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 This paper, using the different alternative methods of dynamic optimization (the 

Lagrange/Kuhn-Tucker (LKT) method, the substitution method, the Hamiltonian method, and the 

dynamic programming approach) derives the conditions that must be satisfied by the solution to 

the so-called Ramsey problem, hopefully in a way that can be understood by undergraduate 

economics students. This is done by assuming that time is discrete and that, for simplicity but 

without loss of generality, there are only three periods. 
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1.  Introduction  

 The deterministic infinite horizon Ramsey model is one of the two workhorses in 

graduate macroeconomics.1   In this model, the problem of the benevolent social planner who is 

endowed with perfect foresight, “how much should a nation save?” (Ramsey, 1928), is an 

intertemporal/dynamic optimization problem.  Specifically, the problem is to choose the path of 

capital accumulation and therefore the consumption path/plan, or vice-versa, in order to 

maximize the lifetime utility of an infinitely-lived representative individual/family/dynasty 

subject to some constraints and boundary conditions. 

 A crucial part of characterizing/deriving the solution to the intertemporal problem turns 

out to be either the so-called capital-Euler equation or the so-called consumption-Euler 

equation.  The capital-Euler equation, along with two boundary conditions, yields the optimal 

path of capital accumulation which, given the resource constraint, yields the optimal 

consumption path.  Equivalently, the so-called consumption-Euler equation and the resource 

constraint, along with two boundary conditions, yield the optimal path of capital accumulation 

and consumption, the so-called saddle path.  

 Different alternative methods can used to derive/characterize the solution to the Ramsey 

problem.  These alternative methods shall be the focus of this paper.  

                                                 
1 The other work-horse is the overlapping generations (OLG) model. 
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 Although the original Ramsey (1928) problem is in continuous-time, here we use the 

discrete-time formulation of the problem2.  Also, for easier tractability but without loss of  

generality, we assume that there only three periods.  The results, derived using the different 

alternative methods, should give an idea on how to generalize the model to the case where the 

number of periods of time is large but finite and then to the case where the number of periods of 

time is infinite.  In addition, the discrete-time results should provide intuition for their 

continuous-time analogues.  This approach, which does not require mathematical sophistication, 

should enable us to characterize the solution to the problem.   

 Thus, the objective of this paper is to derive/characterize, using the different alternative 

methods, the solution to the Ramsey problem hopefully in a way that can be understood by 

undergraduate economics students.  

 Section 2 simply presents a deterministic discrete-time infinite-horizon Ramsey problem 

and specifies the assumptions behind the model/problem.  Section 3 assumes that there are only 

three periods and derives the conditions that must be satisfied by the solution to the optimization 

problem using four alternative methods/approaches: the Lagrange/Kuhn-Tucker (LKT) method, 

the substitution method, the Hamiltonian method, and the dynamic programming approach.  

Section 4, using a concrete example, presents the solution to the problem not only for the three-

period case but also for the finitely large horizon case as well as for the infinite horizon case. 

Finally, Section 5 gives some concluding remarks. 

2.  The Ramsey Problem 

                                                 
2 However, it should be noted if the problem is in discrete-time rather than in continuous-time, we have to have to 
decide which ‘price’ to use – whether this period’s ‘price’ or the next period’s ‘price’ – to value the capital stock 
carried over to the next period.   
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          The deterministic discrete-time infinite-horizon Ramsey problem is 
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where 0U  is the maximized lifetime utility; U is lifetime utility,  ρ  is the positive subjective 

time discount rate or pure rate of time preference which measures impatience to consume and 

thus ))1/(1( ρ+≡β  is the subjective time-preference or discount factor; tc is per capita 

consumption during period t;  )( tcu  is the period-t utility (felicity) function which is assumed to 

exhibit  0)(' >tcu  and 0)('' <tcu  and satisfy the Uzawa-Inada conditions ( ∞=
→

)('lim
0 tC

cu
t

 which 

ensures that 0>tc , and 0)('lim =
∞→ tc

cu
t

); tk  ( 1+tk ) is the capital-labor ratio or per capita capital as 

of the beginning of period t (t + 1);  per capita output during period t is given by the period-t per 

capita production function )( tkKf  which is assumed to exhibit 0)(' >tkf  and  0)('' <tkf  and 

satisfy the Uzawa-Inada conditions ( 0)0( =f  which since output cannot be produced without 

capital, ∞=
→

)('lim
0 tk

kf
t

 which ensures that  0)( ≥δ− tt kkf  and 0)('lim =
∞→ tk

kf
t

), δ  is the rate of 

physical capital depreciation, t and t + 1 are the successive discrete periods of time, and the time 

