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Abstract 
 
This paper studies the effect of hospital ownership on treatment rates allowing for spatial 
correlation among hospitals. Competition among hospitals and knowledge spillovers generate 
significant externalities which we try to capture using the spatial Durbin model. Using a panel 
of 2342 hospitals in the 48 continental states observed over the period 2005 to 2008, we find 
significant spatial correlation of medical service treatment rates among hospitals. We also get 
mixed results on the effect of hospital ownership on treatment rates that depends upon the 
market structure where the hospital is located and which varies by treatment type. 

JEL-Code: C020. 

Keywords: spatial lag, hospital ownership, spillover effects, panel data. 
 
 
 
 

Badi H. Baltagi 
Department of Economics and 

Center for Policy Research 
Syracuse University 

426 Eggers Hall 
USA – Syracuse, NY 13244-1020 

bbaltagi@maxwell.syr.edu 

Yin-Fang Yen 
School of Public Administration 

Southwestern University in Finance and 
Economics 

A319 Tongbo Building 
PR China – Chengdu, Sichuan, 611130 

yyf@swufe.edu.cn 
 

  
 

  
 
 
November 19, 2013 
We are grateful to the editors of this special issue, two anonymous referees, and seminar 
participants at Syracuse University for their helpful comments and suggestions. Yin-Fang Yen 
acknowledges the support of Southwestern University of Economics and Finance 
Fundamental Research Funds. 



1. Introduction  

The quality and cost effectiveness of the health care system in the U.S. are two of the major 

concerns of the Affordable Care Act (ACA).  According to World Health Organization (WHO), 

the total health expenditure of the U.S. accounted for 17.9% of the national GDP in 2010, which 

was the highest in the world. Despite spending this high expenditure on health, the health 

outcomes were not significantly better than those of other countries. In this paper we focus on 

ownership of the hospitals and their treatment rates. We distinguish between three types of 

hospital ownership: For-profit, not-for-profit, and government owned hospitals. There is an 

extensive literature focusing on hospital ownership, see for example Sloan (2000), McClellan 

and Staiger (2000), Sloan et al. (2001), Kessler and McClellan (2002), Horwitz and Nichols 

(2009), Bayindir (2012), to mention a few. A brief review of the different ownership theories and 

the empirical evidence is given in section 2. The empirical studies have mixed results. Both not-

for-profit and government hospitals enjoy tax exemptions and financial advantages. They may 

have the luxury of using their profits to finance less profitable services. Sloan (2000) finds that 

not-for-profit hospitals provide better overall quality to the community. Bayindir (2012) suggests 

that not-for-profit hospitals are more likely to treat uninsured patients and patients with public 

health insurance than for-profits hospitals. Some studies indicate that for-profits are profit-

seeking and have more financial incentives to provide better treatment and attract patients, while 

other studies suggest that there is no difference in quality between not-for-profits and for-profits 

hospitals. On the demand side, Jung, Feldman, and Scanlon (2011) find that hospitals with better 

reputation and higher quality of health care tend to increase patients’ willingness to revisit. 

Moscone, Tosetti, and Vittadini (2012) suggest that information from neighbors along with 

patients’ previous experience and hospital characteristics play important roles in their choice of 

hospitals in Italy. Porell and Adams (1995) survey the literature and report that patients are more 
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likely to choose hospitals with better health outcomes. The health care market is based on the 

interactions between hospitals and patients. We explore how this market generates externalities 

among hospitals. In particular, we study how the treatment rates of one hospital may be affected 

by the treatment rates and competition from other neighboring hospitals. 

The competition level of the market may be affected by the distance between hospitals, the 

hospital’s reputation and the quality of hospitals1. Tay (2003) suggests that patients have a 

tradeoff between the quality of the hospital and the distance to other hospitals2. Hospitals 

improve their quality to attract patients from other neighborhoods3. Horwitz and Nichols (2009) 

find that not-for-profit hospitals are more likely to provide relatively profitable services in a 

market with a higher proportion of for-profit admissions. Government hospitals are the least 

likely to offer profitable services and the most likely to offer unprofitable services. 

  Knowledge spillovers may also contribute to externalities of health care.  “A large 

medical literature has documented the important role of social networks in physician adoption of 

new technologies, suggesting that knowledge externalities are the source of the productivity 

spillovers.” See Chandra and Staiger (2007, p.133). Physicians may learn from each other and 

possibly transfer to another hospital, especially when a new technology or equipment is 

introduced. Agglomeration economies also suggest firms (hospitals) have stronger technology 

spillovers or faster learning process of a new innovation in a high firm density area (Breschi and 

1 We do not argue that price of medical services is negligible, but most patients have insurance (Tay, 2003). 
Insurance companies cover a major part of medical expense. Moreover, patients who are aged 65 and above are 
most likely covered by Medicare. The out-of-pocket payments from patients are relatively low (Sloan, 2000).  Porell 
and Adams (1995) indicate that studies do not find significant price effects when they use gross charges as the price 
measure.  
2 While almost half of acute myocardial infarction (AMI, or heart attack) patients are admitted to the closest hospital 
from home, more than 50% of the patients are willing to travel four to five miles further on average for better quality 
health care. 
3 However, using mortality rates, other empirical studies show mixed results of the effects of the competition on 
quality (see Gaynor, 2006). 
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Lissoni, 2001; Cohen and Morrison Paul, 2008; Baicker and Chandra, 2010). Hence, it is 

important to take into account the possible spillovers from one hospital to its neighboring 

hospitals.  

         These spillovers create a spatial correlation of quality, which is presented in Figure 1. The 

maps present the geographic distribution of the summary Hospital Compare quality scores by 

hospital referral region4 (HRR) in the United States in 2005 (The Dartmouth Atlas of Health Care). 

