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Abstract 
 

We propose an equilibrium concept, the Robust Nash equilibrium (RNE), that combines the 
best-reply rationality and the “first mover invariance” condition. The single-stage 2x2 
symmetric information game G is transformed into sequential two-stage games with two sub-
trees: STA has the row player starting and STB has the column player starting. A profile in G is 
robust if it is the strict SPNE of the two branches; it is ephemeral if it is not the SPNE of any 
branch. We show that every strict dominant strategy equilibrium of G is robust but not every 
strict Nash equilibrium of G is. We show further that every robust profile of G is always a 
strict Nash equilibrium of G. A Robust Nash equilibrium (RNE) of G is any robust profile of G. 
The RNE of G is unique. We show in particular that the payoff dominant strict Nash 
equilibrium of a coordination game G is RNE while the strictly payoff-dominated Nash 
equilibrium of G is ephemeral. The original Harsanyi-Selten preference for payoff dominance 
over risk dominance is supported by robustness without invoking collective rationality. JEL 
Classification:C02, C72.  

 

I. Introduction 
 
Simple strategic games have sometimes too many Nash equilibria and sometimes none. Adding 
plausible conditions on top of the best-reply rationality is one way to reduce the number of 
equilibria. Richard Selten’s sub-game perfect Nash equilibrium, which combines the best-reply 
rationality of Nash and the backward induction rationality allows the rejection of some Nash 
equilibria. A. Guth’s Ultimatum Game has 101 Nash equilibria but has a unique sub-game perfect 
equilibrium. When randomization is combined with best-reply rationality, the mixed strategy Nash 
equilibrium always exists where a Nash equilibrium in pure strategies does not. The 2x2 
Coordination Game has two strict Nash equilibria and the problem of equilibrium selection arises.  
In 1988, Harsanyi and Selten proposed two concepts to guide equilibrium selection in coordination 
games: payoff dominance and risk dominance. A Nash equilibrium profile payoff-dominates another 
if it gives every player a strictly larger payoff than the other. It risk-dominates another if the cost of 
deviations from the former exceeds the cost of deviations from the latter. Harsanyi and Selten argued 
from the viewpoint of collective rationality that payoff dominance should be granted primacy over 
risk dominance whose claim hangs on individual rationality. Carlsson and Van Damme (1992) have 
shown that in global games where players only observe noisy signals of the payoffs and the iterative 
dominance condition is applied, the equilibrium that emerges in the limit as the noise approaches 
zero is unique. This limit uniqueness theorem has been extended by Carlsson and Van Damme 
(1993) and Kim (1996) and finally generalized by Frankel, Morris and Pauzner (2002). In a 2x2 
coordination game with full information, this unique profile is the risk-dominant profile. Thus, risk 
dominance appears to have gained favor in global games of noisy signals, individually rational 



agents and strategic complementarities. Another area where risk dominance received support is in 
evolutionary games. In replicator dynamics models, the likelihood that the population will choose 
the risk dominant profile is higher (see. e.g., Samuelson, 1997). In best response strategy revision 
with mutation, as the probability of mutation approaches zero, the choice of the risk dominant profile 
is a certainty (Kandori, Mailath, Rob, 1993; Kim, 1993). Harsanyi himself (1995) switched to 
favoring risk dominance. But the victory has not been clinched. One should not be surprised that 
models based on individual rationality should privilege risk-dominance. Camerer (2003) would still 
observe that “predicting which of the many equilibria will be selected is perhaps the most difficult 
problem in game theory.”  

