (7) , I obtain the same basic

specification as Bansal and Yaron (2004). However, my model differs conceptually from

theirs in significant ways. First, inflation is observable, so its process and its relation

to consumption can be estimated directly. In the long-run risk model, the variable

predicting expected consumption growth is inferred from asset prices and assumptions

about preference parameters. In the next sections, I will use the observable properties

of consumption and inflation, such as the presence of multiple lags, to depart from

Bansal and Yaron’s (2004) specification. This departure will provide me with additional

moment restrictions to test my model in a way that would not be possible in the

long-run risk model. Second, even though inflation and long-run risk have a similar

functional form, their stochastic properties are drastically different. Long-run risk has

an extremely long half-life, operating at frequencies of 10 to 30 years instead of the 1

to 2 years for inflation. The counterpart for a long half-life of long-run risk is that its

volatility is about 200 times smaller than inflation’s. The lower persistence and higher

volatility of inflation generates a market price of risk similar to the one for the higher

persistence, lower volatility long-run risk.

15See the introduction for references
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Representative Agent The representative agent has recursive Epstein-Zin-Weil

(EZ) preferences. If she enters period t with wealth Wt, then her utility is defined by

Ut (Wt) =

(
(1− δ)C

1−1/ψ
t + δEt

[
Ut+1(Wt+1)

1−γ
] 1−1/ψ

1−γ

) 1
1−1/ψ

(10)

The constant δ ∈ (0, 1) is the discount rate, γ > 0 is the coefficient or relative risk

aversion and ψ > 0 is the elasticity of intertemporal substitution (EIS). It is convenient

to define the constant θ = 1−γ
1−1/ψ

, which measures the relative magnitude of risk aversion

against the EIS. The EZ utility function is a generalization of the familiar constant

relative risk-aversion (CRRA) utility function, which is obtained when θ = 1. With

CRRA utility, the coefficient of relative risk aversion is the inverse of the elasticity of

intertemporal substitution. EZ disentangles these two conceptually different parameters

—there is no reason to assume that the desire to smooth over time is the same as

the desire to smooth over different states of nature. In fact, the EIS is important

in a dynamic deterministic economy while the lack of uncertainty makes risk-aversion

irrelevant. Similarly, γ is relevant in a static economy with uncertainty, while the EIS

is not. Because inflation operates through the predictable component of consumption,

the EIS will play a crucial role in determining the asset pricing implications of inflation.

Another important trait of the EZ utility is that it is not time-separable (it cannot be

written as a sum of period utilities). To understand why non-separability is important,

consider the following example from Duffie and Epstein (1992). An agent picks between

two consumption plans for a long number of periods before any consumption is realized.

Consumption plan A is obtained by tossing a fair coin every period and giving the agent

high or low consumption in each period depending on the outcome of the toss in that

period. Consumption plan B is obtained by a single coin toss before all consumption

takes place and gives the agent high consumption in every period if heads and low

consumption in every period if tails. In plan B, uncertainty about consumption is

resolved early, while for plan A uncertainty is resolved gradually. When θ < 1, which

is the case I consider in my model, the representative agent prefers early resolution
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of uncertainty —i.e. likes to plan ahead— and prefers plan B. This case occurs when

γψ > 1, requiring high risk aversion or high EIS.

Early resolution of uncertainty can also be understood in terms of aversion to risk

in consumption growth. Expected consumption growth is mean-reverting in plan A

and constant for plan B. When the agent prefers early resolution of uncertainty, she

also has a preference for less risk in expected consumption growth and plan B is more

desirable than A. In my model, positive inflation shocks will command a premium

because inflation induces this type of risk.

The representative agent’s budget constraint is given by

Wt+1 = Rc,t+1 (Wt − Ct) , (11)

where Rc,t+1 is the return on the wealth portfolio. The wealth portfolio is the asset

that pays consumption Ct each period as its dividends. Therefore, the agent consumes

Ct out of wealth Wt and invests the remainder in the economy’s aggregate endowment

(consumption) technology.

Assets There are 1 +N assets in the economy indexed by n. The first asset is the

wealth portfolio described in the last paragraph. The other N assets are defined to be

levered claims to consumption as in Abel (1999). They pay exogenous dividends given

by

∆dn,t+1 = µn,d + lnρc (πt − µπ) + ϕnωn,t+1 for n = 1, . . . , N, (12)

with ωn,t+1 i.i.d. standard normal across time, across assets and with respect to all other

shocks in the economy. The process (12) for dividend growth has the same form as the

process (7) for consumption growth. These processes can have different mean growth

rates given by µn,d, different volatilities given by ϕn and, more importantly, different

exposures to inflation given by lnβc, where ln is an asset-specific leverage parameter.

The difference between the sum of dividends and aggregate consumption is assumed

to come from other sources of income such as human wealth, which I do not explicitly

model. When I estimate the parameters of the model with GMM, the N assets will be
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mapped to the 10 inflation portfolios that I constructed in the empirical section of this

paper.

