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Abstract

School shootings are often used in public policy debate as a justification

for increased regulation, based on qualitative arguments. However, to date,

no effort has been made to find valid quantitative evidence for the claims

bolstering the regulation recommendations. In defense of this absence of

evidence, it is usually argued that the rarity of such events does not allow the

employment of quantitative methods. This paper, using a simulation study,

shows that, based on the number of shool shootings in the United States

and Germany combined, the well-known method of logistic regression can

be applied to a case-control study, making it possible to at least test for an

association between hypothesized influential variables and the occurrences.

Moderate relative risks, explained by an observed variable, would lead to a

high power of the appropriate test. A moderate numbers of cases generated

by such a variable would suffice to show a significant association.
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1 INTRODUCTION 11 Introdution
The qualitative scientific literature from multiple fields contains a great many

claims about what causally leads to the occurrence of school shootings, or, what is

at least associated with the occurrence of such tragic events. Some of these claims

are employed in public policy debate as a justification for increased regulatory

action, and thereby have the potential to influence social welfare, even though

these claims, while they may seem “obvious”, are not backed up by quantitative

evidence. A partial and compact overview of these claims is found in Kleck (1999:

2) and is quoted here in its entirety to illustrate the diversity of claims made:

guns, “assault weapons”, large-capacity ammunition magazines,

lax regulation of gun shows; the failure of parents to secure guns,

school cliques, and the exclusion of “outsiders”; bullying and taunt-

ing in schools, especially by high school athletes; inadequate school

security, especially a lack of metal detectors, armed guards, locker

searches, and so forth; excessively large high schools; inadequate

monitoring of potentially violent students by schools; lazy, uninvolved

Baby Boomer parents and correspondingly inadequate supervision of

their children; young killers not being eligible for death penalty; a lack

of religion, especially in schools; violent movies and television; violent

video games; violent material and communications on the World Wide

Web/Internet (including bomb-making instructions); anti-Semitism,

neo-Nazi sentiments, and Hitler worship; “Industrial” music, Marilyn

Manson’s music, and other “dark” variants of rock music; Satanism;

“Goth” culture among adolescents; and Southern culture.

All of these claims can be modeled as binary variables and the outcome, of

course, is binary as well: a school shooting either happens or does not. For the

quantitative analyst, it seems obvious to search for a significant association be-

tween the events and the hypothesized influencing variables. A theoretical model

lending itself to this purpose is given in Robertz (2004) (an excellent book that

is, unfortunately, not available in an English translation), where “fantasy” is con-

sidered a latent variable, influenced by exogenous variables, and, when pushed

too hard, possibly leads to extremely deviant behavior, i.e., a school shooting.

Then the “choice” of committing a school shooting depends on the influencing

variables; hence we are dealing with a choice model, which can be modeled and

estimated as a logistic model (see Manski and Lerman, 1977). In epidemiology,

these models are called incidence models (see Prentice and Pyke, 1979). As King

and Zeng (2001b) point out, when occurrence (or nonoccurrence) is rare, col-

lecting a random sample with even one occurrence may become prohibitively ex-

pensive, which is clearly the case with school shootings as, fortunately, only very
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few students choose to kill their peers and teachers. Prentice and Pyke (1979)

and Manski and Lerman (1977) show that collecting the occurrences and adding

a random sample of nonoccurrences (or vice versa, depending on what is labeled

as an occurrence) allows for consistent estimation of the logistic regression pa-

rameters from such a case-control study. A very good summary of these statistical

methods in conjunction with case-control studies can be found in Breslow (1996).

For the problem at hand let us take as our population the “enrolled student

years.” I define an “enrolled student year” as each year an individual student

is enrolled in school. I refrain from specifically stating what schools and which

grades should be included; these choices will need to be made at the time of

application. With this definition, we can easily measure the number of “enrolled

student years that did not lead to a school shooting” and those that did. Following

Robertz’ (2004) definition of what constitutes a “school shooting,” there were 72

cases from 1992 to 2009, committed by male students from 10 to 34 years old

in the United States and Germany combined (Robertz and Wickenhäuser, 2010:

14). In the same time frame, there were around 500 million years of education

provided to male students and around 1 billion years of education for both sexes,

revealing the rarity, indeed, the extreme rarity, of school shootings. The goal of

the case-control study is to find a statistically significant association, and better

yet, causality, between the occurrence of school shootings and above-mentioned

variables.