horizon begins at t = 0. 3 

                                                 
3 In the literature, a problem such as this one is called the Ramsey model.  For the original problem, see Ramsey (1928); 
for a Ramsey-like objective function, see Barro and Sala-i-Martin (2006, pp.214-215) for the Ramsey-like objective 
function. For the discrete-time formulation of the one-sector neoclassical growth model, see Takayama (1973), Obstfeld 
and Rogoff (1996); for the continuous-time formulation, see Takayama (1973), Blanchard and Fischer (1989), Barro and 
Sala-i-Martin (2004). Also see Cass (1965) and Koopmans (1965). 
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        The first equation in (1) is the objective functional which is additively separable because it 

is a sum of functions.  Each )( tcu  in the sum is weighted by tβ  which declines as t increases, 

indicating declining weights for future utilities.  The second contains the sequence of resource 

constraints, one constraint for each period t.  The second and the third, 00 >k  and the TVC 

(transversality condition), are the boundary conditions.    

          Note that the assumptions about )( tcu  and )( tkf  have led to a simpler problem (1)  

because they imply that the resource constraints always bind, 0>tc , and 0>tk ; therefore, the  

non-negativity constraints on tc  and tk  can be ignored.  In addition, they ensure that the first-

order conditions (FOCs) for optimization which are necessary are also sufficient.  

          Although the Ramsey model is an infinite horizon model, the usual strategy is to consider a 

finite horizon (t = 0,1,2,…, T where T is the final period).   The TVC (a terminal condition in this 

case) may either be imposed as in (1) but here it is replaced by the non-negativity constraint 

0≥TK  which will make the derivation of the TVC as part of the K-T FOCs and thereby provide 

intuition for the imposed/asserted TVC in the infinite horizon case.   

3.  Alternative Methods of Intertemporal Optimization   

          In this section, we derive the necessary FOCs, the conditions that must be satisfied by the 

solution to the optimization problem, using four alternative methods/approaches: the Lagrangian 

method, the substitution method, the Hamiltonian method, and the dynamic programming 

approach.   

          For easier tractability but without loss of generality, we assume here that there only three 

periods.  In this case, the problem, (1), becomes             
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          As shown in the next section, each of the four alternative methods of dynamic 

optimization yields results that boil down to  
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TVC ,                                                                  (3.3.1) 

 givenk 00 > ,                                                       (3.3.2) 

i.e., a system of two non-linear first-order difference equations ((3.1) and (3.2)) and two  

boundary conditions ((3.3.1) and (3.3.2)), which are the conditions that must be satisfied by the 

solution to the problem, (2).  Whether the horizon is finite or infinite, these conditions (with the  

time span and the TVC modified accordingly) apply.   

          We have presented these conditions at the outset not only to minimize repetitions but also 

to provide some intuition on the results. 

        (3.2), which we now refer to as ‘the’ resource constraint, is also called the capital 

accumulation equation.  It says that per capita net investment )( 1 tt kk −+  equals per capita net 

output ))(( tt kkf δ−  minus per capita consumption tc .   

         (3.1) is a difference equation showing the relationship between )('and)(' 1+tt cucu  and, thus, 

between 1and +tt cc .  In macroeconomics, it is known as the consumption-Euler equation.   
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          It may be rewritten as  

0))('1)((')(' 11 =δ−+β+− ++ ttt kfcucu , 

which states that, at the optimum, the net change in utility arising any consumption reallocation 

is zero.  Note that one unit less of per capita consumption in period t means having one unit more 

of per capita capital in period  t + 1 and thus ))('1( 1 δ−+ +tkf  units more of per capita output to 

consume in period  t + 1.  The effect on maximized utility of reducing per capita consumption in   

period t by one unit is )(' tcu− .   The effect on maximized utility of increasing per capita 

consumption in period t + 1 by ))('1( 1 δ−+ +tkf  units is ))('1)((' 11 δ−+ ++ tt kfcu ; but since this 

gain is occurs in t + 1, it must be discounted, yielding ))('1)((' 11 δ−+β ++ tt kfcu .  At the optimum, 

the sum of the two effects must be zero, i.e., the net discounted gain from any consumption 

reallocation is zero.  Equivalently,   

1,0),)('1)((')(' 11 =δ−+β= ++ tkfcucu ttt                                         (3.1’) 

i.e., the cost in utility for foregoing one more unit of per capita consumption in period t and thus 

saving one more unit of per capita capital for period t + 1 ( )(' tcu ) is equal to the discounted gain 

in utility from the increase in units of per capita consumption in period t + 1 due to the increase 

in output in period t + 1 made possible by one more unit of per capita capital in period t + 1 

( ))('1)((' 11 δ−+β ++ tt kfcu ). 

