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Abstract

This study presents a more general collusive mechanism that is sus-

tainable in an oligopolistic repeated game. In this setup, �rms can ob-

tain average payo¤s beyond the cooperative pro�ts while at the same

time improve consumer welfare through a lower market price o¤er.

In particular, we introduce here the notion of intertemporal collusive

trade where each oligopolist, apart from regularly producing the nor-

mal cooperative output, is also allowed in a systematic way to earn

higher than the rest at some stages of the game. This admits subgame-

perfection and is shown under some conditions to be Pareto-superior

to the typical cooperative outcome.

1. Introduction

The basic idea of intertemporal collusion is that �rms are able to sustain them-

selves over time in being faithful to a contracted level of production. Oligopolists,

1I am indebted to my supervisor Krishnendu Ghosh Dastidar for his guidance and encourage-
ment on this research. I thank Rajendra Kundu, Sugato Dasgupta, Arijit Sen and the participants
of the JNU-NIPFP-CIGI Conference on Economic Theory for their helpful comments. I am also
grateful to the discussions made by Jorge Lemus and Jian Shen during the workshop on Optimal
Firm Behavior at Corvinus University, Hungary which gave this paper its current form. The
usual disclaimer applies.
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in general, are inclined to collaborate with one another in targeting a certain level

of production that will yield the highest possible pro�t for each one. This induces

them in the process to control the level of individual output so that the market

price and pro�ts are not pulled down by any increase in aggregate production.

The main problem here however is that any �rm will always face a temptation

to produce more than what was agreed upon so as to extract even higher pro�ts,

thereby making any form of pre-game commitment unsustainable. As a conse-

quence, everyone acts strategically and so the market settles at a Cournot-Nash

equilibrium where pro�ts are lower than when collusion had been made possible.

The literature of repeated games however o¤ers a well known solution to this

problem by asserting that stable collusion is attainable whenever �rms interact

over a long period of time. They can employ the so called trigger strategies where

everyone starts by producing collusive outputs and continues doing so for as long

as everyone remains loyal to the contract. The moment any one of them cheats,

everyone knows that everyone will respond by reverting to the Cournot-Nash pro-

duction as a form of punishment (Friedman, 1971). This imposition of credible

threat is enough to discourage any form of deviation at any point in time and is

the heart of the subgame perfection principle (Selten, 1975).

While the notion of subgame perfect equilibrium features a Cournot-Nash pun-

ishment that is su¢ cient to induce �delity to the contract, it still carries a mild

deterrence power that could give way to some renegotiation once a deviation has

occurred. In other words, after a deviation �rms may say "let�s forget about the

past and bring back the good ol�days" by not punishing ourselves forever. Several

studies have tackled this issue (e.g. Abreu (1986), Fudenberg &Maskin (1986), and

Farrell & Maskin (1989)) and showed that by administering a shorter yet more in-

tense credible punishment, greater possibilities for stronger cooperation/collusion

can take place.

Our goal in this paper is to explore the extent of feasible stable cooperation
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in an oligopolistic repeated game in a manner quite di¤erent from what has been

studied so far. Here, we shall be dwelling more on the design of collusive contract

rather than on penal structures used by Abreu (1986) in characterizing cooperative

outcomes. Rather than highlighting the need of a severe punishment program that

will deter any possible deviation, we turn our focus on an incentive mechanism that

will elicit greater cooperative potentials. As it is not our interest to impose the

"best" punishment scheme, the use of Cournot-Nash reversion is su¢ cient in our

study in order to highlight more the construction of sustainable contracts, making

also our presentation simple and concise.2

Speci�cally, we introduce the notion of intertemporal collusive trade where

�rms, while they continue to produce collusive outputs, are legally allowed to

"deviate" at some prescribed stages so as to earn more pro�ts. Our approach

here in �nding greater possibilities for stable cooperation is through a trading of

payo¤s over time that encourages �rms to be faithful to the contract rather than

on the severity of punishment that discourages any form of deviation. In this

system, �rms may be getting less during the regular stages by allowing someone

else to "deviate", but the thought that they will soon be also obtaining privileged

payo¤s in the future (one after another) is a motivation for everyone to stick

to the program. It is shown that when this intertemporal trading is performed

in a recurring fashion, similar to the method of Fudenberg and Maskin (1991),

subgame-perfect equilibrium can be achieved. Equally important is also the result

that in this setup, consumer welfare is upgraded through a lower market price

level, as induced by higher aggregate production.

This paper also contributes to the literature on market structure by showing

that every �rm, under this trading system, can obtain pro�ts higher than in the

normal intertemporal collusive equilibrium. This seems to stand in contrast with

2The use of Abreu�s "carrot and stick" punishment scheme is nonetheless presented in the
Appendix A, incorporating it with the contract mechanism that is introduced in this paper.
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the common notion that a shared monopoly pro�t is always the pro�t-maximizing

scheme available for oligopolists. While this remains true when �rms have uniform

discount factor, it no longer holds under di¤erentiated discount factors since the

possibilities for stable intertemporal trading of payo¤s become richer. For exam-

ple, by constructing a system where those who have less capacity to wait receive

their privileged payo¤s ahead of those who are more willing to wait, everyone�s

average payo¤ can be made higher than the typical collusive income. This ap-

proach is an application to the main message of Lehrer and Pauzner (1999), which

establishes that the di¤erence in discount factors between two players can create

new cooperative possibilities that broadens the set of sustainable repeated-game

payo¤s. A related study by Balanquit (2010) also demonstrates that even in the

loss of some equilibrium outcomes caused by a very low discount factor, some can

be restored using a similar intertemporal trading strategy.

The rest of the paper is organized as follows. Section 2 reviews the Cournot-

Nash benchmark model and introduces some notations. Section 3 presents the

intertemporal collusive trade model and its conditions for stability while Section 4

provides results on comparative statics. Section 5 extends the setup to some gener-

alizations and establishes its payo¤-dominance over the typical collusive outcome.

Section 6 concludes.

2. Cournot-Nash Benchmark

Consider a set of n oligopolists who simultaneously choose to produce a certain

quantity of homogenous good. Denote this quantity produced as qi by �rm i and

write the aggregate demand function asD : R+ ! R+; in which every price p 2 R+
induces a total demand D(p):We assume that the inverse of this function, denoted

by p(�); is strictly monotonic and continuous and that the constant marginal cost
is the same for all �rms. In a usual fashion, we then express the pro�t function as:
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�i (q1; q2; :::; qn) = p

 
nX
j=1

qj

!
qi � cqi (1)

Suppose there exists a unique and symmetric Cournot-Nash equilibriumwherein

every �rm produces qc units of output with a corresponding pro�t of �c; i.e.