 
Numerous and increasing laboratory and field experiments seem to show (see, e.g., Ostrom 

2000) that small groups often succeed in reaching and persisting in payoff-superior solutions to the 
common resource problem in defiance of the “tragedy of the commons.”  In other words, the social 
context in which agent decisions are being made is emerging as a strong explanatory idea. Ostrom 
and her school (1990, 2000, 2009) have identified some of the group characteristics that make this 
outcome likely (small number, face-to-face repeated/sequential interaction, salience of the collective 
success, relative heterogeneity of membership, difficulty of exit and penalty for norm violation). 
Ostrom herself favored conditional cooperation in place of rational egoism as explanation for these 
successes (see, e.g., Ostrom, 2009). Ideas like reciprocity, group identity, group norms and  social 
capital making for greater trust and social coherence, in other words, the social context of the 
interactions, (see e.g., Knack and Keefer, 1997; Akerlof and Kranton, 2000; 2010; Ostrom, 2009; 
Fehr, 2009) have been proposed in the empirical and theoretical literature as possible candidate 
explanations for observed heterodox phenomena. These support the Harsanyi-Selten predilection for 
collective rationality and, thus, payoff dominance.  Risk dominance crucially hangs on one agent’s 
uncertainty about how the other agent will behave. 

 
In this paper we will take the sequential and face-to-face nature of the interaction in small 

groups as essential. In Section II, we introduce the transformation of an arbitrary 2x2 single stage 
full information game G into sequential full information two-stage games with two sub-trees, one for 
each player as first mover. We then introduce the concept of a robust profile of G: one that emerges 
as the strict SPNE of the two branches. A game having a robust profile satisfies the “first mover 
invariance” condition. Profiles that do not emerge at all in any branch is called ephemeral. We then 
prove various relationships of robust profiles to dominant strategy and Nash equilibrium concepts, in 
particular, that every dominant strategy equilibrium of G is robust; that every robust profile of G is a 
strict Nash equilibrium, but not vice versa. A profile is a Robust Nash equilibrium of G if it is a 
robust profile of G. The Robust Nash equilibrium of the 2x2 G is unique. In Section III, we apply the 
results to equilibrium selection in coordination games. We show that every payoff-dominant Nash 
equilibrium of coordination game G is a robust Nash equilibrium while the risk-dominant Nash 
equilibrium is an ephemeral Nash equilibrium. The robust Nash equilibrium concept, thus, privileges 
payoff dominance in coordination games. We then conclude.            

  
 

II. Stage Transformation (ST) 
 

Let G be a 2x2 single-stage full information game, as in Table 1, and let {H, ~H } be the strategy set 
of A and {T, ~T} be the strategy set of player B.  
  



 
Table 1. Single-stage full information game, G 

 Player B 
T ~T 

Player 
A 

H aHT ,bHT aH~T ,bH~T 
~H a~HT ,b~HT a~H~T,b~H~T 

 
 

We first define a transformation of G from a single-stage game to a sequential 2-stage game to 
incorporate the backward induction rationality.  

 Definition 1: Let ST be the stage transformation of G into a 2x2, symmetric information 
two-stage game involving (i) two two-stage sub-trees: (a) STA: Row player A starts in 
stage 1 and column player B responds in stage 2; (b) STB: B starts in stage 1 and A 
responds in stage 2; (ii) the payoffs for each sequence of actions in a sub-tree are 
identical to the corresponding quadrant payoffs in G;. 

Definition 2: The ST of G defined in Definition 1 we label G’. The equilibrium concept 
applying in G’ is the “sub-game perfect Nash equilibrium” (SPNE). 

 
The two sub-trees of ST, denoted STA when player A starts and STB when player B starts, are given in 
Figures 1 and 2, respectively.  

 
Figure 1: STA (A Starts) 

 
 

Figure 2: STA (B Starts) 

   
 

Note: The payoffs for each sequence are identical to corresponding quadrant payoffs of G. 

 A 

 H ~H 

 B B                  

    T                ~T             T                 ~T 
 

aHT aH~T  a~HT  a~H~T 

bHT bH~T  b~HT  b~H~T 

 

 B 

 T ~T 

 A  A 

    H               ~H            H                 ~H 
 

bHT   b~HT b~HT b~H~T 

aHT   a~HT  a~HT a~H~T 

 



Definition 3: A profile (h, t) of G where h = H, ~H, and t = T, ~T  is robust if it is the strict 
SPNE of the two sub-trees of G’;  (ii) it is ephemeral if it fails to be the strict SPNE of 
any sub-tree of G’.  

Remark 1: By “strict SPNE” we mean that at no stage is any player indifferent between 
his/her options. 

