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Abstract

This paper proposes a new likelihood-based panel cointegration rank test which ex-
tends the test of Örsal and Droge (2012) (henceforth Panel SL test) to allow for cross-
sectional dependence. The dependence is modelled by unobserved common factors which
affect the variables in each cross-section through heterogeneous loadings. The common
components are estimated following the panel analysis of nonstationarity in idiosyncratic
and common components (PANIC) approach of Bai and Ng (2004) and the estimates are
subtracted from the observations. The cointegrating rank of the defactored data is then
tested by the Panel SL test. A Monte Carlo study demonstrates that the proposed testing
procedure has reasonable size and power properties in finite samples.
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1 Introduction

The cointegration methodology has become a principal tool in investigating the long-run
relationships between non-stationary economic variables over the past 25 years. Since many
macroeconomic variables exhibit trending behaviour, unit root and cointegration tests that
accommodate a polynomial time trend in the data generating process have been developed.
The proposed tests are not without limitations. For example, in the Johansen’s likelihood-
ratio (LR) test for the cointegrating rank of a system of variables (Johansen, 1995) the
distribution of the test statistic under the null hypothesis depends on whether a deterministic
trend term actually exists in the data generating process or not. To overcome the difficulty
of deciding upon the correct asymptotic distribution in such cases, Saikkonen and Lütkepohl
(2000) proposed subtracting GLS estimates of the deterministic terms from the observed data
and applying the cointegrating rank test to the trend-adjusted data. In a Monte Carlo study
they showed that their test outperforms the Johansen’s LR-type test allowing for a linear
time trend. However, both types of tests have low power when a near-unit root component
is present in the process.

In practice, the power of unit root and cointegration tests might be limited for a single
cross-section and can thus be improved upon by considering panel data. The approach of
Saikkonen and Lütkepohl (2000) has been extended to the panel framework by Örsal and
Droge (2012). Following Larsson et al. (2001), the test statistic of the panel Saikkonen-
Lütkepohl (SL) test is computed by standardising the average of the individual LR trace
statistics over the cross-sections. Under the null hypothesis the test statistic converges to
a standard normal random variable provided that the number of time observations T and
the number of cross-sections N tend to infinity sequentially. A critical assumption for the
standardisation of the average of the LR trace statistics is the independence between cross-
sections.

However, cross-sectional independence, although theoretically convenient for the asymp-
totic analysis, may be an unrealistic and highly restrictive assumption in practice. Panel
unit root and cointegration tests relying on this assumption are known to suffer from severe
size distortions when applied to panels in which cross-sectional dependence is present (see
Gengenbach et al. (2006), Wagner and Hlouskova (2010), Carrion-i Silvestre and Surdeanu
(2011)).

Several methods have been proposed to model the cross-sectional dependence. Groen and
Kleibergen (2003) developed a test for the cointegrating rank considering panel vector error
correction models (VECMs), where they introduced correlation between the cross-sections
through the disturbance covariance matrix. This test involves iterative generalised method
of moments estimation. Miller (2010) proposed a panel likelihood-based cointegration rank
test in which he followed the non-linear instrumental variables approach of Chang (2002) to
cope with the cross-sectional dependence. Both tests are relatively complex to compute and
require a large time dimension of the panel while keeping the cross-sectional dimension fixed.

A large strand in the recent unit root and cointegration literature models the cross-
sectional dependence in large T , large N panels by unobserved common factors. The PANIC
approach of Bai and Ng (2004) extracts the common factors and their loadings by principal

2



components and essentially decomposes the observed data into estimates of the unobserved
common and idiosyncratic components. Gengenbach et al. (2006) and Bai and Carrion-i Sil-
vestre (2013), among others, adopted the PANIC methodology and proposed residual-based
cointegration tests for the case of dependent panels; Carrion-i Silvestre and Surdeanu (2011)
employed it to develop a panel cointegration rank test. In a recent unpublished study, Callot
(2010) introduced unobserved common factors into the likelihood-based panel framework. He,
on the other hand, followed the approach of Pesaran (2006) and Dees et al. (2007) to account
for the influence of the factors by cross-sectional averages of the observed variables and pro-
posed two panel rank tests based on the p-values of the bootstrapped individual LR trace
statistics. To the best of our knowledge, however, the common factor framework has not yet
been utilised to extend likelihood-based panel cointegration tests to the case of cross-sectional
dependence in the sense of applying a rank test to defactored data.

To close this gap, we extend the panel SL test of Örsal and Droge (2012) to allow for
cross-sectional dependence by including the unobserved common factors in the equation for
the observed data. In our setting the common factors may be integrated of order zero or one,
or a combination of both, and potentially cointegrated.

We adopt the PANIC approach of Bai and Ng (2004) to extract the common factors and
their loadings by principal components from the first differenced and demeaned data. The
estimated common components are then subtracted from the observed data, thus removing the
cross-sectional dependence from the panel. Testing for no cointegration of the idiosyncratic
components is performed by directly applying the Panel SL test to the defactored data.
Should the null hypothesis be rejected, testing for a cointegrating rank greater than or equal
to one proceeds by a modification of the sequential procedure of Johansen (1995). First the
common idiosyncratic stochastic trends under the new null hypothesis are estimated from the
defactored data, after which they are tested for no cointegration by the Panel SL test. A
Monte Carlo study demonstrates that the proposed procedure maintains reasonable size and
high power in almost all experimental settings considered, provided that the common trends
are selected by the estimator of the right null space of the cointegrating relations computed
as in Johansen (1995) from the defactored data.

The remainder of the paper is organised as follows. Section 2 introduces the model and
the relevant assumptions regarding the idiosyncratic and the common components. Section 3
describes the estimation of the common components, establishes the properties of the Panel
SL test for no cointegration on defactored data and outlines the procedure for testing for
the cointegrating rank. The finite sample properties of the test analysed by means of Monte
Carlo simulations are presented in Section 4 and Section 5 concludes. All proofs are deferred
to the Appendix.

The following notation is used throughout the paper. The superscript cd denotes the ob-
served cross-sectionally dependent processes, the star symbol ∗ signifies their defactored coun-
terparts and quantities computed from them, while the tilde ˜ is reserved for GLS-detrended
processes. L and ∆ denote the lag and differencing operators respectively. I(d) denotes a
process which is integrated of order d, and W (s) stands for a standard multivariate Wiener

process of a suitable dimension. Convergence in distribution is signified through ⇒, while
p→

denotes convergence in probability and ∼ stands for asymptotic equivalence. For an (n× n)

matrix A, tr(A), ‖A‖ = [tr(A′A)]1/2 and λi(A), i = 1, . . . , n, denote its trace, Euclidean norm
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and eigenvalues respectively, while rk(B) stands for the rank of an arbitrary (m×n), m > n,
matrix B. If B is of full column rank n, we denote its orthogonal complement by B⊥; that
is, B⊥ is an (m× (m− n)) matrix of full column rank such that (B,B⊥) is of full rank m
and B′⊥B = 0. The orthogonal complement of a non-singular square matrix is zero and the
orthogonal complement of zero is an identity matrix of suitable dimension; an (n×n) identity

matrix is denoted by In. We finally let CNT = min
(√

N,
√
T
)

and M < ∞ be a generic

constant which is independent of the dimensions of the panel N and T .

2 Model setting

We consider a panel data set consisting of N cross-sections (individuals) observed over T
time periods. For each individual i (i = 1, . . . , N) the observed m-dimensional time series
Y cd
it = (Y cd

1,it, . . . , Y
cd
m,it)

′, t = 1, . . . , T , is generated by a VAR(pi) process Yit with a linear time
trend plus common components Λ′iFt which drive the cross-sectional dependence:

Y cd
it = Yit + Λ′iFt, i = 1, . . . , N, t = 1, . . . , T, (1)

Yit = µ0i + µ1it+Xit,

Xit = Ai1Xi,t−1 + . . .+Ai,piXi,t−pi + εit,

(1− L)Ft = C(L)ut.

Here µ0i and µ1i are unknown m-dimensional parameter vectors, pi is the lag order of the VAR
process for the ith cross-section and Ai1, . . . , Ai,pi are unknown (m×m) coefficient matrices.
The observed series for each cross-section is assumed to be influenced at any time instance t
by a (k×1) vector of unobserved common factors Ft through individual-specific factor loading
matrices Λi of dimension (k ×m). In the specification of the process for the common factors
Ft above, C(L) =

∑∞
j=0CjL

j , where the rank of C(1) is k1, 0 ≤ k1 ≤ k. This allows for k1

common stochastic trends and k0 = k− k1 stationary factors. The idiosyncratic errors εit are
assumed to be serially and cross-sectionally independent and thus the dependence between
the individuals is driven solely by the unobserved common factors Ft. The components of
the process Xit are assumed to be integrated of order at most one and cointegrated with
cointegrating rank ri, 0 ≤ ri ≤ m. This implies the following VECM for Xit:

∆Xit = ΠiXi,t−1 +

pi−1∑
j=1

Γij∆Xi,t−j + εit, t = pi + 1, . . . , T,

where Γij = − (Ai,j+1 + . . .+Api). The (m×m) matrix Πi = − (Im −Ai1 − . . .−Ai,pi) has
rank ri ≤ m and can therefore be represented as Πi = αiβ

′
i with αi and βi being full rank

(m× ri) matrices. For further use let Ai(L) ≡ Im −
∑pi−1

i=1 AiL
i and Γi = Im −

∑pi−1
j=1 Γij .

We make the following assumptions.

Assumption 1 Integrating properties of the idiosyncratic components:

(a) |Ai(z)| = 0 implies that either |z| > 1 or z = 1 for each i = 1, . . . , N .
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(b) The matrix α′i,⊥Γiβi,⊥ has full rank (m− ri) and
∥∥∥(α′i,⊥Γiβi,⊥)−1

∥∥∥ ≤M for each

i = 1, . . . , N .

Assumption 2 Common factors:

(a) ut ∼ iid(0,Σu), E||ut||4 ≤M .

(b) V ar(∆Ft) =
∑∞

j=0CjΣuC
′
j > 0.

(c)
∑∞

j=0 j||Cj || < M .

(d) C(1) has rank k1, 0 ≤ k1 ≤ k.

Assumption 3 Factor loadings:

(a) Λi is deterministic and ||Λi|| ≤ M , or Λi is stochastic and E||Λi||4 ≤ M for each
i = 1, . . . , N .

(b) N−1
∑N

i=1 ΛiΛ
′
i
p→ ΣΛi as N →∞, where ΣΛi is a non-random positive definite (k× k)

matrix for each i = 1, . . . , N .

Assumption 1 (a) gives a necessary and sufficient condition for the processes β′iXit and β′i,⊥Xit

to be integrated of order zero and one respectively, and part (b) is necessary for the proof
of the joint limiting distribution in Theorem 3.3. The latter two assumptions are standard
in the factor models literature. The invertible limit in probability of N−1

∑N
i=1 ΛiΛ

′
i implies

that each factor contributes to the variance of at least one of the variables in Y cd
it , resulting

in strong cross-sectional dependence.

Assumption 4 Idiosyncratic errors:

The idiosyncratic errors are assumed to be serially and cross-sectionally independent and
normally distributed, i.e. εit ∼ Nm(0,Ωi), where Ωi is some non-random positive definite
matrix and i = 1, . . . , N .

Assumption 5 Independence of common factors, factor loadings and idiosyncratic errors:

Λi, ut and εit are mutually independently distributed across i and t.

Assumption 6 Number of common factors:

The number of the common factors k is assumed to be known. Alternatively, consistent
estimates of the number of the common factors may be obtained as proposed by Bai and Ng
(2002) or Onatski (2010).

3 The Panel SL cointegration rank test

Our aim is to extend the likelihood-based panel cointegration rank test of Örsal and
Droge (2012) to the case of cross-sectional dependence. Since the Panel SL test statistic
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is calculated as the standardised average of the individual LR test statistics, the test relies
on the assumption of independence between cross-sections. In order to apply the Panel SL
test, the influence of the common factors needs to be removed as a first step. Following the
PANIC approach of Bai and Ng (2004), the common factors are extracted by the method of
principal components from the first differenced and demeaned observed data. The cumulated
estimates of the common components are then subtracted from the observed data yielding
cross-sectionally independent observations.

3.1 Defactoring the data

We apply the defactoring procedure for the linear trend case of the PANIC approach
proposed by Bai and Ng (2004). Introducing the following notation for the time averages:

∆Y cd
i =

1

T − 1

T∑
t=2

∆Y cd
it , ∆Xi =

1

T − 1

T∑
t=2

∆Xit and ∆F =
1

T − 1

T∑
t=2

∆Ft,

we take equation (1) in first differences and demean it in order to remove the linear trend
term, which results in obtaining

∆Y cd
it −∆Y cd

i = Λ′i
(
∆Ft −∆F

)
+
(
∆Xit −∆Xi

)
. (2)

Letting

yit = ∆Y cd
it −∆Y cd

i , ft = ∆Ft −∆F and xit = ∆Xit −∆Xi,

(2) can be written as

yit = Λ′ift + xit. (3)

Stacking the observations for each cross-section over time, we obtain

yi = fΛi + xi, i = 1, . . . , N, (4)

where
yi = (yi2, . . . , yiT )′ , f = (f2, . . . , fT )′ and xi = (xi2, . . . , xiT )′ .