The method of case-control studies is examined by King and Zeng (2001b)

(see also an intuitive explanation and application in King and Zeng, 2001a) for

the case of rare events, which King and Zeng define as “dozens to thousands of

times fewer ones . . . than zeroes” (King and Zeng, 2001b: 138). From the num-

bers above, I am interested in how these methods perform in finite samples when
the occurrence is millions to tens of millions times more rare than nonoccurrence;

72 in 500 million would be 1.44 occurrences in 10 million and 72 in 1 billion

would be 0.72 occurrences in 10 million.

A viable way to draw a valid inference would be to construct a data set of all

cases and controls, with the controls either randomly drawn from the population

or artificial controls generated from known population parameters. The next step

would be to group all hypothesized variables into two (or more) binary factors,

assuming that none of the variables are negatively correlated and that none ex-

hibit coefficients of opposed directions.1 Next, check whether these factors have

a statistically significant association with the outcome. Depending on how fac-

tors are constructed (“and” and “or” junctions come to mind), conclusions may

be drawn from the test result, factor groups may be ruled out, and a stepwise

search for individual variables may be constructed. Given this obvious arbitrary

1An assumption that is not contradicted anywhere in the qualitative literature.
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interchangeability between individual variables and factors, the terms “variables”

and “factors” are used interchangeably below.

This paper contributes to the literature by pointing out an easy-to-use quan-

titative method for measuring the association of (binary) factors with the occur-

rence of school shootings (in Section 2) and by examining via a simulation study

what sort of relative risk a certain factor, for example, constructed as described

above, would have to impose on individuals in order to show positive associa-

tion in a logistic regression model (in Sections 3 and 4). My core findings are

presented in Sections 4.3 and 4.4. A software package designed to repeat the

simulation procedure for specific settings is provided, and its use is illustrated

for an example setting. The main result shows that for plausible population

sizes and overall probability of occurrence, only very few cases would need to

be generated by an exogenous factor to find a significant association with the

occurrences. Unfortunately, there is no data set, at least to my knowledge, that

measures the above-mentioned variables for every school shooting that has ever

occurred. Thus, putting the hypotheses to a meaningful test will require retro-

spectively collecting the data necessary for the cases and the control populations.2 Methods
For a binary random variable Y = [y1 y2 . . . yT ]

′ denoting the occurrence

yt = 1 or nonoccurrence yt = 0 for sample member t = 1, 2, . . . , T of an event

influenced by some exogenous variables xt = [x1,t x2,t . . . xK ,t] and thereby

X = [x′
1

x′
2

. . . x′T ]
′, the logistic regression model

πt = Pr(yt = 1|xt) = (1+ exp{−xtβ})−1 (1)

with β = [β1 β2 . . . βK]
′ can be used to estimate and test for the effects β .

Under random sampling from the population at risk – that is, every unit t that

has a chance of becoming an occurrence – maximum likelihood methods allow

for consistent and asymptotically normal estimation of β with the log-likelihood

log L(β |Y, X) = −
T∑

t=1

log
�
1+ exp{(1− 2yt)xtβ}

�
(2)

yielding the estimator β̂ . It can be shown (see Prentice and Pyke, 1979; McCul-

lagh and Nelder, 1989: 111–114) that maximizing the likelihood

L(β |X, Y) =

T∏
t=1

Pr(xt |yt) (3)
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of retrospective (choice-based) sampling yields the same estimator β̂ , except for

the intercept β0. The intercept estimated from this likelihood is consistent for

β0 + log
�� ȳ

1− ȳ

��1−E [yt]

E [yt]

��
(4)

and therefore, with knowledge of E [yt], can and should be easily corrected for

(see King and Zeng, 2001b: 144 and Section 6.2).

