Natividad-Carlos, Fidelina B.

Working Paper
An exercise on discrete-time intertemporal optimization

UPSE Discussion Paper, No. 2013-06

Provided in Cooperation with:
University of the Philippines School of Economics (UPSE)

Suggested Citation: Natividad-Carlos, Fidelina B. (2013) : An exercise on discrete-time intertemporal optimization, UPSE Discussion Paper, No. 2013-06, University of the Philippines, School of Economics (UPSE), Quezon City

This Version is available at:
http://hdl.handle.net/10419/93563

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.

You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Discussion Paper No. 2013-06

July 2013

An Exercise on Discrete-Time Intertemporal Optimization

by

Fidelina B. Natividad-Carlos

School of Economics, University of the Philippines

UPSE Discussion Papers are preliminary versions circulated privately to elicit critical comments. They are protected by Republic Act No. 8293 and are not for quotation or reprinting without prior approval.
An Exercise on Discrete-Time Intertemporal Optimization

Fidelina B. Natividad-Carlos*

Abstract

This paper, using the different alternative methods of dynamic optimization (the Lagrange/Kuhn-Tucker (LKT) method, the substitution method, the Hamiltonian method, and the dynamic programming approach) derives the conditions that must be satisfied by the solution to the so-called Ramsey problem, hopefully in a way that can be understood by undergraduate economics students. This is done by assuming that time is discrete and that, for simplicity but without loss of generality, there are only three periods.

JEL: C61, D91, E21

Keywords: Ramsey problem, dynamic optimazation, Lagrange method, Substitution method, Hamiltonian method, dynamic programming

* School of Economics, University of the Philippines, Diliman, Quezon City 1101. The author is grateful to the PCED for financial support.
1. Introduction

The deterministic infinite horizon Ramsey model is one of the two workhorses in graduate macroeconomics.¹ In this model, the problem of the benevolent social planner who is endowed with perfect foresight, “how much should a nation save?” (Ramsey, 1928), is an intertemporal/dynamic optimization problem. Specifically, the problem is to choose the path of capital accumulation and therefore the consumption path/plan, or vice-versa, in order to maximize the lifetime utility of an infinitely-lived representative individual/family/dynasty subject to some constraints and boundary conditions.

A crucial part of characterizing/deriving the solution to the intertemporal problem turns out to be either the so-called capital-Euler equation or the so-called consumption-Euler equation. The capital-Euler equation, along with two boundary conditions, yields the optimal path of capital accumulation which, given the resource constraint, yields the optimal consumption path. Equivalently, the so-called consumption-Euler equation and the resource constraint, along with two boundary conditions, yield the optimal path of capital accumulation and consumption, the so-called saddle path.

Different alternative methods can used to derive/characterize the solution to the Ramsey problem. These alternative methods shall be the focus of this paper.

¹ The other work-horse is the overlapping generations (OLG) model.
Although the original Ramsey (1928) problem is in continuous-time, here we use the discrete-time formulation of the problem\(^2\). Also, for easier tractability but without loss of generality, we assume that there only three periods. The results, derived using the different alternative methods, should give an idea on how to generalize the model to the case where the number of periods of time is large but finite and then to the case where the number of periods of time is infinite. In addition, the discrete-time results should provide intuition for their continuous-time analogues. This approach, which does not require mathematical sophistication, should enable us to characterize the solution to the problem.

Thus, the objective of this paper is to derive/characterize, using the different alternative methods, the solution to the Ramsey problem hopefully in a way that can be understood by undergraduate economics students.

Section 2 simply presents a deterministic discrete-time infinite-horizon Ramsey problem and specifies the assumptions behind the model/problem. Section 3 assumes that there are only three periods and derives the conditions that must be satisfied by the solution to the optimization problem using four alternative methods/approaches: the Lagrange/Kuhn-Tucker (LKT) method, the substitution method, the Hamiltonian method, and the dynamic programming approach. Section 4, using a concrete example, presents the solution to the problem not only for the three-period case but also for the finitely large horizon case as well as for the infinite horizon case. Finally, Section 5 gives some concluding remarks.

2. The Ramsey Problem

\(^2\) However, it should be noted if the problem is in discrete-time rather than in continuous-time, we have to have to decide which ‘price’ to use – whether this period’s ‘price’ or the next period’s ‘price’ – to value the capital stock carried over to the next period.
The deterministic discrete-time infinite-horizon Ramsey problem is

\[
U_0 = \max_{\{c_t\}} \left\{ U = \sum_{t=0}^{\infty} \beta^t u(c_t) \right\},
\quad 0 < \beta \equiv 1/(1+\rho) < 1
\]

subject to

\[
k_{t+1} - k_t = \frac{f(k_t) - c_t - (n + \delta)k_t}{1+n}, \quad n > 0, 0 < \delta < 1, \quad t = 0,1,\ldots
\]

\[
k_0 > 0 \text{ given TVC}
\]

where \(U_0 \) is the maximized lifetime utility; \(U \) is lifetime utility, \(\rho \) is the positive subjective time discount rate or pure rate of time preference which measures impatience to consume and thus \(\beta (\equiv 1/(1+\rho)) \) is the subjective time-preference or discount factor; \(c_t \) is per capita consumption during period \(t \); \(u(c_t) \) is the period-\(t \) utility (felicity) function which is assumed to exhibit \(u'(c_t) > 0 \) and \(u''(c_t) < 0 \) and satisfy the Uzawa-Inada conditions \(\lim_{c_t \to 0} u'(c_t) = \infty \) which ensures that \(c_t > 0 \), and \(\lim_{c_t \to \infty} u'(c_t) = 0 \); \(k_t \) \((k_{t+1})\) is the capital-labor ratio or per capita capital as of the beginning of period \(t \) \((t + 1)\); per capita output during period \(t \) is given by the period-\(t \) per capita production function \(f(k_k) \) which is assumed to exhibit \(f'(k_t) > 0 \) and \(f''(k_t) < 0 \) and satisfy the Uzawa-Inada conditions \(f(0) = 0 \), \(f'(0) = 0 \) which since output cannot be produced without capital, \(\lim_{k_t \to 0} f'(k_t) = \infty \) which ensures that \(f(k_t) - \delta k_t \geq 0 \) and \(\lim_{k_t \to \infty} f'(k_t) = 0 \), \(\delta \) is the rate of physical capital depreciation, \(t \) and \(t + 1 \) are the successive discrete periods of time, and the time horizon begins at \(t = 0 \). \(^3\)

\(^3\) In the literature, a problem such as this one is called the Ramsey model. For the original problem, see Ramsey (1928); for a Ramsey-like objective function, see Barro and Sala-i-Martin (2006, pp.214-215) for the Ramsey-like objective function. For the discrete-time formulation of the one-sector neoclassical growth model, see Takayama (1973), Obstfeld and Rogoff (1996); for the continuous-time formulation, see Takayama (1973), Blanchard and Fischer (1989), Barro and Sala-i-Martin (2004). Also see Cass (1965) and Koopmans (1965).
The first equation in (1) is the objective functional which is additively separable because it is a sum of functions. Each \(u(c_t) \) in the sum is weighted by \(\beta^t \) which declines as \(t \) increases, indicating declining weights for future utilities. The second contains the sequence of resource constraints, one constraint for each period \(t \). The second and the third, \(k_0 > 0 \) and the \(TVC \) (transversality condition), are the boundary conditions.