The scores indicate the average percentages of heart attack, heart failure, and pneumonia clinical 

processes that are given to patients in the HRR. Figure 1a shows the spatial patterns of the 

overall score. The treatment rates are above 90% in many HRRs in the middle and north eastern 

United States. One may argue that these HRRs are wealthier urban areas. Therefore, their overall 

medical quality is higher than the national average. The geographic clusters suggest 

heterogeneity of health care across the country. However, we also find geographic clusters of 

high treatment rates in some less wealthy HRRs, such as those in North Carolina. This confirms 

the results by Skinner (2012) that demographic variables cannot fully explain the geographic 

variations in health care. The clusters may also indicate that the medical quality of one HRR is 

correlated with that of its neighboring HRRs. Focusing on the treatment rates by illness 

condition, we find the geographic patterns of heart attack and heart failure treatments in Figures 

1b and 1c to be similar to that of the overall treatments. The geographic pattern of pneumonia 

treatments in Figure 1d is slightly different from heart disease treatments, but a spatial 

correlation persists.  

4 Dartmouth Atlas defines the hospital referral regions by the regional market of health care. Patients are able to 
transfer or be referred to another hospital for major cardiovascular surgical procedures and for neurosurgery in the 
same HRR. One HRR can cross different counties and states.  

3 
 

                                                           



When examining the interaction among hospitals, most studies utilize the Herfindahl-

Hirschman Index (HHI) or similar market share variables as measures of competition level or 

market structure. While these indices are good measures of the aggregate competition level of 

the market, they do not take distances between hospitals into consideration. A market with three 

hospitals close to each other is considered to have the same competition as one with three 

hospitals spread out. 

In this paper, we utilize a spatial Durbin model of hospital treatment rates. This spatial 

model is able to identify the intensity of geographic correlations. Other studies using spatial 

analysis in health care include Mobley et al. (2006) who studied elderly access to primary care 

services. They use the spatial lag model, which includes the spatial lagged dependent variable to 

model spillovers. They find a strong and positive spatial correlation for hospital treatments. 

However, they do not consider hospital ownership as an aspect of quality disparity.  

In addition to spillover effects, the spatial Durbin model allows us to examine whether the 

market structure affects the treatment rates. The market of medical services is composed of 

hospitals with different characteristics, such as ownership and size. As suggested by Horwitz and 

Nichols (2009), hospitals have different treatment decisions based on the market structure they 

are facing. We cannot assume the spillover effects are the same for all types of markets. 

Operational strategies of hospitals may not only differ by the type of ownership but may also 

respond to the type of ownership of neighbors. 

We use clinical process treatment rates from Hospital Compare as our dependent variable. 

Compared to other measures, like the mortality rate or the length of hospital stays, the process 

treatment rates are less noisy and reflect real hospital medical services. Our study finds strong 
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and positive spillover effects among hospitals for heart attack patients. The spillover effects are 

even stronger for less acute illness conditions like heart failure and pneumonia. We find some 

evidence that not-for-profit hospitals provide better medical services than government and for-

profit hospitals, but the treatments also differ by the market structure. Hospitals in a market with 

stronger intensity of not-for-profit hospitals are more likely to provide medications at discharge 

but less likely to perform percutaneous coronary intervention (PCI) in time. Moreover, the 

treatment rates of hospitals decrease if they are surrounded by large hospitals. The overall effect 

depends on the characteristics of the hospital, the spillover effects, and the market structure. 

2.  Literature Review 

Unlike most of the industries that are composed of for-profit firms, about 60% of the non-

federal hospitals in the United States were not-for-profit and only 20% were for-profit in 2010. 

As Horwitz and Nichols (2009, p.925) summarize in their Table 1, there are four theories of not-

for-profit hospitals: (1) maximizing own output (Newhouse, 1970): not-for-profits are profit-

seeking and maximize profitable services as for-profits do. They will offer more health care until 

profits are driven to zero; (2) maximizing the community output (Lee and Weisbrod, 1977): the 

goal of not-for-profits is to benefit the whole community and to maximize market output 

including unprofitable services; (3) for-profit in disguise (Pauly and Redisch, 1973): nonprofits 

would be essentially identical to for-profit hospitals in equilibrium, with economic profits 

counted as costs (salaries or perquisites accruing to staff physicians); and (4)  a mixture of (1) 

and (2) (Hirth, 1997): not-for-profits behave depending on the competition level of the market. 

They are profit-seeking when facing competition.  

The empirical studies have mixed results. Tax exemptions allow not-for-profit and 

government hospitals to provide better quality to the community or more medical care to 
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uninsured patients (Sloan, 2000; Bayindir, 2012). Clement et al. (2002) note that for-profit 

hospitals provide less charity care than not-for-profits. McClellan and Staiger (2000) also 

suggest that not-for-profit hospitals treat elderly patients with heart disease slightly better than 

for-profits hospitals. Sloan et al. (2001) find that for-profit hospitals are more likely to use high-

tech procedures with higher costs, while Kessler and McClellan (2002) find that areas with for-

profit hospitals have lower hospital expenditures, but virtually the same patient health outcomes. 

They conclude that for-profit hospitals have important spillover benefits for medical 

productivity. Geweke, Gowrisankaran, and Town (2003) use a Bayesian model to estimate 

hospital quality in Los Angeles County. Focusing on elderly pneumonia patients, they find that 

there is not a definitive difference in mortality rates by hospital ownership. This is in line with 

the results of Sloan et al. (2001) and Sloan and Taylor (1999). These studies find weak evidence 

that the mortality rate of Medicare patients and the probability of readmission differ by hospital 

ownership.  