3.2 Asset pricing

Representative agent’s problem The representative agent’s problem in period t is

to pick a consumption path {Cs}∞s=t to maximize utility (10) subject to the budget

constraint (11) and the exogenous processes for consumption (7) and inflation (6) .

Stochastic discount factor and inflation-CCAPM The first order condition

for the representative agent’s problem implies that the return Rn,t+1 of any tradable

asset n satisfies the Euler equation

1 = Et [SDFt+1Rn,t+1] (13)

with a stochastic discount factor given by

logSDFt+1 = sdft+1 = θ log δ − θ

ψ
∆ct+1 + (θ − 1) rc,t+1. (14)

Rearranging equations (13)− (14) and using the log-normal structure of the set-up,

I find that expected excess returns Ee
t [rn,t+1] follow a two factor model

Ee
t [rn,t+1] ≡ −Covt (sdft+1, rn,t+1) (15)

=
θ

ψ
Covt (∆ct+1, rn,t+1) + (1− θ)Covt (rn,t+1, rc,t+1) (16)

Equation (16) states that the risk premium of asset n depends on the covariance of

its returns rn,t+1 with two factors. The first one is consumption growth ∆ct+1, just

as in the consumption-CAPM. The second one is the return on the wealth portfo-

lio rc,t+1. The wealth portfolio arises with non-separable utility because, as explained

above, the shape of the entire path of consumption matters when computing utility,

rather than just the sum of expected utilities across periods. Because the return on

the wealth portfolio rc,t+1 is the price of the stream of all future consumption, it in-

corporates information about future consumption that is not included in ∆ct+1. For
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an agent with non-separable utility, this additional information should be useful when

computing marginal utilities and asset prices. For the EZ specification, it turns out

that the return on the wealth portfolio rc,t+1 is a sufficient statistic for the entire future

path of expected consumption growth and hence the only other pricing factor beyond

contemporaneous consumption. When θ < 1, the representative agent is averse to risk

in expected consumption growth. Assets that covary positively with the return on the

wealth portfolio induce more expected consumption growth risk and have a positive

risk premium.

Linearizing rc,t+1 around the mean wealth-consumption ratio (Campbell 1991), the

pricing equation (16) can be re-written as an inflation-consumption-CAPM:

Et

[
ren,t+1

]
= γCovt (∆ct+1, rn,t+1) +

(γ − 1/ψ) (ρc − 1/ψ)

(κ1 − ρπ) (1− 1/ψ)
Covt (πt+1, rn,t+1) (17)

where κ1 is a linearization constant that depends on the mean wealth-consumption

ratio16. In a broader model, other state variables that determine returns on the wealth

portfolio should be included. The prediction that inflation is priced because it predicts

consumption should be robust to the inclusion of any other factors as long as inflation

does not cease to have predictive power. The inflation-CCAPM (16) summarizes all

the asset pricing content of the model. The market price of risk of consumption shocks

is positive and given by γσc as in the CCAPM.

The magnitude and sign of the market price of risk for inflation shocks depend on

the model’s parameters. The larger the variance of inflation shocks σπ, the larger the

premium. In addition, if

(i). inflation predicts consumption growth negatively (ρc < 0) and inflation is persistent

(ρπ > 0),

(ii). the substitution effect dominates the income effect (ψ > 1), and

(iii). the representative agent dislikes uncertainty in expected consumption growth

16In practice, the constant is close to 1 for most parameter values.
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(γ − 1/ψ > 0),

then assets that have low returns when inflation shocks are positive will command a

risk premium. The larger any of the three effects, the larger the premium.

I now give intuition for these components. The product of components (i) and

(ii), given by 1
1−1/ψ

ρc−1/ψ
κ1−ρπ

, captures how inflation shocks affect returns to the wealth

portfolio. It “translates” eq. (16) to eq. (17). When ρc < 0, positive inflation shocks

are bad news for future consumption growth. If ψ > 1, the substitution effect is larger

than the income effect, and the adverse shock to expected consumption growth leads

to smaller returns of the wealth portfolio. To see this, I use the budget constraint to

write the log consumption-wealth ratio as

ct − wt + a = (1− ψ)Et

[∑
j

bjrc,t+j

]
= Et

[∑
j

bj (rc,t+j −∆ct+j)

]

for some constants a and b. The first equality shows that when ψ > 1, today’s consump-

tion decreases relative to wealth when expected returns rise – the substitution effect

dominates. The second equality shows that a fall in expected returns is associated with

a fall in expected consumption growth.

Component (iii) determines how shocks to the wealth portfolio are compensated

in equilibrium. If the representative agent prefers earlier resolution of uncertainty and

is therefore averse to risk in expected consumption growth, holding assets that covary

with the returns on the wealth portfolio must have a positive risk premium, since they

increase the volatility of expected consumption growth.

Combining ingredients (i), (ii) and (iii) implies that when an inflation shock hits the

economy, expected consumption growth decreases, the returns on the wealth portfolio

decrease and assets that pay off poorly in those bad states of nature command a risk

premium.