�c = �i
�
qci ; q

c
�i
�
� �i

�
q0i; q

c
�i
�
; (2)

for all q0i � 0 and where q0i 6= qci and qc�i =
�
qc1; :::; q

c
i�1; q

c
i+i; :::; q

c
n

�
: 3

Producing qc therefore is seen as the best-response strategy of every �rm in a

noncooperative single-shot game. On the contrary, if �rms were to collude, they

will maximize their individual pro�t �� by aiming at a monopoly production nq�;

where the uniform production q� is de�ned as:

q� = argmax
q�0

�i (q) (3)

In a traditional manner, we assume that q� for all �rms is unique such that

� (q) is strictly lower when q is either greater or lower than q�: The catch is that

the commitment to produce q� for each �rm is not sustainable since there is always

an incentive for anyone to cheat and produce more than what was agreed upon.

Let us denote �� as the pro�t obtained from unilaterally deviating from the contract

by producing �q units of output. More formally, we de�ne �q as:

�q = argmax
qi�0

�i
�
qi; q

�
�i
�
; (4)

where q��i =
�
q�1; :::; q

�
i�1; q

�
i+i; :::; q

�
n

�
:

Now, consider an in�nitely repeated game �1(�; sti(h
t); �); where � 2 (0; 1) is

3To simplify our notation, the unsubscripted symbols of q and � shall refer to qi and �i while
their corresponding bold symbols shall denote a vector across �rms, i.e. q =(q1; q2; q3; :::; qn):
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the common discount factor, sti(h
t) is the pure strategy of �rm i at time t given

the history of past actions ht = (q1;q2; :::;qt�1), where h1 = ?; and � as discussed
is the continuous payo¤ function. Note that this history is public and shared by

all players at every stage of the game. In the typical trigger strategy, each �rm�s

production strategy is de�ned as follows:

sti(h
t) =

(
q�; if at t = 1 and if at t � 2; st�1i (ht�1) = q� for all i

qc; otherwise
(5)

The stream of quantity-produced across �rms is therefore depicted by fst(ht)g1t=1
with its associated average discounted payo¤ over time for each �rm as:

�i(s
t(ht)) = (1� �)

1X
t=1

�t�1�i(s
t(ht)) 4 (6)

This strategy in an in�nitely-repeated game can now sustain the collusive pro-

duction of q� given the threat of reverting to the Cournot-Nash production of qc

once any of the player deviates. Sustainability is made possible since the Cournot-

Nash punishment scheme, with � su¢ ciently high, is a subgame perfect equilibrium

that enforces credibility of threat.

At this juncture, one may wonder whether the goal of consistently producing

q� to earn an average discounted pro�t of �� is the maximum earnings that a �rm

could get in any repeated-game setup. In what follows, we show that oligopolists

can still improve their earnings beyond q� while at the same time provide greater

consumer welfare in terms of lower price o¤er.

4The computation for discounted income makes use of the following formula: 1+ �+ �2+ :::+
�n�1 = 1��n

1�� .
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3. The Setup: Intertemporal Collusive Trade

We introduce here the notion of intertemporal collusive trade which maintains

a production of q� units of goods for each of the n�1 �rms while allowing a single
�rm to produce its best-response production of �q: The main idea of this setup

is to allow one �rm at a time to "deviate" from producing q� in order for that

�rm to earn higher than the rest on that particular stage. We show then that

this system is sustainable (i.e. subgame perfect) when performed repeatedly over

in�nite horizon. Formally, we de�ne this strategy as follows:

De�nition 1. An intertemporal collusive trade (ICT) strategy is a strategy
pro�le fst(ht)g1t=1 where

(i) each �rm i 2 N = f1; 2; 3; :::; ng precommits itself at the start of the
game to a production pro�le qi(t) de�ned as follows:

qi(t) =

(
�q ; for all t = i+ nz; where z 2 f0; 1; 2; :::g
q�; for all t 6= i+ nz; where z 2 f0; 1; 2; :::g

(ii) and if at all t0 < t; where t � 2; st0i (ht
0
) = qi(t

0) for all i 2 N; then
sti(h

t) = qi(t): Otherwise, sti(h
t) = qc for all i 2 N:

Call the stage privilege stage when �rm i is expected to produce its best-

response �q and call it regular stage when i is supposed to produce q�:

While the second part of the de�nition is the familiar Cournot-Nash punish-

ment imposed to any unilateral deviation from the strategy, the �rst part requires

some explanation. In this pre-game setup, each player i is termed as the ith player

in the order of succession, such that i = 1 being the �rst player and i = n being

the last in a cycle that is in�nitely repeated. Each �rm i is scheduled to have its

highest (privileged) production on the ith stage (i.e. t = i) and on the succeeding

rounds of n-stage interval. During regular times, he produces q� along with other

n� 2 �rms. Thus, at every stage there is always one who produces �q while there
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are n� 1 �rms who produce q�:While we denote as before the stage-pro�t of that
solitary �rm as ��; we have �0 = �j2Nnfig(�qi; q�~i) as the pro�t of those who produce

q� at every stage. It is easy to see that by allowing one �rm to produce �q; total

production increases and so the others no longer reach the normal collusive pro�t

�� but settle at a lower payo¤ �0, thus we have �� > �� > �0: Finally, we assume

here a perfect monitoring environment where any deviation from the strategy can

be observed by any �rm and at any time.

The �rst part of the de�nition is an open-loop strategy that maps out the moves

of every �rm in a calendar time (see Fudenberg and Levine, 1988). However, we

are interested here in a subgame-perfect (closed-loop) equilibrium that considers

the reaction of players to any possible deviation at any stage of the game. To argue

therefore that the ICT strategy is subgame-perfect that yields superior pro�t to

Cournot-Nash outcome, we need to show that its average discounted pro�t is higher

than that obtained in a Cournot-Nash outcome and that there is no incentive for

any player to deviate at any subgame of �1. We present these conditions formally

through the following de�nition.

De�nition 2.
(i) The individual-rationality condition (IRC) is satis�ed if �i(q(t)) > �c(qc);

for any q � (0; 0; :::; 0) and where �c(qc) = (1� �)
P1

t=1 �
t�1�c = �c:

(ii) The incentive-compatibility condition (ICC) is satis�ed if �i(s
t(ht)) >

�i
�
st(ht) n

�
sdi (h

d); st�i(h
t)
��
; where the right-hand side is the average entire-game

payo¤ to i when i deviates from the strategy at time d 2 f1; 2; :::g:

Remark. Notice that instead of the normal use of continuation payo¤s, the ICC

is depicted using the entire-game payo¤s of those pro�les which deviate at time d.

