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Using spatial Poisson processes, we re-interpret the Imitation Dynamics and show how

the spatial clustering of players a¤ects both the selection of strategies and the speed by

which they replicate. We �nd that the more clustered are the players, (a) the faster the

evolution of strategies and (b) if some players have inherent preferences for a strategy, the

greater the probability of mutation into, and selection of, that preferred strategy.
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1. INTRODUCTION

We present some Imitation Dynamics with mutation behavior in which the spa-

tial clustering of agents plays a role in the speed with which an evolutionary game

is played and the probable strategy that is selected. The literature has shown

that the clustering of players can indeed matter - studies of local interaction games

and contagion e¤ects show how strategies spread across the population as play-

ers interact with their immediate �neighbours�or network.1 Here, we focus on the

1See, for instance, Ellison (1993, 2000), Blume (1995), Anderlini and Ianni (1996), Morris
(2000), Lee and Valentinyi (2000).
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Imitation Dynamics of Weibull (1995) and Bjornerstedt and Weibull (1993), from

which the canonical Replicator Dynamic (RD) can be derived, but show how it can

deviate from the RD when the rate at which players are drawn and the probability

of switching between strategies depend on how players are clustered. Speci�cally,

we show that when players are close to each other, the probability of interactions

increases and, hence, the opportunity to review and change strategies increases,

which speeds up the replication/growth of strategies. More importantly, any inher-

ent bias can also spread faster in a highly clustered environment, which can then

override �rational�behavior and obtain equilibria that are di¤erent from the RD.

Section 2 presents the model and obtains the results, while Section 3 concludes

with a comparison of relevant results from the literature.

2. THE MODEL

Let there be a large population N of agents randomly drawn to play an evo-

lutionary game, and let each pure strategy h 2 K of the game be thus associated

with payo¤-type u
�
eh; eh

�
. The state of the population is described by vector

x = x1; :::; xK , where xh is the proportion of the population adopting strategy

h. The expected payo¤ of playing h when the population is in state x is thus

u
�
eh; x (t)

�
:

Suppose that each player is pre-programmed to adopt a pure strategy, so that

there areK player-types corresponding to each strategy, but when a player is drawn

to play, she gets to �review�her strategy and may switch to another type. Let the

rates at which player-types i; h review their strategy be denoted by ri;h, and let pih

and phi denote the probability of switching from type/strategy h to i and i to h,

respectively. The total out�ow of strategy i is thus given by:
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X
h6=i

xiri (x) p
h
i (x) (1)

while total in�ow is:

X
h6=i

xhrh (x) p
i
h (x) (2)

The net �ow, or growth of, strategy i is the di¤erence between (2) and (1):

�
xi =

X
h2K

xhrh (x) p
i
h (x)� ri (x)xi: (3)

What determines the rates of review and probabilities of switching? In Weibull

and Bjornerstedt and Weibull, the intuition is straightforward in that less successful

strategies are reviewed more often and experience greater out�ow. Such success is,

in turn, determined by the expected payo¤s of strategies. Here we further specify

that given the expected payo¤, a strategy is reviewed more often in an environment

in which players are more clustered, to posit the idea that the more neighbors a

player has, the more likely she interacts with them to play, which provides the

opportunity for re-evaluation of her strategy. To the extent, then, that the rate of

review increases in this manner, the speed of the evolution or growth of strategies

also increases with greater clustering of players. In addition, if some players have an

inherent bias or preference toward a speci�c strategy, the strength of the bias may

be stronger in more clustered environments since it would be more likely for a biased

player to meet another biased player. The e¤ect of this would be to speed up the

growth of their preferred strategy in the population in spite of its expected payo¤,

that is, to induce mutation away from more �rational�strategies that otherwise have

higher expected payo¤s.
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To show this formally, let the N agents be located within space or environment

S and let r.v. X (S)1 count the number of players that are randomly drawn to

play, which is assumed to be a spatial Poisson process. Thus, the probability that

a player is drawn to play is given by:

� = Pr [X (S)1 = N ] =
e��1V (S) [�1V (S)]

N

N !
(4)

where V (S) is the size, or in the 3-D case, the volume, of space S; �1 is the

intensity parameter of the spatial process which captures the extent to which the

players are spatially clustered, and �V (S) the mean occurrence in V (S). The

review rates of strategies can be assumed to be linearly decreasing in payo¤s (as

in Weibull) so that less successful strategies are reviewed more often, but to the

extent that players have to be drawn in order to review, the review rates are also

in�uenced by probability �. Restricting the number of strategies to two, K = fi; jg,

let the review rates of pure strategies i and j be then given by:

ri(x) = �[�� �u
�
ei; x

�
] (5a)

rj(x) = �[�� �u
�
ej ; x

�
] (5b)

where � > 0 and �=� � max[u(ei; x); u(ej ; x)] to ensure all review rates are

non-negative.

