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Abstract 
 
We give the conditions for the attainment of self-enforcing Pareto efficiency under 
complete effort non-observability, strict agent rationality and global budget balance 
among teams involved in a winner-takes-all contest for a prize. Employing Nash 
conjectures and fixed fee financing of the prize, we characterize the competitive 
environment that allows teams to overcome the moral hazard problem and induce self-
enforcing egalitarian outcomes. If the number of identical teams is finite, the production 
technology is restricted to factor symmetric ones. When the number of identical teams 
becomes unbounded, the restriction on the production technology vanishes and there 
always exists a fee level that supports a self-enforcing Pareto efficient solution as long as 
member utilities over own share are identical and obey the Inada conditions. Some form 
of membership symmetry cannot be ruled out for Pareto efficiency. 
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I. INTRODUCTION 

Pareto efficiency and strict individual rationality are uneasy partners in the best of 

circumstances. In organizations that do not have residual claimants (i.e., partnerships and 

teams) that have to contend to boot with moral hazard, the combination is destined to 

produce inferior outcomes. This was the message of Alchian and Demsetz (1972) and 

which Holmstrom (1982) demonstrated. Specifically, Holmstrom showed that where non-

observability of effort is complete, agents have quasi-linear utilities, effort supply is 

voluntary and budget balance is the rule, teams cannot attain Pareto efficiency. Likewise, 

Hammond (1994) shows using the more general Mirlees model (1973) that where skill is 

a private information, effort is voluntary and  budget balance is observed, an efficient 

allocation is impossible for large economies. Indeed, even when effort is perfectly 

observable whereas member capacity is not, if effort is voluntary, and budget balance is 

observed, proportional allocation (a member’s share in output equals his/her share in total 

effort) is Pareto efficient if and only if production technology is constant returns to scale 

with symmetric marginal products (see Fabella, 1989, for the case without the symmetry 

assumption; Sen, 1966, for the case with symmetry; Roemer and Silvestre, 1993 for the 

case associated with the “tragedy of the commons”). Where production technology is 

non-constant returns, even perfect observability cannot deliver Pareto efficiency under 

budget balance. We will limit our scope to completely non-observable effort. 

 The interesting part, of course, is that the team and near team organizations have 

held their own in the market economies. One of the organizational exports of Japan 

which have become part of the competitive arsenal apart from “just-in-time” is the “team 



concept”. The success of Japan has forced a growing recognition of the advantage  in  

certain  circumstances  of  organizations  where  workers  assume  larger responsibility 

for framing the production process (see, e.g., Made in America by Dertouzos, Lester and 

Solow, 1989). There is an interesting universe outside the pure principal-agent 

relationship. Professional partnerships abound and persists. The question is how the 

moral hazard problem is overcome. Holmstrom, in the same paper, proposed a 

mechanism which punishes every agent if Pareto efficiency is not attained by giving each 

agent nothing and throwing away output. This collective punishment strategy is quite 

grim even as it clearly violates budget balance. 

 Other approaches have been put forward to attain the Pareto efficient outcome. 

One is to transform the team game into a supergame. Where the usual assumptions of the 

Folk Theorem are satisfied (viz., infinitely lived members, low discount rate, observable 

output which is separable from random effects), the Pareto efficient outcome as well as 

other outcomes are attainable though not uniquely (Macleod, 1984; Radner, 1986). A 

similar multi-stage “tit-for-tat” process was proposed by Guttman and Schnytzer (1990) 

which forces the Pareto efficient outcome under egalitarian (equal division) sharing but 

not under proportional sharing. Valsecchi (1996) resorts to job design to force the Pareto 

efficient outcome. Rasmusen (1987) adopts a different tack. If Holmstrom’s risk-neutral 

agents are replaced by risk-averse agents, a budget balance lottery on who gets to be 

taxed in case of an output shortfall can be devised which forces agents to supply exactly 

the Pareto efficient effort (or whatever is the principal’s tendency, which means that a 

multiplicity of solutions is possible) as long as agents are risk-averse enough and the  

punishment  is  stiff  enough.  There  is  here,  however,  an unacceptable unfairness 



which it shares with the Holmstrom proposal because  punishment is random and even 

the most cooperative could draw the short stick. Random punishment even by occupiers 

(Nazis or otherwise) is distasteful at best. 