However, when competition and market structure are taken into consideration, several 

studies suggest that the first or the last theory has more support. Horwitz and Nichols (2009) find 

not-for-profit hospitals are more likely to provide profitable services in a high for-profit market 

(15% of for-profit admissions or higher). The spillovers of medical services provided make not-

for-profit hospitals behave more like for-profits in a high for-profit market. The role of hospital 

ownership is less important when the competition level increases. Not-for-profits compete with 

for-profit hospitals by providing better quality of health care (Sloan, 2000). McClellan and 

Staiger (2000) also suggest that the growing difference in mortality rates of the elderly AMI 

patients between for-profit and not-for-profit hospitals may be attributed to various factors, 

including location. Hospitals compete by providing better quality even though improving quality 
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can be very costly (Morey et al., 1992). Fournier and Mitchell (1992) and Robinson and Luft 

(1985) suggest that increased competition is usually associated with increased cost. Propper, 

Burgess, and Green (2004) on the other hand argue that increased competition may lower 

hospital quality5. The treatment decisions may depend on the competition level of the market the 

hospitals are located in.  

Besides competition, knowledge spillovers among physicians could also cause spatial 

correlations. Physicians are more likely to practice intensive treatments in a market with 

advanced medical technologies. Chandra and Staiger (2007) find that spillovers of technology 

increase the treatment rate in the market. Cardiac catheterization rate of AMI patients is higher in 

a market with a higher propensity for intensive treatments. Physicians learn practice skills from 

other physicians, and possibly transfer these skills to other hospitals due to job movement or due 

to these physicians working at multiple hospitals. About 40% of physicians with inpatient duty 

work at more than one hospital (Fisher et al., 2007). This mobility increases the probability of 

exchanging knowledge among physicians. Therefore, interactions and spatial correlations of 

treatments among hospitals should not be neglected when we examine hospital treatment rates. 

A similar perspective from urban economists is agglomeration. Firms (hospitals) may 

operate more efficiently with geographical concentration due to economies of scale or 

technology spillovers (Breschi and Lissoni, 2001; Cohen and Morrison Paul, 2008; Baicker and 

Chandra, 2010). The geographical clusters of firms may be due to “labor pooling”. Firms 

(hospitals) may lower costs due to a larger and better pool of labor (Cohen and Morrison Paul, 

2008). In addition, firms (hospitals) adopt new innovation more rapidly when this innovation has 

5 There are other studies that suggest competition improve cost-effectiveness and generate economy of scale 
(Dranove, Shanley, and Simon, 1992; Kessler and McClellan, 2000, Zwanziger and Melnick, 1988). Bloom et al. 
(2010) find that competition increases management quality of the public hospitals in the U.K. 
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high financial incentives (Baicker and Chandra, 2010). Cohen and Morrison Paul (2008) use data 

on hospitals in Washington State and find that clustering reduces labor costs in several treatment 

centers. Baicker and Chandra (2010) examine the “high-value care” with Hospital Compare 

treatment rates and “low-value care” with end-of-life spending of Medicare beneficiaries. Their 

results suggest that hospital quality is positively associated with neighbors’ quality even though 

they do not control for the distance between the hospitals and only measure the overall treatment 

score.  

Mobley et al. (2006) study this geographic correlation of health care in the U.S. They use 

Admissions for Ambulatory Care Sensitive Conditions (ACSCs) among elderly patients in the 

late 1990s as the preventive care utilization measure. ACSCs are preventable admissions and 

therefore can be an indicator of poor quality. They use a spatial lag model with both maximum 

likelihood and two stage least squares methods. They find strong and positive spatial 

correlations. More ACSCs in neighboring hospitals are associated with an increase in ACSCs for 

the hospital itself. The utilization rates are not significantly different between the elderly living 

in poor rural areas and those living in urban areas.  

3.  Data and methodology 

We model hospital treatment rates using the spatial Durbin panel model given by 

y𝑡𝑡 = 𝜆𝜆Wy𝑡𝑡 + H𝑡𝑡γ1 + X𝑡𝑡β + WH𝑡𝑡γ2 + 𝜀𝜀s + τ𝑡𝑡 + u𝑡𝑡      t=1,2,..,T 

u𝑖𝑖𝑡𝑡 = µ𝑖𝑖 + v𝑖𝑖𝑡𝑡      i=1,2,..,N 

where y𝑡𝑡 is an (Nx1) vector of treatment rates for N hospitals at time t. W is an (NxN) spatial 

weight matrix, whose diagonal elements are zero and whose off diagonal elements are the 
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normalized inverse distance from hospital i to hospital j. This weight matrix is row-normalized, 

i.e., the elements in each row sum to one, ∑ w𝑖𝑖𝑖𝑖 = 1N
j=1 . Wy𝑡𝑡 is the spatial lagged dependent 

variable, which presents the weighted average treatment rates of neighboring hospitals. As we 

mentioned earlier, the treatment rates of own hospital may be affected by the treatment rates of 

neighboring hospitals through competition or knowledge spillovers. λ thus measures the spillover 

effect of hospital treatment rates. H𝑡𝑡 is an (Nxk) matrix of hospital characteristics, and X𝑡𝑡 is an 

(Nxc) matrix of county demographic variables where hospital i is located. 𝜀𝜀𝑠𝑠 and τ𝑡𝑡 are state and 

year fixed effects. u𝑡𝑡 is an (Nx1) vector of error component disturbances. As the second equation 

shows, the typical element of  u𝑖𝑖𝑡𝑡 is the hospital random effect µ𝑖𝑖 and a remainder classical 

disturbance v𝑖𝑖𝑡𝑡. µ𝑖𝑖 is assumed to be i.i.d. (0, σµ2) and v𝑖𝑖𝑡𝑡 is assumed to be i.i.d. (0, σv2). µi and v𝑖𝑖𝑡𝑡 

are independent of each other and the regressors H𝑡𝑡  and X𝑡𝑡. 