Inflation Betas and Unconditional Returns To compare the model to the data,

it is useful to understand the Fama-MacBeth procedure in the model. Inflation betas

are endogenous in the model and given by the coefficient of the univariate regression of
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excess returns on inflation innovations

βn,t =
Covt

(
∆πt+1, r

e
n,t+1

)

V art (∆πt+1)
=

lnρc − 1/ψ

κn,1 − ρπ
. (18)

The betas are not time-varying, but will be when I introduce stochastic volatility.

Given that ρc < 0 and κn,1−ρπ > 0, the sign of βn,t depends on the relative magnitudes

of firms’ leverage and the EIS. Positive leverage makes betas negative because they

inherit the consumption risk induced by inflation. When the EIS is small, the agent is

reluctant to change her consumption path after an inflationary shock. In that case, the

adjustment to the new economic conditions requires large changes in prices.

Combining the inflation-CCAPM eq. (17) and the inflation betas, I obtain the

cross-sectional regression in the second stage of the Fama-MacBeth procedure

ren,t = γσ2
c +

(γ − 1/ψ) (ρc − 1/ψ) σ2
π

(κ1 − ρπ) (1− 1/ψ)
βn,t + ξt, (19)

where ξt is a random disturbance. Comparing this equation to its empirical counterpart

(5) , we can identify the coefficient

λt =
(γ − 1/ψ) (ρc − 1/ψ) σ2

π

(κ1 − ρπ) (1− 1/ψ)
(20)

Fama-MacBeth is therefore the right procedure to estimate inflation risk in my model.

This fact not only helps justify the empirical methodology I employ, but also makes

straightforward the comparison of the model and the data.

3.3 A general version

The model presented in the last section, although simple, can quantitatively generate an

inflation premium as large as the one estimated in Table 4. I do a back of the envelope

calculation of the premium with the following reasonable parameters: γ = 3, ψ =

1.5, ρπ = 0.6, ρc = −0.1 and V ar(πt) = (1− ρ2π)σ
2
π = 1.5% per year. The market price

of risk in this case is λ̄ =-0.316 which is very much in line with my empirical estimates.

However, as discussed in the previous section, the dynamics for consumption and
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inflation are more elaborate than AR(1). A more compelling model should generate the

empirically observed price of inflation risk using processes for inflation and consumption

that more closely adjust to the data. I therefore consider a richer version of my model

and show that it can indeed price inflation in the cross-section of stock returns in accor-

dance to my empirical estimates. The generalized processes for inflation, consumption

and dividends are given by

πt+1 = µπ +
2∑

s=0

ρπ,s (πt−s − µπ) + σπ,t+1εt+1 + ϕπcσc,t+1ηt+1 (21)

σ2
π,t+1 = σ2

π +
1∑

s=0

νπ,s
(
σ2
π,t−s − σ2

π

)
+ σπwut+1 (22)

∆ct+1 = µc +
2∑

s=0

ρc,s (πt−s − µπ) + σc,t+1ηt+1 (23)

σ2
c,t+1 = σ2

c + νc
(
σ2
c,t−s − σ2

)
+ σcwwt+1 (24)

∆dn,t+1 = µn,d + ln

2∑
s=0

ρs,c (πt−s − µπ) + ϕncσc,t+1ωn,t+1 (25)

where the shocks εt, ηt, ut, wt and ωn,t, are i.i.d. normal across time and across processes.

Consumption and inflation now have three lags of inflation and stochastic volatil-

ity. Dividends are still levered consumption with parameter ln. The inclusion of lags is

justified by Tables 5 and 7, and the discussion following eqs. (6) and (7). Stochastic

volatility for inflation follows an AR(2) process, creating GARCH-like effects, includ-

ing heteroskedasticity and persistence. GARCH effects in inflation are documented in

Bollerslev, Russell and Watson (2009) and Bollerslev (1986). Stochastic volatility for

consumption and dividends are also AR(2), which allows the model to match the widely

documented time-varying volatility of stock returns.

The inclusion of stochastic volatility plays a dual role. As explained by Campbell

and Beeler (2009) in the context of long-run risk, stochastic volatility in dividends
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and consumption help generate a realistic aggregate equity premium. In my model,

it will also help match the average level of returns in inflation portfolios. Stochastic

volatility in consumption and dividends plays no role in generating a spread in returns

across stocks with different exposures to inflation. Stochastic volatility of inflation, on

the other hand, does increase the mean inflation premium. This is most easily seen

in the context of the simple model. Using Jensen’s inequality and replacing σπ by a

time-varying process σt,π with mean σ̄π, we have

λ̄ = E [λt] =
(γ − 1/ψ) (ρc − 1/ψ)

(κ1 − ρπ) (1− 1/ψ)
E
[
σ2
t,π

]
≥ (γ − 1/ψ) (ρc − 1/ψ)

(κ1 − ρπ) (1− 1/ψ)
σ̄2
π. (26)

As a last modification from the simple model, I allow correlation between contempo-

raneous inflation and consumption, parametrized by ϕπc. In many models, supply (e.g.

productivity) shocks will tend to increase consumption and lower inflation. A demand

shock, on the other hand, will tend to increase both. In those models, the correlation

between consumption and inflation captures the relative strength of these two compet-

ing effects. Apart from theoretical considerations, there is a negative contemporaneous

correlation between inflation and consumption at the monthly frequency that could not

be otherwise captured. After estimating the parameters of the model, I find that this

correlation does not contribute significantly to the inflation premium.