Now, when a player reviews her strategy, she has the opportunity to keep it

or to switch. Suppose, as in Weibull and Bjornerstedt and Weibull, the reviewer

imitates the ��rst man on the street�such that pij = xi and p
j
i = xj : Then we have

the following result:
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Proposition 1. The greater the spatial clustering of players, the faster is the

evolution of strategies.

Proof. Solving equation (3) using review rates given by (5a) and (5b) and

probabilities of switching pij = xi and p
j
i = xj , we obtain the following re-scaled

Replicator Dynamics:

�
xi = ��[u

�
ei; x

�
� u (x; x)]xi (6a)

�
xj = ��[u

�
ej ; x

�
� u (x; x)]xj (6b)

which are faster the larger � is. Note that � increases with intensity �1 when

N > [�1V (S)] and decreases when N < [�1V (S)]. However, on the whole, there are

more chances for � to be closer to one with greater (than with less) spatial clustering

of players. More precisely, denoting eN = [�1V (S)], the range of possible N values

[ eN;1) for which @�
@�1

> 0; is greater than the range [0; eN ] for which @�
@�1

< 0 . Also,

given two spatial Poisson distributions with intensities �1a and �1b, where �1a <

�1b; and denoting a value N = [max(�1a; �1b)V (S)] for which both @�
@�1a

> 0 and

@�
@�1b

> 0 whenever N > N , it is evident that the sum
P

N�N e
��1aV (S) [�1aV (S)]

N

N ! =

1 � F (N) is less than
P

N�N e
��1bV (S) [�1bV (S)]

N

N ! = 1 � G(N), where F (N) is the

c.d.f. of r.v. X(S)�1a1 , and G(N) the c.d.f. of r.v. X(S)�1b1 . In other words,

X(S)�1b1 �rst-order stochastically dominates X(S)�1a1 , i.e. X(S)�1b1 %FSD X(S)�1a1 .

Suppose, instead, that the decision to keep or switch strategies depends on

some inherent bias or preference for a strategy. Speci�cally, let X(S)2 be a spatial

Poisson-distributed random variable that counts the number of players in space S
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that inherently prefer strategy i to j, and NA � N its particular realisation for a

population of size N .2 Let �2 denote the intensity parameter of the process, and

�2V (S) the mean occurrence in volume V (S): Thus, the probability that a player

has a preference for i can be captured by:

� = Pr[X (S)2 = NA] =
e��2V (S) [�2V (S)]

NA

NA!
: (14)

Now suppose that pij = � and pji = 1 � �; that is, � is the probability of a

player switching from j to i inasmuch as it is the probability of having a preference

for i, while (1� �) is the probability of switching from i to j inasmuch as it is

the probability of not having a preference for i:3 Now unlike imitating the �rst

man on the street, the switching probabilities here are not dependent on expected

payo¤s. Switching in this case can then be thought of as mutant behavior, and

the probabilities of switching as mutation rates. Solving equation (3) using review

rates given by (5a) and (5b) and mutation rates pij = � and p
j
i = 1� � obtains the

following dynamics:

�
xi = �f�(� � xi) + �[u

�
ei; x

�
xi � �u (x; x)]g (6a)

�
xj = �f�(1� � � xj) + �

�
u
�
ej ; x

�
xj � (1� �)u (x; x)

�
g (6b)

which are regular, since the weighted sum of the growth rates is zero, or
�
xi

�
+xj =

0: (Note that (6b) can be re-written as
�
xj = �f�(xi��)+�

�
�u (x; x)� u

�
ei; x

�
xi
�
g

2The succeeding analysis analogously holds if the bias is for strategy j, that is, if X(S)2 instead
counts the number of players that inherently prefer strategy j to i.

3One can imagine that players have propensity to switch to the other strategy equal to one.
Thus, it is as if potential switching is 100%, but actual switching depends on whether or not the
player has a bias.
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using the fact that xi + xj = 1 and that u (x:x) = u
�
ei; x

�
xi + u

�
ej ; x

�
xj :)

The dynamics (6a) and (6b), however, are not payo¤-monotonic (i.e. u(ei; x) >

u(ej ; x) <
�
xi
xi
>

�
xj
xj
). Instead, strategy i spreads in the population, i.e.