The Pareto efficiency in the Holmstrom team is naturally an economic design 

challenge (Guttman and Schnytzer’s and Rasmusen’s proposals are design approaches 

without being explicitly formulated in that language).  An explicit implementation 

approach is provided by, e.g., Sjöström (1996) who assumes a risk neutral principal (thus 

departing somewhat from the original framework) hiring risk-averse agents working as a 

team. Each agent communicates his best forecast of output to the principal (random state 

of the world is assumed) and on the basis of the forecasts and actual output, wages are 

paid each agent. The implementability of the principal’s “first best” outcome under the 

forecasting mechanism with agents knowing the state of the world is not feasible under 

two important circumstances: when effort is a private and when effort is a public 

information! It is feasible when a “supervisor” observes all actions and when there is 

“nearest neighbor” observability. When agents cannot observe the state of the world and 

effort is non-observable, the first best cannot be implemented (see also Ma, 1988). 

Another mechanism proposed by Gradstein (1995) in the context of oligopoly uses 

balanced transfers (positive or negative but summing to zero) to force deviants to 

cooperate towards the group optimum. But he assumes fully observable action. Thus, the 

design approaches so far appear to fall short of the full blown problem we confront in this 

paper: complete non-observability of effort and no principal or full budget balance. 

 The interesting feature about these results, however, is that, they, for the most 

part, concern organizations which are self-standing and isolated in the sense of non-



interacting with the outside environment. This is odd because almost everyone’s notion 

of teams includes a competitive setting as in team sports. In an isolated self-sufficient 

team, Pareto efficiency may be only a peripheral concern for members. In a competitive 

environment where team survival is not guaranteed, the attitude of members toward team 

goals should alter. 

There is some evidence that competition can foster cooperation and efficiency in 

teams as it should with normal firms. Attwood (1990) compares the performance of two 

groups of Indian sugar cooperatives and singled out market competition as the driving 

force in the difference in their efficiencies. The relative efficiency of the Israeli Kibbutz  

and the stark inefficiency of the Russian Kolkhoz  can be traced partly to the fact that for 

the Kibbutz to survive Kibbutzim oranges have to compete favorably with oranges from 

Spain and Africa while Kolkhoz oranges need not (although Guttman and Schnytzer 

(1989) favor Kibbutzim egalitarianism as explanation). Thus, competition among teams 

appears to mitigate moral hazard. Where competition does not exist as in the Russian 

Kolkhoz, team structure and inefficiency are natural buddies in accordance with the 

Alchian-Demsetz-Holmstrom thesis. Odagiri (1992) champions the view that competition 

among domestic companies is the touchstone to superior performance of the tradeable 

sector in Japan where many large corporations exhibit both principal-agent and 

partnership features (Aoki, 1988; Dore, 1973; Nagatomi, 1997).  Porter (1990) claims 

that Japan’s prowess in the world market sprung from intense domestic inter-firm rivalry 

although Almsden and Singh (1994) claims the competition policy was geared towards 

dynamic efficiency. 