4 GMM Estimation

In this section, I estimate the parameters of the general model by using generalized

method of moments. I find that the model can reproduce the observed market price

of risk for inflation, the aggregate market’s risk premium and its volatility, the level

and volatility of the risk free rate and the level and slope of the yield curve, while

simultaneously matching the processes for consumption and inflation. I use a standard

2-step feasible GMM. In the first step, I use the identity matrix as the weighting matrix.

In the second step, I use as weighting matrix the inverse of the variance-covariance

matrix estimated using the parameters found in the first step.

2726



4.1 Moments

I classify the 59 moment conditions that I use into four groups:

1. Consumption and inflation (11 moments). I estimate all the OLS moments of

eqs. (21) and (23), together with the variance-covariance matrix of same-period

inflation and consumption growth. These are the natural moments to estimate

for the linear exogenous processes for inflation and consumption.

2. Inflation portfolios (30 moments). I include the mean and variance of returns

of the 10 assets of the model, together with their inflation betas. The empirical

moments corresponding to these assets naturally come from the inflation portfolios

constructed in the empirical section.

3. Aggregate market (6 moments). I match the mean of aggregate dividend

growth and the mean, variance and inflation beta of the market’s return. In

addition, I include the mean and variance of the price-dividend ratio as a mo-

ment condition to highlight the model’s ability to match a property of the aggre-

gate market that proves difficult to match in other models. The volatility of the

price-consumption ratio also helps identify consumption and inflation’s stochastic

volatility.

4. Bonds (12 moments). I incorporate as moment conditions the means and vari-

ances of nominal bond yields for 1, 2, 3, 4 and 5 year maturities together with

the mean and variance of the risk-free rate.

4.2 Parameters

I divide the 53 parameters to be estimated into five categories:

1. Consumption and inflation (11 parameters). The vector of parameters is

Θcπ = (µc, µπ, ϕπc, ρπ,s, ρc,s, σc, σπ) with s = 0, 1, 2. If I were estimating just

the process for consumption and inflation (without stochastic volatility), the 11
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parameters would be exactly identified from their corresponding 11 moment con-

ditions and could be estimated by OLS.

2. Inflation portfolios (3 × 10 = 30 parameters). The vector of parameters is

Θp = (µn,d, ln, ϕnc) for n = 1, ..., 10. It includes the mean µn,d, leverage parameter

ln and volatility σn of dividend growth for each stock. If these were the only

parameters to be estimated, they would be exactly identified (through a non-

linear transformation) by the 30 moments for inflation portfolios discussed above.

3. Aggregate market (3 parameters). The vector of parameters is Θm = (µm, lm, σm),

which are the mean, leverage parameter and volatility of the market’s dividend

process.

4. Stochastic volatility (6 parameters). The vector of parameters is Θvol =

(σπw, σcw, νπ,s, νc,s) with s = 0, 1. These are the variances and auto-regressive

coefficients for volatility.

5. Preferences (3 parameters). The three preference parameters Θu = (δ, γ, ψ) are

the discount rate, the coefficient of risk aversion and the EIS. The small number

of preference parameters and the functional form of the stochastic discount factor

consistent with equilibrium is one of the main reasons why the GMM system is

overidentified.

4.3 Estimation results

The preference parameters obtained from the calibration are γ = 8.46 and ψ = 1.44.

The EIS is the key preference parameter to match the slope of returns with respect

to inflation betas. The EIS that I estimate is very close to the one used in the LRR

literature, which is generally calibrated to be ψ = 1.5. A relatively high level of

risk aversion γ contributes to the large inflation premium, but is more important in

determining the overall level of returns than their sensitivity to inflation. Because

dividends and consumption are exposed to the same underlying volatility shocks, GMM
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faces a tradeoff between matching the high returns of stocks and the low volatility of

consumption. Increasing gamma reduces this tradeoff. If my model included long-run

risk, disaster risk, or some other additional source of consumption risk, it would be able

to match the equity premium with a lower γ. Table 8 reports the other parameters.

The main goal of the parameter estimation of the model is to test whether the model

can generate an inflation premium consistent with the data using realistic processes for

inflation and consumption. Column 4 of Table 4 shows the model’s results when per-

forming the same Fama-MacBeth procedure that I used in the data. Comparing to the

empirical estimates in columns 1, 2 and 3, we see that the model can reproduce all of

the inflation premium. Table 10 goes deeper into the model’s predictions for inflation

portfolios. The table shows that the model can closely match the individual average

betas and returns of the inflation portfolios. Table 9 shows that the source of hetero-

geneity in the model’s betas and returns comes mostly from having a different exposure

to consumption and inflation and not from their difference in volatility loadings.