While these two methods are equivalent, we use the latter which is computationally

more convenient when dealing with ICT strategies.
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It is important to highlight here that whenever the ICC holds, it is a su¢ cient

claim that any deviation at any stage of the game will not be pro�table, including

those during the punishment regime. This is mainly because the Cournot-Nash

penalty is always an equilibrium. Thus, the fact that any deviation during the

punishment phase will not make anyone better o¤ simpli�es our study into just

ensuring that the entire-game payo¤ derived from ful�lling any pre-game commit-

ment is at least as much as the payo¤ of any pro�le that contains a deviation at

any time with its subsequent punishment5. We express this formally as follows:

�i(q(t)) � �i
�
q(t) n

��
qd(d); q�i(d)

�
; (qc)1d+1

��
where again the right-hand side is the entire-game payo¤ to i given the produc-

tion path that deviates from the commitment q(t) at time d 2 f1; 2; :::g followed
by a punishment path from d + 1 onwards. This now leads us to the following

de�nition.

De�nition 3. A strategy is sustainable in a subgame-perfect equilibrium if

both the IRC and ICC are satis�ed for every �rm i.

Since our equilibrium concept requires the ful�llment of the IRC and ICC in

each and every �rm, the �rst two lemmas shall provide a characterization for the

admissibility of these two conditions to all �rms.

Lemma 1.
(i) If the IRC holds for the last �rm n, then it also holds for all the preceding

(n� 1) �rms.
5More formally, we say that under a punishment regime, �i

�
q(t) n

�
(qd(d); q�i(d)

�
; (qc)1d+1)

�
� �i

��
q(t) n

�
(qd(d); q�i(d)

�
; (qc)1d+1)

�
n
�
(q0i(e); q

c
�i(e)

�
; (qc)1e+1)

�
remains always true, where

the right hand side is the entire-game payo¤ derived from a production pro�le that deviates from
the punishment path at time e, where e > d: Thus, one needs only to ensure that �i(q(t)) �
�i
�
q(t) n

�
(qd(d); q�i(d)

�
; (qc)1d+1)

�
as mentioned in the text.

9



(ii) If �0 � �c; then the IRC is always satis�ed for all i .

Proof:

(i) When there is no deviation from the pre-game commitment, the entire-

game average discounted earnings of the ith player is given by:

�i = (1� �)
 
�0(1� �i�1)
(1� �) +

1X
T=0

�nT

 
���i�1 +

i+n�1X
t=i+1

�0�t�1

!!
;

where T = f0; 1; :::g

= �0(1� �i�1) + ���i�1(1� �) + �0�i(1� �n�1)
(1� �n)

= �0 +
(�� � �0)(1� �)�i�1

1� �n (7)

In (7), we see that �i monotonically decreases in i for � 2 (0; 1); clearly the
nth player will earn the least pro�t. Thus, if �n > �c; then �1;�2; :::;�n�1 > �c:

(ii) From (i), it is su¢ cient to check that �n > �c in ensuring that all

�rms pass the IRC. This implies that �0 + (����0)(1��)�n�1
1��n > �c: Since �� � �0 > 0;

we obtain:

(1� �)�n�1

1� �n >
�c � �0
�� � �0 (8)

Clearly, the left-hand side of the inequality is always positive for all � 2
(0; 1) and n <1: Thus, (8) always holds whenever �c � �0: q.e.d.

While the above lemma provides hint as to when IRC is satis�ed by all players

under an ICT strategy, the following one prepares the ground for the admissibility

of ICC to everyone. To do this, one has to show that no �rm would deviate at any

point of the game since its overall average income when deviating at any stage is

always less than what it obtains from simply sticking to the plan. Let us denote

qd; which induces an earning of �d; as the deviatory production during stages when
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a �rm is supposed to produce q�, such that:

qd = argmax
qi�0

�i(qi(t); �q; (n� 2)q�); for all t = s�1i (q�) (9)

Note that qd is only de�ned for those (regular) stages where i is expected to

produce q�: This is because during privilege stages, i receives already the highest

possible pro�t and so there is no more incentive to deviate. To further simplify our

investigation, note that there is no need also to determine every deviatory income

one can obtain from each of those regular stages as long as one can pin point the

stage that o¤ers the highest incentive to �rm i. If the entire-game payo¤ that

consists deviation on that stage remains inferior to that of the ICT program, then

that �rm has passed the ICC.

In characterizing the admissibility of ICC to all �rms, the main di¢ culty lies

on the twofold asymmetry that exists across �rms: one is on the average income

obtained under no-deviation scenario and the other is on the highest entire-game

incentive one could get from deviating. Interestingly, when these two are compared

in each �rm, the result is a uniform condition that governs all �rms, as presented

in the following lemma.

Lemma 2. The ICC is the same for every �rm i and is characterized by the

following inequality:

(�d � �0)
(�� � �0) � �

(�d � �c)
(�� � �0) < �

(1� �)
(1� �n) :

For � > �d��0
�d��c ; where �

d > �0 > �c; the ICC is always satis�ed.

Proof:

(Step 1) Any player i does not have any incentive to deviate on the (i+ nz)th

stages since the privileged production at �q is the best-response to the q� production

of all the others (see (4)).
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(Step 2) Now, consider the regular stages where �rm i is supposed to produce

q�; particularly, only the stages from i+ 1 to i+ n� 1: To depict the entire-game
payo¤ on any possible stage of deviation between stages i + 1 and i + n � 1, we
de�ne �di (w) below where w 2 f0; 1; :::; n � 2g represents the number of stages
that q� is produced (i.e. �0 is earned) after the ith stage and just before deviating

to qd: Note that when w = n� 1; the deviation will occur on the (i+ n)th stage,
which we have already ruled out in Step 1.