          (3.1) may also be rewritten as  

1,0,)('1
)('

)('
1

1

=δ−+=
β +

+

tkf
cu
cu

t
t

t                                                (3.1’’) 

i.e., the marginal rate of substitution (MRS) between per capita consumption in periods t and t + 

1 ( )('/)(' 1+β tt cucu ) is equal to the marginal rate of transformation (MRT), from production,  



8 

 

between per capita consumption in periods t and t + 1 ( δ−+ + )('1 1tkf ).4 

          In macroeconomics, (3.1) [or (3.1’) or (3.1’’)] is known as the consumption-Euler 

equation, also called the Keynes-Ramsey rule (Blanchard and Fischer (1989)).   

 

3.1  Lagrange (or Lagrange-Kuhn-Tucker) Method 

          In the Lagrangian method, the objective function and the constraints are combined into a 

single function called the Lagrangian.5  Letting 1+µt > 0 as the Lagrange multiplier for the 

period- 

t resource constraint and υ  as the Lagrange multiplier for the non-negativity constraint on the 

terminal stock of per capita capital, the Lagrangian of the full problem over all three periods (2) 

is 

( ) 3
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where 00 >k  is given.  The yet undetermined variable 1+µ t  is interpreted as the marginal value 

as of time 0, or the shadow price in present value terms, of 1+tk  at time t + 1. 6  

                   The first-order conditions for optimality are: 

                                                 
4 (3.1’’) can also be rewritten as 2,1,)('1

)('
)(' 1 =δ−+=

β
− tkf
cu

cu
t

t

t  

5 Obstfeld and Rogoff (1996) use the Lagrangian method. 
 
6 It should be noted if the problem is in discrete-time rather than in continuous-time, we have to have to decide 
which ‘price’ to use – whether this period’s ‘price’ or the next period’s ‘price’ – to value the capital stock carried 
over to the next period.  Takayama (1973) uses this period’s price.  Here, following Dixit (1980), we use the next 
period’s price. 
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          The FOCs with respect to tc  say that the discounted marginal utility of per capita 

consumption in period t ( )(' t
t cuβ ) is equal to the shadow price in present value terms of 1+tk  at t 

( 1+µt ).  

          The FOCs with respect to 1+µt  simply recovers the sequence of resource constraint (the  

second equation in (2)).  Note that the resource constraint always bind and its multiplier 1+µ t  is 

positive. 

          In the Lagrangian method, the TVC can be derived as part of the first-order conditions.  

The first-order Kuhn-Tucker condition associated with the constraint 03 ≥k  is  

0)/( 3 =υ=υ∂∂υ kL , with 0≥υ  and 0/ 3 ≥=υ∂∂ kL .  Substituting out for υ , which is equal to 

3µ , this condition can be written as 

033 =µ k  . 

This boundary condition, called the transversality condition, says that if the stock of per capita 

capital left is positive ( 03 >k ), then its shadow price must be zero ( 03 =µ ) or, if the stock of per 

capita capital at the terminal time has a positive unit value ( 03 >µ ), then no per capita capital 

must be left ( 03 =k ).  But 03 >µ , since )(' 23 cu=µ  and )(' tcu >0.  Thus, the condition 

033 =µ k  is reduced to the terminal condition 
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03 =k  . 

 The remaining FOC for the problem relates to k .  But there is a problem of )2,1( =tkt  

[or )1,0(1 =+ tkt ] appearing in two terms of the sum (RHS of (4)).  Unlike the sc'  which have the 

same time subscript t and the s'µ which have the same time subscript t + 1, k  appears in the  

Lagrangian (4) as tk  and 1+tk .  This is so because k  is a dynamic variable.  To avoid confusion, 

we therefore write the problem in expanded form: 
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The partial derivatives of the Lagrangian with respect to 1k  and 2k  are 
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which can be written in a compact form as 

2,1),)('1(0/ 1 =δ−+µ=µ⇒=∂∂ + tkfkL tttt       

or 

1,0),)('1(0/ 1211 =δ−+µ=µ⇒=∂∂ ++++ tkfkL tttt        

which is the second equation in (5).  The FOCs with respect to )]1,0(or[)2,1( 1 == + tktk tt  

captures how µ  changes from one period to another. The shadow price of )1,0(1 =+ tkt , tµ , 

depends on  1+µt  . 
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          Notice that in the Lagrangian set-up, ][ 10 cc  is chosen directly and ][ 21 kk indirectly, since 