Remark 2: Robustness is equivalent to the condition “first mover invariance.” Under this 
condition the first mover advantage does not arise. A profile of G may emerge as the 
strict SPNE of one sub-tree of G’ but not of the other. We will not deal with this 
property in this paper. 

While the equilibrium concept used in G can be any accepted concept satisfying the best-reply 
rationality (e.g., Nash, or Dominant Strategy), the equilibrium concept employed in G’ embodies the 
backward induction rationality, that is, the “sub-game perfect Nash equilibrium” (SPNE). A robust 
profile of G makes it special in the sense that when the game G is transformed into G’, the “first 
mover advantage” is effectively suppressed. Thus, the robustness condition is equivalent to a “no 
first mover advantage condition.” We now enquire about the robustness property of certain 
interesting equilibrium profiles of G.  

Remark: In this paper we will restrict attention to strict equilibrium profiles.  

The strict dominant strategy equilibrium profile is of some interest. 
 
Proposition 1: Suppose a profile (h,t) of G is the strict dominant strategy equilibrium profile 

of G. Then (h,t) is a robust profile of G. 
 

Proof: Let (h, t) = (H,T) without loss of generality. The two sub-trees of ST are as in Figure 
3: 

 
Figure 3. STs of G’. 

 
 

A strategy profile (H, T) is a strict dominant strategy equilibrium of G if H strictly 
dominates ~H for A and T strictly dominates ~T for B, that is, aHT > a~HT, aH~T > a~H~T 
and bHT > bH~T, b~HT > b~H~T. In stage 1 of STA of G’, since bHT > bH~T and b~HT > b~H~T, A 
chooses between H giving aHT and ~H giving a~HT in the reduced form. Since aHT > a~HT 
by (H, T) being a strict DSE, A chooses H in stage 1. B’s best reply to H in stage 2 is T. 
So (H, T) is strict SPNE of STA.  

 

 STA 

 A 

 H ~H 

 B  B 

 T ~T  T  ~T 
 

aHT  aH~T a~HT a~H~T 

bHT  bH~T b~HT b~H~T 

 

 STB 

 B 

 T ~T 

 B  A 

 H ~H  H  ~H 
 

bHT  b~HT bH~T b~H~T 

aHT  a~HT aH~T a~H~T 



In STB stage 1, since aHT>a~HT and aH~T>a~H~T, B chooses between T giving bHT and ~T 
giving bH~T. B chooses T since bHT>bH~T. A’s best reply to T in stage 2 is H. Thus (H, T) 
is strict SPNE of STB. Thus (H, T) is a robust profile of G. The proof for (h, t) = (H, ~T) 
or (~H, T) or (~H, ~T) is analogous. QED   

 
Example 1: Consider a game G where (C, D) is the strategy set for both players A and B. Let 

(C, C) be the strict dominant strategy equilibrium of G. Then aCC > aDC and aCD > aDD 
and bCC > bCD and bDC > bDD, that is, C strictly dominates D for A and C strictly 
dominates D for B. In STA of G’, stage 1, since bCC > bCD and bCD > bDD, A chooses 
between C giving aCC and D giving aDC in the reduced form. Since aCC > aDC by (C, C) 
being a strict NE,  A chooses C in stage 1. B’s best reply to C in stage 2 is C. So (C, C) 
is strict SPNE of STA. In STB stage 1, since aCC > aDC and aCD > aDD, B chooses between 
C giving bCC and D giving bCD.  B chooses C since bCC > bCD. A’s best reply to C in stage 
2 is C. Thus (C, C) is strict SPNE of STB. Thus (C, C) is a robust profile of G.  

 
By contrast, we show that a strict Nash equilibrium of G need not be robust.  
 
Example 2: Consider the game G given in Table 2. 
 