This paper takes its cue from the current thinking on the emergence of 

cooperation literature (see, e.g., Boyd and Richerson, 2009; Rowthorn, et al., 2009) that 

group selection is the touchstone of cooperation in groups. This goes back all the way to 

Charles Darwin’s (1871) famous observation: 

“It must not be forgotten that although a high standard of morality gives but a 

slight or no advantage to each individual man and his children over the other men 

of the same tribe, yet that an increase in the number of well-endowed men and 

advancement in the standard of morality will certainly give an immense 

advantage to one tribe over another. A tribe including many members who from 

possessing in a high degree the spirit of patriotism, fidelity, obedience, courage, 

and sympathy, were always ready to aid one another, and to sacrifice themselves 

for the common good, would be victorious over most other tribes; and this would 

be natural selection.” (Darwin 1871, p. 166) 

 

Darwin and subsequent literature (Trivers, 1971; Heinrich and Boyd, 1998) was concerned with 

how morality becomes hardwired among members of a group. This paper differs from this 

literature in that it asks how cooperation itself rather than the trait is induced among purely self-

interested agents. The strategy employed is common in the static cooperation literature 

(Holmstrom, 1982; Rasmussen, 1988): putting the team in a situation where every member 

becomes a critical decision maker. The paper constructs team environment characterized by 

strict agent rationality, budget balance and complete effort non-observability and an inter-team 

winner-takes-all contest. The model employs Nash conjectures among agents, inter-team 

symmetry, and a fixed fee financing of the contest prize. We will show that under certain 



competitive conditions, teams in this environment can attain the cooperative solution (Pareto 

efficiency).  

 In Section II, we first define the contest environment and characterize Pareto 

efficient Nash solutions under quasi-linear utility. We do the same under risk aversion 

and finally when the number of teams becomes very large. In III, we set down our 

conclusion. 

 

II. THE MODEL 

 

A. General Structure 

 Consider  a  team of   n > 2  members.  Every  i  contributes  effort  level  Li ∈ 

[ ]0, ,i iL L < ∞  to a production  function  F  defined  over  L = {Li}.  Thus, Li is bounded 

from above by iL . F  is  twice differentiable, non-decreasing and  quasi-concave  on  L.  

Effort is completely voluntary. Every member i receives a  share  si ≥ 0  of   the  team’s  

total revenue R, and 
n

is∑ = 1.  Thus, there is no residual after  members  receive  their  

respective  shares  and,  thus,  no  principal or residual claimant. The utility function of i  

is  

 
 

          ui = Ui (siR) − Vi (Li)           (1) 

 



where R is a linear function of F. We assume Ui(.) to obey the VN-M axioms and to be 

concave,  increasing  and  twice  differentiable  in own  share siR (U′(.) > 0, U″(.) < 0). 

Thus,  every  i   is strictly  rational.  Finally,  Vi(Li),  the  disutility  of  effort  function is 

strictly  increasing  and  convex.  

  

Definition 1: A team with the above characteristics, namely, (i) budget balance 

(∑si = 1), (ii) strict rationality, (iii) concave utility over own share but 

separable in strictly voluntary effort, we will call Team C. 

 

Let fi = (∂F/∂Li), the marginal product of member i and ( )i i iV V L' = ∂ ∂ , the 

marginal disutility of effort of i.  

              

Definition 2: Pareto efficiency is attained if  Fi = iV' , ∀ i = 1, 2,…, n. These 

generate the Pareto efficient effort supply L* = { }iL∗ and Pareto efficient 

output F*(L*). 

 

Remark 1:   The team  Pareto  efficient solution  also attains  the  maximum  of   

∑ui, the cooperative solution, if every Ui  is an identity  function  

(Campbell,  1995; Campbell and Truchon, 1988). 

 

We now assume that Team C is just one of its kind in a competitive environment. The 

structure of the competition is given below. 



 

Definition 3: The contest environment Farrel-Lander-Hirshleifer (FLH) if (a) 

there are m + 1 Type C type teams in a “winner-takes-all” contest; (b) the 

probability P of the “home team” (unlabelled) winning is Hirshleifer type, 

i.e., 

 

      P = [eβ/(eβ + me0
β)], β ≥ 0.           (2) 

 
  

(c) Following Farrel and Lander (1989),  e = ∑








n
iL n ,the effort level 

average of the home team  and e0 is the same for the representative rival 

team, 

 

Remark 2:  (i) The parameter β is the contest mass effect parameter (Hirshleifer, 

1989). When β < 1, P is a concave function of e. When β > 1, P has an 

inflection point and becomes convex in e and escalates rapidly beyond a 

certain e. We will call β the “Hirshleifer parameter”. If β = 0, 

( )P m= +
−

1
1
 and is invariant to individual effort. 