�di (w) = (1� �)
 
�0(1� �i�1)
(1� �) + ���i�1 +

i+wX
t=i+1

�0�t�1 + �d�i+w

+
1X

t=i+w+2

�c�t�1

!
(10)

In Lemma 8 (see Appendix), it is shown that every mth stage of every

round/cycle in an in�nitely repeated game generates the same condition for not

deviating from the strategy. Thus, it is su¢ cient to study only the conditions

for stages i + 1 to i + n � 1 since that would also depict the conditions of their
corresponding stages in other rounds. Indeed, we have �di (w) = �

d
i (w + nz); for

all z 2 f1; 2; 3; :::g:

(Step 3) To pass the ICC, the average discounted pro�t of any player in a

complete game without deviation must be higher than that of an event when a

deviation occurs at any time of the in�nely-repeated game, i.e. �i > �di (w): Using

(7) and (10), we restate this condition below:

�0 +
(�� � �0)(1� �)�i�1

1� �n > �0(1� �i�1) + ���i�1(1� �) + �0�i(1� �w)

+�d�i+w(1� �) + �c�i+w+1

12



By simplifying, we obtain:

, (�� � �0)(1� �)�i�1

1� �n > (�� � �0)�i�1 � (�� � �0)�i + (�d � �0)�i+w

�(�d � �c)�i+w+1

, (�� � �0)(1� �)�i�1 �n

1� �n > �
i+w(�d � �c)

�
(�d � �0)
(�d � �c) � �

�
, �n�1

(�� � �0)
(�d � �c)

(1� �)
(1� �n) > �

w

�
(�d � �0)
(�d � �c) � �

�
; since �d > �c

The last inequality does not contain the parameter i, which shows that

the ICC is the same for all �rms. Moreover, observe that for any w 2 f0; 1; :::; n�
2g, this condition is satis�ed for � > �d��0

�d��c : Finally, notice also that when � >
�d��0
�d��c ; the right-hand side of inequality monotonically increases in w: Thus, every

player i, if he were to deviate, will do it on the (i+n�1)th stage (or when w = n�2)
since it is when it obtains the highest incentive. Thus, by setting w = (n� 2) on
this inequality, we obtain the most stringent ICC and derive the assertion of the

lemma. q:e:d:

We are now prepared to present our �rst proposition.

Proposition 1. Given that �d > �0 > �c and that � is su¢ ciently high, an

ICT strategy in an oligopolistic repeated game can be sustained in a subgame-

perfect equilibrium.

Proof:

The proof follows directly from Lemma 1, Lemma 2, and De�nition 3.

q.e.d.

The result of the above proposition can be regarded weak in the sense that it
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rests mainly on the assumption that �d > �0 > �c: In the next section, we explore

under what conditions can this requirement be always made true.

4. Comparative Statics

In this section, we study how the possible stage-payo¤s under an ICT strategy

di¤er from one another with the changes in the number of �rms in an oligopoly.

We start by setting a benchmark inverse demand function p = a�
P

i2N qi that is

strictly monotonic and continuous on an interval [0; a] and which we assume to be

above the marginal cost c in order that �i > 0 for all choices of qi > 0: Our payo¤

function therefore is de�ned as:

�i =
�
(a� c)�

P
j2N qj

�
qi (11)

Under a monopoly, the solitary �rm will produce the quantity qm = a�c
2
which

yields the maximum pro�t of �m = (a�c)2
4
: In a collusive oligopoly with n play-

ers, the maximum pro�t is attained by simply collaborating among themselves in

maintaining the monopoly production, i.e. q� = a�c
2n

= qm
n
: Consequently, this

leads to the per �rm collusive pro�t of �� = (a�c)2
4n

= �m

n
= nq�2: However, as

mentioned before, the collusive production is not sustainable in a simultaneous

single-stage game and so everyone settles at the Cournot-Nash equilibrium with

individual output of qc = a�c
n+1

= 2qm
(n+1)

and pro�t of �c = (a�c)2
(n+1)2

= 4q2m
(n+1)2

: All

assertions of equivalence in this paragraph are easily veri�able.

Under the ICT program, a �rm has four possible choices of production: the

privileged output �q, the Cournot output qc, the collusive output q�; and the devi-

atory output qd: While �rms do not have incentive to deviate when producing �q

being its best-response, there is always the possibility of producing the maximum

deviation qd whenever one is supposed to produce q�:To compute for qd; we derive
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�q �rst using (11) and (4):

�� = ((a� c)� (�q + (n� 1)q�)) �q
@��

@�q
= (a� c)� 2�q � (n� 1)q� = 0

�q = q�
(n+ 1)

2

Then, by using (11) and (9), we have:

�d =
�
(a� c)� (qd + �q + (n� 2)q�

�
)qd

@�d

@qd
= 2nq� � 2qd � q

�(n+ 1)

2
� (n� 2)q� = 0

qd = q�
(n+ 3)

4

From the derived qd and �q; we obtain their respective pro�ts:

�d = q�2
(n+ 3)2

16
; �� = q�2

(n+ 1)2

4

Proposition 2. Under the ICT strategy, the price o¤ered to the market at
every stage is lower than that of the normal collusion.

Proof:

Under the normal collusion, the price function is given by p = a�nq� while for
ICT it is p = a�((n� 1)q� + �q) = a�

�
3n�1
2

�
q�: It is therefore clear that for a > 0

and n > 1; ICT o¤ers lower price level than the normal collusion. q.e.d.

The table below summarizes the payo¤s and outputs of each �rm at every type

of stage, along with the aggregate market output.
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Payo¤ of i Output of i Total Output

Privilege stage �� = q�2 (n+1)
2

4
�q = q� (n+1)

2
Q(�q;(n�1)q�) = q

� (3n�1)
2

Regular stage �0 = q�2 (n+1)
2

q� Q(�q;(n�1)q�) = q
� (3n�1)

2

Deviatory stage �d = q�2 (n+3)
2

16
qd = q� (n+3)

4
Q(�q;(n�2)q�;qd) = q

� (7n�3)
4

Punishment stage �c = q�2 4n2

(n+1)2
qc = q� 2n

(n+1)
Q(nqc) = q

� 2n2

(n+1)

Table 1: Individual payo¤s and outputs at di¤erent types of stages

In our next lemma, we show that the comparative structure of the di¤erent

types of stage-payo¤ and stage-output becomes stable when the number of �rms

in an oligopoly increases. We present this result as follows:

Lemma 3.
(i) If n � 5; then �� > �d > �0 > �c:
(ii) If n � 4; then �q > qd > qc > q0

Proof:

(i) a. Suppose �c � �0: Then, q�2 4n2

(n+1)2
� q�2 (n+1)

2
) 8n2 � n3+3n2+3n+1)

(n�1)(n2�4n�1) � 0: Since n > 1; the admissible values of n are in the interval
(1; 2 +

p
5]: Thus, if n > 2 +

p
5; then �0 > �c:

b. Suppose �0 � �d: Then, q�2 (n+1)
2

� q�2 (n+3)
2

16
) 8n + 8 � n2 + 6n + 9 )

(n � 1)2 � 0: The only solution here is n = 1: Thus, for n > 1; it must be that

�d > �0:

c. Suppose �d � ��: Then, q�2 (n+3)
2

16
� q�2 (n+1)

2

4
) n2+6n+9 � 4(n2+2n+1))

(3n+ 5)(n� 1) � 0: But n � 1 and so �� > �d:

From a-c and by the assumption of monotonic continuous payo¤ functions, we

proved the �rst part of this lemma.