 Our panel data consists of all hospitals in the 48 continental states that reported their 

treatment rates every year from 2005 to 2008. Neighboring hospitals are those within a 30 miles 

radius. Thirty miles may seem arbitrary, but Horwitz and Nichols (2007) indicate that 90% of the 

discharges are from a mean radius of 21.5 miles of non-rural hospitals, compared to 25.2 miles 

for rural hospitals. Therefore, 30 miles seems reasonable to cover the potential market. In order 

to measure the spillover effects, we only include hospitals with at least one neighbor within the 

30-mile radius. The maximum number of hospital neighbors is 109 and the average number of 

neighbors for each hospital is 20.56. 

Our dependent variables are the treatment rates from Hospital Compare of the Centers for 

Medicare and Medicaid Services. This data set was released in 2004. The treatment rates are the 

percentages of the eligible adult patients who were actually given seven clinical processes of care 
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for heart attack treatments6. Instead of examining the spillover effects on each of the seven AMI 

clinical processes separately, we combine them into four categories: (1) overall treatment rate; 

(2) giving aspirin and/or beta blockers at arrival; (3) prescribing aspirin/beta 

blockers/angiotensin converting enzyme (ACE) inhibitors at discharge; and (4) giving 

percutaneous coronary intervention (PCI) within 120 minutes of arrival7. The first category 

refers to the average of all treatments offered to AMI patients. The medications are similar in the 

second and third categories, but the timing of prescriptions indicates different treatment 

purposes. The second category indicates timely treatments that can relieve the conditions. The 

third category implies preventive treatments to reduce the probability of readmissions. These 

three categories are obtained using a weighted average where the weights are the number of 

cases in each process. PCI is a coronary angioplasty. It is a relatively high intensity treatment, 

which requires skilled staff and equipment. 

A heart attack is a very acute condition, and patients need immediate medical care. They 

are most likely to be taken to hospitals in distinct local markets8. This precludes patients from 

travelling long distances to seek care and in turn being less likely to select the hospital they like. 

In addition, hospitals need to treat patients who check in to the emergency room, regardless of 

their insurance type. Focusing on heart attack processes allow us to reduce the selection issue 

between patients and hospitals. As Chandra and Staiger (2007, p.117) put it: “markets for heart 

attack treatment are geographically distinct…mobility is limited, and it is possible to observe 

production in many distinct local markets.” One may argue that the competition or spillover can 

6 Hospital Compare includes 17 clinic processes of care in total for heart attack, heart failure, and pneumonia. 
7 Smoking consultation is also included in the overall treatment receiving rate.  
8 Even if patients travel four to five miles for better treatments as suggested by Tay (2003), these hospitals may still 
be within one market according to our definition of neighborhood. 
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be limited due to this reason. However, the interactions between hospitals should have an impact 

on overall quality or specialized fields, rather than only on specific treatments or illness 

condition. 

There are several advantages of using Hospital Compare as our quality measures. First, the 

processes reflect the real medical services that are delivered to patients in a timely manner. Even 

though using health outcomes, such as mortality rate, as quality measures can cover 

unobservable factors, they could be noisy due to relatively low mortality probability (McClellan 

and Staiger, 2000). The processes in Hospital Compare are timely and effective for patients. 

Many of the processes for AMI patients are recommended in the ACC/AHA Guidelines for the 

Management of Patients with Acute Myocardial Infarction (1999). Second, most of these 

processes are not intensive or require advanced technologies. Hospitals should be able to provide 

the treatments regardless of the size and the specialization of the hospital. We acknowledge that 

these are the basic treatments, which can be achieved easily. One hospital with lower treatment 

rates may not guarantee a worse overall quality. It may focus on other medical and non-medical 

services that are not included in the data, such as open heart surgery. However, these non-

intensive treatments, such as giving beta blockers, serve as a marker of the quality of non-

intensive medical management in a hospital, see Chandra and Staiger (2007, p.118). Heidenreich 

and McClellan (2001) and Rogers et al. (2000) find that giving aspirin/beta blockers/ACE 

inhibitors is the major reason for increasing survival rate following AMI. Third, these measures 

only include patients who are appropriate for the treatments. One limitation of our data is that it 

is at the hospital level. Without patient-level data, we have no information about the 

characteristics and illness severity of patients.  
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Data for the hospital characteristics are taken from the AHA Guide and Provider of 

Services File and the Centers for Medicare and Medicaid Services, which includes: indicators of 

not-for-profit hospitals, for-profit hospitals, teaching hospitals9, and locating in an MSA; number 

of beds; number of nurses per bed; HHI; and CMI. Herfindahl-Hirschman Index (HHI) is the 

sum of squares of each hospital’s market share based on the number of beds within its 

neighborhood. HHI is an indicator of market concentration/competition. A larger index indicates 

a lower concentration of the health care market. The market may be dominated by one large 

hospital and few small hospitals. To overcome one of the shortages of the Hospital Compare 

data, we use Case Mix Index (CMI) to control for the average severity of the patients in the 

hospital. CMI indicates the average cost per patient. A larger CMI means more complicated 

processes/treatments are offered to patients. The spatial lagged hospital characteristics, WH𝑡𝑡, 

include indicators of for-profit, not-for-profit, and teaching hospitals; number of beds; and 

number of nurses per bed. γ2 represents the spillover effects of neighboring hospitals’ 

characteristics.  

The characteristics of potential patients are controlled by county demographic variables, 

which are from the American Community Survey of the U.S. Census Bureau. This data set 

includes only counties with a population of 65,000 and above in 2005 and 2006. Therefore, 

hospitals in our data are located in relatively more urbanized areas. We control for percentages of 

never married individuals age 15 and above, high school dropouts, high school graduates, male, 

Hispanic, black, and elderly (age 65 and above); median earnings; and population density per 

square mile. One may argue the disparity of health care quality is due to geographic 

9 Teaching hospitals include hospitals with Council of Teaching Hospitals designation, hospitals approved to 
participate in residency and/or internship training by the Accreditation Council for Graduate Medical Education, and 
those with medical school affiliation reported to the American Medical Association. 
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heterogeneity. Patients receive better treatment because they are located in an area with better 

medical care resources. These county demographic variables are good proxies for geographical 

heterogeneity.  