Using the corrected version of β̂ for estimating probabilities for some x f via

(1+exp{−x f β̂})−1 results in consistent but biased estimates due to two problems

pointed out by King and Zeng (2001b: 145–150). First, there is a bias in β̂ , which

can be estimated using the following bias estimation from King and Zeng (2001b),

which is based on McCullagh and Nelder (1989: 119–120,455–456):

Ôbias(β̂) = (X′WX)−1X′Wξ (5)

with ξ = 0.5tr(Q)
�
(1+ w1)π̂t − w1

�
, tr being the trace operator, wt being w1 =

E (yt)/ ȳ for cases, w0 = (1 − E (yt))/(1 − ȳ) for non-case,s and π̂t being the

estimated probabilities of occurrence for unit t from β̂ . Q= X(X′WX)−1X′ and W

is the diagonal matrix constructed from the π̂t(1−π̂t)wt . Applying this correction

also reduces variance for the bias-corrected estimator β̃ = β̂ −Ôbias(β̂) (see King

and Zeng, 2001b: 147,161).

Second, when probabilities are then estimated from β̃ via

π̃ f = Pr(y f = 1|x f , β̃) = (1+ exp{x f β̃})−1 (6)

it must be kept in mind that changes in β̃ usually do not affect π̃ f symmetrically

and hence do not cancel out. The probability calculation can be corrected for this

problem by considering the distribution fβ̃ of β̃ :

Pr(y f = 1|x f ) =

∫

D(β )

Pr(y f = 1|x f , β̃) fβ̃ (β̃)dβ̃ (7)

which can be estimated by using an estimation of the distribution fβ̃ and can

furthermore be approximated (see King and Zeng, 2001b: 149,161–162) by

Pr(Yf = 1|x f ) ≈ π̃ f + C f (8)

C f = (0.5− π̃ f )π̃ f (1− π̃ f )x0V (β̃)x′0 (9)

where x0 are the exogenous values for some arbitrarily chosen comparison group
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andV (·) is the covariance matrix. Using the estimated distribution of β̃ , Equation

(8) becomes a Bayesian estimator (see King and Zeng, 2001b: 149).

Equations (4) and (5) are implemented in Imai, King and Lau (2012). The

correction in Equatin (9) is easily made by using, for example, the R functionfitted.values().3 Simulation3.1 Software
For the simulation, I wrote an R-package named resim (Westphal, 2012),

standing for rare events case-control study simulation. The package’s main func-

tionalities are:

1. Building a PopulationAtRisk object. This object describes how the cases

come to happen under a specific hypothesis and given a set of parameters,

describing how factors/variables are distributed among the population.

2. Creating a pseudo-random case-control study data.frame from that Pop-ulationAtRisk that then may be used for model estimation, for example

with Imai, King and Lau (2012).3.2 Parameters for Simulation
Assume an event’s probability of occurrence to be 1 in 10 million, which is some-

where between the observed frequency of school shootings committed by “male

enrolled student years” and “all student years,” as set out in Section 1. Also con-

sider two assumed factors, for example, an individual’s access to “Guns” and an

individual’s consumption of violent computer “Games,” influencing the individ-

ual probability Pr(yt = 1|Guns, Games); note that for my analysis, it does not

matter what two factors are assumed and, indeed, if one wishes to be as abstract

as possible, a simple A and B will suffice. The issues that arise from these as-

sumptions involve, first, that Equation (8) is not proven to be uniformly superior

over the other estimators reported above. How do the bias corrections behave

for extremely rare events and for different quantities of interest (QIs) discussed

below? More importantly, what relative risk – given a population size and over-

all probability of occurrence – is needed to identify influencing factors? What

happens when the model is not correctly specified? How does increasing the size

of the control group relative to the case group affect the results? As shorthand

for this last question, I will use the term controls-to-case ratio (as in Hennessy

et al., 1999), abbreviated by CTC . To aid in answering these questions, I give an

example distribution of the variables among the population in Table 1. The as-

sumed factors of influence are two binary variables “Guns” and “Games.” There

is slight association between “Guns” and “Games.” I will search for relative risks
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necessary to identify these variables’ (factors’) influence for population sizes of