(ii) The proof is analogous to (i) and is therefore omitted. q.e.d.
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The following table presents how the output and payo¤ of each �rm vary with

the total number of �rms in an oligopoly. It also veri�es the claim of Lemma 3.

Number Payo¤ of i Output of i

of Firms �� �0 �d �c �q q� qd qc

2 2:25q�2 1:5q�2 1:56q�2 1:77q�2 1:5q� q� 1:25q� 1:33q�

3 4:00q�2 2:0q�2 2:25q�2 2:25q�2 2:0q� q� 1:50q� 1:50q�

4 6:25q�2 2:5q�2 3:06q�2 2:56q�2 2:5q� q� 1:75q� 1:67q�

5 9:00q�2 3:0q�2 4:00q�2 2:78q�2 3:0q� q� 2:00q� 1:67q�

20 110:25q�2 10:5q�2 33:06q�2 3:63q�2 10:5q� q� 5:75q� 1:91q�

Table 2: Individual payo¤s and outputs at di¤erent numbers of �rms

5. General Analysis: Di¤erent Number of Privilege Stages

We extend the analysis on ICT in a more general format that allows each �rm

to have (i) di¤erent number of privilege stages and (ii) di¤erent discount factor.

In this way, we can study in greater perspective the extent of possibilities to which

an intertemporal collusion can be sustained in equilibrium. We begin by stating

some of our assumptions:

1. Firms produce simultaneously a homogeneous good and obtain a payo¤

function de�ned in (11).

2. Set qi 2 [0; qmax] where qmax= supfqi j p(qi; q�i) > cg6

3. The number of �rms in the oligopoly is �xed and at least 5.

4. The one-shot game �1 has a symmetric pure strategy Cournot-Nash equi-

librium

5. There is perfect monitoring in �1:

6Firms will only produce for as long as pro�t is positive, otherwise it will produce 0. This
therefore does not entertain the possibility of enduring initial losses to obtain monopoly pro�ts
in the future.
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a. Uniform discount factor

Let ki be the number of consecutive privilege stages that is given to the ith

player and denote r as the total number of kis, for all i, in a single round , i.e.

k1 + k2 + :::+ kn = r: In this general setup, each �rm i regularly produces q� but

has the opportunity to produce �q for ki consecutive times after all the other �rms

before him have all made their turns. Once i�s turn is �nished, he goes back to

producing q� and waits for r� ki stages to be completed before he takes on again
his privilege stages, and so on. For example, suppose n = 3 and kA = 1; kB = 2;

and kC = 3: Then, we see in Table 3 the intertemporal pro�le of production for

the three players in the absence of any deviation:

Stages

Firms 1 2 3 4 5 6 7 8 9 ...

A �q q� q� q� q� q� �q q� q� ...

B q� �q �q q� q� q� q� �q �q ...

C q� q� q� �q �q �q q� q� q� ...

Table 3: An example of a production pro�le of a 3-player generalized ICT

This type of program for each �rm is formally de�ned below where again any

deviation is responded by a Cournot-Nash production forever after.

De�nition 4. A generalized ICT strategy is a strategy pro�le fst(ht(q1;q2; :::qt�1))g1t=1
where:

(i) each �rm i 2 N = f1; 2; 3; :::; ng precommits himself at the start of
the game to a production pro�le qi(t) de�ned as follows:
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qi(t) =

8>>>>>>><>>>>>>>:
�q ; for all t =

8>>>><>>>>:
A+ 1 + rz

A+ 2 + rz
...

A+ ki + rz

where A = k1 + k2 + :::+ ki�1 ;

z 2 f0; 1; 2; 3; :::g and that
when i = 1; A = 0:

q�; for all other time t not de�ned for �q production

(ii) and if at all t0 < t; where t � 2; st0i (ht
0
) = qi(t

0) for all i 2 N; then
sti(h

t) = qi(t): Otherwise, sti(h
t) = qc for all i 2 N:

In the absence of any deviation from the pre-game commitment, the entire-

game average discounted pro�t for each player i is given by

�i =
�
1� ��

i�1
t=0kt

�
�0 +

�
��

i�1
t=0kt(1� �ki)�� + ��it=0kt(1� �r�ki)�0

� 1

1� �r

= �0 +
(�� � �0)(1� �ki)��

i�1
t=0kt

(1� �r) (12)

where i 2 N and k0 = 0:

We now present two lemmas that are generalizations of Lemma 1 and 2.

Lemma 4.
(i) When n is su¢ ciently high, the IRC under a generalized ICT is always

satis�ed for all �rms.

(ii) lim
�!1
�i =

ki
r
�� + r�ki

r
�0:

Proof:
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(i) For the IRC to be satis�ed, it must be that �i > �c = �c by de�nition.

By using (12), we obtain

(1� �ki)��
i�1
t=0kt

(1� �r) >
�c � �0
�� � �0 (13)

Since by assumption that n � 5; we know from Lemma 3 that �0 > �c:

Thus, (13) is always satis�ed for any �rm i since its left-hand side can either be

only positive or 0, for any � 2 (0; 1) and ki > 0.
(ii) Note that lim

�!1
1��a
1��b =

a
b
: Applying this on (12) with � ! 1, we obtain

the above result q.e.d.

Lemma 5. The ICC for a generalized ICT strategy with di¤erent number of
privilege stages is the same for all i and is characterized by the following inequality:

(�d � �0)
(�� � �0) � �

(�d � �c)
(�� � �0) < �

(1� �ki)
(1� �r) :

For � > �d��0
�d��c ; the ICC is always satis�ed.

Proof:

First, observe that �rm i will not deviate during privilege stages where

it receives ��. If i were to deviate, he will get a payo¤ less than �� since �� is

already the maximum payo¤ i could get when all the others are producing q�;

i.e. �� = sup �i (qi; q
�
~i). Moreover, after the deviation, i would only receive �

c

thereafter which is less than the interplay of earnings between �0 and �� under ICT

(from Lemma 3).

Now, consider the regular stages. The condition not to deviate during

these stages is depicted by �i > �d(w) , where �i is de�ned by (12) and �d(w) is

de�ned below:
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�d(w) = �0(1� ��
i�1
t=0kt) + ����

i�1
t=0kt(1� �ki) + �0��it=0kt(1� �w)

+�d��
i
t=0kt+w(1� �) + �c��it=0kt+w+1 (14)

where w 2 f0; 1; :::; (r � ki � 1)g and r > ki > 0; for all i.