Table 11 shows that the model successfully matches basic moments for inflation

and consumption, while Table 12 shows the degree of consumption predictability and

inflation persistence in the model. The standard deviation for inflation and consumption

are 1.34% and 2.25% in the model and 1.14% and 2.14% in the data. The slightly higher

volatility of inflation is important to match the observed price of risk for inflation. The

other moments for consumption and inflation are accurately aligned to their empirical

counterparts.

Table 11 also shows that the model replicates the Sharpe ratio and the mean and

standard deviation of the price-dividend ratio for the aggregate market. The level of

the nominal risk-free rate is also closely matched, although its volatility in the model

is less than half of what we observe in the data. I find the same pattern for the yield

curve: the model produces an upward sloping yield curve, but the volatility of yields is

too small and decays with horizon faster than in the data.

Table 14 shows interesting moments that were not targets of my GMM calibration.
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The table verifies that consumption is as persistent in the data as in the model. Koijen,

Lustig, Van Nieuwerburgh and Verdelhan (2010) emphasize the moments of the wealth-

consumption ratio as a means to differentiate between asset pricing models. Table 14

corroborates that my model performs well in this dimension.

Tables 11-14 compare my results to Bansal and Shaliastovich (2010). Their model

is a standard long-run risk model with an exogenous process for inflation attached to

it. Unlike my model, inflation does not feed back into consumption or any other real

variables and acts just as a conversion factor between nominal and real prices. In their

model, an inflation premium arises because inflation itself is exposed to consumption

and long-run risk shocks.

Before I compare their results to mine, two caveats are in order. First, I estimate

my model with GMM, while they resort to calibration to choose parameters. Picking

parameters using GMM may give their model a better fit and provide a more even

comparison between the two. Second, their calibration is for a slightly different period

and done at the quarterly frequency after time-aggregating monthly series from their

model.

I also emphasize that Bansal and Shaliastovich’s (2010) model was not designed

to match the inflation premium in the cross-section of stock returns. It is therefore

not surprising to find that the inflation premium in their model is about half the size

of the one I find in the data, as can be seen in Table 4. Their model is designed to

explain predictability puzzles in bond and currency markets while matching the level

and volatility of nominal yields and the market’s return. As can be seen from Tables

11-14, they succeed at matching the means and variances of aggregate market returns,

the risk-free rate, bond yields of all maturities, consumption and inflation. My model,

on the other hand, is designed to explain neither the equity premium puzzle nor the

predictability puzzles of bond and currency markets. In this respect, the principal

objective of our models is different and they can be regarded as complementary.

Another concern that I address is the possibility that the inflation process has
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changed throughout my sample, perhaps due to a change in monetary policy. I re-

estimate the model in two separate subsamples, one before and one after 1980. Panel

B of Table 2 shows that in both the model and the data, the higher persistency of

inflation before 1980 is associated with a higher inflation premium. This is an impor-

tant validation for the model: the change in key parameters determining the inflation

premium in the data and the model imply the same reaction of the inflation premium.

This exercise is perhaps the closest we can get to a “natural experiment” in models of

this kind.

5 Conclusion

A stock’s inflation risk can be written as the product of the market price of inflation

risk and the stock’s quantity of risk. In this paper, I estimate both by using a two-step

Fama-MacBeth procedure. Inflation betas measure the quantity of risk. The coefficient

in a cross-sectional regression of excess returns on betas measures the market price

of risk. I find that stocks whose returns covary negatively with inflation shocks have

unconditionally higher returns. This implies that the average market price of risk of

inflation shocks is negative: periods with positive inflation shocks tend to be bad states

of nature and investors are willing to pay insurance in the form of lower mean returns

when holding an inflation-mimicking portfolio. I estimate that holding such a portfolio

gives the agent a Sharpe ratio of -0.33.

I argue that the negative price of inflation risk arises because high inflation today

predicts low growth in future real consumption. I develop a model that is able to match

the observed inflation market price of risk when estimated by GMM to have the same

level of consumption predictability and inflation persistence as in the data.

A limitation of the model is that it takes the distribution of betas —the distribution

of the quantity of risk— as given. Full understanding of inflation risk in the cross-

section of stocks requires also explaining why the quantity of risk varies from firm to

firm. There are four classic explanations in the literature: (i) Summers (1981) and
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Feldstein (1980) argue that taxes are responsible for firms’ inflation risk; (ii) Fama

(1981) points out that positive supply shocks increase future expected dividends but

lowers the current price level, inducing a spurious correlation between stock returns and

inflation; (iii) Cohen, Polk and Voulteenaho (2005), based on Modigliani and Cohn