Note that the assumptions about \(u(c_t) \) and \(f(k_t) \) have led to a simpler problem (1) because they imply that the resource constraints always bind, \(c_t > 0 \), and \(k_t > 0 \); therefore, the non-negativity constraints on \(c_t \) and \(k_t \) can be ignored. In addition, they ensure that the first-order conditions (\(FOCs \)) for optimization which are necessary are also sufficient.

Although the Ramsey model is an infinite horizon model, the usual strategy is to consider a finite horizon \(t = 0,1,2,\ldots, T \) where \(T \) is the final period. The \(TVC \) (a terminal condition in this case) may either be imposed as in (1) but here it is replaced by the non-negativity constraint \(K_T \geq 0 \) which will make the derivation of the \(TVC \) as part of the \(K-T FOCs \) and thereby provide intuition for the imposed/asserted \(TVC \) in the infinite horizon case.

3. Alternative Methods of Intertemporal Optimization

In this section, we derive the necessary \(FOCs \), the conditions that must be satisfied by the solution to the optimization problem, using four alternative methods/approaches: the Lagrangian method, the substitution method, the Hamiltonian method, and the dynamic programming approach.

For easier tractability but without loss of generality, we assume here that there only three periods. In this case, the problem, (1), becomes
As shown in the next section, each of the four alternative methods of dynamic optimization yields results that boil down to

\[
U_0 \equiv \max_{c_0, c_1, c_2} \left\{ U = \sum_{t=0}^{2} \beta^t u(c_t) = u(c_0) + \beta u(c_1) + \beta^2 u(c_2) \right\}
\]

\[\text{s.t.} \quad k_{t+1} - k_t = \frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n}, \quad (t = 0, 1, 2) \quad \text{(2)}\]

\[
k_3 \geq 0
\]

\[
k_0 > 0 \text{ given}
\]

As shown in the next section, each of the four alternative methods of dynamic optimization yields results that boil down to

\[
\frac{u'(c_t)}{u'(c_{t+1})} = \beta(1 + f'(k_{t+1}) - \delta), \quad t = 0, 1 \quad \text{(3.1)}
\]

\[
k_{t+1} - k_t = \frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n}, \quad t = 0, 1, 2 \quad \text{(3.2)}
\]

\[
TVC, \quad \text{(3.3.1)}
\]

\[
k_0 > 0 \text{ given} \quad \text{(3.3.2)}
\]

i.e., a system of two non-linear first-order difference equations ((3.1) and (3.2)) and two boundary conditions ((3.3.1) and (3.3.2)), which are the conditions that must be satisfied by the solution to the problem, (2). Whether the horizon is finite or infinite, these conditions (with the time span and the TVC modified accordingly) apply.

We have presented these conditions at the outset not only to minimize repetitions but also to provide some intuition on the results.

(3.2), which we now refer to as ‘the’ resource constraint, is also called the capital accumulation equation. It says that per capita net investment \(k_{t+1} - k_t\) equals per capita net output \(f(k_t) - \delta k_t\) minus per capita consumption \(c_t\).

(3.1) is a difference equation showing the relationship between \(u'(c_t)\) and \(u'(c_{t+1})\) and, thus, between \(c_t\) and \(c_{t+1}\). In macroeconomics, it is known as the consumption-Euler equation.
It may be rewritten as
\[-u'(c_t) + \beta u'(c_{t+1})(1 + f'(k_{t+1}) - \delta) = 0,\]
which states that, at the optimum, the net change in utility arising any consumption reallocation is zero. Note that one unit less of per capita consumption in period \(t\) means having one unit more of per capita capital in period \(t+1\) and thus \((1 + f'(k_{t+1}) - \delta)\) units more of per capita output to consume in period \(t+1\). The effect on maximized utility of reducing per capita consumption in period \(t\) by one unit is \(-u'(c_t)\). The effect on maximized utility of increasing per capita consumption in period \(t+1\) by \((1 + f'(k_{t+1}) - \delta)\) units is \(u'(c_{t+1})(1 + f'(k_{t+1}) - \delta)\); but since this gain occurs in \(t+1\), it must be discounted, yielding \(\beta u'(c_{t+1})(1 + f'(k_{t+1}) - \delta)\). At the optimum, the sum of the two effects must be zero, i.e., the net discounted gain from any consumption reallocation is zero. Equivalently,
\[u'(c_t) = \beta u'(c_{t+1})(1 + f'(k_{t+1}) - \delta), \quad t = 0,1\] (3.1')
i.e., the cost in utility for foregoing one more unit of per capita consumption in period \(t\) and thus saving one more unit of per capita capital for period \(t+1\) \((u'(c_t))\) is equal to the discounted gain in utility from the increase in units of per capita consumption in period \(t+1\) due to the increase in output in period \(t+1\) made possible by one more unit of per capita capital in period \(t+1\) \((\beta u'(c_{t+1})(1 + f'(k_{t+1}) - \delta))\).

(3.1) may also be rewritten as
\[\frac{u'(c_t)}{\beta u'(c_{t+1})} = 1 + f'(k_{t+1}) - \delta, \quad t = 0,1\] (3.1'')
i.e., the marginal rate of substitution (MRS) between per capita consumption in periods \(t\) and \(t+1\) \((u'(c_t)/\beta u'(c_{t+1}))\) is equal to the marginal rate of transformation (MRT), from production,
between per capita consumption in periods t and $t + 1$ $(1 + f'(k_{t+1}) - \delta)$.\(^4\)

In macroeconomics, (3.1) [or (3.1')] or (3.1'')] is known as the consumption-Euler equation, also called the Keynes-Ramsey rule (Blanchard and Fischer (1989)).

3.1 Lagrange (or Lagrange-Kuhn-Tucker) Method

In the Lagrangian method, the objective function and the constraints are combined into a single function called the Lagrangian.\(^5\) Letting $\mu_{t+1} > 0$ as the Lagrange multiplier for the period-t resource constraint and υ as the Lagrange multiplier for the non-negativity constraint on the terminal stock of per capita capital, the Lagrangian of the full problem over all three periods (2) is

$$L = \sum_{t=0}^{2} \left\{ \beta u'(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n + \delta)k_t + (k_{t+1} - k_t)}{1 + n} \right] \right\} + \upsilon k_3,$$

where $k_0 > 0$ is given. The yet undetermined variable μ_{t+1} is interpreted as the marginal value as of time 0, or the shadow price in present value terms, of k_{t+1} at time $t + 1$.\(^6\)

The first-order conditions for optimality are:

\(^4\) (3.1'') can also be rewritten as $\frac{u'(c_{t+1})}{\beta u'(c_t)} = 1 + f'(k_t) - \delta$, $t = 1,2$

\(^5\) Obstfeld and Rogoff (1996) use the Lagrangian method.