The combined model for all cross-sections then reads

y = fΛ + x, (5)

where
y = (y1, . . . , yN ) , Λ = (Λ1, . . . ,ΛN ) and x = (x1, . . . , xN ) .

The first-differenced and demeaned common factors f and the factor loadings Λ can now
be extracted by the method of principal components (PC) applied to the ((T − 1)×Nm)-
dimensional data matrix y. The PC estimator f̂ is obtained as

√
T − 1 times the normalised

eigenvectors corresponding to the k largest eigenvalues of the moment matrix yy′. The factor
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loading estimates are computed as Λ̂ = f̂ ′y/(T − 1). The estimates of the common factors
are recovered by cumulating f̂t:

F̂t =
t∑

s=2

f̂s for t = 2, . . . , T, with F̂1 = 0. (6)

The observed data can now be defactored by subtracting the common component estimates,
thereby removing the cross-sectional dependence:

Y ∗it = Y cd
it − Λ̂′iF̂t, (7)

or by recovering the idiosyncratic components as

X̂it =
t∑

s=2

(
yis − Λ̂′if̂s

)
for t = 2, . . . , T, with X̂i1 = 0. (8)

Bai and Ng (2004) have shown that the estimates of the common factors consistently estimate
the space spanned by the true factors provided T,N → ∞ simultaneously. We note that
using the estimates of the idiosyncratic components X̂it instead of Y ∗it for testing for no
cointegration in the procedure described below yields equivalent results, since they only differ
in the deterministic trend component. For details we refer to the Appendix. Both types of
defactored data can be used for testing the cointegrating rank too, however employing Y ∗it
requires an additional step of OLS detrending in some cases, as outlined in Section 3.3, while
employing X̂it does not.

3.2 The Panel SL test for no cointegration

This section describes the procedure for testing the null hypothesis of no cointegration in
the unobserved process Xit based on the defactored data Y ∗it (or equivalently X̂it). Having
removed the cross-sectional dependence in the way described above, we apply the methodology
of Örsal and Droge (2012). The first step consists of GLS detrending of the defactored series
as suggested by Saikkonen and Lütkepohl (2000). We refer to the latter work for more details
on the estimation procedure.

It should be noted, however, that the GLS detrending yields estimates of the deterministic
terms with the necessary consistency rates only under the null hypothesis H0 : ri = r = 0,∀i =
1, . . . , N which implies that αi = βi = 0. The reason is that, although the estimation of the
space spanned by the common components is consistent as T andN grow large, defactoring the
observed data introduces both a deterministic and a stochastic trend to every variable in the
system. The stochastic trend diverges at rate Op(

√
T/N) rather than the usual Op(

√
T ); more

details are given in the Appendix. This stochastic trend is the reason why the cointegrating
vectors βi cannot be estimated with the usual consistency rate Op(T

−1) from Y ∗it (or X̂it)
by the method of Johansen (Johansen, 1995, pp. 89-92), unless the relative expansion rate
between N and T is T/N → 0 as T,N →∞ simultaneously, which suppresses the influence of
the unwanted stochastic trend in the limit. In order to establish the joint limiting distribution
of the Panel SL test, however, N/T → 0 is required as T,N → ∞ simultaneously. For this
reason we first concentrate on the extension of the Panel SL test to defactored data only for
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testing the null hypothesis of no cointegration, as in this case estimation of the cointegrating
relations is not required. In order to test for the cointegrating rank, a slightly more involved
sequential testing procedure has to be followed. This is outlined in Section 3.3.

Denoting the defactored and detrended observations by X̃∗it, the panel cointegration test
is applied to the following VECM:

∆X̃∗it = ΠiX̃
∗
i,t−1 +

pi−1∑
j=1

Γij∆X̃
∗
i,t−j + εit, for i = 1, . . . , N ; t = pi + 1, . . . , T, (9)

where X̃∗it = Ỹ ∗it − µ̃
+
i0− µ̃

+
i1t and µ̃+

i0, µ̃+
i1 denote the GLS estimates of the intercept and trend

parameters of the defactored data respectively1.

Our aim is to test the null hypothesis of no cointegration, i.e. ri = rk(Πi) = 0 for each
i = 1, . . . , N :

H0 : ri = r = 0,∀i versus H1 : ri > 0 for some i. (10)

For each cross-section we compute the GLS-based LR trace statistic from the defactored
data as

LRSL*
traceiT

(r) = −T
m∑

j=r+1

ln
(

1− λ̂∗ij
)

(11)

with r = 0. Here λ̂∗i1 > . . . > λ̂∗im denote the ordered solutions of the eigenvalue problem
defined in Johansen (1995, pp. 90-93) for the VECM (9) (see (A.15) in the Appendix). It is
worth mentioning that the individual GLS-based LR statistics in (11) can be computed with
the free software JMulTi.

The asymptotic distribution of the individual LRSL
traceiT

(r) statistics calculated as above,
but from cross-sectionally independent data, has been derived by Saikkonen and Lütkepohl
(2000). More specifically, they have derived the distribution of the LR trace statistic based
on GLS detrended data for a single cross-section X̃t, which holds for each unit in a cross-
sectionally independent panel under the null hypothesis rk(Πi) = r. It is given by

LRSL
traceiT

(r)⇒ Zd as T →∞,

with

Zd = tr


 1∫

0

W∗(s)dW∗(s)
′

′ 1∫
0

W∗(s)W∗(s)
′ds

−1 1∫
0

W∗(s)dW∗(s)
′


 , (12)

where W∗(s) = W (s)−sW (1) is a d−dimensional Brownian bridge with d = m−r, dW∗(s) =
dW (s)−dsW (1) and W (s) is a standard d−dimensional Brownian motion. When testing the
null of no cointegration, d = m.

1The linear time trend term µ+
i0 + µ+

i1t of the defactored data comprises the trend term of the observed
process µi0 + µi1t plus an additional linear trend term arising from the defactoring procedure. Please refer to
the Appendix for details.
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Denoting p = max {pi|1 ≤ i ≤ N}, we extend this result to the case of defactored data as
follows (proofs are outlined in the Appendix).

Theorem 3.1. Under the null hypothesis of no cointegration and assuming that m and p
remain fixed as T,N →∞ simultaneously, for each cross-section i = 1, . . . , N it holds that:

LRSL*
traceiT

(0) = LRSL
traceiT

(0) +Op
(
C−1
NT

)
, (13)

where CNT = min
(√

N,
√
T
)

. Under the alternative, LRSL*
traceiT

(0) diverges to +∞.

As an immediate result of the theorem we obtain the limiting distribution of LRSL*
traceiT

(0):

Corollary 3.1. Under the assumptions of the theorem the limiting distribution of LRSL*
traceiT

(0)
as T,N → ∞ simultaneously is the same as that of LRSL

traceiT
(0) as T → ∞ and is given by

(12) with d = m.

In this way we have established the asymptotic equivalence of the individual LR trace
statistics LRSL*

traceiT
(0) and LRSL

traceiT
(0) under H0 : ri = r = 0 for each i = 1, . . . , N .

The Panel SL test statistic of Örsal and Droge (2012) is obtained by standardising the
cross-sectional average of the individual LR trace statistics by the moments of the limiting
random variable Zd. Let

LR
SL
traceNT

(0) =
1

N

N∑
i=1

LRSL
traceiT

(0),

and

LR
SL*
traceNT

(0) =
1

N

N∑
i=1

LRSL*
traceiT

(0) .

In the next theorem we establish that, under the null hypothesis and when
√
N/T → 0 as T

and N grow jointly to infinity, the cross-sectional averages LR
SL
traceNT

(0) and LR
SL*
traceNT

(0) are

asymptotically equivalent when normalised by
√
N .

Theorem 3.2. Under the null hypothesis of no cointegration and assuming that m and p
remain fixed as T,N →∞ simultaneously, it holds that

√
N LR

SL*
traceNT

(0) =
√
N LR

SL
traceNT

(0) +Op

(√
N

T

)
+Op

(
C−1
NT

)
.

Corollary 3.2. Under the assumptions of the theorem and assuming that
√
N
T → 0

as T,N →∞ simultaneously,

√
N LR

SL*
traceNT

(0) =
√
N LR

SL
traceNT

(0) + op(1).
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The last step of the calculation of the Panel SL test statistic is to standardise LR
SL
traceNT

(0)
by the mean and the standard deviation of the asymptotic trace statistic Zd resulting in:

Υ
LR

SL
trace

=

√
N
(

LR
SL
traceNT

(0)−E (Zd)
)

√
Var (Zd)

, (14)

where E (Zd) and Var (Zd) are the mean and variance of the individual asymptotic trace
statistic Zd, with d = m when testing H0 : ri = r = 0, ∀i. Theorem 2 of Örsal and
Droge (2012) states that under the null hypothesis the asymptotic distribution of the panel
cointegration statistic Υ

LR
SL
trace

is standard normal as T →∞, followed by N →∞. In order to

employ the defactored data for testing, however, we need to establish the limiting distribution
of Υ

LR
SL
trace

as T,N →∞ simultaneously. This is the statement of the next theorem.

Theorem 3.3. Under the null hypothesis of no cointegration and assuming that m and p
remain fixed as T,N →∞ simultaneously with N

T → 0, it holds that

Υ
LR

SL
trace

=

√
N
(

LR
SL
traceNT

(0)−E (Zd)
)

√
Var (Zd)

⇒ N(0, 1). (15)

Corollary 3.3. Under the assumptions of the theorem, for the Panel SL test statistic based
on the defactored data it holds that

Υ
LR

SL*
trace

=

√
N
(

LR
SL*
traceNT

(0)−E (Zd)
)

√
Var (Zd)

= Υ
LR

SL
trace

+op(1),

and hence

Υ
LR

SL*
trace

⇒ N(0, 1).

Corollary 3.3 presents the main result of the paper: inference regarding the absence of
cointegration among the components of the unobserved Xit can be made by the Panel SL test
statistic computed from the defactored data Y ∗it (or equivalently X̂it), provided that N/T → 0
as T,N →∞ simultaneously.

The test is one-sided and rejects H0 at significance level α if

Υ
LR

SL*
trace

(r) > z1−α,

with z1−α being the (1− α) quantile of the standard normal distribution.

Approximations of the first two moments of Zd based on large-T simulations are available
for d = 1, ..., 12 in Örsal and Droge (2012). Alternatively, these moments may be obtained by
response surface techniques; for computational details we refer to Trenkler (2008). Unpub-
lished moments of the Zd statistic have been provided by Carsten Trenkler and are presented
in Table 1.

The simulation study of Örsal and Droge (2012) reveals that standardising the LR
SL
traceNT

(r)
statistic by the response surface moments results in better size properties of the Panel SL test
compared to standardising by the moments based on large-T simulations. We thus employ
the response surface moments from Table 1 to analyse the performance of the panel SL test
on defactored data.
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Table 1: Simulated first two moments of Zd via response surface approach.

d = m− r E(Zd) Var(Zd) d = m− r E(Zd) Var(Zd)

1 2.689 4.396 7 99.036 147.468
2 8.924 13.725 8 129.025 193.158
3 19.011 28.501 9 163.003 241.215
4 33.036 48.837 10 200.971 297.598
5 51.023 75.430 11 242.960 360.760
6 73.042 107.953 12 289.002 428.035

3.3 Testing for the cointegrating rank

Since the observed series Y cd
it is represented as the sum of two unobserved stochastic

components, testing for its cointegrating rank is not a trivial task. As the common factors
are themselves allowed to be integrated and possibly cointegrated, common stochastic trends
in Y cd

it may result from: (i) idiosyncratic stochastic trends shared by the variables within
Xit, (ii) common stochastic trends shared by the factors in Ft if k > 1, resulting in cross-
unit cointegration, and (iii) both of these sources. Decomposing the observed series into
idiosyncratic and common components by the PANIC methodology allows us to investigate
each of these points separately.

The cointegrating rank of Xit, which is the primary focus of this paper, can be determined
from the defactored data by the Panel SL test following a modified version of the sequential
testing procedure of Johansen (1988). The idea underlying the testing of H0 : ri ≤ r, ∀i, for
1 ≤ r ≤ m− 1, is to select the “best candidates” for the d = m− r common stochastic trends
in each system and to test them for no cointegration by the Panel SL test. The procedure
can be briefly summarised as follows:

1. Test the defactored data for no cointegration by the Panel SL test.

2. If the null hypothesis H0 : ri = 0, ∀i is rejected, assume cointegrating rank ri = 1 for at
least one cross-section, i.e. H0 : r̄ = 1 where r̄ = max {ri|1 ≤ i ≤ N}. This translates
into having at most d = m− r̄ different stochastic trends.

3. Compute a consistent estimate of the (m × d)−dimensional space orthogonal to the
cointegrating relations βi,⊥ from the defactored data. Select the hypothesized stochastic

trends as β̂′i,⊥Y
∗
it (or β̂′i,⊥X̂it).