][ 21 kk  adjusts indirectly as a result of the choice of ][ 10 cc .  Specifically, at the beginning of 

period 0 [1], ][ 10 kk  is already given and choosing ][ 10 cc  to maximize the Lagrangian and 

therefore U  indirectly leads to the choice of ][ 21 kk ; in period 2, the final period, 2k  is already a 

given and the choice of 2c  becomes trivial because of the terminal condition 03 =k .  But the  

Lagrangian is also maximized with respect to )1,0(1 =+ tkt  in order to yield an additional first- 

order condition, a condition that is needed since 1+µ t  needs to be determined as well.  

           The FOCs with respect to c , k , and µ  determine the optimal sequence for all three 

variables - ),,( 210 ccc , )0andgiven;,( 3021 =kkkk , and ),,( 321 µµµ .   But the usual practice is to 

combine the FOCs with respect to c and the FOCs with respect to tc  as follows,   
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µ
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β +

− tkf
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t
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=
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+
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+
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t
t
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t
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so as to get the consumption-Euler equation ((3.1) or (3.1’) or (3.1’’)). 

          Thus, the solution to (2) - )2,1,0(and)1,0(1 ==+ tctk tt  - must satisfy the consumption-

Euler equation (3.1 or 3.1’ or 3.1’’), the period resource constraints (3.2), the initial condition 

(3.3.1), and the terminal condition (3.3.2)).  

3.2  Substitution Method 

         In the substitution method, the problem, (2), is converted into an unconstrained  
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maximization problem in the choice variables )1,0(1 =+ tkt .7   Each of the period- t resource 

constraint which is binding (and therefore hold as an equality) is used to solve for the choice 

variable tc  as a function of 1and +tt kk : 2,1,0),)(1()()( 1 =−+−δ+−= + tkknknkfc ttttt , and this 

function is used to substitute for tc in the objective function in (2).  Next, in this case where the 

horizon is finite, the terminal condition ( 03 =c ) is imposed.  The resulting function is then 

maximized with respect to )2,1( =tkt , 

( ) ,))(1()()(max
2

0
1, 21 
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 where 00 >k  is taken as given and 03 =k  is imposed.  

             However, as in the Lagrangian method, there is a problem of )1,0(1 =+ tkt  appearing in 

two terms of the sum (see (6) below).  Specifically, 1k  appears in the 10 and cc  terms and 

2k appears in the 1c  and 2c  terms.  This is so because we are dealing with a dynamic problem.  

So we write the problem in expanded form: 
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          The first-order conditions (FOCs) on )2,1( =tkt  are 

                                                 
7 Obstfeld and Rogoff (1996) use the so-called substitution method. 
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which can now be written in a compact form as 
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yielding the Euler equation 
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where 00 >k  is given and 03 =k , which is a second-order difference equation in k.  Clearly, the 

FOCs on )2,1( =tkt can be rewritten to yield the consumption-Euler equation ((3.1) or (3.1’) or 

(3.1’’)).      

          As in the Lagrangian method, the ‘solution’ to (2) - )2,1,0(and)1,0(1 ==+ tctk tt  - must 

satisfy the consumption-Euler equation, the period resource constraints, the initial condition, and 

the terminal condition.  

          In the substitution method, the unconstrained problem of choosing )1,0(1 =+ tkt , with 

00 >k  given and 03 =k  imposed, to maximize U  can be thought of as one where  
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)2,1,0( =tct is optimally chosen.  This is so because at the beginning of period 0 [1], 0k  [ 1k ] is 

already given and therefore choosing 1k  [ 2k ] to maximize U  implicitly pins down the optimal 

0c  [ 1c ]; at the beginning of period 2, the final period, 2k  is also already given and it is the  

terminal condition 03 =k  which implicitly pins down  2c .   

3.3  Hamiltonian Method 

          Here, we use the Lagrangian to derive the so-called ‘Hamiltonian recipe’ for dynamic 

optimization.8  The Hamiltonian recipe is a shortcut but leads to identical results.   