100 million, 200 million, 500 million, and 1 billion, the latter two figures approxi-

mating the real-world setting (see the Introduction). Based on these populations,

10, 20, 50, and 100 cases, respectively are expected from the aggregated binomial

experiment. For multiple hypotheses testing, the type-I-error is set to 0.1 and a

power of 0.98 for the test is considered sufficient. Note that the test’s power re-

quirement is specified very conservatively to protect my results from weak claims

about necessary conditions for the method to function as intended. The marginal

frequency for Guns in Table 1 is a very rough computation based on household

gun ownership density in the United States and Germany under the assumption

of independence between household gun ownership and school children. The

marginal frequency for Games is simply a guess based on personal experience,

and conveniently symmetrical to the marginal frequencies of gun availability. The

joint frequency between both variables is, frankly, an arbitrary choice.

I will evaluate the correctly specified model – given here in R’s formula
notation – Shooting ∼ Guns + Games, as well as the underspecified model

Shooting ∼ Guns, but leave the discussion of interaction effects to future re-

search, seeing as the arguably necessary “explicit theory” in Berry, Meritt and

Esarey (2010: 261-262) is yet to be posited.

Guns/Games 0 1
∑

0 0.50 0.20 0.70

1 0.20 0.10 0.30∑
0.70 0.30 1.00

Table 1: Distribution of the population for simulation with assumed factors Guns
and Games

Thus, the groups are as follows: “0” – the group having neither guns nor

playing games; “Guns” – the group only having guns; “Games” – the group only

playing violent games; and “Guns:Games” – the group having guns and playing

violent video games.

I varied the relative risks r ri as follows. πGuns/π0 = r rGuns from 1 to 10

in increments of 0.2. πGames/π0 = r rGames was ∈ {1, 2, 5, 10} for each value of

πGames/π0. Because for reasonably small probabilities, the odds ratio approxi-

mates the relative risk, we can compute

r rGuns,Games = πGuns,Games/π0 ≈ ORGuns,Games

= exp{βGuns + βGames}= ORGuns ·ORGames ≈ πGuns/π0 ·πGames/π0, (10)

with πi being the probability of occurrence in group i, when there is no interac-
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tion. pi is group i’s proportion of the population (notation as in King and Zeng,

2002). There was a restriction of

10−7 = π= p0π0 + pGunsπGuns + pGamesπGames + pGuns,GamesπGuns,Games (11)

to account for the aforementioned occurrence of 1 in 10 million. For each set

of parameters, the model estimation was repeated 10, 000 times with a random

case-control study generated each time. To ensure the existence of the maximum

likelihood estimator (see Silvapulle, 1981), generated case-control studies with

empty groups among either the cases or the controls were rejected. Therefore,

my results are estimations of theoretical properties of the estimators conditional
on the nonexistence of empty groups. This restriction can be easily satisfied in

applications by restricting analysis to situations where cases are observed from

all groups and increasing the CTC until there are controls from all groups, if

necessary.4 Results
In this section, I set out the simulation results. Unless otherwise noted, figures

in the text refer to the population of 1 billion and a controls-to-cases ratio of

CTC = 5. Results for different population sizes and different CTCs can be found

in Tables 2, 3, and 4. Increasing the CTC does not change the results much. Vary-

ing the population size has a notable impact, as the number of cases generated

varies. For a population of 100 million, the effects could not be found with a high

enough power. The power of the test for βGuns maxes out at 0.86 for a population

of 100 million in the case of underspecification and at 0.79 for correct model

specification. This is in accordance with the results of Peduzzi et al. (1996);

there are simply not enough events per variable.2 My requirements for the power

are much stricter than the powers reported in Vittinghoff and McCulloch (2007:

715) and therefore my results, when interpreted in terms of events per variable
(see Vittinghoff and McCulloch, 2007), differ, too.4.1 Corretly Spei�ed Model4.1.1 Point Estimates
King and Zeng’s theoretical results of β̃ having less bias and less variance show

in my results where β̃0 has up to a 10% smaller RMSE3 than β̂0 and β̃A has up to a

7% smaller RMSE4 than β̂A. The RMSE ratios depending on r rGuns are illustrated

2Also note how Westphal (2012) could easily be applied to re-study Peduzzi et al.’s topic.
318% and 24% for populations of 500 and 200 million, respectively.
414% and 21% for populations of 500 and 200 million, respectively.
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in Figure 1. They look similar for different population sizes.