4. Return to Step 1 and test the panel of d-variate processes β̂′i,⊥Y
∗
it (or β̂′i,⊥X̂it) for no

cointegration. Failing to reject the null hypothesis leads to the conclusion that the max-
imum cointegrating rank over the cross-sections is r̄. If the null hypothesis is rejected
again, increase the hypothesized rank r̄ by one and repeat steps 2-4 until the null is not
rejected or until H0 : r̄ = m− 1 is tested.

We consider two different estimators of βi,⊥. The first one is the principal components esti-
mator proposed by Stock and Watson (1988). It is computed as the eigenvectors corresponding
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to the d largest eigenvalues of 1
T 2

∑T
t=2 X̂itX̂

′
it, (or, alternatively, of 1

T 2

∑T
t=2 Y

∗τ
it (Y ∗τit )′, where

Y ∗τit is the projection of Y ∗it on the space spanned by (1, t)). This estimator is employed by
Carrion-i Silvestre and Surdeanu (2011) in their PMSB cointegration rank test. The second
estimator is obtained as the right null space of the estimator of βi computed by a slightly
modified version of the method of Johansen. Suppressing the index i for brevity, recall that
in this case β̂ is estimated as the eigenvectors corresponding to the r smallest eigenvalues of
the eigenvalue problem ∣∣λS11 − S10S

−1
00 S01

∣∣ = 0.

Since scaling a matrix by a scalar does not affect its eigenvectors, we compute our estimator
from the eigenvalue problem ∣∣∣∣λ 1

T
Ŝ11 − Ŝ10Ŝ

−1
00 Ŝ01

∣∣∣∣ = 0,

where the moment matrices Ŝjk, j, k ∈ {0, 1}, are calculated as in Johansen (1995, pp. 96-
97) from the defactored data allowing for a time trend. Convergence in probability of these
moment matrices to their counterparts based on the cross-sectionally independent data can
be established as in Lemma A.4 in the Appendix.

It is worth noting that although both estimators are no longer superconsistent because
they are computed from the defactored data, this will not alter the convergence properties of
the individual LR trace test statistics. Instead of the usual Op(T

−1) consistency rate, we get

β̂i,⊥ − βi,⊥Ci = Op(C
−1
NT ), ∀i,

for some full-rank matrices Ci (see also Carrion-i Silvestre and Surdeanu, 2011, pp. 33). This
estimation error affects the selection of the stochastic trends as

β̂′i,⊥Y
∗
it = C ′iβ

′
i,⊥Y

∗
it +

(
β̂i,⊥ − βi,⊥Ci

)′
Y ∗it .

From the above representation it is easy to see that the GLS-detrended counterpart of the

error term
(
β̂i,⊥ − βi,⊥Ci

)′
Y ∗it will enter the cross-product matrices S∗jk for the derivation of

the individual LRSL*
traceiT

(0) statistics as an error term of order at most Op(C
−1
NT ) (see Lemma

A.4 in the Appendix).

It should also be noted that the above testing procedure is most powerful when all cross-
sectional units have the same cointegrating rank.

The unobserved common factors can be tested for unit roots by the ADF τ
F̂

or by the MQτf
or MQτc tests proposed by Bai and Ng (2004). If these turn out to be stationary, then we
conclude that the cointegrating properties of Xit determine those of the observed series Y cd

it .
Should the common factors be classified as non-stationary, then their cointegrating rank in
the case k > 1 can be tested by the GLS-based LR trace test of Saikkonen and Lütkepohl
(2000) applied to the estimates F̂t. The cointegrating rank of the common component for the
i-th cross-sectional unit then depends also on the individual loading Λi. If the idiosyncratic
components turn out to be I(0), then the cointegrating rank of Y cd

it is determined by that of
the common factors.
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As noted by Gengenbach et al. (2006), however, it is very unlikely that in the case of I(1)
factors and I(1) idiosyncratic components there exists a cointegrating vector β for Y cd

it which
simultaneously eliminates both sources of nonstationarity.

4 Monte Carlo simulation study

4.1 Data generating process

The data generating process (DGP) considered for the simulation study is an extension
of the three-variate VAR(1) Toda process (Toda, 1994, 1995) to which common factors have
been added. This process has been chosen to maintain consistency and to enable comparison
of the results with those of Saikkonen and Lütkepohl (2000) and Örsal and Droge (2012).

The general form of the DGP is:

Yit = µ0i + µ1it+Xit + Λ′iFt, (16)

Xit =

 ψa 0 0
0 ψb 0
0 0 1

Xi,t−1 + εit, (17)

εit ∼ iidN

 0
0
0

 ,

 1 θ1 θ2

θ1 1 θ3

θ2 θ3 1

 , (18)

Ft = BFt−1 + ut, ut ∼ N
(
0, σ2

F

)
. (19)

The Toda process introduces instantaneous correlation between the stationary and the
integrated components of Xit through the parameters θj , j = 1, 2, 3, in the covariance matrix
of the innovations εit. The performance of the test has been investigated both when correlation
is present and absent.

If ψa = ψb = 1, then the true cointegrating rank of Xit is zero. Since there are no
stationary components, θj = 0, ∀j, and thus each component of Xit follows a random walk:

Xit = Xi,t−1 + εit, εit ∼ N (0, I3) , ∀i = 1, . . . , N.

If |ψa| < 1 and ψb = 1, then the true cointegrating rank of Xit is one as it consists of one
stationary and two non-stationary components. Allowing for θ1, θ2 6= 0 introduces correlation
between the stationary and non-stationary components.

When both |ψa| < 1 and |ψb| < 1, the process for Xit has cointegrating rank two. In this
case setting θ2, θ3 6= 0 results in correlation between the single non-stationary and the two
stationary components.

Sample sizes of T − 1 ∈ {25, 50, 100} and N ∈ {10, 25, 50, 100} are generated with the
initial values of Xit set to zero. The large-T behaviour of the test is analysed also for T − 1 ∈
{200, 500} and N ∈ {10, 25, 50}.
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For the parameters ψa and ψb only a subset of the parameter values used in the simulation
studies in Saikkonen and Lütkepohl (2000) and Örsal and Droge (2012) is selected, namely
ψa, ψb ∈ {1, 0.95, 0.7}. For a system with true cointegrating rank zero we set ψa = ψb = 1 and
θj = 0. A system with cointegrating rank one is simulated with (ψa, ψb) ∈ {(0.7, 1), (0.95, 1)},
each with the following two correlation structures of the errors: (θ1, θ2, θ3) = (0, 0, 0) and
(θ1, θ2, θ3) = (0.8, 0.3, 0). The combinations (ψa, ψb) ∈ {(0.7, 0.7), (0.95, 0.7)}, each with
(θ1, θ2, θ3) ∈ {(0, 0, 0) , (0, 0.8, 0.3)}, are considered for simulating systems with cointegrating
rank two. The linear trend term parameters µ0i and µ1i are set to zero for all i, since they
do not affect the results (see also Saikkonen and Lütkepohl (2000), Lütkepohl et al. (2001)
and Trenkler (2002)). The number of factors is set to k = 2 with σ2

F = 1. In the case of
I(0) factors the matrix B is given by ρ I2 for ρ = 0.9, and B = I2 when the factors are I(1).
The factor loadings are generated as independent uniformly distributed random variables of
the corresponding dimension: Λi ∼ U [−1, 3]. Prior to extraction of the factors each series is
standardised to have zero mean and unit variance.

The simulations are performed in GAUSS 13. The number of replications is 1000, which
implies that the standard error of an estimate of the type I error at the 5% significance level
is 0.007. The size of the test can be calculated from the reported results as the sum of the
proportions for ranks higher than the true rank. Hence, in this setting a test is considered
to be undersized if the proportion of rejections of the true cointegrating rank in favour of
higher ranks is lower than 0.036, and oversized, if this proportion exceeds 0.074. The (size-
unadjusted) power is computed as the sum of the proportions for ranks higher than the
hypothesized rank.

4.2 Simulation results

Only results for the experiments considering I(1) factors are reported. The results in-
volving near non-stationary factors are qualitatively the same and are omitted for brevity.
The usual 5% nominal size applies in all cases. In all tables PSLJdef denotes the Panel SL
test applied to the defactored data, where the selector matrix for the stochastic trends βi,⊥
is estimated using Johansen’s approach. Similarly, PSLSWdef stands for the Panel SL test ap-
plied to the defactored data with βi,⊥ estimated using the principal components approach of
Stock and Watson (1988). PSLind denotes the Panel SL test applied to the cross-sectionally
independent data (i.e. no common components are added to the process Xit), which serves
as a benchmark for comparison.

Table 2 presents the properties of the test when the true cointegrating rank is zero. The
size of the test applied to the cross-sectionally independent data fluctuates around the desired
5% level for all N and T where T > N , except when T = 25, N = 10. When T < N the test
becomes oversized, as a result of the condition N/T → 0 not being fulfilled. The results for
the defactored data are very similar regardless whether β̂J

⊥ or β̂SW
⊥ has been used to select

the stochastic trends and resemble those for the cross-sectionally independent data.

The properties of the test when the true cointegrating rank is one with ψa = 0.7 and ψb = 1
are presented in Tables 3 and 4. When (θ1, θ2, θ3) = (0, 0, 0) and there is no cross-sectional
dependence (see Table 3), the Panel SL test has low power only when T = 25 and N < 50,
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Table 2: Chosen rank, proportions, true cointegrating rank r = 0

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.898 0.102 0 0 0.898 0.102 0 0 0.900 0.099 0.001 0
25 0.827 0.173 0 0 0.827 0.173 0 0 0.857 0.143 0 0
50 0.784 0.216 0 0 0.784 0.216 0 0 0.803 0.197 0 0
100 0.710 0.290 0 0 0.710 0.290 0 0 0.693 0.307 0 0

50

10 0.938 0.062 0 0 0.938 0.061 0.001 0 0.936 0.064 0 0
25 0.922 0.078 0 0 0.922 0.078 0 0 0.919 0.081 0 0
50 0.916 0.084 0 0 0.916 0.084 0 0 0.920 0.080 0 0
100 0.866 0.134 0 0 0.866 0.134 0 0 0.886 0.114 0 0

100

10 0.936 0.064 0 0 0.936 0.064 0 0 0.946 0.054 0 0
25 0.933 0.067 0 0 0.933 0.067 0 0 0.935 0.065 0 0
50 0.930 0.070 0 0 0.930 0.070 0 0 0.924 0.076 0 0
100 0.909 0.091 0 0 0.909 0.091 0 0 0.917 0.083 0 0

200

10 0.936 0.064 0 0 0.936 0.064 0 0 0.943 0.057 0 0
25 0.943 0.057 0 0 0.943 0.057 0 0 0.942 0.058 0 0
50 0.945 0.055 0 0 0.945 0.055 0 0 0.952 0.048 0 0

500

10 0.946 0.054 0 0 0.946 0.054 0 0 0.945 0.055 0 0
25 0.947 0.053 0 0 0.947 0.053 0 0 0.949 0.051 0 0
50 0.936 0.064 0 0 0.936 0.064 0 0 0.935 0.065 0 0

but the probability of correct rank selection increases with N for T fixed. For T ≥ 50 its
power against the null of no cointegration is about 95%. For the defactored data the results
are again qualitatively the same for PSLJdef and PSLSWdef , but their power is lower for small
values of N and T compared to the benchmark. The power nevertheless increases to the 95%
level for T,N ≥ 50. The Panel SL test is undersized for small T in all three cases, and the
size approaches 5% from below as T increases.

When correlation is introduced through (θ1, θ2, θ3) = (0.8, 0.3, 0) (see Table 4), the size
and power in the case of cross-sectionally independent data are excellent even for T and N
as small as 25. However, the properties of the Panel SL test applied to the defactored data
differ dramatically between PSLJdef and PSLSWdef . The high correlation coefficient θ1 = 0.8
between the I(0) component and one of the unit-root processes in Xit causes the principal
components estimator of Stock and Watson to fail in selecting the stochastic trends correctly.
As a result, PSLSWdef is severely oversized when testing H0 : r = 1. For T fixed its size increases
with N , and for a fixed N it increases with T up to T = 100, and subsequently decreases
as T grows to 500. The conclusion is that the principal components estimator requires a
very large T to cope with the problem. Using it is therefore likely to yield incorrect results
in small samples when there exists instantaneous correlation between the innovations of the
I(0) and I(1) components. In contrast, the Panel SL test employing Johansen’s estimator of
β⊥ behaves very much like in the benchmark case, maintaining the desired size and power
properties for all N and T .

The results for the case of a cointegrating rank one with a near-unit root component are
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presented in Tables 5 and 6. When ψa = 0.95, ψb = 1 and there is no correlation between
the innovations εit (see Table 5), the Panel SL test suffers from low power, requiring at least
200 time observations and 50 cross-sectional units to be able to correctly select the true
cointegrating rank in most cases. Nevertheless, the power increases monotonously over N for
T fixed in all three settings. As there is no correlation, the results for the defactored data are
almost the same for PSLJdef and PSLSWdef , being also very close to those for the cross-sectionally
independent data.