          Having derived the TVC using the LKT method, we now simply assert/impose it in order to 

simplify the problem.  The Lagrangian for the problem, (4), is rewritten below: 

( ) 3

2
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111 1

)()()( kkk
n

knckfcuL
t

ttt
ttt

tt
t υ+









−µ−





+
δ+−−

µ+β=∑
=

+++ .                   (8) 

In the Lagrangian method discussed earlier, we have seen that the FOCs with respect to 

)2,1,0( =tct  and the FOCs with respect to )2,1,0(1 =µ + tt , which recover the period resource  

constraints, can easily be derived even without expanding the Lagrangian because the sc'  have 

the same time subscript t and the s'µ have the same time subscript t + 1.9   But this is not so in 

the case of k  which appears as tk  and 1+tk . Equivalently, )2,1( =tkt  appears in two terms of the 

sum in (8).  For instance, 1k  appears as 12kµ  in the term t = 1 and as 11kµ−  in the term t = 0; 

thus, getting 1/ kL ∂∂  is not that straightforward unless the Lagrangian is written in expanded 

form.  

                                                 
8  For details, see Arrow and Kurz (1969), Dixit (1980), Takayama (1973), Dorfman (1969), Intrilligator (1971), 
Kamien and Schwartz (1981), Chiang (1992), and Pontryagin et al (1962).  Blanchard and Fischer (1989) and Barro 
and Sala-i-Martin (2004) use the Hamiltonian most of the time. 
 
9 Again, Takayama (1973) uses this period’s price; here, following Dixit (1980), we use the next period’s price.  



15 

 

 To make )2,1( =tkt  appear only in one term of the sum, we rewrite the term 

( )∑
=

+ −µ−
2

0
1

t
ttt kk  in (8) as follows: 

),()()(
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t t
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or, in a compact form,  

∑∑
=

+
=

++ µ−µ+µ−µ−=−µ−
2

1
10133

2

0
11 )()()(

t
ttt

t
ttt kkkkk ,              (8.1)                                     

Where 0k  and 3k  are not choice variables.  Using (8.1), the Lagrangian can be rewritten as 
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or 
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+
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µ−µ+





+
δ+−−

µ+β=∑
=

++

,                   (8’’) 

and we can now easily get the FOCs with respect to )2,1( =tkt .  In (8’’), it is now µwhich has 

different time subscripts t and t + 1 but this does not pose a problem provided that the resource 

constraint is satisfied.  Note that the FOCs with respect to )2,1,0(1 =µ + tt  merely recover the 

period-t resource constraints.  The problem of choosing )2,1,0( =tct  and )2,1( =tkt  is now a 

single-period optimization problem.   

          Defining a function, called the Hamiltonian, as 
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ttt 1
)()()(),,( 11 .                      (9)                                 

The choice of tc  affects 1+tk  via the period t resource constraint, and this effect of tc  on 1+tk  

equals its effect on )
1

)()((
n

knckf ttt

+
δ+−− .  Multiplying this effect by 1+µt  or the shadow price 

of 1+tk  at t yields the resulting change in the objective function.  The product 

)
1

)()((1 n
knckf ttt

t +
δ+−−

µ +  which captures such resulting change is then added to the term 

)( t
t cuβ , yielding the Hamiltonian (9). 

          Rewrite the Lagrangian emphasizing the Hamiltonian as follows: 
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where, again, 





+
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t

ttt 1
)()()(),,( 11 and 0k  is historically given 

and not a choice variables since 0k  and 03 =k .    

          The first-order conditions are 
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which can be rewritten as 
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                                  (11’) 

where .0andgiven0 330 =µ> kk  The FOCs for the maximization of the objective function  s.t. 

to the period resource constraints and the boundary conditions (see (2)), are: for each period t (= 

0,1,2), tc maximizes the Hamiltonian ),,( 1+µttt kcH  and the changes in tk and tµ obey the 

difference equations in (11’) and must satisfy the initial condition 00 >k  given and the terminal 

condition 03 =k .  This is Pontryagin et al’s maximum principle  (see Pontryagin et al (1962),  

Arrow and Kurz (1969), and Dixit (1980)).  

 Using the Hamiltonian recipe and the Hamiltonian, the first-order conditions,  (11’), can 

be rewritten as 
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33
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 ,              (12) 

which are of course the same as those using the Lagrangian method.  [Note that the second 

euation in (12) ))('(11 δ−µ−=µ−µ ++ tttt kf , can be rewritten as the second equation in (5), 

))('1(1 δ−+µ=µ + ttt kf .] 
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 The FOCs with respect to tk  (t = 1,2) indicate that the change in the value of a unit of 

per capita capital or “capital gains” )( 1 tt µ−µ +  plus the value of the net return on a unit of per 

capita capital or “dividends” )))('(( 1 δ−µ + tt kf  must be zero.  It can be interpreted as follows.  A  

marginal unit of tk  yields the marginal return ))('( δ−tkf  valued at 1+µt .  Thus, ))('(1 δ−µ + tt kf  

can be thought of as a dividend in present value terms. )( 1 tt µ−µ + is like a capital gain in present 

value terms.   When tk  is optimal, the overall return ( )))('()(( 11 δ−µ+µ−µ ++ tttt kf  should be zero. 