Table 1 presents the descriptive statistics of our data. The treatment rates of the four heart 

attack treatment categories have large means and small minimum values. This suggests that the 

distributions of treatment rates are skewed. Out of 2342 hospitals in our sample, 18.5% are for-

profit, 68.7% are non-profit hospitals. The proportion of non-profit hospitals is slightly higher 

than the national average but closer to that in the non-rural areas (Horwitz and Nichols, 2007). 

Of these hospitals, 41.2% have teaching status and 89.4% are located in MSAs. The average 

number of beds is 263 and the average number of nurses per bed is 1.1. The average (median 

earnings) is $33,790 and the average population density is 2,230 individuals per square mile. 

Among the potential patients, 30.9% are never-married, 44% have at most a high school degree, 

12.5% are elderly, 14.5% are Hispanic and 12.5% are black.  

4.  Empirical Results  

We estimate our spatial Durbin panel data model using the generalized moments (GM) 

estimator10 with random effects.  See LeSage and Pace (2009) for a nice introduction of the 

spatial Durbin model and Kapoor, Kelejian and Prucha (2007) for details on the GM 

methodology. Also, Mutl and Pfaffermayr (2010) for an extension of the GM methodology to the 

spatial lag model and Debarsy (2012) for the spatial Durbin model. See also Elhorst (2003) for 

10 We use the full set of moment conditions, see Millo and Piras (2012) for details. We also estimate the model using 
maximum likelihood estimation (MLE) using XSMLE: Stata module for spatial panel data model estimation, see 
Belotti, Hughes, and Mortari (2013). The MLE results were similar to those using the GM estimator except for 
smaller estimates of lambda. However, all the lambda estimates were statistically significant at the 1% significance 
level. These results are available upon request from the authors. 
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maximum likelihood estimation of spatial lag panel models, and Lee and Yu (2010) and Baltagi 

(2011) for recent surveys of spatial panels.  

Table 2 presents the spillover effects of the heart attack treatment rates using a GM 

estimator. Some of the diagnostics performed include testing the joint significance of the state 

dummies as well as the time dummies. These were jointly significant for all models considered. 

Similarly, the hospital random effects are significant for all models. The first two columns show 

the GM estimation of the overall heart attack treatment rate. Without controlling for the market 

structure in the first column, we find that not-for-profit hospitals provide similar health care to 

heart attack patients as government hospitals. Surprisingly, the treatments in for-profit hospitals 

are significantly worse than not-for-profit and government hospitals. The number of beds, the 

number of nurses per bed, and being a teaching hospital are all positively associated with 

hospital quality. These are in line with the studies of Keeler et al. (1992) and Geweke, 

Gowrisankaran, and Town (2003). Yuan et al. (2000) also find that teaching not-for profit 

hospitals have lower mortality rates and infer that they provide over-all better quality of care. 

Aiken et al. (2002) report that a higher patient-per-nurse ratio increases the mortality rate of 

AMI. A hospital located in a less concentrated market lowers its treatment rates and offers better 

treatments if it generally has higher CMI, i.e., higher average cost per patient. We find little 

evidence that demographic variables affect hospital treatments. Hospitals provide lower quality 

in an area with more Hispanics and blacks, given everything else held constant.  

The estimate of lambda indicates the magnitude of spillover effects among hospitals. For 

the overall treatment rate in column (1), the spatial correlation coefficient estimate is 0.263 

without the measures of market structure. This suggests that when the average heart attack 

treatment rate of neighboring hospitals increases by 1%, the hospital’s treatment rate also 
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increases by 0.263%. This effect is not trivial but smaller than the results found by Mobley et al. 

(2006). 

After adding the market structure variables in column (2), the estimation results are similar 

to those in column (1). However, the effect of blacks is no longer significant. The lambda 

estimate increases to 0.381. Ownership of neighboring hospitals does not impact its own quality. 

Hospitals provide fewer treatments in a market with teaching hospitals and larger neighboring 

hospitals. The significance of market structure variables suggest that ignoring these may generate 

biased results. In addition, these results suggest that the treatment decisions of hospitals may be 

associated with a higher quality of neighbors rather than the distribution of hospital ownership in 

the market. Larger hospitals provide more health care, but when a hospital is close to larger 

hospitals, its treatment rates are lower. Columns (3) to (8) decompose the overall treatment into 

more specific heart attack treatments. Focusing on the estimation with market structure variables, 

we find evidence that for-profit hospitals provide fewer medications to patients after they arrive 

and before they are discharged than government hospitals. Not-for-profit hospitals have a higher 

PCI treatment rate than government hospitals. We find that number of beds, number of nurses 

per bed, and teaching status are positively associated with the medication treatment rates at both 

arrival and discharge, but not with PCI. The number of nurses per bed has relatively strong 

effects, but the number of beds is not significant. On the other hand, the number of nurses has 

little effect on medication at discharge. Teaching hospitals are more likely to give medications to 

heart attack patients. This is in line with the suggestion of Sloan (2000) that major teaching 

hospitals have better quality and non-teaching government hospitals have the worst outcome for 

elderly patients. What is interesting is that teaching status is negatively associated with the PCI 
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treatment rate. This could be because teaching hospitals have longer waiting time to perform PCI 

than other hospitals (Nallamothu et al, 2005).  

A hospital located in a less concentrated market gives fewer medication to heart attack 

patients at arrivals and it offers more of all the heart attack treatments if it generally has larger 

CMI. Hospitals provide fewer PCI treatments in areas with high never-married population and 

high school graduates. 