The presence of correlation between the idiosyncratic errors in this setting (see Table 6)
results in considerably improved power properties of PSLind. The results for the defactored
data based on PSLJdef are also promising and closely mimic those for the cross-sectionally

independent data, although PSLJdef is not as powerful as PSLind for small T . However, the
correlation again causes the Stock and Watson principal components estimator to fail, whereas
the region in which PSLSWdef over-rejects H0 : r = 1 is shifted towards higher values of T . The
latter may be explained by the Panel SL test being undersized for small T , which offsets the
over-rejection caused by the incorrect selection of the stochastic trend(s).

Tables 7 and 8 present the results for systems having true cointegrating rank two with
ψa = ψb = 0.7. When there is no correlation between the idiosyncratic errors the Panel SL
test selects the correct cointegrating rank for the cross-sectionally independent data in most
replications where T ≥ 50; for T = 25 it rather selects cointegrating rank one. It is slightly
oversized, though, when testing H0 : r = 2 against H1 : r = 3, with the size fluctuating
around the 8% level. The PSLSWdef and PSLJdef tests on the defactored data are less powerful
for small T , but they also achieve more than 90% probability of correct rank selection for
T ≥ 100 and also for T = 50 and N = 100, with the PSLJdef test performing better than

PSLSWdef for T = 50.

When correlation is introduced into the systems, the Panel SL test gains on power (see
Table 8), and it already selects the true cointegrating rank in most replications for T ≥ 25
and N ≥ 50 when the cross-sectionally independent data is considered. For the defactored
data, PSLJdef fails for T = 25, but performs excellently for T ≥ 50, N ≥ 25. Similarly to the

case with true rank 1, the test based on PSLSWdef is oversized when considering H0 : r = 2
against H1 : r = 3, with the size distortions diminishing for very large T .

The results for systems with cointegrating rank two with one near unit-root component
are presented in tables 9 and 10. When ψa = 0.95, ψb = 0.7 and (θ1, θ2, θ3) = (0, 0, 0), the
PSLind test requires at least T = 100, N = 100 to select the correct cointegrating rank in
most cases. The two tests based on the defactored data are less powerful when T < 200, with
PSLJdef clearly performing better than PSLSWdef . In the presence of correlation, the PSLSWdef
test is again oversized for large T . The PSLJdef test, in contrast, behaves very much like the
benchmark and selects the correct cointegrating rank in most cases for T ≥ 100 and N ≥ 25.
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Table 3: Chosen rank, proportions, true rank r = 1, ψa = 0.7, ψb = 1, (θ1, θ2, θ3) = (0, 0, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.824 0.174 0.002 0 0.824 0.169 0.007 0 0.780 0.215 0.005 0
25 0.658 0.342 0 0 0.658 0.342 0 0 0.603 0.397 0 0
50 0.479 0.521 0 0 0.479 0.521 0 0 0.402 0.598 0 0
100 0.239 0.761 0 0 0.239 0.761 0 0 0.142 0.858 0 0

50

10 0.500 0.499 0.001 0 0.500 0.499 0.001 0 0.331 0.653 0.016 0
25 0.127 0.872 0.001 0 0.127 0.873 0 0 0.058 0.938 0.004 0
50 0.006 0.994 0 0 0.006 0.994 0 0 0.001 0.999 0 0
100 0 1 0 0 0 1 0 0 0 1 0 0

100

10 0.017 0.956 0.027 0 0.017 0.967 0.016 0 0.002 0.956 0.042 0
25 0 0.979 0.021 0 0 0.981 0.019 0 0 0.956 0.044 0
50 0 0.981 0.019 0 0 0.983 0.017 0 0 0.954 0.046 0
100 0 0.989 0.011 0 0 0.992 0.008 0 0 0.963 0.037 0

200
10 0 0.937 0.063 0 0 0.949 0.051 0 0 0.937 0.063 0
25 0 0.960 0.040 0 0 0.970 0.030 0 0 0.936 0.064 0
50 0 0.955 0.045 0 0 0.972 0.028 0 0 0.935 0.065 0

500
10 0 0.920 0.079 0.001 0 0.931 0.069 0 0 0.939 0.061 0
25 0 0.927 0.073 0 0 0.937 0.063 0 0 0.929 0.071 0
50 0 0.933 0.067 0 0 0.949 0.051 0 0 0.931 0.069 0

Table 4: Chosen rank, proportions, true rank r = 1, ψa = 0.7, ψb = 1, (θ1, θ2, θ3) = (0.8, 0.3, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.366 0.619 0.015 0 0.366 0.559 0.075 0 0.046 0.895 0.059 0
25 0.030 0.966 0.004 0 0.030 0.820 0.150 0 0.001 0.936 0.063 0
50 0 0.998 0.002 0 0 0.761 0.239 0 0 0.931 0.069 0
100 0 0.997 0.003 0 0 0.635 0.365 0 0 0.921 0.079 0

50

10 0.005 0.962 0.033 0 0.005 0.700 0.295 0 0 0.931 0.069 0
25 0 0.976 0.024 0 0 0.413 0.587 0 0 0.940 0.060 0
50 0 0.985 0.015 0 0 0.140 0.860 0 0 0.942 0.058 0
100 0 0.994 0.006 0 0 0.013 0.987 0 0 0.942 0.058 0

100

10 0 0.970 0.030 0 0 0.579 0.421 0 0 0.943 0.057 0
25 0 0.976 0.024 0 0 0.259 0.741 0 0 0.942 0.058 0
50 0 0.979 0.021 0 0 0.043 0.957 0 0 0.950 0.050 0
100 0 0.991 0.009 0 0 0 1 0 0 0.952 0.048 0

200
10 0 0.954 0.046 0 0 0.673 0.327 0 0 0.941 0.059 0
25 0 0.978 0.022 0 0 0.451 0.549 0 0 0.954 0.046 0
50 0 0.973 0.027 0 0 0.210 0.790 0 0 0.952 0.048 0

500
10 0 0.963 0.037 0 0 0.821 0.179 0 0 0.952 0.048 0
25 0 0.962 0.038 0 0 0.747 0.253 0 0 0.949 0.051 0
50 0 0.960 0.040 0 0 0.648 0.352 0 0 0.947 0.053 0
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Table 5: Chosen rank, proportions, true rank r = 1, ψa = 0.95, ψb = 1, (θ1, θ2, θ3) = (0, 0, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.893 0.107 0 0 0.893 0.104 0.003 0 0.900 0.099 0.001 0
25 0.831 0.169 0 0 0.831 0.169 0 0 0.853 0.147 0 0
50 0.771 0.229 0 0 0.771 0.229 0 0 0.791 0.209 0 0
100 0.711 0.289 0 0 0.711 0.289 0 0 0.689 0.311 0 0

50

10 0.935 0.065 0 0 0.935 0.064 0.001 0 0.932 0.068 0 0
25 0.913 0.087 0 0 0.913 0.087 0 0 0.892 0.108 0 0
50 0.889 0.111 0 0 0.889 0.111 0 0 0.886 0.114 0 0
100 0.820 0.180 0 0 0.820 0.180 0 0 0.831 0.169 0 0

100

10 0.909 0.091 0 0 0.909 0.090 0.001 0 0.911 0.089 0 0
25 0.861 0.139 0 0 0.861 0.139 0 0 0.855 0.145 0 0
50 0.810 0.190 0 0 0.810 0.190 0 0 0.798 0.202 0 0
100 0.696 0.304 0 0 0.696 0.304 0 0 0.694 0.306 0 0

200
10 0.737 0.263 0 0 0.737 0.263 0 0 0.685 0.314 0.001 0
25 0.510 0.490 0 0 0.510 0.490 0 0 0.441 0.559 0 0
50 0.199 0.801 0 0 0.199 0.801 0 0 0.183 0.817 0 0

500
10 0.053 0.924 0.023 0 0.053 0.935 0.012 0 0.004 0.977 0.019 0
25 0 0.983 0.017 0 0 0.993 0.007 0 0 0.996 0.004 0
50 0 0.990 0.010 0 0 0.996 0.004 0 0 0.997 0.003 0

Table 6: Chosen rank, proportions, true rank r = 1, ψa = 0.95, ψb = 1, (θ1, θ2, θ3) =
(0.8, 0.3, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.887 0.111 0.002 0 0.887 0.100 0.013 0 0.871 0.129 0 0
25 0.826 0.174 0 0 0.826 0.169 0.005 0 0.789 0.211 0 0
50 0.714 0.286 0 0 0.714 0.282 0.004 0 0.697 0.303 0 0
100 0.583 0.417 0 0 0.583 0.416 0.001 0 0.521 0.479 0 0

50

10 0.867 0.132 0.001 0 0.867 0.126 0.007 0 0.806 0.194 0 0
25 0.759 0.240 0.001 0 0.759 0.233 0.008 0 0.669 0.331 0 0
50 0.570 0.430 0 0 0.570 0.425 0.005 0 0.499 0.501 0 0
100 0.315 0.685 0 0 0.315 0.683 0.002 0 0.229 0.771 0 0

100

10 0.585 0.408 0.007 0 0.585 0.394 0.021 0 0.346 0.654 0 0
25 0.170 0.828 0.002 0 0.170 0.791 0.039 0 0.058 0.942 0 0
50 0.013 0.987 0 0 0.013 0.954 0.033 0 0.004 0.996 0 0
100 0 1 0 0 0 0.971 0.029 0 0 1 0 0

200
10 0.047 0.931 0.022 0 0.047 0.795 0.158 0 0 0.989 0.011 0
25 0 0.994 0.006 0 0 0.680 0.320 0 0 1 0 0
50 0 0.988 0.012 0 0 0.471 0.529 0 0 1 0 0

500
10 0 0.976 0.024 0 0 0.644 0.356 0 0 0.992 0.008 0
25 0 0.981 0.019 0 0 0.367 0.633 0 0 0.999 0.001 0
50 0 0.984 0.016 0 0 0.109 0.891 0 0 1 0 0
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Table 7: Chosen rank, proportions, true rank r = 2, ψa = ψb = 0.7, (θ1, θ2, θ3) = (0, 0, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.665 0.327 0.008 0 0.665 0.325 0.010 0 0.561 0.411 0.028 0
25 0.381 0.619 0 0 0.381 0.614 0.005 0 0.266 0.702 0.032 0
50 0.154 0.846 0 0 0.154 0.844 0.002 0 0.066 0.909 0.025 0
100 0.024 0.976 0 0 0.024 0.976 0 0 0 0.973 0.027 0

50

10 0.050 0.702 0.238 0.010 0.050 0.742 0.208 0 0.007 0.401 0.557 0.035
25 0 0.413 0.580 0.007 0 0.531 0.469 0 0 0.089 0.887 0.024
50 0 0.138 0.859 0.003 0 0.243 0.757 0 0 0.003 0.974 0.023
100 0 0.020 0.980 0 0 0.062 0.938 0 0 0 0.984 0.016

100

10 0 0.009 0.925 0.066 0 0.029 0.954 0.017 0 0 0.911 0.089
25 0 0 0.965 0.035 0 0 0.996 0.004 0 0 0.924 0.076
50 0 0 0.963 0.037 0 0 0.999 0.001 0 0 0.902 0.098
100 0 0 0.986 0.014 0 0 1 0 0 0 0.891 0.109

200
10 0 0 0.921 0.079 0 0 0.944 0.056 0 0 0.922 0.078
25 0 0 0.940 0.060 0 0 0.966 0.034 0 0 0.916 0.084
50 0 0 0.958 0.042 0 0 0.984 0.016 0 0 0.920 0.080

500
10 0 0 0.901 0.099 0 0 0.924 0.074 0 0 0.928 0.072
25 0 0 0.927 0.073 0 0 0.942 0.058 0 0 0.934 0.066
50 0 0 0.934 0.066 0 0 0.951 0.049 0 0 0.928 0.072

Table 8: Chosen rank, proportions, true rank r = 2, ψa = ψb = 0.7, (θ1, θ2, θ3) = (0, 0.8, 0.3)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.204 0.749 0.047 0 0.204 0.604 0.189 0.003 0.018 0.731 0.248 0.003
25 0.006 0.931 0.063 0 0.006 0.526 0.468 0 0 0.526 0.474 0
50 0 0.859 0.141 0 0 0.274 0.726 0 0 0.249 0.751 0
100 0 0.781 0.219 0 0 0.082 0.918 0 0 0.059 0.941 0

50

10 0.001 0.380 0.601 0.018 0.001 0.096 0.868 0.035 0 0.065 0.929 0.006
25 0 0.036 0.951 0.013 0 0 0.950 0.050 0 0.003 0.996 0.001
50 0 0 0.995 0.005 0 0 0.954 0.046 0 0 0.999 0.001
100 0 0 0.997 0.003 0 0 0.934 0.066 0 0 1 0

100

10 0 0.002 0.962 0.036 0 0 0.878 0.122 0 0 0.977 0.023
25 0 0 0.976 0.024 0 0 0.763 0.237 0 0 0.989 0.011
50 0 0 0.973 0.027 0 0 0.640 0.360 0 0 0.990 0.010
100 0 0 0.989 0.011 0 0 0.458 0.542 0 0 0.998 0.002