In other words, the shadow prices take values that do not allow for an excess return from holding 

the stock; this is an intertemporal no-arbitrage condition.10   

          Again, the FOCs with respect to tc and the FOCs with respect to 1+tk  can be combined  

))(')((')(')('

))('(

1
1

1
1

11

δ−β−=β−β

δ−µ−=µ−µ

+
+

+
+

++

tt
t

t
t

t
t

tttt

cfcucucu
kf

 

to yield the consumption-Euler equation ((3.1) or (3.1’) or (3.1’’)). 

Thus, as in the Lagrangian method and the substitution method, the ‘solution’ to (2) – 

)2,1( =tkt  and )2,1,0( =tct  – must satisfy the consumption-Euler equation, the period resource 

constraints, the initial condition, and the terminal condition.  

3.4  Dynamic Programming  

         In the Hamiltonian method, the full problem over all periods is reduced to a single-period  

                                                 
10 See Dixit (1980), Kamien and Schwartz (1981), and Dorfman (1969). 
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(static) optimization problem.  In contrast, in the dynamic programming approach, the full T-

period intertemporal problem is broken into T separate static (two-period, but effectively single- 

period) optimization problems.   This method of optimization over time as a sequence/succession 

of static optimization problems is known as Bellman’s Dynamic Programming.11 

          Choose any t and consider the decision about tc  at time t.  Any particular choice of tc  will 

lead to next period’s per capita capital stock 1+tk  (see the period t budget constraint and note that 

tk  is the per capita capital stock as of the beginning of period t and therefore is taken as given 

during period t).  Thereafter, it remains to solve the sub-problem starting at t + 1, and achieve the 

maximum value )( 11 ++ tt kW .  Then the total value starting with tk  at t can be broken down into 

two terms: )( tcu  that accrues at once, and )( 11 ++β tt kW  that accrues thereafter.  The choice of tc  

should maximize the sum of these two terms, i.e., )()( 11 ++β+ ttt kWcu  for this one t. 

 This is Bellman’s principle of optimality:  “An optimal policy has the property that what-  

ever the initial state and initial decision are, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from the first decision.” (Bellman (1957,  p. 83)).  

 In other words, “an individual who plans to optimize starting tomorrow can do no better 

today than to optimize taking the future optimal plans as given” (Obstfeld and Rogoff (1996)).  

          With finite (infinite) horizon, this involves choosing a finite (an infinite) sequence of per 

capita consumption or per capita capital accumulation, one for each period t.  But the problem of 

solving for a finite (an infinite) sequence can be replaced by the problem of solving for a single 

unknown function W, a value function. 

                                                 
11 For details, see Arrow and Kurz (1969), Dixit (1980), Sargent (1987), and Bellman (1957).  
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3.4.1  Dynamic Programming by Backward Recursion 

          Here, the full 3-period intertemporal problem can be broken into 3 separate static (single- 

period) problems.   The sequence of problems can be solved either forward or backward.  With 

finite horizon, it is easier to solve the problem backward, as illustrated below: 

{ }
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              (13) 

where each maximization problem is subject to the relevant period constraint. 

          Period- T (Last Period) Problem: Period- 2 Problem.  The period-2 problem is   

{ } )(max)()(max)( 2
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n
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ts
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=−
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+

δ+−−
=−

≡β+≡  ,             (14.1)                                

 since 03 =k .  The RHS of (14.1) is a straightforward static optimization problem, yielding the 

optimal choice12 

2222 )1()(* kckfc δ−+−=  ,                                                         (14.2) 

and the maximum value function  

])1()([*)()( 2222 kkfucukW δ−+=≡                                     (14.3) 

which can be used in the T-1 problem.  Note from (14.3) that 

))('1*)(('/)( 2222 δ−+=∂∂ kfcukkW .                                  (14.4) 

                                                 
12  The period- 2 resource constraint, noting that k3 = 0 and k2 is given as of the beginning of period 2, yields the 
value of c2* (14.2). 
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         Period- T-1 Problem: Period-1 problem.  The period-1 problem is given by the RHS of the 

equation below: 

{ })()(max)( 21
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111
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knckfkkts

c
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.                                    (15.1) 