Table 2. Single-stage full information game, G. 
 Player B 

C D 

Player A C 8, 9 3,8 
D 10,3 5,5 

 
where (C, D) is the strategy set for both players A and B. (D, D) is a unique strict Nash 
equilibrium of G. In STA stage 1, the reduced form has A choosing between C giving 8, 
and D giving 5 and A chooses C. In stage 2, B’s best-reply to C is C, since 9 > 8. Thus, 
(C, C) is strict SPNE of STA. It is easy to see that (D, D) is the strict SPNE of sub-tree 
STB. Thus, (D, D) is not robust. We have shown the following: 

Proposition 2: Not every strict Nash equilibrium profile of G is robust. 

Proposition 3 spells out some conditions under which a strict Nash equilibrium is robust. 

Proposition 3: Suppose (h, t) = (H, T) is a strict Nash equilibrium of G. If either  

(i) aH~T > a~H~T and b~HT > b~H~T 
(ii) aHT > a~H~T, aH~T > a~H~T, and b~H~T > b~HT 
(iii)  a~H~T > aH~T, bHT > b~H~T, and b~HT > b~H~T 
(iv)  aHT > a~H~T > aH~T and bHT > b~H~T > b~HT 

 
then (H, T) is a robust profile of G. 

 
Proof: Confer Figure 3 for this proof. (H, T) being a strict Nash equilibrium of G implies 

that aHT > a~HT and bHT > bH~T.  (i) If additionally condition (i) holds, then (H, T) is a 
dominant strategy equilibrium, and by Proposition 1 it is robust. (ii) Suppose condition 
(ii) holds. In stage 1 of STA, since bHT > bH~T and b~H~T > b~HT, A chooses between H 
giving aHT and ~H giving a~H~T. Since (ii) assumes aHT > a~H~T, A chooses H and B’s best 
reply to H is T. Thus (H, T) is an SPNE in STA. In STB, since aHT > a~HT and aH~T > a~H~T, 



B chooses between T giving bHT and ~T giving bH~T in stage 1. By the SNE assumption, 
B chooses T and A’s best reply to T is H giving aHT over ~H giving a~HT. (H, T) is, 
therefore, SPNE in STB and, hence, is robust under assumption (ii). (iii) Suppose 
additionally that (iii) holds. In STA, the reduced form has A choosing H with payoff aHT 
over ~H with payoff a~HT. B’s best reply to H is T since bHT > bH~T, thus (H, T) is SPNE 
in STA. In STB, the reduced form gives B bHT for strategy T and b~H~T for ~T. B chooses T 
since bHT > b~H~T by (iii), and A’s best reply to T is H since aHT > a~HT by SNE. (H, T) is, 
therefore, SPNE in STB and is robust under (iii). (iv) Finally, assume additionally that 
condition (iv) holds. In STA, the reduced form has A choosing H giving aHT over ~H 
giving a~H~T since aHT > a~H~T. In stage 2, B’s best response to H is T since bHT > bH~T by 
SNE. (H, T) is SPNE in STA. In STB, B is faced with choosing T giving bHT and ~T giving 
b~H~T in stage 1. Since bHT > b~H~T by (iv), B chooses T and A’s best response to T is H 
since bHT > b~HT, making (H, T) SPNE in STB. Thus, (H, T) is robust under condition (iv). 
The proofs for (h, t) = (H, ~T) or (~H, T) or (~H, ~T) are analogous.             QED 

 
Example 3: To illustrate Propositions 1 and 3.iv, consider a game G where (C, D) is the 

strategy set for both players A and B. 
 

Table 2a.  Game G with a DSE. 
 Player B 

C D 
Player 

A 
C 10,10 8,8 
D 6,6 7,5 

Note: (C, C) is a strict Nash equilibrium 
and a DSE if (aCD > aDD and bDC > bDD). 

 
(C, C) is a strict Nash equilibrium since 10 > 6 and 10 > 8. (C, C) is also a dominant 
strategy equilibrium, hence (C, C) is robust by Proposition 1. Consider STA. In stage 2 
sub-tree 1, B chooses between C giving 10 and D giving 8 and B chooses C. In stage 2, 
sub-tree 2, B chooses between C giving 6 and D giving 5 and B chooses C. In stage 1 of 
STA, A chooses between C giving 10 and D giving 6 and A chooses C. B’s best reply to C 
in sub-tree 1 stage 2 is C. Thus, (C, C) is a strict SPNE of STA. Consider STB. In stage 2, 
sub-tree 1, A chooses between C giving 10 and D giving 6 and A chooses C. In stage 2 
sub-tree 2, A chooses between C giving 8 and D giving 7 so A chooses C. Thus, in stage 
1, STB, B chooses between C giving 10 and D giving 8 and B chooses C. A’s best reply 
to C in stage two is C. Thus, (C, C) is strict SPNE of both STA and STB. Thus, (C, C) is a 
robust profile of G. 