The lambda estimates range from 0.233 to 0.464. Focusing on estimation with market 

structure, a 1% increase in average treatment rate of each category in neighboring hospitals is 

associated with an increase of 0.31%, 0.41%, and 0.46%, respectively, in the hospital’s own 

treatment rate. The spillover effect of PCI is relatively larger than other treatments. The strong 

and positive spatial correlation of PCI confirms the results of Chandra and Staiger (2007). 

Hospitals are more likely to perform these treatments in a market with a high propensity of 

intensive treatments. 

Except for the number of beds, market structure has different impacts on each treatment 

category. With not-for-profit hospitals in the market, a hospital is more likely to prescribe 

medications at discharge but less likely to perform PCI. All the treatments decrease when there 

are larger hospitals nearby. Interestingly, a hospital prescribes fewer medications at discharge 

when there are teaching hospitals in its neighborhood. 

5. Spillover Effects on Other Illness Conditions 
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Hospital Compare also includes four processes of heart failure and six processes of 

pneumonia11. These two illness conditions are less acute in the sense that patients have more 

likelihood to travel further for treatments, or for preferred physicians, or for insurance reasons. 

Hence, we expect the effects of competition among hospitals and the geographic heterogeneity to 

be stronger. We combine these treatments for each illness condition and apply the previous 

spatial panel Durbin model to the average treatment rates of heart failure and pneumonia.  

The GM estimation results are presented in Table 3. The first two columns are the 

estimation of heart failure treatments and the latter two columns are for pneumonia treatments. 

Focusing on the estimation with market structure, the results in column (2) suggest that not-for-

profit hospitals provide more treatments than government hospitals.  When the average severity 

of patients (CMI) in the hospitals is high, hospitals provide better treatments to heart failure 

patients. The lambda estimate indicates that when neighboring hospitals increase their heart 

failure treatment rate by 1% on average, it increases its own hospital treatment rate by around 

0.553%. Similar to heart attack treatments, larger hospitals in the neighborhood decrease the 

treatment rates of own hospital. The severity level of patients (CMI) in the neighboring hospitals 

lowers the heart failure treatment rates in own hospitals.  

Column (4) suggests that both for-profit and not-for-profit hospitals provide more 

pneumonia treatments than government hospitals. Teaching hospitals, however, are less likely to 

provide these pneumonia treatments. Hospitals also provide fewer treatments to areas with high 

minority populations. The lambda estimate indicates that when neighboring hospitals increase 

11 The processes of heart failure include an evaluation of the left ventricular systolic function, ACE inhibitor, 
discharge instructions, and smoking cessation advice during a hospital stay. The processes of pneumonia include 
giving initial antibiotic within 4 hours of arrival, screening for pneumococcal vaccination status, giving oxygenation, 
performing blood culture prior to the first hospital dose of antibiotics, giving smoking cessation advice, and giving 
appropriate initial antibiotics to immune-competent patients with pneumonia during the first 24 hours after arrival. 
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their pneumonia treatment rates by 1% on average, it increases its own hospital treatment rate by 

around 0.54%. Hospitals have lower treatment rates when they have for-profit and not-for-profit 

hospitals in their neighborhoods.  

6. Discussion 

Our results suggest that not-for-profit hospitals provide better quality, especially for 

cardiac treatments. One of the possible explanations is that for-profit hospitals are more 

aggressive on cost control. Eggleston and Shen (2011) find that the mortality rate for elderly 

heart attack patients is higher in for-profit hospitals, because they have more restrictive budget 

constraints. McKay and Deily (2008) also suggest that reductions in costs are associated with 

adverse consequences on health outcomes. In addition, not-for-profit hospitals enjoy tax 

exemptions. They are able to transfer the profit to services that are beneficial to patients. If the 

not-for-profit hospitals provide better services due to tax exemption, charitable obligations may 

benefit heart attack patients.  

We find a tendency for some hospitals to favor high technologies or use intense treatments 

rather than less intense treatments as suggested in Skinner and Staiger (2009) and Chandra and 

Staiger (2007). Teaching hospitals provide more medication but less PCI. However, we are not 

able to draw a fine line based on ownership. For-profit hospitals are less likely to provide 

medication while not-for-profits favor PCI. In addition, the effect of ownership depends upon 

treatments and market structure. The results on PCI treatments suggest that not-for-profit 

hospitals provide better intense heart attack treatments in an inter-sectoral market. When a 

market has only for-profit or only not-for-profit hospitals, there is no significant effect or the 

effects are traded off. However, when a not-for-profit hospital is located in a high for-profit 

market, the PCI treatment rate is significantly higher. According to the study of Horwitz and 
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Nichols (2009), PCI is a relatively profitable service. This result is in line with their study that 

not-for-profits provide more profitable services in a high for-profit market. On the other hand, 

when for-profit hospitals locate in a high not-for-profit market, they improve their quality by 

providing more medication before they discharge the patients. Not-for-profit hospitals provide 

better heart failure treatment regardless of the ownership composition in the market. Ownership 

of neighboring hospitals offset the high pneumonia treatment rates of for-profit and not-for-profit 

hospitals. Therefore, our results on hospital ownership are mixed.  

Our results support the competition hypothesis. Hospitals have lower treatment rates when 

they compete with hospitals of better quality. Competition may generate both positive and 

negative externalities at the same time. Also, when a hospital has a larger neighbor, there is a 

higher probability of empty beds which is costly (Gaynor and Anderson, 1995). Hospitals with 

more beds have diseconomy of scale. The cost may increase with increasing beds (Keeler, 

Melnick, and Zwanziger, 1999). Hospitals may offer fewer treatments for financial reasons. 

As expected, we also find that the spillover effect is stronger for less acute illness 

treatments than heart attack treatments. Less acute illnesses allow patients to travel further, 

making the competition among hospitals to increase. Positive externalities from competition and 

knowledge spillover improve medical services in the whole market. As an anonymous referee 

notes: “the type of competition in which hospitals engage is a local form of competition, among 

neighboring hospitals, as opposed to a global form of competition, where all hospital compete 

with each other regardless where they are geographically located and that could be valid for 

other types of disease, such as cancer”.  