(15.1) yields 

 2

2
1

1
1

2

2

2
1

1

1 )()('0)()(')(
k
kWcu

c
k

k
kWcu

c
kW

∂
∂

β=⇒=
∂
∂

∂
∂

β+=
∂

∂

−=

                                    (15.2) 

Noting from (14.4) that ))('1*)(('/)( 2222 δ−+=∂∂ kfcukkW ,  (15.2) becomes 
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,                        (15.3) 

and gives the value function 

*)(*)()( 2111 kWcukW β+≡ ,                                          (15.4) 

where 
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                   (15.6) 

          Period-0 Problem. 
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 (16.1) yields 
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Noting from (15.5) that ))('1*)((')(
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∂ kfcu
k
kW ,  (16.2)  becomes 
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                       (16.3) 

and gives the value function 

*)(*)()( 100 kWcukW β+≡                                                       (16.4) 

where )( 0kW  is the value of lifetime utility when the starting level of per capita capital is 0k .  

 Finally, notice that (15.3) and (16.3) can be written in compact form as the consumption-

Euler equation. 

3.4.2  Dynamic Programming: Recipe 
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 Step 1.  Write the problem in terms of the Bellman equation.  The optimization problem, 

(2), be  

written as  

{ }
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                                                 (17) 

where )(kW  is a value function (a current-value return function).  Specifically, )( tkW  is the 

value of today’s per capita capital stock tk  and  )( 1+β tkW  is the value of tomorrow’s per capita 

capital stock 1+tk .  The first equation in (17) is known as the Bellman equation.  Note that 

)( 1+tkW  is an unknown function.  

 Step 2.  Derive the first-order conditions on tc .  Using the Bellman equation (first 

equation in (17)) at time t and the resource constraint (second equation in (17)) to substitute for 

1+tk , and differentiating with respect to tc  and setting the result equal to zero, 
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yields the first-order condition on tc : 
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Foregoing a unit of per capita consumption in period t or carrying over a unit of per capita capital 

to the next period has cost and benefit.  At an optimum, the marginal cost )(' tcu  must equal the 

marginal benefit )/)(( 11 ++ ∂∂β tt kkW .  Note however that 11 /)( ++ ∂∂ tt kkW  is unknown since 

)( 1+tkW  is an unknown function. 

 Step 3.  Derive the envelope relation between  tt kkW ∂∂ /)(  and 11 /)( ++ ∂∂ tt kkW .  Using 

again the Bellman equation (first equation in (17)) at time t and the resource constraint (second 

eqution in (17)) to substitute for 1+tk , and differentiating with respect to tk  and applying the 

envelope theorem on the result, 
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             (18.2) 

yields 
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(18.3) is the envelope relation between tt kkW ∂∂ /)( and the yet unknown 11 /)( ++ ∂∂ tt kkW . 

 Step 3.  Derive the consumption-Euler equation using the FOCs and the envelope 

relation.  Using the FOC on tc (18.1) lagged one period, the envelope result (18.3), and the FOC  

on tc (18.1) again, 
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yields for t =1, 2, 
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which is exactly the consumption-Euler equation derived earlier.  This equation, as in the other 

three methods presented earlier, is part of the conditions that must be satisfied by the solution. 

        Finally, recall that the FOC on tc  is )('1 t
t

t cuβ=µ +  using either the Lagrangian method or 

the Hamiltonian method and )/)(()(' 11 ++ ∂∂β= ttt kkWcu  using the dynamic programming 

approach.  Also, note that 
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where (.)W  is current-value value function while (.)V  is a present-value value function.  Also, 
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1

1 +
+

+ β
µ

≡λ t
t

t  where  1+µt  is the shadow price of 1+tk  in present value terms while 1+λ t  is 

the shadow price of 1+tk  in current value terms or in terms of current utility (Arrow and Kurz 

(1969)).  Thus,  
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4.  An Example with Closed-Form Solution 
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         This section presents the solution to a simplified intertemporal problem.  Here we want the 

optimization problem to have a closed-form solution, so we consider a special case, following 

Brock and Mirman (1972), where the following are assumed: a Cobb-Douglas production 

( 10,0,)( <α<>= α AAkkf tt ), a logarithmic utility function ( tt ccu ln)( = ), no population 

growth ( 0=n ),  and full physical capital depreciation ( 1=δ ).  

 Based on the FOCs derived above, the solution in this special case must satisfy a system  

of first-order non-linear difference equations, 

,...1,0,]1[or, 1
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c

c
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t                 (20.1) 

,...2,1,0,)(1 =−=+ tckfk ttt                (20.2) 

or, equivalently, by substituting of (8.2) into (8.1), a second-order non-linear difference equation  
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                                  (21) 

with two boundary conditions ( givenk 00 > as the initial condition and with infinite horizon 

(finite horizon) )0(0lim 111 ==µ +++∞→ Tttt
kk as the TVC (terminal condition)). 