\(^6\) It should be noted if the problem is in discrete-time rather than in continuous-time, we have to have to decide which ‘price’ to use – whether this period’s ‘price’ or the next period’s ‘price’ – to value the capital stock carried over to the next period. Takayama (1973) uses this period’s price. Here, following Dixit (1980), we use the next period’s price.
The FOCs with respect to c_t say that the discounted marginal utility of per capita consumption in period t ($\beta'u'(c_t)$) is equal to the shadow price in present value terms of k_{t+1} at t (μ_{t+1}).

The FOCs with respect to μ_{t+1} simply recovers the sequence of resource constraint (the second equation in (2)). Note that the resource constraint always bind and its multiplier μ_{t+1} is positive.

In the Lagrangian method, the TVC can be derived as part of the first-order conditions. The first-order Kuhn-Tucker condition associated with the constraint $k_3 \geq 0$ is

$\nu(\partial L/\partial \nu) = \nu k_3 = 0$, with $\nu \geq 0$ and $\partial L/\partial \nu = k_3 \geq 0$. Substituting out for ν, which is equal to μ_3, this condition can be written as

$\mu_3k_3 = 0$.

This boundary condition, called the transversality condition, says that if the stock of per capita capital left is positive ($k_3 > 0$), then its shadow price must be zero ($\mu_3 = 0$) or, if the stock of per capita capital at the terminal time has a positive unit value ($\mu_3 > 0$), then no per capita capital must be left ($k_3 = 0$). But $\mu_3 > 0$, since $\mu_3 = u'(c_2)$ and $u'(c_t) > 0$. Thus, the condition $\mu_3k_3 = 0$ is reduced to the terminal condition
\[k_3 = 0. \]

The remaining \(FOC \) for the problem relates to \(k \). But there is a problem of \(k_i(t=1,2) \) [or \(k_{t+1}(t=0,1) \)] appearing in two terms of the sum (RHS of (4)). Unlike the \(c' \)'s which have the same time subscript \(t \) and the \(\mu' \)'s which have the same time subscript \(t+1 \), \(k \) appears in the Lagrangian (4) as \(k_i \) and \(k_{t+1} \). This is so because \(k \) is a dynamic variable. To avoid confusion, we therefore write the problem in expanded form:

\[
L = u(c_0) + \beta u(c_1) + \beta^2 u(c_2) + \mu_1 \left[\frac{f(k_0) - c_0 - (n + \delta)k_0}{1+n} - (k_1 - k_0) \right] + \mu_2 \left[\frac{f(k_1) - c_1 - (n + \delta)k_1}{1+n} - (k_2 - k_1) \right] + \mu_3 \left[\frac{f(k_2) - c_2 - (n + \delta)k_2}{1+n} - (k_3 - k_2) \right] + \nu k_3.
\]

(4')

The partial derivatives of the Lagrangian with respect to \(k_i \) and \(k_2 \) are

\[
\frac{\partial L}{\partial k_1} = 0 \quad \Rightarrow \quad \mu_1 = \mu_2 (1 + f'(k_i) - \delta), \\
\frac{\partial L}{\partial k_2} = 0 \quad \Rightarrow \quad \mu_2 = \mu_3 (1 + f'(k_2) - \delta),
\]

which can be written in a compact form as

\[
\frac{\partial L}{\partial k_i} = 0 \quad \Rightarrow \quad \mu_i = \mu_{t+1} (1 + f'(k_i) - \delta), \quad t = 1,2
\]

or

\[
\frac{\partial L}{\partial k_{t+1}} = 0 \quad \Rightarrow \quad \mu_{t+1} = \mu_{t+2} (1 + f'(k_{t+1}) - \delta), \quad t = 0,1
\]

which is the second equation in (5). The \(FOCs \) with respect to \(k_i(t=1,2) \) [or \(k_{t+1}(t=0,1) \)] captures how \(\mu \) changes from one period to another. The shadow price of \(k_{t+1}(t=0,1) \), \(\mu_t \), depends on \(\mu_{t+1} \).
Notice that in the *Lagrangian* set-up, \(c_0 [c_1] \) is chosen directly and \(k_1 [k_2] \) indirectly, since \(k_1 [k_2] \) adjusts indirectly as a result of the choice of \(c_0 [c_1] \). Specifically, at the beginning of period 0 \([1]\), \(k_0 [k_1] \) is already given and choosing \(c_0 [c_1] \) to maximize the *Lagrangian* and therefore \(U \) indirectly leads to the choice of \(k_1 [k_2] \); in period 2, the final period, \(k_2 \) is already a given and the choice of \(c_2 \) becomes trivial because of the terminal condition \(k_3 = 0 \). But the *Lagrangian* is also maximized with respect to \(k_{r+1}(t = 0,1) \) in order to yield an additional first-order condition, a condition that is needed since \(\mu_{r+1} \) needs to be determined as well.

The FOCs with respect to \(c \), \(k \), and \(\mu \) determine the optimal sequence for all three variables - \((c_0, c_1, c_2)\), \((k_1, k_2; k_0 \text{ given and } k_3 = 0)\), and \((\mu_1, \mu_2, \mu_3)\). But the usual practice is to combine the FOCs with respect to \(c \) and the FOCs with respect to \(c_i \) as follows,

\[
\frac{u'(c_{r+1})}{\beta u'(c_r)} = \frac{\mu_t}{\mu_{r+1}} = 1 + f'(k_t) - \delta, \quad t = 1,2
\]

or

\[
\frac{u'(c_{r})}{\beta u'(c_{r+1})} = \frac{\mu_{r+1}}{\mu_{r+2}} = 1 + f'(k_{r+1}) - \delta, \quad t = 0,1
\]

so as to get the consumption-*Euler* equation ((3.1) or (3.1’ or (3.1’’)).

Thus, the solution to (2) - \(k_{r+1}(t = 0,1) \) and \(c_i(t = 0,1,2) \) - must satisfy the consumption-*Euler* equation (3.1 or 3.1’ or 3.1’’), the period resource constraints (3.2), the initial condition (3.3.1), and the terminal condition (3.3.2)).

3.2 *Substitution* Method

In the *substitution* method, the problem, (2), is converted into an unconstrained
maximization problem in the choice variables $k_{t,i} \ (t=0,1)$.7 Each of the period- t resource constraint which is binding (and therefore hold as an equality) is used to solve for the choice variable c_i as a function of k_i and k_{t+1}: $c_i = f(k_i) - (n + \delta)k_i - (1 + n)(k_{t+1} - k_i)$, $t = 0,1,2$, and this function is used to substitute for c_i in the objective function in (2). Next, in this case where the horizon is finite, the terminal condition ($c_3 = 0$) is imposed. The resulting function is then maximized with respect to $k_i \ (t=1,2)$,

$$\max_{k_i, k_2} \left\{ U \equiv \sum_{t=0}^{2} u\left(f(k_i) - (n + \delta)k_i - (1 + n)(k_{t+1} - k_i)\right) \right\}, \quad (6)$$

where $k_0 > 0$ is taken as given and $k_3 = 0$ is imposed.