(1979), propose inflation illusion; and (iv) Mundell and Tobin put forward expected

inflation and shoe leather costs. Other macroeconomic models, although not specifically

desigend to address the stock market’s heterogeneity in inflation risk, can also provide

important insights. For example, the work of Nakamura and Steinsson (2008) implies

that firms’ inflation risk is heterogeneous due to differences in menu costs and the

variance of idiosyncratic productivity shocks. In this paper, I begin the exploration of

why firms have different inflation betas and find that a sizable amount of heterogeneity

in firm’s inflation riskiness does not depend on what industry the firm belongs to, its

size, book-to-market or exposure to fluctuations in oil prices. Theories that rely solely

on the aforementioned effects will most likely need additional ingredients to provide a

comprehensive explanation of inflation risk.
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7 Tables and Figures
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Figure 1: Histogram of inflation betas for different time periods.
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Figure 2: Time series of inflation betas for the aggregate stock market, the five year nominal bond,
and four representative companies.
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Table 1: Inflation-sorted portfolios have returns
well aligned with inflation betas

Ex-ante β Post-ranking β E [Re
t ] σ(Rt)

Portfolios

p = 1 -5.61 -2.32 6.91 15.8
2 -3.52 -1.71 6.87 13.3
3 -2.56 -1.51 6.44 16.9
4 -1.80 -1.10 6.29 14.7
5 -1.17 -0.874 6.36 14.0
6 -0.555 -0.762 6.17 12.8
7 0.104 -0.597 5.58 14.8
8 0.853 -0.365 5.53 15.0
9 1.86 -0.007 5.56 15.6

p = 10 4.10 0.064 5.16 13.4

Spread -9.71 -2.38 1.75 2.40
(1 minus 10)

Notes: To construct portfolios, I first find stock n’s inflation beta at time t, βn,t,
by regressing its excess returns on inflation innovations, only using observations that
occurred before t. I give smaller weight to more distant observations by using an
exponential kernel with a half-life of five years. I construct 10 inflation portfolios
by initially double-sorting stocks on 10 groups according to size (market equity) and
10 groups according to βn,t, and then averaging across size. The ex-ante betas are
the averages across time of βp,t for each portfolio p. I find post-ranking betas by
freezing portfolio weights at time t and regressing the excess returns of this fixed-
weights portfolio on inflation innovations, using the five years of data starting at t+ 1.
The second column shows the average across time of portfolios’ post-ranking beta.
The third and fourth columns report mean and standard deviation of excess returns in
percentage points per year. I use all stocks in CRSP. Observations are monthly from
February 1959 to December 2009. Even though returns align well with inflation betas,
the spread in returns between portfolios is not statistically significant. Table 4 shows
that using the more efficient Fama-MacBeth procedure leads to an inflation premium
that is similar in magnitude but also statistically significant.
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Table 2: Risk exposures and industry properties of inflation portfolios

Risk-factor exposures Industry properties

Market Size Book-to-Market Momentum Concentration Correlation Persistence
Portfolios

p = 1 0.992 0.990 0.568 -0.086 0.142 0.316 0.377
2 0.997 0.979 0.525 -0.101 0.143 0.315 0.377
3 1.00 0.985 0.599 -0.088 0.130 0.315 0.378
4 0.999 0.983 0.581 -0.093 0.118 0.312 0.356
5 0.987 0.964 0.557 -0.085 0.131 0.313 0.371
6 1.00 0.981 0.609 -0.055 0.130 0.316 0.375
7 1.01 0.985 0.568 -0.105 0.119 0.311 0.361
8 1.03 0.995 0.562 -0.116 0.114 0.313 0.367
9 1.03 0.992 0.580 -0.098 0.130 0.307 0.340

p = 10 1.01 0.985 0.557 -0.098 0.127 0.319 0.354

Spread -0.018 0.005 0.011 0.012 0.015 -0.003 0.023
(1 minus 10)

Notes: Risk-factor exposures are the coefficients from a regression of excess returns of inflation portfolios on the Fama-
French factors. Industry concentration measures how diversified a portfolio is – a value of 0 means very diversified and
a value of 1 means that all firms belong to the same industry. Industry correlation is a measure of distance between
portfolio p and the remaining 9 portfolios. A value of 0 means that portfolio p does not share any industries with the
other portfolios and a value of 1 means that the industry distribution of p is identical to the distribution of all other
portfolios combined. Industry persistence is analogous to industry correlation but compares portfolio p to itself 5 years
later.
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Table 3: Standard factor models have large errors when
pricing inflation portfolios

Re
p,t = ap + bpXt + ep,t

Model number

(1) (2) (3) (4) (5) (6) (7)
Factors Xt

Market Yes Yes Yes Yes Yes × Yes

HML / SMB / Mom × Yes Yes × × × Yes

ST rev + LT rev × × Yes × × × Yes

Oil × × × Yes × × Yes

CP factor × × × × Yes × Yes
Industry × × × × × Yes Yes

Test H0 : all ap = 0

Mean |ap| 2.08 2.80 2.68 1.88 3.11 2.31 4.28

p-value 0.005 0.00 0.00 0.027 0.00 0.043 0.00

R2 58.3% 60.9% 61.2% 58.6% 57.2% 62.3% 63.8%
N 540 540 540 540 528 540 528

Notes: This table reports the results of regressing inflation portfolio’s excess returns Re
p,t on asset pricing factors Xt.