 In this special case, using iterative procedure, it can be shown that the optimal per capita 

consumption sequence/path and capital sequence/path are13:  

 (i)  when there are only two periods, 

                                                 
13 Another procedure is the guess-and-verify method or the method of undetermined coefficients which will work 
only in two classes of specifications of preferences and constraints: (i) linear cionstraints and quadratic preferences 
or (ii) Cobb-Douglas constraints and logarithmic preferences (Sargent, (1987, p. 22)). 
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 (ii)  when there are three periods, 
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 (iii)  when the horizon is finite, in general,    
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 (iv)  when the horizon is infinite,  
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                                                     (22.4) 

 If there are only two periods (t = 0,1) – the present (or today) and the future (or 

tomorrow), there is only a single consumption-Euler equation applicable between period 0 and 

period 1 and two resource constraints for periods 0 and 1.  As 00 >k  is given and 02 =k  must be 

satisfied, these three equations will, in principle, determine the three unknowns: 110 ,, kcc .   
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The optimal consumption choice ( 10 , cc ) may be illustrated graphically.  Specifically, it is given 

by the point of tangency between the intertemporal production possibility frontier (derived from 

the period resource constraints) and the highest possible intertemporal indifference curve. 

 In this version of the deterministic infinite-horizon Ramsey problem, we can use the 

dynamic equations ((20.1) and (20.2)) to draw phase diagram and the solution we are looking for 

is actually given by the saddle path and the steady-state is given by the saddlepoint.  

Alternatively, we can use (21) to get the optimal path of capital accumulation, which given the 

resource constraint, will yield the optimal consumption path. Specifically: ααβ−= tt Akc )1( (first 

equation in (22.4)) defines the saddle path (the relation between tt kc and  along the optimal 

trajectory), the optimal value of 0c (equal to ααβ− 0)1( Ak ) that places the system on the saddle 

path, and the consumption function ( tc  as a )1( αβ− proportion of α
tAk ; α

+ αβ= tt Akk 1  (second 

equation in (22.4)) where 0lim andgiven0 110 =µ> ++∞→ ttt
kk ) defines the optimal path of capital 

accumulation or the optimal capital sequence.14  

Thus, in this version of the Ramsey model, the answer to the question “how much should 

a nation save?” (Ramsey, 1928) is α
+ αβ= tt Akk 1 (or, much should a nation consume per capita is 

given by the optimally derived per capita consumption function, ααβ−= tt Akc )1( ).  

                                                 
14 Barro and Sala-i-Martin (2004, pp. 604-617) provides a Hamiltonian recipe for dynamic optimization in continuous 

time, both finite and infinite horizons.  Blanchard and Fischer (1989) discusses the assumptions and workings of the 
Ramsey model (pp. 38-47), ruling out of explosive paths in the Ramsey model (p. 75), and the local behavior of 
capital around the steady state in the Ramsey model (pp. 75-76).  Obstfeld and Rogoff (1996) also discuss the 
methods of intertemporal optimization – the method of Lagrange multipliers (pp. 715-718) and dynamic 
programming (pp. 718-721). 
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5.  Concluding Remarks 

 This paper, using four alternative methods/approaches - the Lagrangian method, the  

substitution method, the Hamiltonian method, and the dynamic programming approach – has 

derived the conditions that must be satisfied by the solution to an intertemporal problem, 

specifically the deterministic discrete-time Ramsey problem.   A crucial part of 

characterizing/deriving the solution is either the so-called capital-Euler equation or the so-called  

consumption-Euler equation.  For easier tractability but without loss of generality, results were  

derived assuming that there only three periods.  However, as shown, the results generalize to the  

case where the number of periods of time is large but finite and to the case where the number of  

periods of time is infinite.   

 Note that in the Ramsey model, the social planner is endowed with rational expectations 

(perfect foresight in this case because the model is deterministic (not stochastic), so that 

11][ ++ = tt ccE ).  With rational expectations (RE), the subjective expectation is the same as the 

mathematical expectation and the implication is that the expected value of future variable (here, 

][ 1+tcE , also 1+tc  because of perfect foresight) depends on all the parameters of the model (here, 

A and α  in the production function and the subjective time-discount factor β ).  This is why, in 

implementing/testing the model, “the hallmark of rational expectations is cross-restriction across 

equations”.  
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