200
10 0 0 0.969 0.031 0 0 0.856 0.144 0 0 0.968 0.032
25 0 0 0.969 0.031 0 0 0.762 0.238 0 0 0.984 0.016
50 0 0 0.971 0.029 0 0 0.641 0.359 0 0 0.982 0.018

500
10 0 0 0.960 0.040 0 0 0.882 0.118 0 0 0.952 0.048
25 0 0 0.955 0.045 0 0 0.832 0.168 0 0 0.957 0.043
50 0 0 0.958 0.042 0 0 0.778 0.222 0 0 0.962 0.038
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Table 9: Chosen rank, proportions, true rank r = 2, ψa = 0.95, ψb = 0.7, (θ1, θ2, θ3) = (0, 0, 0)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.809 0.190 0.001 0 0.809 0.185 0.006 0 0.761 0.236 0.003 0
25 0.649 0.351 0 0 0.649 0.351 0 0 0.604 0.394 0.002 0
50 0.474 0.526 0 0 0.474 0.526 0 0 0.386 0.614 0 0
100 0.281 0.719 0 0 0.281 0.719 0 0 0.133 0.867 0 0

50

10 0.496 0.500 0.004 0 0.496 0.498 0.006 0 0.311 0.667 0.022 0
25 0.112 0.885 0.003 0 0.112 0.884 0.004 0 0.044 0.944 0.012 0
50 0.004 0.996 0 0 0.004 0.995 0.001 0 0 0.990 0.010 0
100 0 0.999 0.001 0 0 1 0 0 0 0.992 0.008 0

100

10 0.008 0.903 0.088 0.001 0.008 0.928 0.064 0 0 0.853 0.146 0.001
25 0 0.860 0.140 0 0 0.918 0.082 0 0 0.719 0.281 0
50 0 0.759 0.241 0 0 0.869 0.131 0 0 0.555 0.445 0
100 0 0.596 0.404 0 0 0.799 0.201 0 0 0.291 0.709 0

200
10 0 0.439 0.548 0.013 0 0.514 0.482 0.004 0 0.335 0.654 0.011
25 0 0.100 0.890 0.010 0 0.140 0.860 0 0 0.048 0.951 0.001
50 0 0.006 0.994 0 0 0.016 0.984 0 0 0.004 0.996 0

500
10 0 0 0.931 0.069 0 0.001 0.970 0.029 0 0 0.948 0.052
25 0 0 0.949 0.051 0 0 0.982 0.018 0 0 0.967 0.033
50 0 0 0.958 0.042 0 0 0.992 0.008 0 0 0.958 0.042

Table 10: Chosen rank, proportions, true rank r = 2, ψa = 0.95, ψb = 0.7, (θ1, θ2, θ3) =
(0, 0.8, 0.3)

PSLJ
def PSLSW

def PSLind

T N 0 1 2 3 0 1 2 3 0 1 2 3

25

10 0.719 0.277 0.004 0 0.719 0.228 0.053 0 0.571 0.416 0.013 0
25 0.461 0.533 0.006 0 0.461 0.438 0.101 0 0.282 0.712 0.006 0
50 0.210 0.788 0.002 0 0.210 0.644 0.146 0 0.076 0.921 0.003 0
100 0.045 0.953 0.002 0 0.045 0.735 0.220 0 0.003 0.995 0.002 0

50

10 0.240 0.725 0.034 0.001 0.240 0.499 0.259 0.002 0.033 0.892 0.075 0
25 0.003 0.890 0.107 0 0.003 0.311 0.686 0 0 0.907 0.093 0
50 0 0.815 0.185 0 0 0.052 0.948 0 0 0.879 0.121 0
100 0 0.633 0.367 0 0 0 1 0 0 0.801 0.199 0

100

10 0.001 0.592 0.398 0.009 0.001 0.185 0.796 0.018 0 0.415 0.585 0
25 0 0.168 0.827 0.005 0 0.005 0.982 0.013 0 0.105 0.895 0
50 0 0.018 0.981 0.001 0 0 0.986 0.014 0 0.007 0.993 0
100 0 0 0.998 0.002 0 0 0.987 0.013 0 0 1 0

200
10 0 0.019 0.962 0.019 0 0.008 0.892 0.100 0 0.001 0.997 0.002
25 0 0 0.991 0.009 0 0 0.804 0.196 0 0 1 0
50 0 0 0.993 0.007 0 0 0.650 0.350 0 0 1 0

500
10 0 0 0.967 0.033 0 0 0.784 0.216 0 0 1 0
25 0 0 0.977 0.023 0 0 0.586 0.414 0 0 0.999 0.001
50 0 0 0.983 0.017 0 0 0.353 0.647 0 0 1 0
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5 Conclusion

In this paper we propose an extension of the Panel SL cointegration rank test by Örsal
and Droge (2012) allowing for cross-sectional dependence. The dependence is modelled by
unobserved common factors which may be stationary or integrated or a combination of both
and which are allowed to affect all variables through heterogeneous loadings. The factors and
their loadings are estimated by principal components from the first differenced and demeaned
observations as proposed by Bai and Ng (2004). In this way the integrating and cointe-
grating properties of the unobserved common and idiosyncratic components can be tested
independently of each other.

The null hypothesis of no cointegration among the idiosyncratic components is then tested
directly by the Panel SL test applied to the defactored data. Testing the null hypothesis
of cointegrating rank greater than zero is performed by applying the Panel SL test for no
cointegration to estimates of the idiosyncratic stochastic trends. The latter are extracted
through a consistent estimate of the orthogonal complement of the space spanned by the
cointegrating relations. Two such estimators computed from the defactored data have been
considered: the principal components estimator of Stock and Watson (1988) and the estimator
of Johansen (1995).

A Monte Carlo simulation study demonstrates that the proposed rank testing procedure
which selects the stochastic trends by the Johansen’s estimator (the PSLJdef test) preserves
the properties of the Panel SL test for independent data (PSLind) in all experimental set-
tings considered. The PSLJdef test has the correct size when testing the null hypothesis of
no cointegration for T ≥ N , and it is undersized when testing for higher cointegrating ranks,
approaching the correct size from below as T grows large. Although it is less powerful than
PSLind in some cases for short time series, PSLJdef continues to offer significant power gains
as the number of cross-sections increases. In contrast, the Panel SL rank testing procedure
employing the principal components estimator of Stock and Watson (PSLSWdef ) turns out to
perform unsatisfactorily in the presence of correlation between the innovations to the station-
ary and non-stationary components of the idiosyncratic processes. In those cases the PSLSWdef
test for a cointegrating rank greater than zero becomes oversized, with the size distortions
diminishing only as T grows very large. We would thus recommend the PSLJdef test for use
in empirical research.

Several directions for further development of the Panel SL test can be outlined. Other ways
for controlling for the cross-sectional dependence can be explored, for example approximating
the common factors by the cross-sectional averages of the observed data following Pesaran
(2006). The latter approach is expected to be more suitable for small values of N and T when
the method of principal components may yield imprecise estimates of the common factors and
their loadings. Extensions to the case of weak cross-sectional dependence, for example spatial
type of dependence, can also be considered.
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Appendix

In the following we shall show that testing the null hypothesis of no cointegration by
the Panel SL test using the defactored data yields asymptotically equivalent results as using
the cross-sectionally independent idiosyncratic components. We first outline some general
considerations and prove auxiliary lemmas necessary for the proof of Theorem 3.1.

Recall that the cross-sectionally independent processes Yit and the defactored observed
processes Y ∗it are defined as

Yit = µ0i + µ1it+Xit,

Y ∗it = µ0i + µ1it+Xit + Λ′iFt − Λ̂′iF̂t,

where F̂t =
∑t

s=2 f̂s and ft = ∆Ft −∆F .

Bai and Ng (2004) have shown that

F̂t = H

(
Ft − F1 −

FT − F1

T − 1
(t− 1)

)
+ Vt, (A.1)

where Vt =
∑t

s=2 vs =
∑t

s=2

(
f̂s −Hfs

)
and ‖Vt‖ = Op

(√
T
N

)
. H is a full rank (k × k)

matrix defined as H = V −1
NT

(
f̂ ′f/(T − 1)

)
(Λ′Λ/(Nm)), where VNT is a diagonal matrix with

the k largest eigenvalues of yy′/ ((T − 1)Nm) in decreasing order on the main diagonal. Bai
(2003) has shown that ‖H‖ = Op(1).

We make further use of the notation of Bai and Ng (2004) and let Di = Λ̂i −
(
H−1

)′
Λi.

Note that in the current formulation of the model Λi and Di are (k×m) matrices, as opposed
to (k × 1) vectors in Bai and Ng (2004). Lemma 1 of Bai and Ng (2004) establishes that for
the l-th column of Di it holds that

‖Di(l)‖ = Op

(
1

min(
√
T ,N)

)
for each i = 1, . . . , N. (A.2)

Therefore for the matrix Di it holds that

‖Di‖ ≤

√√√√ m∑
l=1

‖Di(l)‖2 ≤
√
mOp

(
1

min(
√
T ,N)

)
≤
√
mOp

(
C−1
NT

)
. (A.3)

Now, substituting F̂t with the expression in (A.1), the difference between the defactored and
the cross-sectionally independent process can be decomposed into a linear time trend and a
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stochastic trend:

Y ∗it − Yit = Λ′iFt − Λ̂′iF̂t

= Λ′iH
−1HFt − Λ̂′i

[(
HFt −HF1 −H

FT − F1

T − 1
(t− 1)

)
+ Vt

]
=
(

Λ′iH
−1 − Λ̂′i

)
HFt + Λ̂′iHF1 + Λ̂′iH

FT − F1

T − 1
(t− 1)− Λ̂′iVt

=
(

Λ′iH
−1 − Λ̂′i

)
HFt + Λ̂′iHF1 − Λ′iH

−1HF1 + Λ′iF1

+ Λ̂′iH
FT − F1

T − 1
(t− 1)− Λ′iH

−1H
FT − F1

T − 1
(t− 1)

+ Λ′i
FT − F1

T − 1
(t− 1)− Λ̂′iVt + Λ′iH

−1Vt − Λ′iH
−1Vt

=
(

Λ′iH
−1 − Λ̂′i

)
HFt + (Λ̂′i − Λ′iH

−1)HF1 + Λ′iF1

+
(

Λ̂′i − Λ′iH
−1
)
H
FT − F1

T − 1
(t− 1) + Λ′i

FT − F1

T − 1
(t− 1)

−
(

Λ̂′i − Λ′iH
−1
)
Vt − Λ′iH

−1Vt

= D′iHF1 + Λ′iF1 +D′iH
FT − F1

T − 1
(t− 1) + Λ′i

FT − F1

T − 1
(t− 1) (A.4)

− D′iHFt −D′iVt − Λ′iH
−1Vt, (A.5)

where the time trend terms are grouped together in (A.4) and the stochastic trend terms
are in (A.5). The time trend in (A.4) can be added to the existing time trend µ0i + µ1it of
the process. Therefore no prior detrending of the factor estimates F̂t is required, since both
the original time trend and the time trend arising from the defactoring procedure will be
simultaneously estimated by the GLS procedure in the next step.

Defining the new combined trend parameters of the defactored process as

µ+
0i = µ0i +D′iHF1 + Λ′iF1 −D′iH

FT − F1

T − 1
− Λ′i

FT − F1

T − 1
and

µ+
1i = µ1i +D′iH

FT − F1

T − 1
+ Λ′i

FT − F1

T − 1
,

the process Y ∗it can be written as

Y ∗it = µ+
0i + µ+

1it+Xit −D′iHFt −D′iVt − Λ′iH
−1Vt. (A.6)

Introducing the shorthand notation for the stochastic trend term in (A.5)

ηit = D′iHFt +D′iVt + Λ′iH
−1Vt,

we obtain
Y ∗it = µ+

0i + µ+
1it+Xit − ηit

and we note that ‖ηit‖ = Op

(√
T
N

)
+Op(1) and ‖∆ηit‖ = oP (1).
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It is easily seen that the estimate of the idiosyncratic component X̂it =
∑t

s=2

(
yis − Λ̂′if̂s

)
differs from Y ∗it only in the formulation of the constant and the time trend term:

X̂it = Xit +
(
D′iHF1 −Xi1

)
+

(
D′iH

FT − F1

T − 1
− XiT −Xi1

T − 1

)
(t− 1)

−D′iHFt −D′iVt − Λ′iH
−1Vt,

= Xit + µ++
0i + µ++

1i t− ηit.

In other words, while Y ∗it contains both the original time trend and a time trend arising from
the defactoring, X̂it contains only deterministic terms arising from recovering the idiosyncratic
and common components, with the time trend parameter diminishing to zero as Op

(
T−1/2

)
and the intercept term being Op(1).