The average absolute difference in bias between both methods for all parameter

sets is around eight times as high as the average absolute difference in variance.

My findings differ from King and Zeng when it comes to the estimation of

probabilities. Using King’s β̃ increases the RMSE of π̃0 up to 12% over simple

prior correction.5 Using King and Zeng’s Bayesian method increases RMSE by

30%.6 This increase of RMSE approaches zero for increasing π0and likely will

completely disappear or even reverse for larger π0 than I simulated. Evidence

for the latter conjecture is found in King and Zeng (2001b: Figure 6), where

an X of 2.3 approximately represents a relative risk of 10 between the “groups”

X = 0 and X = 2.3. That Figure clearly shows, that much higher relative risks are

needed to find the Bayesian estimator superior. The same cannot be said about

π̃Guns. While the RMSE of π̃Guns itself seems to improve with increasing πGuns, it

becomes worse for the Bayesian estimator. It therefore appears that some caution

is advisable when applying King’s methods to extremely rare events in an effort

to determine the probability estimations for the groups.

When estimating relative risks, using β̃ shows huge improvement in variance

and bias over using β̂ (see Figure 1 (a)–(d), population size: 1 billion, CTC = 5).

Obvious improvement is achieved by using King and Zeng’s Bayesian correction

in mean squared error; however its magnitude seems to be negligible (maximum

ratio observed:
2.5·107p

10).

Another quantity of interest is the power of the test. Due to its lower bias

and variance, King and Zeng’s estimator β̃ is preferable to β̂ in terms of the test’s

power. The interesting section of the approximate power curve for the 1 billion

population is shown in Figure 1 (e). Figure 1 (f) clearly shows that King and

Zeng’s estimator β̃ is superior in specifity and sensitivity to β̂ in this setting.4.1.2 Con�dene Intervals
Confidence intervals for the quantities of interest (i) coefficients β j where j ∈
{Guns, Games}, (ii) probabilities πi, i ∈ {Guns, Games, (Guns, Games)}, and (iii)

relative risks r ri can be simulated. Imai, King and Lau (2012) provide the func-

tion sim() for conducting this simulation. Due to the number of simulations

needed, I used the method described by King, Tomz and Wittenberg (2000: 349–

350) and King and Zeng (2002: 1419) directly by using Genz et al. (2012), and

the saved point estimates and estimated coefficients’ covariance matrices from

the output generated by Imai, King and Lau (2012) for simulating 1, 000 draws

from each of the β estimators’ posteriors, mimicking sim()’s behavior. I set the

nominal level of coverage at 90% for all simulations.

533% and 100% for populations of 500 and 200 million, respectively.
680% and 350% for populations of 500 and 200 million, respectively.
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Figure 1: β̂ vs. β̃ , population 1 billion, CTC = 5
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As to relative risks, Figure 2 (a) shows that neither the logit estimator with

prior correction nor King’s corrected estimator dominate when the model is spec-

ified correctly. When misspecified, however, King and Zeng’s corrected estimator

clearly beats the logit estimator with prior correction (Figure 2 (b)). Each point

in Figure 2 represents one set of relative risks with r rB indicated by the point’s

color. For the probability estimation, confidence interval coverage for both esti-

mators is far too low (in the region of 40%) for the underspecification and way

too high (starting at 93% and reaching up to 100%) for the correct specification.4.2 Varying Population Size
Varying the population size from 100 million to 200 million, 500 million, or 1 bil-

lion does not change the direction of the results. The relative difference between

the RMSEs of relative risk estimation appear to increase quadratically. Therefore,

King and Zeng’s correction is the more important the smaller the population/the

rarer the event. The population size of 100 million did not yield high enough

powers. For all other population sizes Table 2 shows some pivotal characteristics

of the power of the test for β̃ .4.3 Quantities of Interest
For the specific application of school shootings and possible contributing factors,

there are multiple quantities of interest, set out for populations of 200 million,

500 million, and 1 billion in Table 2, 3, and 4. Below, I briefly discuss these

quantities of interest.