�
xi > 0;

whenever:

� > xi
[�� �u

�
ei; x

�
]

[�� �u (x; x)] : (7a)

On the other hand, j spreads, i.e.
�
xj > 0; while i decreases, i.e.

�
xi < 0; when-

ever4 :

� < xi
[�� �u

�
ei; x

�
]

[�� �u (x; x)] : (7b)

We thus have the following results:

Proposition 2. Mutation behavior can determine the equilibrium of the evo-

lutionary game.

Proof. Note that the stationary points of the system (7a) and (7b) are at xi = 0,

xi = 1 and � = xi
[���u(ei;x)]
[���u(x;x)] : Which particular equilibrium is reached depends on

mutation rate �: To see this, note that if:

a. 0 < � < 1:

When conditions 7a is met, then it is met at each succeeding time period until

� = xi
[���u(ei;x)]
[���u(x;x)] , or when xi exactly reaches the value x

�
i = � [���u(x;x)][���u(ei;x)] (at

which point
�
xi = 0). Once xi increases, it always keeps increasing until x�i ; that

is, � is binding, since xi
[���u(ei;x)]
[���u(x;x)] increases with xi. Note that x

�
i is possibly a

4To obtain 7a and 7b, re-write 6a as �f�[�� �u(x; x)]� �xi + �xiu(ei; x)g, and note that the
sum of the last two terms inside the brackets {} is always non-positive, while the �rst term inside

{} is always non-negative, since � � �max[u(ei; x); u(ej ; x)]: Thus,
�
xi is non-negative whenever

condition 7a is met, and non-positive whenever 7b is met.
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mixed-state equilibrium, unless �[�� �u (x�; x�)] = [�� �u
�
ei; x�

�
]; in which case

x�i = 1:

b. � = 1:

In this case, 7a always holds as t ! 1, and the system asymptotically ap-

proaches the pure equilibrium xi = 1 since xi
[���u(ei;x)]
[���u(x;x)] ! 1 as xi ! 1:

c. � = 0:

In this case, 7b always holds as t ! 1, and the system asymptotically ap-

proaches the pure equilibrium xi = 0 since xi
[���u(ei;x)]
[���u(x;x)] ! 0 as xi ! 0:

Proposition 3. The greater the spatial clustering of biased players, the greater

the chance that their preferred strategy is selected as the equilibrium of the evolu-

tionary game.

Proof. It is evident that larger mutation rate � makes it easier for (7a) to be

satis�ed at initial t0, and thus, for the preferred strategy to keep growing before

(a possibly mixed) equilibrium is reached. In turn, � is closer to one as biased

players are more clustered, whenever NA > [�2V (S)]. Analogous to the proof of

Proposition 1, there are more instances when NA > [�2V (S)] than when NA <

[�2V (S)], since given NA = [�2V (S)], the range [NA;1) is larger than [0; NA]:

Also, X(S)�2b2 %FSD X(S)�2a2 , where the superscripts of r.v. X(S)2 refer to the

intensity of the particular spatial Poisson distribution from which they are drawn,

and assuming �2b > �2a.

3. CONCLUSIONS

In this paper, we show how the Imitation Dynamic and, by extension, the Repli-

cator Dynamic, can approximate the result from local interaction games that the

selection of, and the rate of convergence to, equilibrium can depend on the partic-
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ular structure of the network of players. In addition, not only do we introduce

mutation behavior in the dynamic, but motivate it with a plausible scenario in

which some players may have inherent preferences for a particular strategy. This

is in contrast with most evolutionary games in which mutation is modeled as some

�xed rate that describes random experimentation or mistake of players in the cal-

culation of expected payo¤s.5 Blume (2003) and Bergin and Lipman (1996) show

that if mutation rates are �xed and �state-independent�, the long-run equilibrium

corresponds to selection of the risk-dominant strategy (in coordination games) since

this strategy has a deeper basin of attraction. That is, mutation does not a¤ect the

equilibrium in that the risk-dominant strategy always survives mutation behavior.6

In our model, however, mutation rates are not the same for all players since they

can have di¤erent preferences. As a consequence, equilibrium selection depends on

the mutation or the nature of the preferences. Using dynamics (6a) and (6b), it

is straightforward to illustrate that for the coordination game, the risk-dominant

strategy may die out if enough players are biased against it.
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