From these representations it is clear that β′iY
∗
it and β′iX̂it will not be I(0) in the general

case, because βi is not necessarily a cointegrating vector for the stochastic trend term ηit.
Under the null hypothesis H0 : ri = 0,∀i, however, βi = αi = 0 and thus the stochastic
trend arising from the defactoring disappears from the cointegrating relation in the VECM
representation of Y ∗it :

∆Y ∗it = ν+
i + αi

(
β′iY

∗
i,t−1 − β′iηi,t−1 − τ+

i (t− 1)
)

+

pi−1∑
j=1

Γij
(
∆Y ∗i,t−j

)
+ ε+

it , (A.7)

where ν+
i = −Πiµ

+
i0 +

(
Im −

∑pi
j=1 Γij

)
µ+

1i and τ+
i = β′iµ

+
1i. The residual term ε+

it stands for

ε+
it = εit + ∆ηit −

∑pi−1
j=1 Γij∆ηi,t−j = εit + oP (1), therefore 1

T

∑T
t=1

(
ε+
itε

+′

it

)
p→ Ωi as T →∞

for each i.

Applying the GLS trend-adjustment of Saikkonen and Lütkepohl (2000) to Yit and Y ∗it
under H0 : ri = 0 for all i yields

X̃it = Yit − µ̃0i − µ̃1it

= Xit + (µ0i − µ̃0i) + (µ1i − µ̃1i)t, (A.8)

X̃∗it = Y ∗it − µ̃+
0i − µ̃

+
1it

= Xit + (µ+
0i − µ̃

+
0i) + (µ+

1i − µ̃
+
1i)t−D

′
iHFt −D′iVt − Λ′iH

−1Vt, (A.9)

where

‖µ+
0i − µ̃

+
0i‖ = ‖µ0i − µ̃0i‖ = Op(1), (A.10)

‖µ+
1i − µ̃

+
1i‖ = ‖µ1i − µ̃1i‖ = Op

(
1√
T

)
(A.11)

by Theorem 1 of Saikkonen and Lütkepohl (2000). The GLS-detrending under the null
hypothesis of no cointegration leaves X̂it unchanged and also numerically equal to X̃∗it. We
can therefore without loss of generality assume that

X̃∗it = X̂it = X̃it −D′iHFt −D′iVt − Λ′iH
−1Vt = X̃it − ηit. (A.12)
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We shall now re-state a result of Bai and Ng (2004) in terms of the processes X̃∗it and X̃it.
In particular, the statement of Lemma G.1 from the aforementioned article holds for each
element X̃∗it(l) and X̃it(l), l = 1, . . . ,m, of the vector processes X̃∗it and X̃it, respectively.

Lemma A.1. For each cross-section i = 1, . . . , N and for each pair of elements X̃it(l) and
X̃∗it(l) of the vector processes X̃∗it and X̃it, l = 1, . . . ,m, it holds that:

(i) 1√
T
X̃∗it(l) = 1√

T
X̃it(l) +Op

(
C−1
NT

)
,

(ii) 1
T 2

∑T
t=2 X̃

∗
it(l)

2 = 1
T 2

∑T
t=2 X̃it(l)

2 +Op
(
C−1
NT

)
,

(iii) 1
T

∑T
t=2 ∆X̃∗it(l)

2 = 1
T

∑T
t=2 ∆X̃it(l)

2 +Op
(
C−1
NT

)
,

(iv) 1
T

∑T
t=2 X̃

∗
i,t−1(l)∆X̃∗it(l) = 1

T

∑T
t=2 X̃i,t−1(l)∆X̃it(l) +Op

(
C−1
NT

)
,

(v) 1
T

∑T
t=2

(
∆X̃∗i,t(l)−∆X̃it(l)

)2
= Op

(
C−2
NT

)
.

Proof. The proofs of (i) – (iv) follow the same lines as those of Lemma G.1 in the Appendix
of Bai and Ng (2004) and are thus omitted. We prove (v):

1

T

T∑
t=2

(
∆X̃∗i,t(l)−∆X̃it(l)

)2

=
1

T

T∑
t=2

(
∆X̃i,t(l)−Di(l)

′Hft −Di(l)
′vt − Λi(l)

′H−1vt −∆X̃i,t(l)
)2

≤ ‖Di(l)
′‖2‖H‖2 1

T

T∑
t=2

‖ft‖2 + ‖Di(l)
′‖2 1

T

T∑
t=2

‖vt‖2

+ ‖Λi(l)′H−1‖2 1

T

T∑
t=2

‖vt‖2

≤ Op
(
C−2
NT

)
+Op

(
C−2
NT

)
Op
(
C−2
NT

)
+Op

(
C−2
NT

)
= Op

(
C−2
NT

)
,

since ‖Di(l)‖2 ≤ Op
(
C−2
NT

)
by (A.2), ‖Λi(l)‖ = Op(1) by Assumption 2, ‖H‖ = Op(1) by Bai

(2003), 1
T

∑T
t=2 ‖ft‖2 = Op(1) since by definition ft = ∆Ft −∆F ∼ I(0) and 1

T

∑T
t=2 ‖vt‖2 =

Op
(
C−2
NT

)
by Lemma 1 (a) of Bai and Ng (2004).

We further generalize these results for the vector processes as follows.

Lemma A.2. For each cross-section i = 1, . . . , N for the vector processes X̃∗it and X̃it it
holds that:

(i) 1√
T
X̃∗it = 1√

T
X̃it +

√
mOp

(
C−1
NT

)
,

(ii) 1
T 2

∑T
t=2 X̃

∗
itX̃
∗′
it = 1

T 2

∑T
t=2 X̃itX̃

′
it +mOp

(
C−1
NT

)
,

(iii) 1
T

∑T
t=2 ∆X̃∗it∆X̃

∗′
it = 1

T

∑T
t=2 ∆X̃it∆X̃

′
it +mOp

(
C−1
NT

)
,
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(iv) 1
T

∑T
t=2 X̃

∗
i,t−1∆X̃it

∗′ = 1
T

∑T
t=2 X̃i,t−1∆X̃ ′it +mOp

(
C−1
NT

)
,

(v) 1
T

∑T
t=2

∥∥∥∆X̃∗i,t −∆X̃it

∥∥∥2
= mOp

(
C−2
NT

)
.

Proof. (i) Follows from

1√
T

∥∥∥X̃∗it − X̃it

∥∥∥ =
1√
T

√√√√ m∑
l=1

(
X̃∗it(l)− X̃it(l)

)2

≤
√
m max

1≤l≤m

(
1√
T

∣∣∣X̃∗it(l)− X̃it(l)
∣∣∣)

≤
√
mOp

(
C−1
NT

)
,

since from Lemma A.1 (i) we have that 1√
T

∣∣∣X̃∗it(l)− X̃it(l)
∣∣∣ = Op

(
C−1
NT

)
for each l, i.

To show (ii) we shall make use of the intermediate result:

1

T 2

T∑
t=2

X̃∗it(l)X̃
∗
it(j) =

1

T 2

T∑
t=2

X̃it(l)X̃it(j) + Op
(
C−1
NT

)
for j, l = 1, . . . ,m; j 6= l. (A.13)

To see this, consider the expression∣∣∣∣∣ 1

T 2

T∑
t=2

(
X̃∗it(l)X̃

∗
it(j)− X̃it(l)X̃it(j)

)∣∣∣∣∣ ,
whose order of convergence, after expanding both X̃∗it(l) and X̃∗it(j) as

X̃∗it(l) = X̃it(l)−Di(l)
′HFt −Di(l)

′Vt − Λi(l)
′H−1Vt,

is dominated by the component∣∣∣∣∣ 1

T 2

T∑
t=2

(
X̃it(j)Di(l)

′HFt − X̃it(j)Di(l)
′Vt − X̃it(j)Λi(l)

′H−1Vt

)∣∣∣∣∣
≤

(
1

T 2

T∑
t=2

X̃it(j)
2

)1/2

‖Di(l)‖‖H‖

(
1

T 2

T∑
t=2

‖Ft‖2
)1/2

+

(
1

T 2

T∑
t=2

X̃it(j)
2

)1/2

‖Di(l)‖
1√
T

(
1

T

T∑
t=2

‖Vt‖2
)1/2

+

(
1

T 2

T∑
t=2

X̃it(j)
2

)1/2

‖Λi(l)′H−1‖ 1√
T

(
1

T

T∑
t=2

‖Vt‖2
)1/2

≤ Op
(
C−1
NT

)
+Op

(
N−1/2

)
Op
(
C−1
NT

)
+Op

(
C−1
NT

)
= Op

(
C−1
NT

)
,
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since
(

1
T 2

∑T
t=2 X̃it(j)

2
)1/2

= Op(1) by definition, ‖Di(l)‖ ≤ Op
(
C−1
NT

)
, ‖Λi(l)′H−1‖ = Op(1)

by the same argument as in the proof of Lemma A.1 (v) above and
(

1
T

∑T
t=2 ‖Vt‖2

)1/2
=

Op

(√
T
N

)
as shown by Bai and Ng (2004).

Now, considering the difference in the vector processes, by (A.13) and Lemma A.1 (i) we
obtain ∥∥∥∥∥ 1

T 2

T∑
t=2

(
X̃∗itX̃

∗′
it − X̃itX̃

′
it

)∥∥∥∥∥
2

≤
m∑

j,l=1

∣∣∣∣∣ 1

T 2

T∑
t=2

(
X̃∗it(j)X̃

∗
it(l)− X̃it(j)X̃it(l)

)∣∣∣∣∣
2

≤ m2Op
(
C−2
NT

)
,

which yields the desired result.

The proofs of (iii),(iv) and (v) use similar arguments and are omitted for brevity.

In order to analyse the derivation and the asymptotic behaviour of the LR trace statistics
LRSL∗

traceiT
(r) and LRSL

traceiT
(r) we shall make use of the notation in Johansen (1995). Let

Zi,0t = ∆X̃it,

Zi,1t = X̃i,t−1 and (A.14)

Zi,2t =
(

∆X̃ ′i,t−1, . . . ,∆X̃
′
i,t−pi+1

)′
.

We also introduce the product moment matrices Mi,jk, j, k = 0, 1, 2 as

Mi,jk =
1

T

T∑
t=1

Zi,jtZ
′
i,kt,

and the cross-product matrices Si,jk, j, k = 0, 1, which are defined as follows:

Si,00 = Mi,00 −Mi,02M
−1
i,22Mi,20,

Si,10 = Mi,10 −Mi,12M
−1
i,22Mi,20,

Si,11 = Mi,11 −Mi,12M
−1
i,22Mi,21.

In the same way we define the matrices Z∗i,jt, M
∗
i,jk, j, k = 0, 1, 2 and S∗i,jk, j, k = 0, 1 in terms

of the defactored and detrended process X̃∗it defined by (A.12).

The individual LR trace statistic based on the cross-sectionally independent and detrended
data is defined as

LRSL
traceiT

(r) = −T
m∑

j=r+1

ln
(

1− λ̂ij
)
,

where λ̂i1 > . . . > λ̂im denote the ordered estimated eigenvalues of the eigenvalue problem
defined in Johansen (1995, pp. 90-93):

|Si(λ)| =
∣∣∣λSi,11 − Si,10S

−1
i,00Si,01

∣∣∣ = 0. (A.15)
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The LR trace statistic for the defactored and detrended data LRSL∗
traceiT

(r) is defined in an
analogous manner using the starred versions of the cross-product matrices. In the following
arguments we shall make use of the following proposition:

Proposition A.1. If Assumption 1 holds, under the null hypothesis of no cointegration all
solutions to the eigenvalue problems |Si(λ)| = 0 and |S∗i (λ)| = 0 are Op(T

−1).

Proof. The statement of the proposition follows from the fact that under the null hypothesis
‖Si,11‖ = Op(T ), while ‖Si,01‖ = ‖Si,00‖ = ‖S−1

i,00‖ = ‖Si,10‖ = Op(1), which follows from
Lemma A.3 of Saikkonen and Lütkepohl (2000). The corresponding results for the starred
matrices follow from those above and Lemma A.4.

The statement of the proposition allows both LR trace statistics for testing for no coin-
tegration – LRSL

traceiT
(0) derived from the cross-sectionally independent data and LRSL*

traceiT
(0)

based on the defactored data – to be approximated by the first terms of the corresponding
Taylor expansion:

LRSL
traceiT

(0) = −T
m∑
j=1

ln
(

1− λ̂ij
)

= T
m∑

j=r+1

λ̂ij +Op(T
−1),

LRSL*
traceiT

(0) = −T
m∑
j=1

ln
(

1− λ̂∗ij
)

= T
m∑

j=r+1

λ̂∗ij +Op(T
−1).

Therefore showing that

T
m∑
j=1

λ̂∗ij = T
m∑
j=1

λ̂ij + op(1) as T,N →∞,

will be sufficient for LRSL*
traceiT

(0) to be asymptotically equivalent to LRSL
traceiT

(0). In order
to prove the above relation we need the following results for the moment matrices Mi,jk and
M∗i,jk, j, k = 0, 1, 2.