The Maximum r rGuns Needed to Reach a Power of 0.98. Which was the

largest r rGuns, unconditional on r rGames, that yielded at least a simulated power

of 0.98? Additionally, in the appropriate table rows, the value of r rGames under

which this value was found is given. The meaning of this value is that to achieve

a test power of 0.98, and given all r rGames I simulated, r rGuns of the figure given in

the table, or larger, will lead to a rather powerful test. The hypothesis test I con-

ducted is two sided. Hence, a possible criticism is that, possibly, my power (i.e.,

the rejection of the null hypothesis) is being erroneously bolstered by a percent-

age of significant negative coefficient estimates. However, for relative risks ≥ 2.4,

2 out of 1.56 million simulation results exhibit this characteristic. Therefore, this

potential problem seems of little concern.7

The Minimum r rGuns Needed to Reach a Power of 0.98. Which was the

smallest r rGuns, unconditional on r rGames, that yielded at least a simulated power

of 0.98? In the appropriate table rows, the value of r rGames under which this

value was found is given. The meaning of this value is, that to achieve a test

7The figures are of similar negligible size for cases other than a population size of 1 billion,
C T C = 5 and the respective relative risks reported in Tables 2 and 3.
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(a) CI coverages for rrAB
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power of 0.98, r rGuns smaller than this value never resulted in a power of ≥ 0.98.

Cases Attributable to a Factor. The quantities of interest (QI) (c) and (d)

in Tables 2 and 3 require some explanation: Given the different probabilities of

occurrence in the (four) different groups there is a baseline probability of π0 for

units without exposure to risk-influencing factors. So if one could remove the

probability increasing factors from the non-zero groups, these groups’ πi would

switch to π0. The groups would still generate cases, but at a lower probability.

Therefore, the difference in probabilities between πi and π0 multiplied by the

size of the subpopulation in group i tells us how many additional cases group i is

responsible for, from now on called cases attributable to group i: CAGi . Attributing

CAGi to a factor is easy when only one factor increases the relative risk of group

i. In that situation, CAGi is fully attributable to this factor and therefore can be

written as cases attributable to factor j conditional on the group i: CAF j|i. When

r rk 6= j > 1, k ∈ {Guns, Games}, r r j,k is computed as in Equation (10). Therefore,

not all CAGGuns,Games can be attributed to a single factor. I split them between the

factors using the weights of groups “Guns” and “Games” relative risks logarithm

in the logarithm of the relative risk of group “Guns,Games”:

CAGGuns,Games = population · pGuns,Games · (πGuns,Games −π0) (12)

CAF j|Guns,Games = CAGGuns,Games ·
log(r r j)

log(r rGuns,Games)
(13)

This measure meets the following requirements for a > 1, b ≥ 1: (i) For a >
b log(a)/ log(ab) > 0.5. (ii) For a < b log(a)/ log(ab) < 0.5. (iii) For a =
b log(a)/ log(ab) = 0.5. (iv) For b = 1 log(a)/ log(ab) = 1. In each case, a
and b may be substituted by r rGuns and r rGames.