                   

Definition 4:  The contest  prize  X is “fixed fee-financed” if   X  =  δ + ∑
n

jδ , 

where  δj is  the  jth   team’s  entry  f ee  and   δ   is  home  team’s  entry  

fee.  

 



Remark 3:    The   net   revenue   of   home  team   is   R  =  (F − δ + X)   if   it  

wins  and  (F − δ)  if  it  loses;  for any rival team  j, it is  Rj = (Gj − δj + X) 

if  it  wins  or  (Gj − δj)  if   it loses. The expected winnings across all the 

teams  is  zero. With  the  environment  taken  as  a whole, we  say   that 

there  is “global   budget  balance”. We call “m” the width of the 

competition and, in case of budget balance, “δ” is the depth of 

competition. 

 

The expected utility of individual i in the home team is, thus: 

 

    Eui = PUi (W) + (1−P) Ui (L) − Vi(Li)          (3) 

 

where W = si(F−δ+X) is ith share if the team wins and L = si(F−δ) is ith share if the team 

loses. 

 

Assumption 1:  Every member has identical Cournot-Nash conjectures on the 

behavior of other members within his/her team and players in other teams. 

 

  The first order condition for a maximum of (3) with respect to own effort Li is: 

 

              
( )[ ] ( )[ ] ( ) [ ] ( )[ ]

[ ] ( )[ ] ( )
i i

i
i i

i
i

i
i i

i

i i
i

i
i

i

PU W s F PU W F X s U W P P U L s F

P U L F s U L P V

' ' '

' ' ,

+ − + + + − +

− − − − =

δ

δ

1

1 0
 

 



where iU' (W) = (dUi /dW), Fi = (∂F/∂Li), i
is  = (∂ si /∂Li), Pi = (∂P i/∂Li) iU' (L) = (dUi/∂Li). 

Upon rearranging, we have: 

 

( ) [ ] ( ){ } ( ) ( ){ }
( )[ ] [ ] ( )[ ]{ }

i i i
i

i i
i

i i i
i

i

s PU W P U L F U W U L P

PU W F X P U L F s V

' '

' ' ' .

+ − + − +

− + + − − − =

1

1 0δ δ
          (4) 

  

Assumption 2:  Effort is completely unobservable so that individual share si  is 

not a function of Li. Thus, i
is  = (∂ si /∂Li) = 0. In view of this, we assume si 

= n−1, i.e., “equal division” is used. 

 

Remark 4: The allocation could be anything. It could be a lottery. We adopt 

“equal division” because it has its own attraction theoretically (Roemer, 

1994; Guttman and Schnytzer, 1987) and in practice (viz., the Israeli 

Kibbutz). Equal division also figures in the concept of “partnership” 

(Radner, 1986) 

 

Assumption 3:   (Team Symmetry): All the (m + 1) teams are identical in every 

respect: number of members n, member profile, production technology, 

entry fee, etc. 

 

Remark 5:  The members of the team are, however, not identical. Thus, no 

membership symmetry assumption is being made. 

 



Employing  Assumptions 2 and 3, condition (4) is now rewritten as: 
 
 

         ( ) ( ) ( )[ ] ( ) ( )[ ][ ]− −
+ − + −


=1 1

1n PU W P U L U W U L F P F Vi i i i
i i i

i
' ' ' .        (5) 

 

Letting Ai = {.}, the bracketed expression in (5), we have: 

 

     Ai Fi  = iV'  ,  ∀i = 1, 2, …, n.          (6) 

  

  

 B. Quasi-Linear Utility 

 We investigate the possiblity of self-enforcing Pareto efficient equlibria when 

agents have quasi-linear utilities (risk neutrality), i.e., Ui (siR) = siR in (1). We have: 

 

Lemma 1:  If ui is quasi-linear, Team C attains a self-enforcing Pareto efficiency 

under FFF and Assumptions (1-3) iff. Ai = 1, ∀i = 1, 2, …, n.  