 
G-type games that have a robust profile are quite rare. Most games will have either no robust profiles 
or have two different profiles emerging as strict SPNEs of different  sub-trees of G’ or have only one 
profile emerging as a strict SPNE of one sub-tree. In other words, few games G will exhibit first 
mover invariance. In that case the “first mover advantage” does not arise. One can easily check, for 
example, that the “Tossing Pennies Game” does not have a robust profile.  The following result is 
the first principal result of this paper:   

 
Proposition 4: Every robust profile (h, t) of G is a strict Nash equilibrium of G. 

Proof: Consider an arbitrary profile (h, t) = (H, T). Let (H, T) be robust. This means (H, T) 
is a strict SPNE in both sub-trees of G’. In STA, (H, T) is a strict SPNE. A chooses H in 
stage 1 and B’s best reply to H is T in stage 2, that is, B chooses T with payoff bHT over 
~T with payoff bH~T. By the strictness of SPNE, bHT > bH~T.  In STB, since (H, T) is 



SPNE, B chooses T in stage 1 and in stage 2 A chooses H with payoff aHT over ~H with 
payoff a~HT. This implies aHT > a~HT under strict SPNE. The conditions bHT > bH~T and 
aHT > a~HT derived from STA and STB are exactly the conditions for a strict Nash 
equilibrium. The proof for the (h, t) = (H, ~T), (~H, T), (T, T) is analogous.           QED 

Corollary: The set of robust profiles of G is a strict subset of the non-empty set of SNE of 
G. 

Proof: Let {R} be the set of all robust profiles and {SNE} be the non-empty set of strict 
Nash equilibria of G. By Proposition 4, every robust profile is SNE, that is, {R}⊆
{SNE}. By Proposition 2, not all SNE is robust, implying {SNE}⊄ {R}. Therefore {SP}
⊂ {SNE}.                   QED 

Remark: It is now clear why the Tossing Pennies Game has no robust profile: the set of 
Nash equilibria is empty. The game in Table 2 follows this rule: the set of robust 
profiles is empty while the static game has a unique Nash equilibrium. 

 
III. The Robust Nash Equilibrium Concept 

 
We now use the robustness property to introduce the following refinement of the Nash equilibrium 
concept using Proposition 4: 

 
Definition 6: (i) Profile (h, t) of G is a Robust Nash Equilibrium (RNE) of G if it is a robust 

profile of G; (ii) Profile (h, t) of G is an Ephemeral Nash Equilibrium (ENE) of G if it is 
a strict NE of G but is ephemeral.  

 
Remark: Definition (6.i) follows from Proposition 4: every robust profile of G is a strict 

Nash equilibrium.  
 
The RNE concept combines the original Nash best reply rationality and the “first-mover invariance” 
condition to form a refinement that is stronger than the SNE. We can then use this to select the 
preferred equilibrium in 2x2 coordination games. The following claims follow from previous 
propositions:  
 

Proposition 5: (i) Every strict dominant strategy equilibrium of G is a RNE of G. (ii) 
Suppose a profile (h, t) of G is a strict Nash Equilibrium of G. If further either (aHT  >  
a~H~T, aH~T  > a~H~T, and b~H~T  > b~HT) or (a~H~T > aH~T, bHT  > b~H~T, and b~HT > b~H~T), then 
(h, t) is a RNE of G. 

 
Proof: (i) Obvious from Proposition 1 which proves that every DSE of G is robust. (ii) We 

need to prove that (h, t) is robust under the given conditions. This is obvious from 
Proposition 3(ii) and 3(iii). Thus (h, t) is a Robust Nash equilibrium.            QED 

 
Proposition 6: The RNE of every 2x2 game G is unique. 
 