However, as in the Lagrangian method, there is a problem of $k_{t+1} \ (t=0,1)$ appearing in two terms of the sum (see (6) below). Specifically, k_1 appears in the c_0 and c_1 terms and k_2 appears in the c_1 and c_2 terms. This is so because we are dealing with a dynamic problem. So we write the problem in expanded form:

$$U_0 = \max_{k_1, k_2} \left\{ \frac{u\left(f(k_0) - (n + \delta)k_0 - (1 + n)(k_1 - k_0)\right)}{c_0} + \beta \frac{u\left(f(k_1) - (n + \delta)k_1 - (1 + n)(k_2 - k_1)\right)}{c_1} \right. \quad (6')$$

$$\left. + \beta^2 \frac{u\left(f(k_2) - (n + \delta)k_2 - (1 + n)(k_3 - k_2)\right)}{c_2} \right\}$$

s.t. $k_0 > 0$ given $k_3 = 0$

The first-order conditions (FOCs) on $k_i \ (t=1,2)$ are

7 Obstfeld and Rogoff (1996) use the so-called substitution method.
\[
\frac{\partial U_0}{\partial k_i} = u'(f(k_i) - (n + \delta)k_0 - (1 + n)(k_i^1 - k_0^1))(-1) + \beta u'(f(k_i) - (n + \delta)k_i^1 - (1 + n)(k_{i+1}^1 - k_i^1))(1 + f'(k_i) - \delta) = 0,
\]
\[
\frac{\partial U_0}{\partial k_i} = \beta u'(f(k_i) - (n + \delta)k_i^1 - (1 + n)(k_z^1 - k_i^1))(-1)
+ \beta^2 u'(f(k_z^1) - (n + \delta)k_z^1 - (1 + n)(k_{z+1}^1 - k_z^1))(1 + f'(k_z^1) - \delta) = 0,
\]

which can now be written in a compact form as
\[
\frac{\partial U_0}{\partial k_i} = \beta^{t-1} u'\left(f(k_{t-1}) - (n + \delta)k_{t-1} - (1 + n)(k_i - k_{t-1})\right)(-1)
+ \beta^t u'\left(f(k_i) - (n + \delta)k_i - (1 + n)(k_{t+1} - k_i)\right)(1 + f'(k_i) - \delta) = 0, \quad t = 1, 2
\]

yielding the Euler equation
\[
\frac{u'\left(f(k_{t-1}) - (n + \delta)k_{t-1} - (1 + n)(k_i - k_{t-1})\right)}{u'(f(k_i) - (n + \delta)k_i - (1 + n)(k_{t+1} - k_i))} = \beta(1 + f'(k_i) - \delta), \quad t = 1, 2
\]

where \(k_0 > 0\) is given and \(k_3 = 0\), which is a second-order difference equation in \(k\). Clearly, the \(FOCs\) on \(k_i(t = 1, 2)\) can be rewritten to yield the consumption-\(Euler\) equation ((3.1) or (3.1') or (3.1'')).

As in the \(Lagrangian\) method, the ‘solution’ to (2) - \(k_{t+1}(t = 0, 1)\) and \(c_i(t = 0, 1, 2)\) - must satisfy the consumption-\(Euler\) equation, the period resource constraints, the initial condition, and the terminal condition.

In the \(substitution\) method, the unconstrained problem of choosing \(k_{t+1}(t = 0, 1)\), with \(k_0 > 0\) given and \(k_3 = 0\) imposed, to maximize \(U\) can be thought of as one where
\(c_i(t = 0,1,2) \) is optimally chosen. This is so because at the beginning of period 0 \([1]\), \(k_0 \) \([k_i]\) is already given and therefore choosing \(k_1 \) \([k_2]\) to maximize \(U \) implicitly pins down the optimal \(c_0 \) \([c_1]\); at the beginning of period 2, the final period, \(k_2 \) is also already given and it is the terminal condition \(k_3 = 0 \) which implicitly pins down \(c_2 \).

3.3 Hamiltonian Method

Here, we use the *Lagrangian* to derive the so-called ‘Hamiltonian recipe’ for dynamic optimization.\(^8\) The Hamiltonian recipe is a shortcut but leads to identical results.

Having derived the TVC using the LKT method, we now simply assert/impose it in order to simplify the problem. The *Lagrangian* for the problem, (4), is rewritten below:

\[
L = \sum_{t=0}^{2} \left\{ \beta' u(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n} \right] - \mu_{t+1}(k_{t+1} - k_t) \right\} + \nu k_3. \tag{8}
\]

In the *Lagrangian* method discussed earlier, we have seen that the FOCs with respect to \(c_i(t = 0,1,2) \) and the FOCs with respect to \(\mu_{t+1}(t = 0,1,2) \), which recover the period resource constraints, can easily be derived even without expanding the *Lagrangian* because the \(c' \)'s have the same time subscript \(t \) and the \(\mu' \)'s have the same time subscript \(t + 1 \).\(^9\) But this is not so in the case of \(k \) which appears as \(k_t \) and \(k_{t+1} \). Equivalently, \(k_i(t = 1,2) \) appears in two terms of the sum in (8). For instance, \(k_1 \) appears as \(\mu_2 k_1 \) in the term \(t = 1 \) and as \(-\mu_1 k_1 \) in the term \(t = 0 \); thus, getting \(\frac{\partial L}{\partial k_1} \) is not that straightforward unless the *Lagrangian* is written in expanded form.

\(^9\) Again, Takayama (1973) uses this period’s price; here, following Dixit (1980), we use the next period’s price.
To make $k_t(t = 1,2)$ appear only in one term of the sum, we rewrite the term

$$-\sum_{r=0}^{2} \mu_r (k_{r+1} - k_r)$$

in (8) as follows:

$$-\sum_{r=0}^{2} \mu_r (k_{r+1} - k_r) = \sum_{r=0}^{2} \mu_r (k_r - k_{r+1})$$

$$= \mu_1(k_0 - k_1) + \mu_2(k_1 - k_2) + \mu_3(k_2 - k_3)$$

$$= (\mu_2 - \mu_1)k_1 + (\mu_3 - \mu_2)k_2 - (\mu_3k_3 - \mu_1k_0),$$

or, in a compact form,

$$-\sum_{r=0}^{2} \mu_r (k_{r+1} - k_r) = - (\mu_3k_3 - \mu_1k_0) + \sum_{r=0}^{2} (\mu_{r+1} - \mu_r)k_r, \quad (8.1)$$

Where k_0 and k_3 are not choice variables. Using (8.1), the Lagrangian can be rewritten as

$$L = \sum_{t=0}^{2} \left\{ \beta' u(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n+\delta)k_t}{1 + n} \right] \right\} + \sum_{t=1}^{2} \left\{ (\mu_{t+1} - \mu_t)k_t \right\} - (\mu_3k_3 - \mu_1k_0) + \nu k_3, \quad (8')$$

or

$$L = \sum_{t=1}^{2} \left\{ \beta' u(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n+\delta)k_t}{1 + n} \right] + (\mu_{t+1} - \mu_t)k_t \right\}$$

$$+ \nu (c_0) + \mu_1 \left[\frac{f(k_0) - c_0 - (n+\delta)k_0}{1 + n} \right] - (\mu_3k_3 - \mu_1k_0) + \nu k_3, \quad (8'')$$

and we can now easily get the FOCs with respect to $k_t(t = 1,2)$. In (8''), it is now μ which has different time subscripts t and $t+1$ but this does not pose a problem provided that the resource constraint is satisfied. Note that the FOCs with respect to $\mu_{t+1} (t = 0,1,2)$ merely recover the period-t resource constraints. The problem of choosing $c_t(t = 0,1,2)$ and $k_t(t = 1,2)$ is now a single-period optimization problem.