Monthly observations, ending in December of 2009 and starting depending on availability of factors Xt. The Fama-French
factors, short and long-term reversal factors, and industry portfolios are obtained from Professor French’s website. Oil
returns are from the IMF. The Cochrane-Piazzesi factor is from Professor Piazzesi’s website. The mean |ap| (mean
absolute pricing error) is in percentage points per year. The p-values are for the the null hypothesis H0 that all pricing
errors are zero using a Newey-West variance-covariance matrix with 60 lags and the GRS statistic (which is an F-test
adjusted for finite sample bias).
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Table 4: Inflation price of risk in the cross-section of stocks:
Fama-MacBeth estimates

Results from Re
p,t = at + λtβp,t + εt

10 portfolios All stocks Flat kernel Model B.S. (2010)

λ̄ = 1
T

∑
λ̂t -0.368∗∗ -0.340∗∗ -0.343∗∗ -0.377∗∗ -0.184∗

(0.024) (0.019) (0.031) (0.033) (0.023)

λ̄/σπ -0.323 -0.298 -0.300 -0.285 -0.101

Notes: (∗,∗∗ ) Significant at the 5%, 1% level.
The estimates λ̂t are the annualized coefficients of a cross-sectional regression of excess returns at
time t on the estimated inflation betas for the same period. The estimate λ̄ is the average over
time of the cross-sectional estimates λ̂t. The second row normalizes λ̄ by the standard deviation
of inflation innovations. Column 1 corresponds to my main specification with 10 inflation-sorted
portfolios. Column 2 uses individual stocks as advocated in Ang, Liu and Schwarz (2010). Column 3
is the same as column 1 but uses a simple 5-year rolling window to estimate inflation betas. Columns
4 and 5 show the price of inflation risk implied by my model and Bansal and Shaliastovich (2010).
The first three columns show in parenthesis Newey-West standard errors with 12 lags and Shanken’s
adjustment. Column 4 reports GMM asymptotic standard errors. Observations are monthly from
February 1959 to December 2009.
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Table 5: Inflation is persistent

Regression of πt on its lags

πt−1 0.629∗∗ 0.519∗∗

(0.031) (0.040)

πt−2 × 0.091∗∗

(0.046)

πt−3 × 0.107∗∗

(0.040)

R2 39.6% 41.6%
N 611 609

Notes: (∗∗) Significant at the 1% level.
Inflation is seasonally adjusted CPI. Monthly observations, February
1959 to December 2009. OLS standard errors are in parenthesis.
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Table 6: Inflation regimes
before and after 1980

Panel A: Regression of πt on its lag

Full Sample Pre-1980 Post-1980

πt−1 0.629∗∗ 0.679∗∗ 0.547∗∗

(0.031) (0.047) (0.044)

R2 39.6% 45.2% 30.0%
N 611 251 360
σ(πt) 1.14 1.14 1.07

Panel B: Inflation premium λ̄

Full Sample Pre-1980 Post-1980

Data -0.368 -0.371 -0.317

Model -0.377 -0.401 -0.324

Notes: (∗∗) Significant at the 1% level.
Inflation is seasonally adjusted CPI. Monthly observations, February
1959 to December 2009. OLS standard errors in parenthesis.
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Table 7: Inflation predicts consumption growth

Regression of consumption growth ∆ct→t+k

on lags of inflation and consumption growth

k = 12 k = 24
Inflation lags

πt−1 -1.15∗ -0.440 -0.452 -2.28∗ -1.41∗∗ -1.55∗∗

(0.507) (0.389) (0.430) (0.934) (0.439) (0.453)

πt−2 × -0.616∗ -0.610∗ × -0.719 -0.656
(0.250) (0.249) (0.384) (0.353)

πt−3 × -0.695∗ -0.701∗ × -0.800 -0.842
(0.298) (0.290) (0.506) (0.498)

Consumption lags
∆ct−1 × × -0.044 × × -0.398

(0.186) (0.206)

R2 6.12% 9.71% 9.73% 8.92% 10.9% 11.4%
N 599 599 599 587 587 587

Notes: (∗,∗∗ ) Significant at the 5%, 1% level.
Monthly observations, February 1959 to December 2009. Inflation is seasonally adjusted CPI. Con-
sumption is non-durables and services components of PCE. Newey-West standard errors with 2k lags
are in parenthesis.
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Table 8A: GMM estimates of parameters for
preferences and consumption

Preference parameters

Discount factor δ 0.989
(0.04)

Elasticity of intertemporal substitution ψ 1.44
(0.18)

Risk aversion coefficient γ 8.46
(0.93)

Consumption growth parameters

Mean of consumption growth µc 0.0026
(0.0012)

Consumption loadings on inflation ρc,0 -0.140
(0.23)

ρc,1 -0.083
(0.21)

ρc,2 -0.052
(0.15)

Consumption volatility level σc 0.0065
(0.003)

Consumption volatility persistence νc,0 0.79
(0.21)

νc,1 0.31
(0.23)

Consumption volatility of volatility σcw 1.1× 10−5

(2.4× 10−5)

Notes: GMM asymptotic standard errors in parenthesis.
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Table 8B: GMM estimates of parameters for
inflation