Proof: Suppose (h, t) = (H, T) is an RNE of G. Since (H, T) is robust, it is the strict SPNE of 

the two sub-trees of G’. Thus, no other profile of G can emerge as the strict SPNE of the 
sub-trees of G’. Thus (H, T) is unique. The proofs for (h, t) = (H, ~T), (~H, ~T) and (~H, 
T) are analogous.                  QED 

 
Definition 7: Game G is “first mover invariant” is it has a RNE. 



 
IV. Coordination Games, Payoff Dominance and Robustness 

 
The issue of equilibrium selection arises in multiple equilibria games. It is especially salient in 2x2 
coordination games. We first define coordination games.   
 

Definition 8:  G is a 2x2 coordination game if either {(H, T), (~H, ~T)} or {(H, ~T), (~H, T)} 
are strict Nash equilibria of G. 

 
The equilibrium selection problem for the coordination game is one of choosing between two strict 
Nash equilibria of G, say (H, T) and (~H, ~T). Selten and Harsanyi (1988) proposed two selection 
criteria for equilibrium selection in coordination games:  payoff dominance and risk dominance. We 
now introduce them with the view of bringing to bear the RNE concept. 
 

Definition 9: Consider two strict Nash equilibria of coordination game G, (H, T) and (~H, 
~T).  (i) (H, T) of G payoff dominates (~H, ~T) if aHT > a~H~T and bHT > b~H~T. (ii) (H, T) 
risk dominates (~H, ~T) if the following holds: (aH~T – a~H~T)(b~HT –b~H~T) > (a~HT –
aHT)(bH~T –bHT).  

 
Remark: The expression on each side of the risk dominance inequality is the product of the 

deviation from each respective SNE; that is, (H, T) is risk dominant if the product of the 
costs of deviating from (H, T) exceeds that of deviating from (~H, ~T) in the first case. 
When the inequality holds, there is a presumption that (H, T) will be more adhered to 
than (~H, ~T) and, thus, be more stable. Or if mistakes are allowed, mistakes will be less 
likely in the case of (H, T) since the cost is more salient.  

 
The following shows how the robustness property may imply payoff dominance. 
 

Proposition 7: Let the profile (h, t) = (H, T) be the RNE of G. If a~HT > a~H~T  and (ii) bH~T > 
b~H~T, then the profile (H, T) payoff dominates (~H, ~T).  

 
Proof:  We wish to show that aHT > a~H~T and bHT > b~H~T. In STA, (H, T) being robust implies 

that T will be chosen by B in stage 2 if A chooses H in stage 1. The reduced form for STA 
is shown in Figure 6. 

 
Figure 6. Reduced form of STA of G’ in Proposition 5. 

 

 
 
Player A will choose H over ~H only if aHT is higher than the payoffs of ~H. There are two 
cases: (a) if b~HT > b~H~T, A will choose H if and only if aHT > a~HT. By assumption (i) and 

 A 

  H  ~H 

 B  B 

 aHT   T   ~T 
 bHT 
 

 a~HT a~H~T 

  b~HT b~H~T 

 



transitivity, aHT > a~H~T. (b) if b~HT < b~H~T, then A will choose H over ~H if and only if aHT > 
a~H~T. In both cases aHT > a~H~T. 

 
On the other hand, in STB, robustness of (H, T) implies that H will be chosen by A in stage 2 
if B chooses T in stage 1. The reduced form is presented in Figure 7. 

 
Figure 7. Reduced form of STB of G’ in Proposition 5. 

 
 

Player B will choose T over ~T if and only if bHT is higher than the payoffs in ~T. Again 
there are two cases: (a) if aH~T > a~H~T, B will choose T if and only if bHT > bH~T. Under 
assumption (ii) and transitivity, bHT > b~H~T. (b) if instead aH~T < a~H~T, B will choose T over 
~T if and only if bHT > b~H~T. In both (a) and (b), bHT > b~H~T. Thus, (H, T) payoff dominates 
(~H, ~T).                   QED 

 
The following reveals the robustness properties of a coordination game G with payoff dominance. 
  