 

In general, the condition Ai = 1, ∀i, is difficult to satisfy. It is important to demonstrate 

that the set satisfying it is non-empty. Before we explore cases where self-enforcing 

Pareto efficient solution is supported, we first present a case where it is not. 

 

B.1. The Degenerate Contest Case 



 If β = 0, P = (1 + m)−1 from the start and the contest is a pure lottery with even 

odds. Effort makes no difference to the win probability and Pi = 0. Thus, (5) simplifies 

into: 

 

( ) ( ) ( )[ ]− + − =1 1n P U W P U L F Vi i
i

i
' ' ' ,  

 

which with quasi-linear utility simplifies into: 

 

   ( )[ ] ( ){ }− − −+ + − =1 1 11n n m x n F F Vi
iδ ' .           (7) 

 

 Thus:  

 ( )[ ] ]iA n x m F n F n= + − + =− − − −1 1 1 21 δ ,   

and Ai = 1 = > F = n2 which can occur only from pure happentance. In any case, (7) can 

be solved for Nash equilibrium effort levels { }iL i n0 1 2, , , ,=   where “0” refers to β = 0 

and iL0 0≥   Vi and iL0 0> , some i.  

 

B.2. Farrel-Lander-Hirshleifer (FLH) 

We know that for risk-neutral members, the Alchian-Demsetz-Holmstrom result 

holds, that is, the self-enforcing equilibrium solution is inefficient when the team operates 

in isolation. Likewise, Rasmusen’s Pareto inducing punishment lottery proposal does not 

work in this case. 



 From (2), we have Pi = (∂P/∂Li) = {[ eβ + me0
β] [(β/n)eβ-1] − [eβ(β/n) eβ−1]} / [eβ + 

me0
β]2.  Imposing team symmetry we have Pi = βm / (1 + m)2∑Lj = P’ and P = (1 +  m)−1. 

  Substituting P = (1 + m)−1 for P, Ui(W) = (F−δ+X) n−1 and Ui (L) = (F−δ) n−1 in Ai 

= 1, we have: 

 

    {1 + X [Fi ∑Lj]−1 [βm (1 + m)−2]} = n.     

  

Solving for β, we have: 

 

  ( )( ) ( )β = ∑ + =∗ −n F L m mX i ni
j 1 1 22 1, , , , .           (8) 

 

This is still problematic because while β, n, c, m and X are the same for every member i, 

Fi in the expression Fi ∑ jL∗  is generally different for every i. There is, however, a unique 

family of functions having this property (Fabella, 1997). 

 

Assumption 4:   F is “factor symmetric” if Fi = Fj, ∀i, j = 1, 2, …, n.  

Note that if L= ∑
n

Li ,  then F (L) is always factor symmetric. Let hi = Fi ∑

jL∗ . For this family, hi  = h k = h > 0. From Lemma 1 and from (8), we 

have: 

 



Lemma 2:  Suppose members have quasi-linear utility. Then, Team C under 

FLH, FFF and Assumptions (1-4) attains a self-enforcing Pareto efficiency 

if and only if  

 

          βh−1 =  nδ−1 (1 + m)m−1.          (9) 

 