Defining a function, called the Hamiltonian, as
\[H(k_t, c_t, \mu_{t+1}) \equiv \beta' u(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n} \right]. \] (9)

The choice of \(c_t \) affects \(k_{t+1} \) via the period \(t \) resource constraint, and this effect of \(c_t \) on \(k_{t+1} \) equals its effect on \(\frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n} \). Multiplying this effect by \(\mu_{t+1} \) or the shadow price of \(k_{t+1} \) at \(t \) yields the resulting change in the objective function. The product

\[\mu_{t+1} \left(\frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n} \right) \] which captures such resulting change is then added to the term \(\beta' u(c_t) \), yielding the Hamiltonian (9).

Rewrite the Lagrangian emphasizing the Hamiltonian as follows:

\[
L = \sum_{t=0}^{2} \left\{ H(k_t, c_t, \mu_{t+1}) + \mu_{t+1}^{(k)} - k_{t+1} \right\} + \nu k_3
\]

\[
= \sum_{t=0}^{2} H(k_t, c_t, \mu_{t+1}) + \sum_{t=1}^{2} (\mu_{t+1} - \mu_t)k_t - (\mu_3k_3 - \mu_1k_0) + \nu k_3
\]

\[
= \begin{cases}
\sum_{t=1}^{2} \left\{ H(k_t, c_t, \mu_{t+1}) + (\mu_{t+1} - \mu_t)k_t + u(c_0) + \mu_1 \left\{ \frac{f(k_0) - c_0 - (n + \delta)k_0}{1 + n} \right\} \right. \\
- (\mu_3k_3 - \mu_1k_0) + \nu k_3
\end{cases}
\]

where, again, \(H(k_t, c_t, \mu_{t+1}) \equiv \beta' u(c_t) + \mu_{t+1} \left[\frac{f(k_t) - c_t - (n + \delta)k_t}{1 + n} \right] \) and \(k_0 \) is historically given and not a choice variables since \(k_0 \) and \(k_3 = 0 \).

The first-order conditions are

\[
\begin{align*}
\frac{\partial L}{\partial c_t} &= \frac{\partial H}{\partial c_t} = 0, \\
\frac{\partial L}{\partial k_t} &= \frac{\partial H}{\partial k_t} + (\mu_{t+1} - \mu_t) = 0, \\
\frac{\partial L}{\partial \mu_{t+1}} &= \frac{\partial H}{\partial \mu_{t+1}} - (k_{t+1} - k_t) = 0, \\
\frac{\partial L}{\partial k_3} &= -\mu_3 + \nu = 0 \\
\nu \geq 0, \frac{\partial L}{\partial \nu} &= k_3 \geq 0, \nu(\frac{\partial L}{\partial \nu}) = 0 \\
k_0 > 0 \text{ is given}
\end{align*}
\] (11)
which can be rewritten as

\[
\begin{align*}
\frac{\partial H}{\partial c_t} &= 0, \quad t = 0,1,2, \\
\mu_{t+1} - \mu_t &= -\frac{\partial H}{\partial k_t}, \quad t = 1,2, \\
k_{t+1} - k_t &= \frac{\partial H}{\partial \mu_{t+1}}, \quad t = 0,1,
\end{align*}
\]

(11')

where \(k_0 > 0 \) given and \(\mu_2 k_3 = 0 \). The FOCs for the maximization of the objective function s.t. to the period resource constraints and the boundary conditions (see (2)), are: for each period \(t (= 0,1,2) \), \(c_t \) maximizes the Hamiltonian \(H(c_t, k_t, \mu_{t+1}) \) and the changes in \(k_t \) and \(\mu_t \) obey the difference equations in (11') and must satisfy the initial condition \(k_0 > 0 \) given and the terminal condition \(k_3 = 0 \). This is Pontryagin et al’s maximum principle (see Pontryagin et al (1962), Arrow and Kurz (1969), and Dixit (1980)).

Using the Hamiltonian recipe and the Hamiltonian, the first-order conditions, \((11') \), can be rewritten as

\[
\begin{align*}
\frac{\partial H}{\partial c_t} &= 0: \quad \beta' u(c_t) = \mu_{t+1}, \quad t = 0,1,2, \\
\mu_{t+1} - \mu_t &= -\frac{\partial H}{\partial k_t}: \quad \mu_{t+1} - \mu_t = -\mu_{t+1}(f'(k_t) - \delta), \quad t = 1,2, \\
k_{t+1} - k_t &= \frac{\partial H}{\partial \mu_{t+1}}: \quad k_{t+1} - k_t = \frac{F(k_t) - c_t - (n + \delta)k_t}{1 + n}, \quad t = 0,1,2, \\
\mu_t k_3 &= 0, \\
k_0 > 0 \text{ given}
\end{align*}
\]

(12)

which are of course the same as those using the Lagrangian method. [Note that the second equation in (12) \(\mu_{t+1} - \mu_t = -\mu_{t+1}(f'(k_t) - \delta) \), can be rewritten as the second equation in (5), \(\mu_t = \mu_{t+1}(1 + f'(k_t) - \delta) \).]
The FOCs with respect to k_t $(t = 1, 2)$ indicate that the change in the value of a unit of per capita capital or “capital gains” $(\mu_{t+1} - \mu_t)$ plus the value of the net return on a unit of per capita capital or “dividends” $(\mu_{t+1}(f'(k_t) - \delta))$ must be zero. It can be interpreted as follows. A marginal unit of k_t yields the marginal return $(f'(k_t) - \delta)$ valued at μ_{t+1}. Thus, $\mu_{t+1}(f'(k_t) - \delta)$ can be thought of as a dividend in present value terms. $(\mu_{t+1} - \mu_t)$ is like a capital gain in present value terms. When k_t is optimal, the overall return $((\mu_{t+1} - \mu_t) + \mu_{t+1}(f'(k_t) - \delta))$ should be zero. In other words, the shadow prices take values that do not allow for an excess return from holding the stock; this is an intertemporal no-arbitrage condition.

Again, the FOCs with respect to c_t and the FOCs with respect to k_{t+1} can be combined

$$
\mu_{t+1} - \mu_t = -\mu_{t+1}(f'(k_t) - \delta)
\beta^{t+1}u'(c_{t+1}) - \beta'u'(c_t) = -\beta^{t+1}u'(c_{t+1})(f'(c_t) - \delta)
$$

to yield the consumption-Euler equation ((3.1) or (3.1') or (3.1'')).