As argued in the proof of Lemma 2 (step 2), �d(w) = �d(w + nz) which

makes (14) to hold in all the stages of the in�nitely-repeated game. The subsequent

steps for the derivation of ICC are analogous to the proof presented in Step 3 of

Lemma 2 and are presented below for the sake of completeness:

�0 +
(�� � �0)(1� �ki)��

i�1
t=0kt

1� �r > �0(1� ��
i�1
t=0kt) + ����

i�1
t=0kt(1� �ki) + �0��it=0kt(1� �w)

+�d��
i
t=0kt+w(1� �) + �c��it=0kt+w+1

= �0 + (�� � �0)��
i�1
t=0kt � (�� � �0)��it=0kt

+(�d � �0)��it=0kt+w � (�d � �c)��it=0kt+w+1

= �0 + (�� � �0)(1� �ki)��
i�1
t=0kt

+��
i
t=0kt+w[(�d � �0)� (�d � �c)�]

By rearranging the terms, we obtain

(�� � �0)(1� �ki)��
i�1
t=0kt

�r

1� �r > ��
i
t=0kt+w(�d � �c)

�
(�d � �0)
(�d � �c) � �

�
, �r

(1� �ki)
(1� �r) > �kt+w

�
(�d � �0)
(�� � �0) �

(�d � �c)
(�� � �0) �

�
Notice that the last inequality is always satis�ed whenever � > �d��0

�d��c :

Moreover, this condition is tight when w = r � ki � 1; i.e. �d(w) is highest. By
substituting the value of w, we obtain the desired result. q.e.d.
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The next lemma shall provide us an idea as to when a �rm can obtain pro�ts

under (generalized) ICT that is higher than what the normal collusion can o¤er.

Lemma 6. Under the generalized ICT strategy, �i > �� is equivalent to

��
i�1
t=0kt 1��ki

1��r >
2
n+1
; for all i; where � 2 (0; 1) and ki > 0. Moreover, as � ! 1; this

condition becomes ki
r
> 2

n+1
:

Proof:

Recall that �� = �� = nq�2: From (12), we say that �i > �� is equivalent to:

�0 +
(�� � �0)(1� �ki)��

i�1
t=0kt

1� �r > nq�2

By substituting the values of �� and �0; we obtain:

q�2
(n+ 1)

2
+ q�2

�
(n+ 1)2

4
� (n+ 1)

2

�
(1� �ki)��

i�1
t=0kt

1� �r > nq�2

, ��
i�1
t=0kt

1� �ki
1� �r >

2

n+ 1
(15)

By getting the limit of the left-hand side as � ! 1; we obtain the desired result.

q.e.d.

Proposition 3. For a su¢ ciently high �, a generalized ICT strategy

(i) is sustainable in a subgame-perfect equilibrium and

(ii) can allow some �rms to obtain payo¤s higher than the

collusive pro�ts ��:

Proof:

(i) The proof is immediate from the results of Lemma 4(i) and Lemma 5.

(ii) We want to show that there exists some i such that �i > ��: Let�s take the

case where � ! 1: From Lemma 6, the above-collusive pro�t condition is ki
r
> 2

n+1
:
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To check that this condition is admissible for all i , it must be that ki
r
+P

j2Nnfig

kj
r
= 1. Then, we have ki

r
= 1�

P
j2Nnfig

kj
r
> 2

n+1
)

P
j2Nnfig

kj
r
< n�1

n+1
) kj

r
<

1
n+1
: Thus, for any j 2 Nnfig; it is still possible to obtain a kj

r
> 0: From Lemma

4(ii), we see that �j 2 (�0; ��) is greater than �c for any kj
r
> 0; thus, IRC is

satis�ed for all i. Finally, we see from Lemma 5 that as � ! 1; the ICC condition

is reduced to �c��0
����0 <

kj
r
which is always satis�ed since �c < �0 by the assumption

of high n. This now completes our proof. q.e.d.

Note however that since
Pn

i=1
ki
r
= 1; not all �rms can obtain a ki=r ratio

higher than 2
n+1

when � ! 1 since 2
n+1
n exceeds 1, for all n > 1: We generalize

this assertion for any � 2 (0; 1) through the following claim.

Claim. In an oligopoly with n �rms and with a uniform � 2 (0; 1); it is

impossible to have �i > �� for all i.

Proof:

Suppose it is possible. Then, the aggregate pro�t across �rms is greater than

the total payo¤ obtained in the normal collusion, i.e.
Pn

i=1�i > n�
�: Using (12),

this implies that

n�0 +

nX
i=1

(�� � �0)(1� �ki)��
i�1
t=0kt

(1� �r) > n�� = n��
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, n�0 +
(�� � �0)
(1� �r) [

�
1� �k1

�
+
�
�k1 � �k1+k2

�
+
�
�k1+k2 � �k1+k2+k3

�
+

:::+
�
�k1+k2+:::+kn�1 � �r

�
] > n��

, (�� � �0)
(1� �r) (1� �

r) > n(�� � �0)

, n2 � 1
4

> n

�
n� 1
2

�
; by substituting the values of ��; ��; and �0

, n < 1 ; which is a contradiction q.e.d.

The above-collusive pro�ts obtained by some are therefore made at the expense

of some receiving below-collusive payo¤s. In what follows, we show that it is

nonetheless still possible to earn beyond the collusive pro�ts for all �rms, provided

that the discount factor is di¤erentiated among them.

b. Di¤erentiated discount factor

The main result of this section is presented in the following proposition. Its

proof is instructive as it gives a simple recursive algorithm on generating a sus-

tainable generalized ICT that o¤ers above-collusive income to all �rms.

Proposition 4. Given ki > 0 and �i 2 (0; 1) for each �rm i, it is possible to

construct a subgame-perfect generalized ICT strategy where �i > ��; for all i:

Proof:

Start by setting �i 2
�
�d��0
�d��c ; 1

�
for all i 2 N; where N � 5; in order that

subgame-perfect equilibrium can be admitted. When �rms have di¤erent discount

factors, the result of Lemma 6 can be rewritten as ��
i�1
t=0kt

i
1��kii
1��ri

> 2
n+1
. This is

similarly expressed in (16), where we let r = �n; for some � 2 Z+: Note here that
log �i is negative.

ki >

log

�
1� 2 (1���ni )

(n+1) �
�i�1t=0kt
i

�
log �i

(16)
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In order that ki > 0, for all i; it must be that

0 < 1� 2 (1� ��ni )
(n+ 1) �

�i�1t=0kt
i

< 1

Lemma 7, which is presented at the end of this proof, asserts that this is

possible provided that � is set su¢ ciently high and that ��
i�1
t=0kt

i > 2
n+1
; for all i.