We also examine the sensitivity of our results to changing the radius from 30 miles to 25 

and 35 miles. The results are given in Tables 4 and 5. The effects on own hospital characteristics 
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remain similar. What is interesting is that the spillover effect and the effects of neighborhood 

characteristics are slightly stronger as we expand the market range, except for PCI treatment. 

When one hospital is considered to be able to affect another hospital at a further distance, the 

market power or knowledge spillover effect increases. One can argue that basic treatments are 

easy to obtain and learn from sources that are not bounded by geographical distance. However, 

PCI is “tacit knowledge” that is mainly transferred by face-to-face contact or hands-on 

apprenticeship. Tacitness has spatial limitation and the knowledge property regimes are fairly 

local (Breschi and Lissonni, 2001). Expanding the market makes the spillover relatively smaller.  

Our results corroborate similar findings for France by Gobillon and Milcent (2012). These 

authors find that local composition of ownership and demographic variables have limited effects 

on spatial disparity of innovative treatments in France. They also find strong spillover effects and 

suggest that regional unobservable factors account for 20% of spatial disparities.  

  Since the overall effect depends upon the characteristics of the hospital itself, spillovers 

and market structure, this may explain why Gaynor (2006) suggests a mixed result for the effect 

of competition on hospital quality. Vickers and Yarrow (1988) also conclude that the 

competition level in the market could be a more important determinant of performance than type 

of ownership.  

7. Conclusion  

Our study employs a spatial Durbin panel data model to control for geographic correlation 

of treatments among hospitals. Our results suggest strong and positive spillover effects among 

hospitals. Our results should be tempered by the fact that we included basic treatments which 

were limited by data availability. Some hospitals may perform other effective treatments which 
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are not available in our data set. In addition we only focused on three illness conditions. Some 

hospitals may provide better quality care treatments for other illness conditions not reported in 

our data set. 

Our results on hospital ownership are mixed. While we find some evidence that hospitals 

have different operation strategies by ownership, this also depends on the market structure where 

the hospital is located. One thing that policy makers should not ignore is the effect of spillovers 

which we found to be strong and significant.  
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Figure 1. Geographic Distribution of the Summary Hospital Compare Quality Score in Hospital Referral Regions  

Figure 1a. Overall 

 

Figure 1b. Heart Attack 

 

Figure 1c. Heart Failure 

 

Figure 1d. Pneumonia 

 

 Source: The Dartmouth Atlas of Health Care (The Dartmouth Institute for Health Policy and Clinical Practice).
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Table 1. Descriptive Statistics 

  Mean Std. Dev. Min Max 
Dependent Variables:   
Heart Attack Treatments:   
Overall 0.921 0.065 0.257 1 
Medication at arrival 0.934 0.063 0.28 1 
Medication at discharge 0.917 0.086 0 1 
PCI 0.627 0.197 0 1 
     
Heart Failure Overall Treatments: 0.797 0.129 0.05 1 
Pneumonia Overall Treatments: 0.835 0.082 0.447 1 
     
Independent Variables:   
For-profit 0.185 0.389 0 1 
Not-for-profit 0.687 0.464 0 1 
Number of beds (in 100's) 2.632 2.103 0.04 22.07 
Nurses per bed 1.102 0.522 0.2 7.04 
Teaching Status 0.412 0.49 0 1 
Located in an MSA 0.894 0.308 0 1 
HHI 0.137 0.172 0.001 0.971 
CMI 1.456 0.262 0.642 4.992 
% never married 0.309 0.06 0.166 0.557 
% HS dropouts 0.151 0.059 0.018 0.418 
% HS grads 0.29 0.067 0.116 0.55 
Median earnings (in 10,000's) 3.379 0.061 1.741 6.09 
% male 0.49 0.011 0.445 0.58 
% Hispanic 0.145 0.159 0 0.951 
%  black 0.126 0.129 0 0.668 
%  elderly 0.125 0.033 0.046 0.335 
Population density  (in 10,000's) 0.223 0.668 0.001 0.716 
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Table 2. Estimates of Spillover Effects and Hospital Characteristics on Heart Attack Treatments 

Treatment Overall   
Medicatio
n at arrival   

Medicatio
n at 
discharge   PCI   

  (1) (2) (3) (4) (5) (6) (7) (8) 
         