Thus, as in the Lagrangian method and the substitution method, the ‘solution’ to (2) – $k_t (t = 1, 2)$ and $c_t (t = 0, 1, 2)$ – must satisfy the consumption-Euler equation, the period resource constraints, the initial condition, and the terminal condition.

3.4 Dynamic Programming

In the Hamiltonian method, the full problem over all periods is reduced to a single-period

(static) optimization problem. In contrast, in the dynamic programming approach, the full \(T \)-period intertemporal problem is broken into \(T \) separate static (two-period, but effectively single-period) optimization problems. This method of optimization over time as a sequence/succession of static optimization problems is known as Bellman’s Dynamic Programming.\(^{11}\)

Choose any \(t \) and consider the decision about \(c_t \) at time \(t \). Any particular choice of \(c_t \) will lead to next period’s per capita capital stock \(k_{t+1} \) (see the period \(t \) budget constraint and note that \(k_t \) is the per capita capital stock as of the beginning of period \(t \) and therefore is taken as given during period \(t \)). Thereafter, it remains to solve the sub-problem starting at \(t + 1 \), and achieve the maximum value \(W_{t+1}(k_{t+1}) \). Then the total value starting with \(k_t \) at \(t \) can be broken down into two terms: \(u(c_t) \) that accrues at once, and \(\beta W_{t+1}(k_{t+1}) \) that accrues thereafter. The choice of \(c_t \) should maximize the sum of these two terms, i.e., \(u(c_t) + \beta W_{t+1}(k_{t+1}) \) for this one \(t \).

This is Bellman’s principle of optimality: “An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision.” (Bellman (1957, p. 83)).

In other words, “an individual who plans to optimize starting tomorrow can do no better today than to optimize taking the future optimal plans as given” (Obstfeld and Rogoff (1996)).

With finite (infinite) horizon, this involves choosing a finite (an infinite) sequence of per capita consumption or per capita capital accumulation, one for each period \(t \). But the problem of solving for a finite (an infinite) sequence can be replaced by the problem of solving for a single unknown function \(W \), a value function.

\(^{11}\) For details, see Arrow and Kurz (1969), Dixit (1980), Sargent (1987), and Bellman (1957).
3.4.1 Dynamic Programming by Backward Recursion

Here, the full 3-period intertemporal problem can be broken into 3 separate static (single-period) problems. The sequence of problems can be solved either forward or backward. With finite horizon, it is easier to solve the problem backward, as illustrated below:

\[
W(k_0) \equiv \max_{c_0, c_1, c_2, k_0 \text{ given}, k_1=0} \left\{ u(c_0) + \beta u(c_1) + \beta^2 u(c_2) \right\}
\]

\[
= \max_{c_0, k_0 \text{ given}} \left\{ u(c_0) + \beta \left(\max_{c_1, k_1 \text{ given}, k_2 \text{ given}, k_1=0} \left(u(c_1) + \beta \left(\max_{c_2, k_2 \text{ given}, k_3=0} \left(u(c_2) + \beta W(k_3) \right) \right) \right) \right\}\tag{13}
\]

where each maximization problem is subject to the relevant period constraint.

Period- T (Last Period) Problem: Period- 2 Problem. The period-2 problem is

\[
W(k_2) \equiv \max_{c_2, k_2 \text{ given}, k_3=0} \left\{ u(c_2) + \beta W(k_3) \right\} \equiv \max_{c_2, k_2 \text{ given}, k_3=0} u(c_2) , \tag{14.1}
\]

since \(k_3 = 0 \). The RHS of (14.1) is a straightforward static optimization problem, yielding the optimal choice\(^{12}\)

\[
c_2^* = f(k_2) - c_2 + (1-\delta)k_2 , \tag{14.2}
\]

and the maximum value function

\[
W(k_2) \equiv u(c_2^*) = u[f(k_2) + (1-\delta)k_2] \tag{14.3}
\]

which can be used in the \(T\)-1 problem. Note from (14.3) that

\[
\partial W(k_2) / \partial k_2 = u'(c_2^*)(1 + f''(k_2) - \delta) . \tag{14.4}
\]

\(^{12}\) The period- 2 resource constraint, noting that \(k_3 = 0 \) and \(k_2 \) is given as of the beginning of period 2, yields the value of \(c_2^* \) (14.2).
Period- T-1 Problem: Period-1 problem. The period-1 problem is given by the RHS of the equation below:

\[W(k_1) \equiv \max_{s.t. k_2 - k_1 = f(k_1) - c_{k_1} - (n+\delta)k_1} \{ u(c_1) + \beta W(k_2) \}. \quad (15.1) \]

(15.1) yields

\[\frac{\partial W(k_1)}{\partial c_1} = u'(c_1) + \beta \frac{\partial W(k_2)}{\partial k_2} \frac{\partial k_2}{\partial c_1} = 0 \Rightarrow u'(c_1) = \beta \frac{\partial W(k_2)}{\partial k_2} \quad (15.2) \]

Noting from (14.4) that \(\frac{\partial W(k_2)}{\partial k_2} = u'(c_2^*)(1 + f'(k_2) - \delta) \), (15.2) becomes

\[u'(c_1) = \beta \frac{\partial W(k_2)}{\partial k_2} \Rightarrow u'(c_1) = \beta u'(c_2^*)(1 + f'(k_2) - \delta), \quad (15.3) \]

and gives the value function

\[W_1(k_1) \equiv u(c_1^*) + \beta W(k_2^*), \quad (15.4) \]

where

\[\frac{\partial W(k_1)}{\partial k_1} = u'(c_1^*) \left[(1 + f'(k_1) - \delta) - \frac{\partial k_2^*}{\partial k_1} \right] + \beta \frac{\partial W(k_2^*)}{\partial k_2} \frac{\partial k_2^*}{\partial k_1} \]

\[= u'(c_1^*)(1 + f'(k_1) - \delta) + \left[\beta \frac{\partial W(k_2^*)}{\partial k_2} - u'(c_1^*) \right] \frac{\partial k_2^*}{\partial k_1} \]

\[= u'(c_1^*)(1 + f'(k_1) - \delta) \quad (15.5) \]
\[\frac{\partial W(k_1)}{\partial c_1} = u'(c_1^*) \frac{\partial c_1^*}{\partial k_1} + \beta \frac{\partial W(k_2^*)}{\partial k_2} \left[(1 + f'(k_1) - \delta) - \frac{\partial c_2}{\partial k_1} \right] \]

\[= \beta \frac{\partial W(k_2^*)}{\partial k_2} (1 + f'(k_1) - \delta) + \frac{u'(c_1^*)}{\partial k_2} \left[\frac{\partial W(k_2^*)}{\partial k_2} \right] \frac{\partial c_i}{\partial k_1} \]

\[= \beta \frac{\partial W(k_2^*)}{\partial k_2} (1 + f'(k_1) - \delta) \] (15.6)

Period-0 Problem.

\[W(k_0) \equiv \max_{c_1 \in \mathcal{C}, k_1 = k_0 + (n+\delta)k_0} \left\{ u(c_0) + \beta W(k_1) \right\} \] (16.1)

(16.1) yields

\[\frac{\partial W(k_0)}{\partial c_0} = u'(c_0) + \beta \frac{\partial W(k_1)}{\partial k_1} \frac{\partial k_1}{\partial c_0} = 0 \implies u'(c_0) = \beta \frac{\partial W(k_1)}{\partial k_1} \] (16.2)

Noting from (15.5) that \(\frac{\partial W(k_1)}{\partial k_1} = u'(c_1^*)(1 + f'(k_1) - \delta) \), (16.2) becomes

\[u'(c_0) = \beta \frac{\partial W(k_1)}{\partial k_1} \implies u'(c_0) = \beta [u'(c_1^*)(1 + f'(k_1) - \delta)] \] (16.3)

and gives the value function

\[W(k_0) \equiv u(c_0^*) + \beta W(k_1^*) \] (16.4)

where \(W(k_0) \) is the value of lifetime utility when the starting level of per capita capital is \(k_0 \).