Given these conditions, we now de�ne

ki = inf

8>>><>>>:ki 2 Z
+

���������ki >
log

�
1� 2 (1���ni )

(n+1) �
�i�1t=0kt
i

�
log �i

9>>>=>>>; :
Thus, ki (an integer above zero ) is the least number of privilege stages that

can generate above-collusive income for i given its �i: We obtain the set of all kis

by starting with k1, given �1 and k0 = 0: Then, compute k2 using �2 and the

derived k1; and so on. By choosing ki as the ki of each i = f1; 2; :::; n � 1g and
kn = �n �

Pn�1
i=1 ki whenever kn � kn; we have constructed a set of kis for a

generalized ICT that is sustainable in equilibrium and that yields above-collusive

payo¤s for all i. However, if kn < kn; then increase � and repeat the entire process

of solving for kis until kn � kn is satis�ed q.e.d.

Lemma 7. If ��
i�1
t=0kt

i > 2
n+1

for all i, where k1; k2; :::; ki�1 > 0 and k0 = 0; and

that � is set su¢ ciently high, then 1� 2 (1���ni )

(n+1) �
�i�1t=0kt
i

2 (0; 1) for all i :

Proof:
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First, we show that 1� 2 (1���ni )

(n+1) �
�i�1t=0kt
i

> 0: From the given, we have

1 >
2

(n+ 1) �
�i�1t=0kt
i

for any i 2 N and �i 2 (0; 1)

>
2 (1� ��ni )
(n+ 1) �

�i�1t=0kt
i

This is true because as the function (1� ��ni )monotonically decreases from 1 as
� decreases, there exists �� � 1 such that for any � 2 (��;1) the above inequality
continues to hold. Second, observe that the condition 1� 2 (1���ni )

(n+1) �
�i�1t=0kt
i

< 1 is always

true for any �i 2 (0; 1) and any �nite n. q.e.d.

An Example:

Let n = 5 and set k1
r
= 4

100
; k2
r
= 7

100
; k3

r
= 18

100
; k4

r
= 34

100
; and k5

r
= 37

100
:

Suppose also that �1 = 0:880 , �2 = 0:900; �3 = 0:950; �4 = 0:990; and �5 = 0:999:

From Lemma 6, the condition �i � �� is equivalent to �
�i�1t=0ki
i

1��kii
1��ri

> 1
3
, for all i:

Now, since �01
1��41
1��1001

= 0:40; �42
1��72
1��1002

= 0:34; �113
1��183
1��1003

= 0:34, �294
1��344
1��1004

= 0:34; and

�635
1��375
1��1005

= 0:36; we see that the above condition is satis�ed for all i = f1; 2; 3; 4; 5g:
Finally, this set-up is subgame-perfect since by construction �i > �d��0

�d��c =
9
11
for

all i and for n = 5.

c. A case of duopoly

In principle, the ICT strategy in a duopoly should be easier to sustain given

its lesser number of players. Both players do not have to wait so long for their

privilege stages to come and so they do not need to have very high discount factors.

However, the payo¤ structure under a duopoly is quite di¤erent from the general

analysis we have discussed since its Cournot-Nash punishment does not pose as
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much deterrence to any potential deviant as in the case of a high-n oligopoly. No-

tice from Table 2 that when n = 2, the pro�t �c under punishment phase is higher

than both �d and �0 which could even provoke deviation from any �rm, if not of the

high �� that serves as the only incentive to stick to the program. Consequently, one

needs to have a more stringent IRC to neutralize the temptation posed by the high

�c: Moreover, the ICC requirement presented in Lemma 5 becomes also di¤erent

in the sense that the left-hand side of inequality becomes always positive, thereby

reducing the possible set for sustainable cooperation. Despite these di¤erences, we

show nonetheless that the two-�rm case can still admit the results of Proposition

3.

For n = 2 , the ICC in Lemma 5 is reduced to the following expression after

substituting the values for ��; �d; �0; and �c:

1

12
� �i

�
�31
108

�
< �r�kii

(1� �kii )
(1� �ri )

(17)

By setting k1 = k2 = 1 and �1 = �2 = �; we obtain � 2
�
34�

p
877

31
; 1
�
: To pass

the IRC, player 2 has a more binding constraint and so Lemma 4 is reduced to

�

1 + �
>
10

27
;

where it must be that � 2
�
10
17
; 1
�
: Since IRC has a more stringent constraint

than ICC, the former is the binding constraint for � that admits subgame perfec-

tion.

Unfortunately, this duopoly can not provide above-collusive income for �rms

even when set under di¤erent discount factors (i.e. Proposition 4). For example,

for player 2 to have above-collusive income it must be that (1��2)
(1��22)

�2 >
2
3
, implying
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that �2 > 2 which is impossible. In general, we show that this is not possible in

any duopoly; as presented in the following proposition.

Proposition 5. If a generalized ICT strategy is sustainable in a duopoly with
k1; k2 > 0 and �i 2 (0; 1); then it is not possible that �i > �� for both i:

Proof:

Suppose both players obtain above-collusive pro�ts, then player 2 satis�es the

condition stated in Lemma 6, i.e. �k12
(1��k22 )

(1��r2)
> 2

3
; where r = k1 + k2: Since the

left-hand side is monotonically increasing in �2 and has a limit of k2r as �2 ! 1;

then it must be that k2
r
> 2

3
: Thus, this implies that k1

r
< 1

3
for player 1. Now

examine the ICC condition for player 1. Since the right-hand side of (17) is also

monotonically increasing in �1 and approaches k1
r
as �1 ! 1; then (17) is reduced

to k1
r
> 10

27
; which is a contradiction. q.e.d.

6. Conclusion

We have shown in this paper that the ICT strategy, which is sustainable in per-

fect equilibrium, generates higher consumer and producer welfare than the normal

intertemporal collusion. While it is straightforward to show how all consumers are

made better o¤ through lower price o¤er, it is not so for the producers since one

cannot make some �rms obtain higher than the normal collusive payo¤ without

making others earn below it. We proved however that when �rms have di¤eren-

tiated discount factors, then it is possible to form a mechanism where everyone

receives payo¤ higher than the collusive outcome.