We still do not  know whether in fact  (9) is  attainable.  Note  that  h = i
iF L∗∑  where iL∗   

 
solves (6) under the assumptions. But every iL∗  is a continuous function of β. Thus, h is a  
 
continuous function of  β.  The left hand  side of  (9) can be written as [β/h(β)].  Note that   
 
for   β = 0, 0/h(0) = ( )0 00'F Li∑ =   since  iL0 0>   some i.  As  β  rises  from  zero,  effort   
 
begins to impact on the  win-probability  and effort should rise from i iL0 , ∀ .  Let  β → ∞;   
 
then  i i iL L∗ → ∀,   and  ( )i

iF L∗∑   approaches a  finite  limit since  Fi is finite.  Therefore,  
 
 lim  β/h(β) = ∞. We now have: 
β→∞         
       
 

Proposition 1:   Assume the conditions in Lemma 2. If  ( )∂ ∂βiL∗ ≥ 0,  ∀i, Li ≤ 

iL << ∞,  ∀i, n < ∞ and δ > 0, then there exists a β* > 0 that forces a 

Pareto efficient Nash equilibrium in FLH.  

 

Proof:   By the mean-value theorem, as β rises from zero to ∞, [β/h(β)] attains 

any finite positive value since [β/h(β)] is continuous in β. In particular, it 

attains n (1 + m) (mδ)−1 which is finite for n < ∞ and δ > 0.  Q.E.D. 

        



Remark 6:  Proposition 1 shows how there always exists a Hirshleifer 

competition parameters that supports a self-enforcing Pareto efficiency in 

FLH despite complete moral hazard and quasi-linear utility. At β*, there is 

no incentive for any member to deviate since the equilibrium is Nash. 

 

Note that to maintain Pareto efficiency, (9) says that for given n, h and m, a fall in the 

stakes δ requires an increase in the Hirshleifer parameter β. Also, a  rise in team size n 

requires a rise in the competitiveness index β to maintain Pareto efficiency. This is as one 

expects because larger n exacerbates the moral hazard problem which requires more 

intense competition to overcome. 

 

Remark 7:   Note that if  ui is quasi-linear, it is impossible even with “factor 

symmetry” for a team in isolation (m = 0 or δ = δj = 0 ⇒ X = 0) (as in 

Holmstrom, 1982; Fabella, 1989) to attain Pareto efficiency. (7) reduces to 

n = 1, a contradiction if n > 2. Note further that “factor symmetry” does 

not result in membership symmetry since effort disutility is still vary. 

 

C. Risk Aversion 

 In this section, we focus on the possibility of a Pareto efficient Nash equilibrium 

when agents are risk averse. To simplify the discussion, we assume that agents exhibit 

utility functions satisfying the Inada conditions. Not only is risk aversion present but also 

boundedness from above or satiation. 

 



Assumption 5:   Ui (.) satisfies the Inada conditions, i.e., ( )iU' 0 = ∞  and 

( )iU' ∞ = 0 . 

 

 The 1° conditions for a maximum of (3) under FFF and Assumptions (1-3) 

simplify into: 

 

  ( )− −
+





= ∀ =1 1
1 2n T XC P F F V ni i i

i i
' , , , , ,        (12) 

 

where ( ) ( ) ( ) ( ){ }T m U W m m U Li i= + + +− −1 11 1' '  is the tangent slope or average 

of the tangencies of U at W and L and ( ) ( )[ ][ ]C U W U L Xni i= − − −1 1
 is the chord 

slope, i.e, the slope of the line joining Ui(W) and Ui(L). Thus, Ai in (6) is: 

 

      ( )i
i iA n T XC P F= +


− −1 1

        (13) 

  

Note that under quasi-linear utility T = C = 1 and Ai = n−1, if δ = 0. We need to 

spell out the values Ai takes as δ moves from 0 to F. We have, 

 

Lemma 3:   For 0 ≤ δ < F,  Ai ∈ [n−1, ∞). 