It is interesting that in a case where a second factor imposes a high relative

risk, fewer cases are attributable to the first variable under the minimum identi-

fication requirement. I conjecture that the explanation for this can be found in

Equation (10): under the assumption of no interaction between the linear terms,

an additional variable with a relative risk > 1 leads to a multiplicative effect for

the relative risk and therefore has an multiplicative effect on the number of cases

exhibiting the factor relative to the number of cases not exhibiting the factor. The

CAG can be computed by using the function add.ases() in Westphal (2012).4.4 Inreasing the Controls-to-Case Ratio
The original CTC was set at five times as many controls as cases (in accordance

with Hennessy et al., 1999) in each case-control study. As King and Zeng (2001b:

141) state, for rare events, most information lies in the cases, and not in the

controls. In my setting, initially there are no controls in the data and I use the
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QI Population size in million 200 500 1000

(Expected no. of cases) (20) (50) (100)

(a)
Max. r rGuns needed to reach

NA 3.8 2.4
a power of 0.98 (r rGames = 10)

(b)
Min. r rGuns needed to reach

8.2 3.4 2.4
a power of 0.98 (r rGames = 1)

(c)

CAFGuns|· is

14/20 22/50 30/100
X out of Y (X/Y ) expected

cases given r rGames = 1 and QI (b)

from this table

(d)

CAFGuns|· is

NA 14/50 17/100

X out of Y (X/Y ) expected

cases given r rGames = 10 and QI (a)

from this table

Table 2: Power of testing for βA for different population sizes.

number of cases to determine the number of controls. Obviously, when there

are very few cases compared to the population size, this method generates very

few controls compared to the population size. King and Zeng (2001b: 153–157)

undertake their analysis by dropping a percentage of controls from the data; I

add some controls to the data. Hence, I approach the problem from the opposite

direction: that is, King and Zeng start with 100% of controls, I start with none.

Table 3 sets out the results for a range of “zeroes dropped,” which is different

from King and Zeng (2001b), who drop, at most, 90% of the non-cases.

As to be expected, adding more controls necessarily reduces variance. These

effects are also shown in Table 3. Unfortunately, increasing the number of con-

trols is costly in two ways. Obviously, research costs increase due to having to

collect a larger control sample. Not so obviously, the cost of learning about the

estimators’ behavior increases because simulations take longer. The simulations I

conducted for a single population size took about two days for a CTC of 5, about

as long for a CTC of 10, twice as long for a CTC of 50 and would have taken

around 60 days for a CTC of 500 on a state-of-the-art personal computer with-

out any parallelization. Tables 2 and 3, QIs (a), (b), (e), and (f), show that the

marginal returns measured in indentifying influential variables at lower relative

risks depend on population size and the numbers of cases expected to be gener-

ated.
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CTC
(expected % of non-cases dropped)

5 10 50

Pop. Size QI (99.99994) (99.999989) (99.99949)

200 mio.

(a) NA 8 6.2

(b) 8.2 6.8 6.2

(c) 14/20 13/20 12/20

(d) NA 9/20 8/20

(e) 7.6 6.6 6.2

(f) 6.4 6 5.4

Max. MSEár rGuns 20.5 18.6 16.2

(r rGuns, r rGames) (10,1) (10,10) (10,1)

Max. MSE år rGuns,Games 4007 3681 2992

(r rGuns, r rGames) (10,10) (10,10) (10,10)

500 mio.

(a) 3.8 3.4 3.0

(b) 3.4 3.2 3.0

(c) 22/50 20/50 19/50

(d) 14/50 12/50 11/50

(e) 3.4 3.2 3.0

(f) 3.0 2.8 2.8

Max. MSEár rGuns 21.3 20.0 18.8

(r rGuns, r rGames) (10,2) (10,2) (10,2)

Max. MSE år rGuns,Games 4804 4219 3334

(r rGuns, r rGames) (9.6,10) (9.8,10) (9.8,10)

1 bio.