Inflation parameters

Mean of inflation rate µπ 0.0038
(0.00064)

Inflation auto-regressive coefficients ρπ,0 0.621
(0.05)

ρπ,1 1.21
(0.08)

ρπ,2 1.02
(0.14)

Inflation volatility level σπ 0.0039
(0.003)

Inflation volatility persistence νπ,0 0.89
(0.21)

νπ,1 0.31
(0.23)

Inflation volatility of volatility σπw 3.8× 10−5

(1.6× 10−5)
Volatility loading on consumption shocks ϕπc -0.18

(0.84)

Notes: GMM asymptotic standard errors in parenthesis.
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Table 9: GMM estimates of parameters for inflation
portfolios and the aggregate market

Mean of Dividend leverage Volatility loading
dividend growth on consumption of dividend growth

µp,d lp ϕpc

Portfolios

p = 1 0.0028 -1.12 0.896
2 0.0026 -1.06 0.874
3 0.0022 -1.01 0.830
4 0.0031 -0.997 0.858
5 0.0022 -0.909 0.916
6 0.0026 -0.838 0.860
7 0.0021 -0.944 0.929
8 0.0023 -0.891 0.881
9 0.0026 -0.900 0.862

p = 10 0.0028 -0.773 0.812
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Table 10: Estimates for inflation portfolios

Data Model

β E[Re
t ] β E[Re

t ]

Portfolios

p = 1 -2.32 6.91 -1.89 6.95
2 -1.71 6.87 -1.74 6.54
3 -1.51 6.44 -1.61 6.33
4 -1.10 6.29 -0.980 6.17
5 -0.874 6.36 -0.892 6.12
6 -0.762 6.17 -0.725 5.97
7 -0.597 5.58 -0.632 5.71
8 -0.365 5.53 -0.438 5.62
9 -0.007 5.56 -0.105 5.45

p = 10 0.064 5.16 -0.101 5.28

Spread -2.38 1.67 -1.78 1.83
(1 minus 10)

Notes: The data section reproduces the ex-post betas and returns of
Table 1. I compute Columns 3 and 4 using model parameters estimated
via GMM.
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Table 11: Moments for inflation, consumption, the
aggregate market and the risk free rate

Data Model B.S. (2010)

E[πt] 4.47 4.52 3.30

σ(πt) 1.14 1.34 1.82

E[∆ct] 3.14 3.14 1.92

σ(∆ct) 2.14 2.25 1.35

corr(πt,∆ct) -0.26 -0.26 -0.34

E[Rm,e
t ] 6.65 7.25 5.01

σ(Rm,e
t ) 15.5 16.8 15.2

E[Pt/Dt] 26.97 25.42 21.71

σ(Pt/Dt) 7.32 8.32 12.17

E[Rf
t ] 1.18 1.26 1.19

σ(Rf
t ) 0.97 0.45 –

Notes: For the data column, I report annualized estimates from monthly
observations for February 1959 to December 2009. I compute moments
for the model using parameters estimated via GMM for the same period.
Column 3 reports the results in Bansal and Shaliastovich (2010).
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Table 12: Estimates of consumption growth
predictability and inflation persistence

Panel A: Regression of consumption
growth ∆ct on lags of inflation

Data Model B.S. (2010)

πt−1 0.02 -0.14 -0.30
πt−2 -0.11 -0.08 -0.08
πt−3 -0.07 -0.05 -0.01

Panel B: Regression of inflation πt on its lags

Data Model B.S. (2010)

πt−1 0.52 0.62 0.65
πt−2 0.09 0.12 0.63
πt−3 0.11 0.10 0.52

Notes: I compute Columns 2 using the GMM estimates of my model.
Column 3 reports results from Bansal and Shaliastovich’s (2010) model.
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Table 13: Estimates of the nominal yield curve

Data Model B.S. (2010)

E[y(n)t ] σ(y
(n)
t ) E[y(n)t ] σ(y

(n)
t ) E[y(n)t ] σ(y

(n)
t )

Bond Maturity

1 year 6.40 0.86 6.25 0.52 5.60 2.92
2 years 6.63 0.87 6.26 0.38 5.85 2.81
3 years 6.81 0.87 6.27 0.15 6.28 2.71
4 years 6.95 0.87 6.29 0.02 6.82 2.61
5 years 7.03 0.88 6.35 0.00 7.43 2.53

Notes: Bond yield data are from the Fama-Bliss bond files. I compute
Column 2 using the GMM estimates of my model. Column 3 reports the
results in Bansal and Shaliastovich (2010).
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Table 14: Moments not targeted in GMM
estimation

Data Model B.S. (2010)

corr(∆ct,∆ct−1) -0.26 -0.26 0.35

E[Wt/Ct] 88.59 26.42 48.97

σ(Wt/Ct) 14.11 17.23 12.59

Notes: Columns 1 and 3 for the wealth-consumption ratio Wt/Ct are
from Koijen, Lustig, Van Nieuwerburgh and Verdelhan (2010). I compute
Column 2 using the GMM estimates of my model.
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