 

Proof:   Suppose δ = 0. Then X = (1 + m) δ = 0 and Ai = n−1 T. But W = (F − δ + 

X) n−1 = L = (F − δ) n−1 if δ = 0. Thus, T = 1 and Ai = n−1. Suppose δ → F, 



W → Xn−1 and U′(W) → iU' (Xn−1) > 0. But L → 0 and U′(L) → ∞ by the 

Inada conditions. Thus, T → ∞ as δ → F. On the other hand, 

( ) ( )C U Xn Xni→ >− −1 1 0. Now, (Pi/Fi) > 0 so Ai → ∞ as δ → F. By 

continuity of Ui, F, X and Pi, Ai attains any value in [n−1, ∞) as δ moves 

from 0 to F.               Q.E.D. 

  

Since n−1 < 1 < ∞, Ai = 1 is attainable by some δ*. If Fi = Fj, ∀i, j and Ui = Uj, ∀i, 

j, then we have: 

 

Proposition 2:  Suppose all agents exhibit identical Ui satisfying the Inada 

conditions. Let Assumptions (1-4) all hold. Then, there always exist an 

entry fee δ* that forces a self-enforcing Pareto efficient solution. 

 

 What differentiates this from previous possibility results, i.e., Proposition 1, is 

that it depends on the value of δ and it makes no use of the Hirshleifer win probability 

parameter β. Indeed, it is independent of the definition of e. The drawback is that “factor 

symmetry” (Assumption 4) still has to operate since Fi characterizes Ai.  

 

D. The Walrasian Limit and Risk Aversion 

 At the traditional Walrasian limit the number of agents approaches infinity and 

agents become price takers. In this model, there are no prices and the Walrasian limit is 

predicated on the number of teams. What members take as given is the team’s probability 

of winning P and their capacity to alter it. 



 

Definition 6: As m  ∞, FLH approaches its Walrasian limit. 

 

Note that as m  ∞, P0 and P’ = mβ [(1 + m)2 eβ+1]−1  0 for any e > 0 at the FLH 

environment. 

 

Lemma 4:  Suppose Ui(.), all i, satisfies the upper Inada condition. At the 

Walrasian limit of FLH, the first order condition (5) reduces to 
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Proof: From (5) observe that as m  ∞, the expression si [PU’(W) + (1-P)U’(L)] 

reduces to si U’(L) since P 0. Likewise, as  m  ∞,  the expression 

[βm/(1 + m)2]  [βm /m (2 + m)]  = [β /(2 + m)]  0. The prize X = (1 + 

m) δ  ∞ as m  ∞. But U[si (F-δ+X)] [β / (2 + m)]  0 since (2 + m)−1 

decreases proportionally with m while U(.) increases less than 

proportionately with m as iU' (X)  0. Thus, the second expression 

vanishes at the limit. What is left is si iU' (L)Fi  = iV'  with si = n−1.    Q.E.D. 

 

Thus, at the Walrasian limit with the Inada risk aversion, the structure of F becomes 

unrestricted. Likewise, the Hirshleifer degree of competition  parameter β ceases to be a 

factor as quantity overwhelms quality. Still, these are not enough to guarantee efficiency. 

For that, we have the following: 



 

Proposition 3:  If Ui(.), i = 1, 2, …, n are identical and satisfy the upper Inada 

condition, and 0 < iU' (n−1F*) ≤ n, then at the Walrasian limit of FLH, 

there always exists an entry fee δ* > 0 with FFF that supports a self-

enforcing Pareto efficiency. 

 

Proof: Since Ui(.) satisfies the Inada conditions and are continuous, (12) holds at 

the Walrasian limit. iU' (n−1(F*− δ)) ranges from iU' (n−1F*) to ∞ as δ goes 

from ∈ > 0 to F*. Thus, for any n, 2 < n < ∞, there always exists a δ* that 

guarantees that n−1
iU' (L) = 1.  Since  Ui(.) = Uj(.),  ∀ i, j  =  1, 2, …, n, δ* 

also guarantees that Fi = iV' , ∀ i.     Q.E.D. 