(a) 2.4 2.4 2.2

(b) 2.4 2.4 2.2

(c) 30/100 30/100 27/100

(d) 17/100 17/100 15/100

(e) 2.4 2.4 2.2

(f) 2.2 2.0 2.0

Max. MSEÝr rA 11.5 9.65 9.42

(r rA, r rB) (10,10) (10,10) (10,5)

Max. MSEÞr rAB 2740 2270 1874

(r rA, r rB) (10,10) (10,10) (10,10)

Table 3: Effects of increasing the CTC for different quantities of interest (QI), (e)

and (f) explained in table 4.
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My simulations did not vary overall probability of occurrence. However, it is

easy to see that, given constant relative risks, increasing overall probability of

occurrence necessarily increases probability of occurrence for all groups. From

King and Zeng (2001b: Equation (6)), we know that variance for β̂ decreases

with increasing π:

V (β̂) =
� T∑

t=1

πt(1−πt)x
′
txt

�−1

∂ (πt −π2
t )/∂ πt = 1− 2πt > 0∀πt ∈ (0, 0.5)

and thereby decreasing its inverse.

(14)

Therefore, under the assumption of β̂ ’s bias not increasing with π – for example,

when doubling π and cutting population size in half – a lower relative risk will

be needed to find the influence of a factor when the number of (expected) cases

remains the same. The aforementioned assumption can be justified by Peduzzi

et al. (1996: Figure 2) in combination with King and Zeng (2001b: Figure 4)

and maybe shown from Equation (5).4.6 Underspei�ed Model
Between Guns and Games there is a phi coefficient ofφ = 1

21
, i.e., a very weak as-

sociation. Nevertheless, despite how weak this association seems to be, its effect

when underspecifying the model as Shooting ∼ Guns is notable when looking

at the power of the test in Table 4. Group “Guns”’ effect is now found sooner for

high relative risks in group “Games.” Of course, while the test result is correct in

a binary choice fashion, the improved power is not due to the test somehow be-

coming more sensitive but due to falsely loading explanatory power from “Games”

onto “Guns” (see Lee, 1982: 207, Proposition 2). Finding a “Guns”’ effect sooner

for a non-influential “Games” when the model is specified as Shooting ∼ Guns
is due to reduction in variance, which itself is due to, in this case correct, model

building.

QI Population size in million 200 500 1000

(e)
Max. r rA needed to reach

7.6 3.4 2.4
a power of 0.98 (r rB = 1)

(f)
Min. r rA needed to reach

6.4 3.0 2.2
a power of 0.98 (r rB = 10)

Table 4: Power for different population sizes, underspecified model, CTC = 5
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Moreover, King and Zeng’s coefficient bias correction now has the most influ-

ence on the relative risk bias when the influence of “Games” is lowest instead of

highest. Apart from that, results change neither in direction nor (much) in effect

size.5 Conlusion
This paper shows that even for extremely rare events with binary exogenous vari-

ables, the logistic regression model is well worth to study in attempting (a) find

association and (b) estimate relative risks when a serious effect from some factor

is conjectured. Also note that for binary exogenous variables, no belief in the

logistic form has to be held; it is simply an elaborate test for proportions.

This study revealed under what exogenous parameter settings confirmatory

data analysis can be used to evaluate hypotheses derived from qualitative case

studies of extremely rare events. King and Zeng’s methods are very helpful, but

must be applied selectively, depending on the researcher’s quantities of interest.

The reduction in mean squared error for the relative risk estimation compared to

that achieved by the logistic regression maximum likelihood estimator is remark-

able when used in the context of extremely rare events – even for a population

size of 1 billion. When estimating relative risks or when searching for signifi-

cance, there is no reason not to apply this correction (implemented in Imai, King

and Lau, 2012) when dealing with case-control studies. Although its power does

not improve dramatically, it will always offer some improvement due to the de-

creased bias and variance.

Based on the current paper and the work of King and Zeng (2001b,a), I sug-

gest the following rules of thumb:

1. Effects can be found even for extremely rare events under moderate require-

ments for the relative risks imposed by the explanatory factors.

2. For different quantities of interest under different parameters, different

methods have to be applied.

3. The more one factor’s influence is hidden by another factor’s influence, the

more important become Equations (5) and (7).

Moreover, Westphal (2012) can be used to easily compare the methods de-

scribed in Section 2 of this paper across plausible parameter sets, given a real

world research problem. Indeed this should be a valid method for studying school

shootings and, if properly conducted, may result in some actual quantitative evi-

dence that may help society more effectively deal with this tragic problem.Referenes
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