Finally, notice that (15.3) and (16.3) can be written in compact form as the consumption-

Euler equation.

3.4.2 **Dynamic Programming: Recipe**
Step 1. Write the problem in terms of the Bellman equation. The optimization problem, (2), be written as

\[
W(k_i) \equiv \max_{c_i} \{ u(c_i) + \beta W(k_{i+1}) \}
\]

s.t. \(k_{i+1} - k_i = \frac{f(k_i) - c_i - (n + \delta)k_i}{1 + n} \)

\(k_i \) given

\(k_0 > 0 \) given

\(k_{T+1} = 0 \)

(17)

where \(W(k) \) is a value function (a current-value return function). Specifically, \(W(k_i) \) is the value of today’s per capita capital stock \(k_i \) and \(\beta W(k_{i+1}) \) is the value of tomorrow’s per capita capital stock \(k_{i+1} \). The first equation in (17) is known as the Bellman equation. Note that \(W(k_{i+1}) \) is an unknown function.

Step 2. Derive the first-order conditions on \(c_i \). Using the Bellman equation (first equation in (17)) at time \(t \) and the resource constraint (second equation in (17)) to substitute for \(k_{i+1} \), and differentiating with respect to \(c_i \) and setting the result equal to zero,

\[
\frac{\partial W(k_i)}{\partial c_i} = u'(c_i) + \beta \frac{\partial W(k_{i+1})}{\partial k_{i+1}} \frac{\partial k_{i+1}}{\partial c_i} = 0
\]

yields the first-order condition on \(c_i \):

\[
u'(c_i) = \beta \frac{\partial W(k_{i+1})}{\partial k_{i+1}}.
\]

(18.1)
Foregoing a unit of per capita consumption in period t or carrying over a unit of per capita capital to the next period has cost and benefit. At an optimum, the marginal cost $u'(c_t)$ must equal the marginal benefit $\beta(\partial W(k_{t+1})/\partial k_{t+1})$. Note however that $\partial W(k_{t+1})/\partial k_{t+1}$ is unknown since $W(k_{t+1})$ is an unknown function.

Step 3. Derive the envelope relation between $\partial W(k_t)/\partial k_t$ and $\partial W(k_{t+1})/\partial k_{t+1}$. Using again the Bellman equation (first equation in (17)) at time t and the resource constraint (second equation in (17)) to substitute for k_{t+1}, and differentiating with respect to k_t and applying the envelope theorem on the result,

\[
\frac{\partial W(k_t)}{\partial k_t} = u'(c_t) \frac{\partial c_t}{\partial k_t} + \beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} \left[(1 + f'(k_t) - \delta) - \frac{\partial c_t}{\partial k_t}\right] \frac{\partial k_{t+1}}{\partial k_t}
\]

\[
= \beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} (1 + f'(k_t) - \delta) + \left[u'(c_t) - \beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} \right] \frac{\partial c_t}{\partial k_t} = \beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} (1 + f'(k_t) - \delta)
\]

yields

\[
\frac{\partial W(k_t)}{\partial k_t} = \beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} (1 + f'(k_t) - \delta).
\]

(18.3) is the envelope relation between $\partial W(k_t)/\partial k_t$ and the yet unknown $\partial W(k_{t+1})/\partial k_{t+1}$.

Step 3. Derive the consumption-Euler equation using the FOCs and the envelope relation. Using the FOC on c_t (18.1) lagged one period, the envelope result (18.3), and the FOC on c_t (18.1) again,
\[u'(c_{t-1}) = \beta \left[\frac{\partial W(k_t)}{\partial k_t} \right] \]
\[= \beta \left[\left(\beta \frac{\partial W(k_{t+1})}{\partial k_{t+1}} \right)(1 + f'(k_t) - \delta) \right] \]
\[= \beta \left[u'(c_t)(1 + f'(k_t) - \delta)\right] \]
\[(t=1,2) \quad (18.4) \]
yields for \(t=1, 2, \)
\[u'(c_{t-1}) = \beta u'(c_t)(1 + f'(k_t) - \delta) \quad \text{or} \quad \frac{u'(c_{t-1})}{u'(c_t)} = 1 + f'(k_t) - \delta \quad \text{or} \quad \frac{u'(c_t)}{u'(c_{t+1})} = \beta(1 + f'(k_{t+1}) - \delta), \]
which is exactly the consumption-\textit{Euler} equation derived earlier. This equation, as in the other three methods presented earlier, is part of the conditions that must be satisfied by the solution.

Finally, recall that the \textit{FOC} on \(c_t \) is \(\mu_{t+1} = \beta' u'(c_t) \) using either the \textit{Lagrangian} method or the \textit{Hamiltonian} method and \(u'(c_t) = \beta(\partial W(k_{t+1})/\partial k_{t+1}) \) using the \textit{dynamic programming} approach. Also, note that
\[W(k_t) = \frac{V(k_t)}{\beta'} \iff V(k_t) = \beta' W(k_t) \Rightarrow V(k_{t+1}) = \beta'^{t+1} W(k_{t+1}), \quad (19.1) \]
where \(W(.) \) is current-value value function while \(V(.) \) is a present-value value function. Also, define: \(\lambda_{t+1} = \frac{\mu_{t+1}}{\beta'^{t+1}} \) where \(\mu_{t+1} \) is the shadow price of \(k_{t+1} \) in present value terms while \(\lambda_{t+1} \) is the shadow price of \(k_{t+1} \) in current value terms or in terms of current utility (Arrow and Kurz (1969)). Thus,
\[\frac{\partial V(k_{t+1})}{\partial k_{t+1}} = \mu_{t+1} \equiv \beta'^{t+1} \lambda_{t+1} \quad \text{and} \quad \frac{\partial W(k_{t+1})}{\partial k_{t+1}} = \lambda_{t+1} \equiv \frac{\mu_{t+1}}{\beta'^{t+1}}. \quad (19.2) \]

4. An Example with Closed-Form Solution
This section presents the solution to a simplified intertemporal problem. Here we want the optimization problem to have a closed-form solution, so we consider a special case, following Brock and Mirman (1972), where the following are assumed: a *Cobb-Douglas* production

\[f(k_t) = Ak_t^\alpha, \quad A > 0, 0 < \alpha < 1 \]

a logarithmic utility function \(u(c_t) = \ln c_t \), no population growth \(n = 0 \), and full physical capital depreciation \(\delta = 1 \).