Lemma A.3. For the moment matrices Mi,jk and M∗i,jk, j, k = 0, 1, 2; i = 1, . . . , N it holds
that:

(i)
∥∥∥M∗i,00 −Mi,00

∥∥∥ = mOp
(
C−1
NT

)
,

(ii)
∥∥∥M∗i,01 −Mi,01

∥∥∥ = mOp
(
C−1
NT

)
,

(iii)
∥∥∥M∗i,02 −Mi,02

∥∥∥ = m
√
p− 1Op

(
C−1
NT

)
,

(iv)
∥∥∥M∗i,12 −Mi,12

∥∥∥ = mp3/2Op
(
C−1
NT

)
,

(v)
∥∥∥M∗i,22 −Mi,22

∥∥∥ = m(p− 1)Op
(
C−1
NT

)
,

(vi)

∥∥∥∥(M∗i,22

)−1
−M−1

i,22

∥∥∥∥ = m(p− 1)Op
(
C−1
NT

)
,
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(vii)
∥∥∥ 1
T

(
M∗i,11 −Mi,11

)∥∥∥ = mOp
(
C−1
NT

)
.

Proof. (i) By the definition of M∗i,00 and Mi,00 and Lemma A.2 (iii) we get

∥∥M∗i,00 −Mi,00

∥∥ =

∥∥∥∥∥ 1

T

T∑
t=2

(
Z∗i,0tZ

∗′
i,0t − Zi,0tZ ′i,0t

)∥∥∥∥∥
=

∥∥∥∥∥ 1

T

T∑
t=2

(
∆X̃∗it∆X̃

∗′
it −∆X̃it∆X̃

′
it

)∥∥∥∥∥
= mOp

(
C−1
NT

)
.

(ii) Similarly, by the definition of M∗i,01 and Mi,01 and Lemma A.2 (iv) we have

∥∥M∗i,01 −Mi,01

∥∥ =

∥∥∥∥∥ 1

T

T∑
t=2

(
Z∗i,0tZ

∗′
i,1t − Zi,0tZ ′i,1t

)∥∥∥∥∥
=

∥∥∥∥∥ 1

T

T∑
t=2

(
∆X̃∗itX̃

∗′
i,t−1 −∆X̃itX̃

′
i,t−1

)∥∥∥∥∥
= mOp

(
C−1
NT

)
.

(iii) ∥∥M∗i,02 −Mi,02

∥∥
=

∥∥∥∥∥ 1

T

T∑
t=2

(
Z∗i,0tZ

∗′
i,2t − Zi,0tZ ′i,2t

)∥∥∥∥∥
=

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(
(Z∗i,0t − Zi,0t)(Z∗i,2t − Zi,2t)′ + (Z∗i,0t − Zi,0t)Z ′i,2t + Zi,0t(Z

∗
i,2t − Zi,2t)′

) ∥∥∥∥∥∥
≤

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(Z∗i,0t − Zi,0t)(Z∗i,2t − Zi,2t)′
∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(Z∗i,0t − Zi,0t)Z ′i,2t

∥∥∥∥∥∥
+

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

Zi,0t(Z
∗
i,2t − Zi,2t)′

∥∥∥∥∥∥ = a+ b+ c.

The last sum is dominated by the two cross-product terms b and c. Now, considering c and
using the results in Lemma A.2, we obtain

c2 =

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

∆X̃it

(
(∆X̃∗

′
i,t−1, . . . ,∆X̃

∗′
i,t−pi+1)− (∆X̃ ′i,t−1, . . . ,∆X̃

′
i,t−pi+1)

)∥∥∥∥∥∥
2

≤ 1

T

T∑
t=pi+1

∥∥∥∆X̃it

∥∥∥2
pi−1∑
h=1

1

T

T∑
t=pi+1

∥∥∥∆X̃∗i,t−h −∆X̃i,t−h

∥∥∥2

≤ m2(p− 1)Op
(
C−2
NT

)
.
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The same result can be shown to hold for b. Therefore
∥∥∥M∗i,02 −Mi,02

∥∥∥ = m
√
p− 1Op

(
C−1
NT

)
.

(iv) Following the proof of Lemma F.2 from the Appendix in Bai and Ng (2004), we have∥∥M∗i,12 −Mi,12

∥∥2

=

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(
Z∗i,1tZ

∗′
i,2t − Zi,1tZ ′i,2t

)∥∥∥∥∥∥
2

=

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(
X̃∗i,t−1

(
∆X̃∗

′
i,t−1, . . . ,∆X̃

∗′
i,t−pi+1

)
− X̃i,t−1

(
∆X̃ ′i,t−1, . . . ,∆X̃

′
i,t−pi+1

))∥∥∥∥∥∥
2

=

pi−1∑
j=1

∥∥∥∥∥∥ 1

T

T∑
t=pi+1

(
X̃∗i,t−1∆X̃∗

′
i,t−j − X̃i,t−1∆X̃ ′i,t−j

)∥∥∥∥∥∥
2

.

Since for each j, 1 ≤ j ≤ pi, X̃i,t−1 can be represented as

X̃i,t−1 = X̃i,t−j−1 + ∆X̃i,t−j + . . .+ ∆X̃i,t−1,

from Lemma A.2 (iii) and (iv) and by similar arguments as in the proof of Lemma B.1 (iii)
of Bai and Ng (2004) it follows that for the j−th summand above we have

1

T

T∑
t=pi+1

(
X̃∗i,t−1∆X̃∗

′
i,t−j − X̃i,t−1∆X̃ ′i,t−j

)

=
1

T

T∑
t=pi+1

(
X̃∗i,t−j−1∆X̃∗

′
i,t−j − X̃i,t−j−1∆X̃ ′i,t−j

)

+

j∑
h=1

1

T

T∑
t=pi+1

(
∆X̃∗i,t−h∆X̃∗

′
i,t−j −∆X̃i,t−h∆X̃ ′i,t−j

)
≤ mOp

(
C−1
NT

)
+ jmOp

(
C−1
NT

)
= m(j + 1)Op

(
C−1
NT

)
.

We thus obtain

∥∥M∗i,12 −Mi,12

∥∥2 ≤
pi−1∑
j=1

(j + 1)2m2Op
(
C−2
NT

)
≤ p3m2Op

(
C−2
NT

)
,

∥∥M∗i,12 −Mi,12

∥∥ ≤ mp3/2Op
(
C−1
NT

)
.

(v) The proof follows that of (iii) and is thus omitted.

(vi) First note that by Lemma A3 (iii) of Saikkonen and Lütkepohl (2000) Mi,22 converges in
probability to the autocovariance matrix of the stationary series Zi,2t, which we shall denote

by MA
i,22. Thus

∥∥∥MA
i,22

∥∥∥ = Op(1),
∥∥∥(MA

i,22)−1
∥∥∥ = Op(1) and

∥∥∥Mi,22 −MA
i,22

∥∥∥ = op(1) assuming

that p and m remain fixed as T →∞. Now, using the same arguments as in Lemma C.1 (ii)
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of the Appendix in Bai and Ng (2004), we have that∥∥∥(M∗i,22

)−1 −M−1
i,22

∥∥∥ =
∥∥∥(M∗i,22

)−1 (
Mi,22 −M∗i,22

)
M−1
i,22

∥∥∥
≤
(∥∥∥(M∗i,22

)−1 −M−1
i,22

∥∥∥+
∥∥∥M−1

i,22

∥∥∥)∥∥Mi,22 −M∗i,22

∥∥∥∥∥M−1
i,22

∥∥∥ ,
which after re-arranging terms becomes

∥∥∥(M∗i,22

)−1 −M−1
i,22

∥∥∥ ≤
∥∥∥Mi,22 −M∗i,22

∥∥∥∥∥∥M−1
i,22

∥∥∥2

1−
∥∥∥Mi,22 −M∗i,22

∥∥∥∥∥∥M−1
i,22

∥∥∥ . (A.16)

For
∥∥∥M−1

i,22

∥∥∥ we have that∥∥∥M−1
i,22

∥∥∥ ≤ ∥∥∥M−1
i,22 − (MA

i,22)−1
∥∥∥+

∥∥(MA
i,22)−1

∥∥ . (A.17)

Following the proof of Theorem 4.1 of Said and Dickey (1984), denoting
∥∥∥(MA

i,22)−1
∥∥∥ = p and∥∥∥∥M−1

i,22 −
(
MA
i,22

)−1
∥∥∥∥ = q, for the first term on the RHS of (A.17) we obtain

q =
∥∥∥M−1

i,22 −
(
MA
i,22

)−1
∥∥∥ =

∥∥∥M−1
i,22

(
MA
i,22 −Mi,22

) (
MA
i,22

)−1
∥∥∥

≤
∥∥∥M−1

i,22

∥∥∥∥∥MA
i,22 −Mi,22

∥∥∥∥∥(MA
i,22

)−1
∥∥∥

≤ (p+ q)
∥∥MA

i,22 −Mi,22

∥∥ p.
⇔ q ≤

p2
∥∥∥MA

i,22 −Mi,22

∥∥∥
1− p

∥∥∥MA
i,22 −Mi,22

∥∥∥ =
op(1)

Op(1)
= op(1).

Thus ∥∥∥M−1
i,22

∥∥∥ ≤ op(1) +Op(1) = Op(1),

and substituting this result into (A.16) we obtain that∥∥∥(M∗i,22

)−1 −M−1
i,22

∥∥∥ ≤ Op(1)
∥∥Mi,22 −M∗i,22

∥∥ = m(p− 1)Op
(
C−1
NT

)
.

The proof of (vii) follows directly from the definition of Mi,11 and M∗i,11 and Lemma A.2
(ii).
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Lemma A.4. For each i = 1, . . . , N it holds that

(i)
∥∥∥S∗i,01 − Si,01

∥∥∥ = p3/2mOp
(
C−1
NT

)
,

(ii)
∥∥∥S∗i,10 − Si,10

∥∥∥ = p3/2mOp
(
C−1
NT

)
,

(iii)
∥∥∥S∗i,00 − Si,00

∥∥∥ = m(p− 1)Op
(
C−1
NT

)
,

(iv)

∥∥∥∥(S∗i,00

)−1
− S−1

i,00

∥∥∥∥ = m(p− 1)Op
(
C−1
NT

)
,

(v)
∥∥∥ 1
T S
∗
i,11 − 1

T Si,11

∥∥∥ = p3/2mOp
(
C−1
NT

)
.

Proof. The results in (i), (ii), (iii) and (v) follow from the definition of the matrices Si,jk, S
∗
i,jk,

j, k = 0, 1 and Lemma A.3. The proof of (iv) uses the same argument as that of Lemma
A.3 (vi), given that Si,00 converges in probability to the positive definite matrix Σ00 :=
V ar (∆Xit|∆Xi,t−1, . . . ,∆Xi,t−p+1) for each i = 1, . . . , N (Johansen (1995), Lemma 10.1 and
Saikkonen and Lütkepohl (2000), Lemma A.3).

Proof of Theorem 3.1. Saikkonen and Lütkepohl (2000) showed that under H0 : ri ≤ r
for each i = 1, . . . , N the smallest m− r eigenvalues of the eigenvalue problem∣∣∣λSi,11 − Si,10S

−1
i,00Si,01

∣∣∣ = 0, (A.18)

when normalized by T , converge in distribution to those of∣∣∣∣∣∣∣λ
1∫

0

W∗(s)W∗(s)
′ds−

 1∫
0

W∗(s)dW∗(s)
′

 1∫
0

W∗(s)dW∗(s)
′

′
∣∣∣∣∣∣∣ = 0.

In the above expression W∗(s) = W (s) − sW (1) denotes a d−dimensional Brownian bridge
with d = m− r.

To see this, consider the ordered eigenvalues of the eigenvalue problem∣∣∣∣∣
[ 1

T β
′
iSi,11βi

1
T β
′
iSi,11βi,⊥

1
T β
′
i,⊥Si,11βi

1
T β
′
i,⊥Si,11βi,⊥

]
− µ

[
β′iSi,10S

−1
i,00Si,01βi β′iSi,10S

−1
i,00Si,01βi,⊥

β′i,⊥Si,10S
−1
i,00Si,01βi β′i,⊥Si,10S

−1
i,00Si,01βi,⊥

]∣∣∣∣∣ = 0,

(A.19)

which are

µ̂i,1 =
1

T λ̂i,m
, . . . , µ̂i,m =

1

T λ̂i,1
.

By the same arguments as in Lemma 6 of Johansen (1988), and using the limiting results of
Saikkonen and Lütkepohl (2000) regarding the GLS-detrended cross-sectionally independent
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processes X̃it, it can be shown that the m − r largest µi’s converge in distribution to the
ordered eigenvalues of∣∣∣∣∣∣∣

1∫
0

W∗(s)W∗(s)
′ds− µ

 1∫
0

W∗(s)dW∗(s)
′

 1∫
0

W∗(s)dW∗(s)
′

′
∣∣∣∣∣∣∣ = 0. (A.20)

Under the null hypothesis of no cointegration, βi = 0, βi,⊥ = Im, and (A.19) simplifies to∣∣∣∣ 1

T
Si,11 − µSi,10S

−1
i,00Si,01

∣∣∣∣ = 0, (A.21)

and all its solutions converge in distribution to those of (A.20), where W∗(s) is an m-
dimensional Brownian bridge.