 

 For a self-enforcing first best efficiency in teams at the Walrasian limit of FLH, 

only the structure of risk aversion, the size of the membership and the size of the entry 

fee matter. 

 

Corollary 1: Suppose the conditions in Proposition 4 hold. As team size 

becomes very large, Pareto efficiency can be maintained only by “cut-

throat competition” (i.e., δ  F*).  

 

Proof: Clearly by the lower Inada condition, iU' (L)  ∞ as δ  F*.        Q.E.D. 

 



Remark 8:   Corollary 1 shows that intense competition among teams with risk-

averse members can allow teams to become large while at the same time 

remaining efficient. 

 

 There remains the persistent necessity of the identity of members in their 

evaluation of  own share. Although this does not mean member symmetry because the 

disutility function Vi(Li) may be different, it still remains that a certain degree of 

homogeneity among the members cannot be ruled out. It always helps when the 

membership share certain strategic values.  Hansmann (1996) confirms the strategic role 

of shared values and homogeneous interests in the efficiency of organizations. 

 

 Note that (14) is consistent with a self-enforcing “overexertion equilibrium” 

where effort is much greater than Pareto efficient, i.e., Fi < iV' ,  ∀I, if δ is pushed closer 

and closer to F*. This may explain the phenomenon of “Karosi” or “overwork death” in 

Japan. 

 

III. SUMMARY 

 This paper investigates how competition between teams can overcome the moral 

hazard problem in teams. The teams display classical features: absence of a principal or 

residual claimant, strictly rational members with utilities separable in own share and 

effort. The team competes against other teams for a prize financed by fixed (entry) fees 

from the teams, thus, satisfying global budget balance. The win-probability is Hirshleifer 



type and is based on average effort of the teams. We call this environment the Farrel-

Lander-Hirshleifer environment. 

 Assuming Cournot-Nash conjectures all around, and inter-team symmetry, we 

show that if members have quasi-linear utility and production technology is factor 

symmetric, there always exists a Hirshleifer parameter value that supports a self-

enforcing Pareto efficiency in the teams. The moral hazard problem in teams can thus be 

overcome by a proper level of competition. But the required conditions in most of the 

cases under limited number of teams are rather strong. The requirement of factor 

symmetry of the production function remains very restrictive. Under risk aversion of the 

Inada type, we show that there always exists an entry fee δ that forces Pareto efficiency if 

technology is factor symmetric. This particular problem can be overcome at the 

Walrasian limit of the game (i.e., as the number of contesting teams rises without limit). 

At the Walrasian limit, the structure of the production technology vanishes from the 

decision problem provided the utility functions over own share obey the Inada conditions 

and are identical. Only the risk aversion, the entry fee level and team size matter. That is, 

there always exists a fee level so that if the Pareto efficiency is attained, no incentive to 

deviate exists. 

 The results here have certain drawbacks: First, there is no way to rule out some 

degree of homogeneity among members. Pareto efficiency in this approach is always 

easier to attain when members either or both productively identical and share some 

strategic values in common, in this case, their valuation of own share. Hansmann (1996) 

confirms the role of homogeneous interests in his study of enterprise ownership. Second, 

in common with results in this area, the sustainable Pareto efficient  solution is only one 



among the many possible sustainable equilibrium. An “overexertion equilibrium” can 

also be sustained. 

 Finally, to go back to the issue of Japanese tradable goods sector, we observed 

that this displays many team or near-team features, relatively more equitable income 

distribution and very intense competition and competitiveness. Our view in common with 

Odagiri (1992) is that intense competition allows this sector to overcome the potential 

moral hazard problem associated with this organizational set-up. The moral hazard 

problem motivates a more equitable distribution of income which itself helps cement the 

homogeneity and “shared fate” character of the firm. The intense competition is what 

holds the Alchian-Demsetz-Holmstrom inefficiency effect at bay. It also helps that there 

is an appreciable degree  of homogeneity among the “Kaishain”. 
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