In summary, the ICT draws out greater possibilities for cooperation through

an unconventional design of contract that seeks to award each �rm at di¤erent

stages of the game. The privileged incentive that each one gets in the future

is su¢ cient for everyone not to abandon the commitment, even by not making
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the penalty more severe. This we showed by maintaining only a Counot-Nash

punishment while exploring the various forms of stable contracts as characterized

by the generalized ICT program.
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Appendix

A.

In extending further the study on ICT, we present here Abreu�s carrot-and-stick

punishment scheme (1986) to replace the less severe yet irreversible Cournot-Nash

penalty which we have used throughout the text. The main signi�cance of this

penal structure, eventhough it may be more complex, is that it serves as an antidote

to any possible ex post renegotiation that tries to recover collusive potentials lost

after a deviation.

We start by de�ning Abreu�s one-time intense punishment which when per-

formed brings back the game in the next period to its original ICT path. Let

Â = (1� �)�0 + ��i;

where �0 (can be set to 0) is the one shot punishment payo¤ associated from

producing q0. Denote also ~�0 as the maximum payo¤ obtained from deviating

unilaterally from this punishment path such that

~�0 = argmax
qi�0

�i
�
qi; q

0
�i
�
:

We de�ne Abreu�s carrot-and-stick strategies below, noting that the only way

to go back to the ICT path after a deviation has been done is when everyone

executes the costly single period punishment production q0:
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(i) Every �rm i precommits at the start of the game to a production

pro�le:

qi(t) =

(
�q ; for all t = i+ nz; where z 2 f0; 1; 2; :::g
q�; for all t 6= i+ nz; where z 2 f0; 1; 2; :::g

(ii) and if at all t0 < t; where t � 2; st0i (ht
0
) = qi(t

0) for all i 2 N; then
sti(h

t) = qi(t)

(iii) also, if at all t0 < t; where t � 2; st0i (ht
0
) = q0i (t

0) for all i 2 N; then
sti(h

t) = qi(t):

(iv) Otherwise, sti(h
t) = q0i for all i 2 N:

In order for the punishment scheme to be in equilibrium, no �rm should be

willing to deviate once the game enters into this phase, i.e.

Â � (1� �)~�0 + �Â, Â � ~�0:

Then, we ensure also that �rms do not deviate from the precommitted path

given this penalty scheme. We show this needed condition as follows:

�i > �0(1� ��
i�1
t=0kt) + ����

i�1
t=0kt(1� �ki) + �0��it=0kt(1� �w)

+�d��
i
t=0kt+w(1� �) + �0��it=0kt+w+1(1� �) + �i��

i
t=0kt+w+2

= �0 + (�� � �0)��
i�1
t=0kt � (�� � �0)��it=0kt + (�d � �0)��it=0kt+w

�(�d � �0)��it=0kt+w+1 � �0��it=0kt+w+2 +�i��
i
t=0kt+w+2

By rearranging the terms, and given that �0+(����0)(1� �ki)��
i�1
t=0kt = �i(1�

�r) + �0�r and that w = r � ki � 1, we have

�i(�
r � ��it=0kt+w+2)� �0�r > ��

i
t=0kt+w[(�d � �0)� (�d � �0)� � �0�2]

) �i(1� ��
i�1
t=0kt+1)� �0 > ��

i�1
t=0kt�1[(�d � �0)� (�d � �0)� � �0�2]
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Then, by substituting the value of �i; we obtain

(�� � �0)(1� �ki)(1� ��
i�1
t=0kt+1)

1� �r > �0
(�2 � 1)
�

+ �d
(1� �)
�

+ �0(1� �)

) (1� �ki)(1� ��
i�1
t=0kt+1)

(1� �r)(1� �) � >
�d � �0
�� � �0 �

�0 � �0
�� � �0 �

Finally, note that as � ! 1; the last inequality turns into the following simpli�ed

condition:
ki
r
(k1 + k2 + :::+ ki�1 + 1) >

�d � 2�0 + �0
�� � �0

B.

Lemma 8. Denote as
n

�(s)
�l
s=1

o1
c=1

the ordered sequence of payo¤s

�(s)
�
of length l which is cyclically repeated in�nitely. The condition not to

deviate from this path at the mth stage of the sequence is equivalent to any of the

(m+ (r � 1)l)th stage, where r 2 Z+ is the cycle number.

Proof.

Denote �1 as the sum of the payo¤s of the pro�le
n

�(s)
�l
s=1

o1
c=1

. For a

deviation at the mth stage of the �rst cycle, we depict its entire-game pro�le asD

�(s)
�m�1
s=1

; �m; f�̂g
1
s=m+1

E
and denote its sum as �hm;1i: Note from this pro�le that

�m is the deviatory payo¤ at stage m and �̂ is the subsequent punishment payo¤

obtained at every stage. Now, if a deviation occurs in any of the succeeding cycle

r 2 Z+nf1g, the pro�le is depicted as follows with the sum denoted as �hm;ri:�n

�(s)
�l
s=1

or�1
c=1
;


�(s)
�m�1+(r�1)l
s=(r�1)l+1 ; �m+(r�1)l; f�̂g

1
s=m+1+(r�1)l

�
:

To prove this lemma, we show that the di¤erence between �1 and �hm;1i is

equivalent to �1 and �hm;ri for any r 2 Z+nf1g; i.e. d
�
�1; �hm;1i

�
= d

�
�1; �hm;ri

�
:
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First, de�ne � : h�i ! R as a mapping of the payo¤ pro�le h�i to its aggregate
sum. Then, we have

�hm;ri � �

�n

�(s)
�l
s=1

or�1
c=1
;


�(s)
�m�1+(r�1)l
s=(r�1)l+1 ; �m+(r�1)l; f�̂g

1
s=m+1+(r�1)l

�
� �

�n

�(s)
�l
s=1

or�1
c=1
; �(r�1)l�hm;1i

�
� �(r�1)�

D

�(s)
�l
s=1
; �l�hm;1i

E
Similarly, we can express �1 as follows

�1 � �
Dn


�(s)
�l
s=1

o1
c=1

E
� �

�n

�(s)
�l
s=1

or�1
c=1
; �(r�1)l�1

�
� �(r�1)�

D

�(s)
�l
s=1
; �l�1

E
Thus, we obtain

d
�
�1; �hm;ri

�
= d

�
�(r�1)�

D

�(s)
�l
s=1
; �l�1

E
; �(r�1)�

D

�(s)
�l
s=1
; �l�hm;1i

E�
= d

�
�
D

�(s)
�l
s=1
; �l�1

E
; �

D

�(s)
�l
s=1
; �l�hm;1i

E�
= d

�
�1; �hm;1i

�
q.e.d.
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