Based on the FOCs derived above, the solution in this special case must satisfy a system of first-order non-linear difference equations,

\[
\frac{c_{t+1}}{c_t} = \beta \alpha A k_{t+1}^{\alpha-1}, \text{ or } c_{t+1} - c_t = [\beta \alpha A^{\alpha-1} - 1]C_t, \quad t = 0,1,... \tag{20.1}
\]

\[
k_{t+1} = f(k_t) - c_t, \quad t = 0,1,2,... \tag{20.2}
\]

or, equivalently, by substituting of (8.2) into (8.1), a second-order non-linear difference equation

\[
\frac{c_{t+1}}{k_{t+1}^\alpha - k_{t+2}^\alpha} = \beta \alpha A k_{t+1}^{\alpha-1}, \quad t = 0,1,... \tag{21}
\]

with two boundary conditions \(k_0 > 0 \) given as the initial condition and with infinite horizon \(\lim_{t \to \infty} k_{t+1} = 0 \) \((k_{T+1} = 0) \) as the TVC (terminal condition).

In this special case, using iterative procedure, it can be shown that the optimal per capita consumption sequence/path and capital sequence/path are\(^{13}\):

(i) when there are only two periods,

\(^{13}\) Another procedure is the guess-and-verify method or the method of undetermined coefficients which will work only in two classes of specifications of preferences and constraints: (i) linear constraints and quadratic preferences or (ii) Cobb-Douglas constraints and logarithmic preferences (Sargent, (1987, p. 22)).
\[
c_0 = \frac{1}{1 + \alpha \beta} Ak_0^a, \quad c_1 = Ak_1^a
\]
\[
k_1 = \frac{\alpha \beta}{1 + \alpha \beta} Ak_0^a
\]
\[
k_0 > 0 \text{ given and } k_2 = 0 \quad (22.1)
\]

(ii) when there are three periods,
\[
c_0 = \frac{1}{1 + \alpha \beta + (\alpha \beta)^2} Ak_0^a, \quad c_1 = \frac{1}{1 + \alpha \beta} Ak_1^a, \quad c_2 = Ak_2^a
\]
\[
k_1 = \frac{\alpha \beta + (\alpha \beta)^2}{1 + \alpha \beta + (\alpha \beta)^2} Ak_0^a, \quad k_2 = \frac{\alpha \beta}{1 + \alpha} Ak_1^a
\]
\[
k_0 > 0 \text{ given and } k_3 = 0 \quad (22.2)
\]

(iii) when the horizon is finite, in general,
\[
c_i = (1 - \alpha \beta) \frac{1}{1 - (\alpha \beta)^{T-i}} Ak_i^a
\]
\[
k_{i+1} = \alpha \beta \frac{1 - (\alpha \beta)^{T-i}}{1 - (\alpha \beta)^{T-i+1}} Ak_i^a
\]
\[
k_0 > 0 \text{ given and } k_{T+1} = 0 \quad (22.3)
\]

(iv) when the horizon is infinite,
\[
c_i = (1 - \alpha \beta) Ak_i^a
\]
\[
k_{i+1} = \alpha \beta Ak_i^a
\]
\[
k_0 > 0 \text{ given and } \lim_{i \to \infty} k_{i+1} = 0 \quad (22.4)
\]

If there are only two periods \((t = 0, 1)\) – the present (or today) and the future (or tomorrow), there is only a single consumption-\(Euler\) equation applicable between period 0 and period 1 and two resource constraints for periods 0 and 1. As \(k_0 > 0\) is given and \(k_2 = 0\) must be satisfied, these three equations will, in principle, determine the three unknowns: \(c_0, c_1, k_1\).
The optimal consumption choice \((c_0, c_1)\) may be illustrated graphically. Specifically, it is given by the point of tangency between the intertemporal production possibility frontier (derived from the period resource constraints) and the highest possible intertemporal indifference curve.

In this version of the deterministic infinite-horizon Ramsey problem, we can use the dynamic equations ((20.1) and (20.2)) to draw phase diagram and the solution we are looking for is actually given by the saddle path and the steady-state is given by the saddlepoint. Alternatively, we can use (21) to get the optimal path of capital accumulation, which given the resource constraint, will yield the optimal consumption path. Specifically: \(c_t = (1 - \alpha \beta)Ak_t^\alpha\) (first equation in (22.4)) defines the saddle path (the relation between \(c_t\) and \(k_t\) along the optimal trajectory), the optimal value of \(c_0\) (equal to \((1 - \alpha \beta)Ak_0^\alpha\)) that places the system on the saddle path, and the consumption function (\(c_t\) as a \((1 - \alpha \beta)\) proportion of \(Ak_t^\alpha\); \(k_{t+1} = \alpha \beta Ak_t^\alpha\) (second equation in (22.4)) where \(k_0 > 0\) given and \(\lim_{t \to \infty} k_{t+1} = 0\)) defines the optimal path of capital accumulation or the optimal capital sequence.\(^{14}\)

Thus, in this version of the Ramsey model, the answer to the question “how much should a nation save?” (Ramsey, 1928) is \(k_{t+1} = \alpha \beta Ak_t^\alpha\) (or, much should a nation consume per capita is given by the optimally derived per capita consumption function, \(c_t = (1 - \alpha \beta)Ak_t^\alpha\).

\(^{14}\) Barro and Sala-i-Martin (2004, pp. 604-617) provides a Hamiltonian recipe for dynamic optimization in continuous time, both finite and infinite horizons. Blanchard and Fischer (1989) discusses the assumptions and workings of the Ramsey model (pp. 38-47), ruling out of explosive paths in the Ramsey model (p. 75), and the local behavior of capital around the steady state in the Ramsey model (pp. 75-76). Obstfeld and Rogoff (1996) also discuss the methods of intertemporal optimization – the method of Lagrange multipliers (pp. 715-718) and dynamic programming (pp. 718-721).
5. Concluding Remarks

This paper, using four alternative methods/approaches - the Lagrangian method, the substitution method, the Hamiltonian method, and the dynamic programming approach – has derived the conditions that must be satisfied by the solution to an intertemporal problem, specifically the deterministic discrete-time Ramsey problem. A crucial part of characterizing/deriving the solution is either the so-called capital-Euler equation or the so-called consumption-Euler equation. For easier tractability but without loss of generality, results were derived assuming that there only three periods. However, as shown, the results generalize to the case where the number of periods of time is large but finite and to the case where the number of periods of time is infinite.

Note that in the Ramsey model, the social planner is endowed with rational expectations (perfect foresight in this case because the model is deterministic (not stochastic), so that $E[c_{t+1}] = c_{t+1}$). With rational expectations (RE), the subjective expectation is the same as the mathematical expectation and the implication is that the expected value of future variable (here, $E[c_{t+1}]$, also c_{t+1} because of perfect foresight) depends on all the parameters of the model (here, A and α in the production function and the subjective time-discount factor β). This is why, in implementing/testing the model, “the hallmark of rational expectations is cross-restriction across equations”.
References