However, the same result holds also for all eigenvalues λ̂∗i,1, . . . , λ̂
∗
i,m of the eigenvalue

problem based on the defactored data,∣∣∣λS∗i,11 − S∗i,10

(
S∗i,00

)−1
S∗i,01

∣∣∣ = 0, (A.22)

because by Lemma A.4 each element of∣∣∣∣ 1

T
S∗i,11 − µS∗i,10

(
S∗i,00

)−1
S∗i,01

∣∣∣∣ = 0, (A.23)

converges to the corresponding element of (A.21) at rate Op
(
C−1
NT

)
, assuming that m and

p remain fixed as T,N → ∞. Since the ordered eigenvalues are continuous functions of the
coefficients, it holds that the solutions of (A.23)

µ̂∗i,1 =
1

T λ̂∗i,m
, . . . , µ̂∗i,m =

1

T λ̂∗i,1
,

converge to those of (A.21) by the Continuous Mapping Theorem, i.e.

µ̂∗i,j = µ̂i,j +Op
(
C−1
NT

)
, j = 1, . . . ,m, (A.24)

and are thus also bounded in probability. The rate of convergence Op(C
−1
NT ) in (A.24) is

preserved by the Lipschitz Mapping Theorem (see Whitt (2002, pp. 85)) because the map-
ping A 7→ λi(A), i = 1, . . . , n, is Lipschitz continuous on the space of Hermitian matrices
(Tao, 2012, pp. 47). As shown by Johansen (1995, pp. 95), the solutions to the eigenvalue

problem (A.18) are the same as the eigenvalues of the matrix S
−1/2
i,11 Si,10S

−1
i,00Si,01S

−1/2
i,11 which

is symmetric and with real entries.

Now, rewriting (A.24) in terms of λ̂∗i,1, . . . , λ̂
∗
i,m and noting that under the null of no

cointegration |λ̂i,j | = |λ̂∗i,j | = Op
(
T−1

)
by Proposition A.1 for j = 1, . . . ,m, we obtain that

T
(
λ̂i,j − λ̂∗i,j

)
= Op

(
C−1
NT

)
,

which yields that LRSL∗
traceiT

(0) = LRSL
traceiT

(0) +Op
(
C−1
NT

)
.
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In order to prove the consistency of the test based on LRSL∗
traceiT

(0), we need to establish
that it diverges to +∞ under the alternative. Let ri > 0 be a point in the alternative, i.e.
there exists a non-zero (m × ri) matrix βi of full rank such that β′iX̃it is I(0). We argue as
in the first part of the proof of Theorem 11.1 of Johansen (1995) and write the eigenvalue
problem (A.22) in the directions βi and 1√

T
βi,⊥ as in (A.19). In the limit as T → ∞ by

Lemma A.4 we obtain∣∣∣∣∣λ
[

β′iS
∗
i,11βi

1√
T
β′iS
∗
i,11βi,⊥

1√
T
β′i,⊥S

∗
i,11βi

1
T β
′
i,⊥S

∗
i,11βi,⊥

]
−
[

Σi,β0Σ−1
i,00Σi,0β 0

0 0

]∣∣∣∣∣ = 0, (A.25)

where Σi,β0, Σi,0β and Σi,00 are constant positive definite matrices defined as the probability
limits of the covariance matrices of the stationary and ergodic processes ∆X̃it and β′X̃i,t−1

as in Johansen (1995, pp. 141).

(A.25) can be written as∣∣∣λβ′iS∗i,11βi − Σi,β0Σ−1
i,00Σi,0β

∣∣∣×∣∣∣∣λ 1

T
β′i,⊥S

∗
i,11βi,⊥ − λ2

[
1√
T
β′iS
∗
i,11βi,⊥

(
λβ′iS

∗
i,11βi − Σi,β0Σ−1

i,00Σi,0β

)−1 1√
T
β′i,⊥S

∗
i,11βi

]∣∣∣∣ = 0.

The largest solutions are those of∣∣∣λβ′iS∗i,11βi − Σi,β0Σ−1
i,00Σi,0β

∣∣∣ = 0, (A.26)

for which it holds that

‖β′iS∗i,11βi‖ = Op(1) +Op

(√
T√
N

)
+Op

(
T

N

)
, (A.27)

and also that

‖(β′iS∗i,11βi)
−1‖ ≥ Op

 1

1 +
√
T√
N

+ T
N

 . (A.28)

This implies that the largest solutions λ̂∗1, . . . , λ̂
∗
ri are Op(1) if T/N → 0 or T/N → c for

some constant c > 0, and Op (N/T ) if T/N → ∞ as T,N → ∞ simultaneously. Therefore
LRSL*

traceiT
(0) diverges to +∞ at rate Op ((min(N,T )).

Proof of Theorem 3.2. Note that theOp
(
C−1
NT

)
term in the differences between LRSL∗

traceiT
(0)

and LRSL
traceiT

(0), i = 1, . . . , N , arises from the Op
(
C−1
NT

)
terms in the difference between the

cross-products of X̃∗it(j) and X̃∗it(l) and their first differences in Lemma A.1. Therefore, the

theorem follows if each Op
(
C−1
NT

)
term from Lemma A.1 becomes Op

(√
N/T

)
+ Op

(
C−1
NT

)
after averaging over the cross-sections and normalising by

√
N . The latter has been shown

in Lemmas 1, 2, 3 and 4 of Bai and Ng (2010).
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Proof of Theorem 3.3. The proof follows the arguments of the proof of Theorem 1 of
Larsson et al. (2001, pp. 136-141). Note, however, that for the standard normal limiting
distribution of Υ

LR
SL
trace

to hold as T,N → ∞ simultaneously, a relative expansion rate of

N/T → 0 is required, and not
√
N/T → 0.2 Our considerations are briefly outlined below. We

further note that assuming homogeneous cointegrating vectors and loading matrices across the
cross-sections as in Assumption 3′ of Larsson et al. (2001) is not necessary, as it automatically
holds under the null of no cointegration.

Larsson et al. (2001) show that the LR trace statistic for a VAR(p) process can be ap-
proximated by the LR trace statistic of the process with a single lag, whereby making errors
of the order Op

(
T−1/2

)
. Using the results in Lemmas A.3 - A.6 of Saikkonen and Lütkepohl

(1997), it can easily be shown that this order of the approximation error holds also for the
GLS-detrended process X̃it with a VECM representation:

∆X̃it = ΠiX̃it +

pi−1∑
j=1

Γij∆X̃it + eit, (A.29)

eit = εit + αiβ
′
i(µ̃i0 − µi0) + αiβ

′
i(µ̃i1 − µi1)(t− 1)− Γi(µ̃i1 − µi1). (A.30)

We make use of the notation (A.14) and rewrite the model as

Zi,0t = αiβ
′
iZi,1t + ΨiZi,2t + eit,

where Ψi ≡ (Γi1, . . . ,Γi,pi−1). As in Johansen (1995) we define Si,1e ≡ Si,10 − Si,11βiα
′
i and

expand the expression for Si,1e as

Si,1e = Mi,1e −Mi,12M
−1
i,22Mi,2e

=
1

T

∑
t

Zi,1te
′
i,t −

1

T

∑
t

Mi,12M
−1
i,22Zi,2te

′
it

=
1

T

∑
t

(Xi,t−1 − (µ̃i0 − µi0)− (µ̃i1 − µi1)(t− 1)) e′it −Mi,12M
−1
i,22

1

T

∑
t

Zi,2te
′
it.

Note that under the null hypothesis of no cointegration βi = αi = 0 and βi,⊥ = αi,⊥ = Im, so
that Si,10 ≡ Si,1e and eit = εit − Γi(µ̃i1 − µi1). We thus obtain

Si,1e =
1

T

∑
t

Xi,t−1ε
′
it −

1

T

∑
t

Xi,t−1 (Γi(µ̃i1 − µi1))′

− (µ̃i1 − µi1)
1

T

∑
t

(t− 1)ε′it + (µ̃i1 − µi1)
1

T

∑
t

(t− 1) (Γi(µ̃i1 − µi1))′

− (µ̃i0 − µi0)
1

T

∑
t

ε′it +
1

T

∑
t

(µ̃i0 − µi0) (Γi(µ̃i1 − µi1))′

−Mi,12M
−1
i,22

1

T

∑
t

Zi,2tε
′
it +Mi,12M

−1
i,22

1

T

∑
t

Zi,2t (Γi(µ̃i1 − µi1))′ .

By Lemma A.6 of Saikkonen and Lütkepohl (1997) the first four terms on the RHS in the

expression above converge in distribution to CiΩ
1/2
i

∫ 1
0 Wi∗(s)dWi∗(s)

′Ω
1/2
i for each cross-

section, where Wi∗ are standard Brownian bridges which are independent across i, while the

2The relative expansion rate
√
N/T → 0 is required in Theorem 1 of Larsson et al. (2001).
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remaining terms are of the order Op(T
−1/2), also independent across i. Denoting asymptotic

equivalence by ∼, we therefore obtain

Si,1e ∼ CiΩ1/2
i

1∫
0

Wi∗(s)dWi∗(s)
′Ω

1/2
i +

1√
T
R1it, where

1√
T
R1it =

1√
T

[
−(µ̃i0 − µi0)

1√
T

∑
t

εit +
1√
T

∑
t

(µ̃i0 − µi0) (Γi(µ̃i1 − µi1))′

− Mi,12M
−1
i,22

1√
T

∑
t

Zi,2tε
′
it +Mi,12M

−1
i,22

1√
T

∑
t

Zi,2t (Γi(µ̃i1 − µi1))′
]

=
1√
T

(CiXi1T + Yi1T ) .

In the above expression, the matrices Ci, defined as Ci = β⊥ (α′⊥Γiβ⊥)−1 α′⊥, reduce to
Ci = Γ−1

i under the null hypothesis, and Xi1T and Yi1T are sequences of Op(1) random
variables, which are independent across i.

Note that 1√
T
R1it are the only approximation error terms of the orderOp(T

−1/2) that arise.

It is straightforward to check that T−1Si,11 = T−1Mi,11 − T−1Mi,12M
−1
i,22M21 gives rise only

to Op(T
−1) terms in the limit when converging weakly to CiΩ

1/2
i

∫ 1
0 Wi∗(s)Wi∗(s)

′dsΩ
1/2
i C ′i.

Si,00 converges in probability to Σi,00, which, on the other hand, equals Ωi under the null of
no cointegration. These results follow from Lemma A.6 (i) and Lemma A.3 (iii) of Saikkonen
and Lütkepohl (1997), respectively.

Therefore, under the null hypothesis of no cointegration, the LRSL
traceiT

(0) statistic can be
written as

LRSL
traceiT

(0) = T tr
(
S−1
i,11Si,10S

−1
i,00Si,01

)
(A.31)

∼ Z0iT +
1√
T
Z1iT +Op

(
1

T

)
, (A.32)

where Z0iT and Z1iT are Op(1) and independent over i, and

Z0iT = T tr

((
S

(1)
i,11

)−1
S

(1)
i,10

(
S

(1)
i,00

)−1
S

(1)
i,01

)
⇒ Zd

for Zd defined as in (12). The S
(1)
i,jk matrices, j, k = 0, 1, are calculated from the VAR(1)

model

∆X̃it = ΠiX̃it + eit,

where eit reduces to eit = εit − (µ̃i1 − µi1) under the null hypothesis.

36



The Z1iT terms have the representation

Z1it = tr (CiXiT + YiT ) ,

XiT =

 1∫
0

Wi∗(s)dWi∗(s)
′

′ 1∫
0

Wi∗(s)Wi∗(s)
′ds

−1

X1iTΣ−1
i,00,

YiT =

 1∫
0

Wi∗(s)dWi∗(s)
′

′ 1∫
0

Wi∗(s)Wi∗(s)
′ds

−1

Y1iTΣ−1
i,00.

Denoting Z0T = 1
N

∑N
i=1 Z0iT and Z1T = 1

N

∑N
i=1 Z1iT , for the standardized cross-sectional

average of the individual LR trace statistics we then obtain

Υ
LR

SL
trace

=

√
N
[

1
N

∑N
i=1

(
LRSL

traceiT
(0)−E

(
LRSL

traceiT
(0)
))]√

1
N

∑N
i=1 Var

(
LRSL

traceiT
(0)
) (A.33)

∼

√
N
[

1
N

∑N
i=1

(
Z0it + 1√

T
Z1iT +Op

(
1
T

))
− E (Zd)

]
√

Var (Zd)
(A.34)

=

√
N
(
Z0T − µT

)
σT

+

√
N√
T

Z1T

σT
+Op

(√
N

T

)
, (A.35)

where µT = E (Z0iT ) and σ2
T = Var (Z0iT ), ∀i, and the order of the approximation error by

standardizing with the moments of the asymptotic trace statistic Zd is at most Op(T
−1) (see

Larsson et al., 2001, Lemma 2) and it is thus included in the Op(
√
N/T ) term above. The

existence and finiteness of the moments µT and σ2
T has been established in Theorem 1 of

Örsal and Droge (2012). Using the arguments of Larsson et al. (2001, pp. 140-141) it can
then be shown that the first term of (A.35) gives the required N(0, 1) limiting distribution,
while Z1T remains bounded in probability. Therefore, provided that N/T → 0 as T,N →∞
simultaneously, the last two terms in (A.35) become zero asymptotically, which completes the
proof.
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