Proposition 8:  Suppose (H, T) and (~H, ~T) are strict NE of the coordination game G. If 
additionally 

(i) aHT > a~H~T and bHT > b~H~T , then (H, T) is RNE and (~H, ~T) is  ENE  
(ii) a~H~T > aHT and b~H~T > bHT, then (~H, ~T) is RNE  while (H, T) is  ENE. 

 
Proof:  (H, T) and (~H, ~T) being strict Nash Equilibrium means aHT > a~HT , bHT > bH~T and 

a~H~T > aH~T , b~H~T > b~HT. This produces the reduced forms of STA and STB, respectively, 
given below 

 
Figure 7a[TITLE] 

     

If (i) holds, then A chooses H in the first stage of STA and B’s best reply to H is T by SNE of 
(H, T). Thus (H, T) is SPNE in STA. In STB, B chooses T giving bHT over ~T giving b~H~T in 
stage 1. A’s best reply to T is H since (~H, ~T) is SNE, making (H, T) SPNE in STB and 
RNE. By the same token, (~H~T) cannot be the strict SPNE of any sub-tree of G’ and is, 
thus, ENE. The proof for (ii) (the reverse of (i)) is analogous.             QED 

 
What Proposition 9 says is that payoff dominance by one of the SNEs of a coordination game G 
renders the game first mover invariant; the payoff dominant profile is always the unique RNE; the 
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payoff dominated SNE is always ephemeral. Proposition 8 is especially useful in equilibrium 
selection. We consider an example of a Stag Hunt Game. 
 
 Example: Consider the Stag Hunt game G given in Table 5 below.  

 
Table 5:  Stag Hunt Coordination Game  

 Player B 
C D 

Player 
A 

C 10,10 5,8 
D 9,4 7,7 

 
The coordination game in Table 5 has two strict Nash equilibria (C, C) and (D, D). It is 
clear that (C, C) payoff dominates (D, D). But we have (9 - 10)(8 -10) = 2 for (C, C) versus 
(5 – 7)(4  – 7) = 6 for (D, D). Thus, (D, D) risk dominates (C, C). The two Selten-Harsanyi 
criteria disagree. Let us examine the robustness properties of the two SNEs. The STA and STB 
of G’ and corresponding reduced forms are given below: 
 
 

 
 
     
A chooses C in stage 1 while B’s best reply to C is C (10 > 7) and (C, C) is SPNE of STA. 
STB and reduced form are the following: 

 
 
Thus, B starts with C in stage 1. Since 9 < 10, C is A’s best reply to C. And (C, C) is SPNE 
of STB. Thus, (C, C) is a Robust Nash Equilibrium. (D, D) does not surface at all and is thus 
ephemeral. 
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The message of Proposition 8 is that the payoff dominated SNE of a coordination G will never be 
affirmed by a sequential transformation G’ regardless of whether or not it exhibits risk dominance. 
Payoff dominance will always emerge as the solution under this sequential transformation. 

   
V. The Social Context and Equilibrium Selection in Coordination Games 
 
As observed earlier, Harsanyi and Selten (1988) argued from “collective rationality” that payoff 
dominance be given lexicographic priority over risk dominance. The whole community is better off 
with choosing the payoff dominant payoff. Risk dominance by contrast is rooted in “individual 
rationality.” As also observed earlier, risk dominance seems to be favored by the developments in 
global games and evolutionary models and Harsanyi himself switched sides in 1995. Since these 
models are rooted in individual rationality, that should not be surprising. And yet the problem 
persists (confer Cammerer, 2003).  
 
We showed that payoff dominance’s priority may be naturally established by the sequential nature of 
the interaction in small groups and the imperative of backward induction rationality. Ostrom and her 
school (1990, 2000) documented the success of these groups in finding and sustaining payoff 
dominant solutions to common resource management problems. They also listed the set of 
circumstances (such as small groups, repeated face to face interactions, homogeneity, salience, etc.) 
which raise the likelihood of collective action success. Ostrom (2000, 2009) herself favored 
replacing rational egoism with conditional cooperation assumption  to explain these successes. 
Ostrom’s approach dovetails the original Harsanyi-Selten in introducing the social context – in these 
small groups members behave differently than in large anonymous groups (confer especially 
Ostrom, 2009). 

 
The sequential and dynamic nature of the social interactions in small long-lived groups such as 
studied by Ostrom and her group (1990; 2000) is undeniable.  In most games it matters who makes 
the first move. But some games may have a payoff profile such that it does not matter who moves 
first. We call these games “first mover invariant games.” This is precisely the property of games 
with an RNE profile. We showed that the payoff dominance of an SNE is intimately connected with 
its robustness.  
 
If games in small groups are played sequentially and if backward induction rationality guides agent 
decision-making, the payoff dominant NE profile will always be chosen regardless of who moves 
first. Thus, social context of the game matters. This supports the original Harsanyi-Selten position 
but without the need to resort to the “collective rationality” commitment of the players. Payoff 
dominance in coordination games render these games first mover invariant. This could be another 
reason why small groups in Ostrom studies are able to reach and persist in the Pareto efficient 
solutions. Of course one has to acknowledge that the games played in the Ostrom results may not 
necessarily be coordination games. We will not treat that possibility here.   
 
VI. Conclusion 
 
In this paper, we first noted that some games have too many equilibria while others have none. We 
deal with the static 2x2 full information game G. The “Tossing Pennies” game has no Nash 
equilibrium in pure strategies. Coordination games have two strict Nash equilibria in pure strategies. 
When the latter is the case, there is a problem of equilibrium selection.  Many coordination games 
display the “first mover advantage” property: that is when the static game is transformed into a 
sequential game, who moves first has an advantage of getting his preferred payoff as SPNE of where 
he/she starts. In this paper, we introduce the concept of a “robust profile” of G: one which emerges 
as the strict SPNE of the two sub-trees resulting from the transformation of the single-stage G into a 



two-stage sequential game. If G has a robust profile, then G satisfies the “no first mover advantage 
condition”.  
 
We show that every strict dominant strategy equilibrium of G is robust; that not all strict Nash 
equilibria are robust. We show that every robust profile of G is a strict Nash equilibrium of G. We 
then introduce a refinement of the Nash equilibrium concept called the Robust Nash Equilibrium 
(RNE): a RNE is any robust profile of G. The set of RNE of G is a strict subset of the set of strict 
Nash equilibrium of G. In fact for the 2x2 game, the RNE of G is unique. We apply this concept to 
equilibrium selection problem in coordination games. Selten and Harsanyi (1988) introduced two 
criterion for equilibrium selection in coordination games: payoff dominance and risk dominance. If 
one SNE possesses both, the problem is solved. If one possesses payoff dominance but the other 
possesses risk dominance, there is a selection problem and Harsanyi and Selten argued for the payoff 
dominance from the perspective of “collective rationality.” Certain developments in global and 
evolutionary games seem to favor risk dominance but since collective rationality has so far played 
no role in these games, that is no surprise. We show that in a coordination game the payoff dominant 
Nash equilibrium is a robust Nash equilibrium while the payoff dominated Nash equilibrium is an 
Ephemeral Nash equilibrium. In other words, coordination games with a payoff dominant Nash 
equilibrium satisfies the “no first mover advantage condition.”  A sequential transformation of the 
coordination game will always produce the payoff dominant profile as solution. This is achieved 
without a resort to collective rationality. 
 
E. Ostrom and her school have documented the success of small groups where interactions are face-
to-face and dynamic in finding and persisting in payoff superior solutions to common resource 
problems. Ostrom herself favored replacing “rational egoism” with “conditional cooperation” as 
explanation for the phenomenon. This echoes the original Harsanyi-Selten position in deviating from 
strict rationality. Our result shows that the cooperative outcome (the payoff dominant profile) in 
these groups may be being attained by the sequential and face-to-face nature of the game in these 
small groups. The latter can be considered the social context of the game.  
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