For-profit -0.008** -0.008** -0.011*** -0.011*** -0.012** -0.012** 0.011 0.015 
 (0.004) (0.004) (0.004) (0.004) (0.005) (0.005) (0.018) (0.019) 
Not-for-profit 0.005 0.004 0.001 0.000 0.002 0.000 0.057*** 0.058*** 
 (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.016) (0.016) 
Number of beds 0.002*** 0.003*** 0.002*** 0.002*** 0.004*** 0.004*** 0.002 0.002 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 
Nurses per bed 0.007*** 0.006*** 0.006*** 0.006*** 0.004* 0.004 0.035*** 0.033*** 
 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.009) (0.009) 
Teaching Status 0.008*** 0.009*** 0.008*** 0.009*** 0.013*** 0.015*** -0.024** -0.024** 
 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.010) (0.010) 
Located  in an 
MSA 0.002 0.004 -0.001 0.001 0.002 0.005 0.026 0.025 
 (0.005) (0.005) (0.004) (0.004) (0.006) (0.006) (0.033) (0.034) 
HHI -0.017* -0.016* -0.021** -0.020** -0.021* -0.018 -0.011 -0.009 
 (0.009) (0.009) (0.009) (0.009) (0.012) (0.012) (0.050) (0.050) 
CMI 0.043*** 0.044*** 0.042*** 0.043*** 0.067*** 0.068*** 0.040** 0.045** 
 (0.004) (0.004) (0.004) (0.004) (0.006) (0.006) (0.020) (0.020) 
% never married 0.043 0.047* 0.034 0.036 0.053 0.056 -0.323** -0.296* 
 (0.028) (0.028) (0.027) (0.028) (0.037) (0.038) (0.153) (0.154) 
% HS dropouts -0.046 -0.039 -0.039 -0.037 -0.067 -0.047 -0.057 -0.100 
 (0.031) (0.031) (0.030) (0.031) (0.042) (0.043) (0.174) (0.176) 
% HS grads -0.001 -0.007 -0.003 -0.009 -0.029 -0.035 -0.259* -0.230* 
 (0.024) (0.025) (0.024) (0.024) (0.033) (0.033) (0.132) (0.133) 
Median earnings 0.003 0.004 0.004 0.005 0.001 0.003 -0.010 -0.009 
 (0.003) (0.003) (0.003) (0.003) (0.004) (0.004) (0.017) (0.018) 
% male 0.040 -0.000 0.119 0.091 0.056 -0.017 0.594 0.647 
 (0.109) (0.110) (0.108) (0.109) (0.148) (0.150) (0.636) (0.640) 
% Hispanic -0.023* -0.009 -0.009 0.001 -0.037** -0.015 -0.078 -0.066 
 (0.013) (0.014) (0.013) (0.013) (0.018) (0.018) (0.074) (0.076) 
% black -0.033** -0.023 -0.020 -0.012 -0.037* -0.024 -0.144* -0.117 
 (0.015) (0.015) (0.014) (0.014) (0.019) (0.020) (0.081) (0.082) 
% elderly 0.030 0.040 0.037 0.045 0.071 0.084 -0.045 -0.105 
 (0.051) (0.051) (0.049) (0.049) (0.067) (0.068) (0.270) (0.273) 
Population density -0.003 -0.002 -0.002 -0.002 -0.005* -0.004 -0.006 -0.006 
 (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.011) (0.011) 
Spatial (λ) 0.263*** 0.381*** 0.233*** 0.309*** 0.246*** 0.414*** 0.373*** 0.464*** 
 (0.060) (0.076) (0.064) (0.082) (0.061) (0.081) (0.089) (0.085) 
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Market Structure:         
For-profit  0.001  0.000  0.008  0.000 
  (0.007)  (0.007)  (0.009)  (0.028) 
Not-for-profit  0.010  0.009  0.017**  -0.058** 
  (0.006)  (0.006)  (0.008)  (0.024) 
Number of beds  -0.003***  -0.003***  -0.004***  -0.007** 
  (0.001)  (0.001)  (0.001)  (0.003) 
Nurses per bed  0.001  0.004  0.002  -0.023 
  (0.004)  (0.004)  (0.005)  (0.016) 
Teaching Status  -0.006*  -0.002  -0.011**  0.023 
  (0.004)  (0.004)  (0.005)  (0.015) 
CMI  -0.008  -0.010  -0.013  -0.014 
  (0.009)  (0.009)  (0.011)  (0.028) 
         
State fixed effect? Yes Yes Yes Yes Yes Yes Yes Yes 
Year fixed effect? Yes Yes Yes Yes Yes Yes Yes Yes 
         
         
F-test for state 
fixed effects 4.34*** 3.49*** 4.37*** 3.63*** 4.42*** 3.27*** 3.39*** 3.38*** 
F-test for year 
fixed effects 88.06*** 87.16*** 63.6*** 62.71*** 77.96*** 77.33*** 21.24*** 21.4*** 
         
Number of 
hospitals 2,056 2,056 2,056 2,056 2,056 2,056 935 935 
Observations 8,224 8,224 8,224 8,224 8,224 8,224 3,740 3,740 

 
Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Table 3. Estimates of Spillover Effects and Hospital Characteristics on Heart Failure and Pneumonia 
Treatments 

Treatment Heart Failure  Pneumonia  
  (1) (2) (3) (4) 
     
For-profit -0.006 -0.005 0.010*** 0.010*** 
 (0.007) (0.007) (0.004) (0.004) 
Not-for-profit 0.020*** 0.020*** 0.021*** 0.022*** 
 (0.006) (0.006) (0.003) (0.003) 
Number of beds 0.001 0.002 -0.001 -0.001 
 (0.001) (0.001) (0.001) (0.001) 
Nurses per bed 0.010*** 0.010*** 0.001 0.001 
 (0.004) (0.004) (0.002) (0.002) 
Teaching Status -0.002 0.001 -0.008*** -0.007*** 
 (0.004) (0.004) (0.002) (0.002) 
Located in an MSA -0.002 0.004 0.000 0.002 
 (0.009) (0.009) (0.005) (0.005) 
HHI -0.029* -0.028 -0.008 -0.010 
 (0.017) (0.018) (0.009) (0.009) 
CMI 0.061*** 0.063*** -0.003 -0.002 
 (0.008) (0.008) (0.004) (0.004) 
% never married -0.078 -0.064 -0.007 -0.003 
 (0.055) (0.055) (0.028) (0.028) 
% HS dropouts -0.020 -0.032 0.005 0.001 
 (0.058) (0.059) (0.029) (0.029) 
% HS grads 0.046 0.023 0.019 0.017 
 (0.048) (0.049) (0.024) (0.024) 
Median earnings 0.003 0.003 0.004 0.004 
 (0.006) (0.006) (0.003) (0.003) 
%  male -0.319 -0.359* -0.031 -0.043 
 (0.206) (0.209) (0.106) (0.106) 
%  Hispanic 0.013 0.022 -0.022* -0.026** 
 (0.024) (0.025) (0.013) (0.013) 
% black -0.014 -0.001 -0.025* -0.028* 
 (0.028) (0.029) (0.015) (0.015) 
% elderly 0.020 0.020 0.001 0.001 
 (0.098) (0.099) (0.050) (0.051) 
Population density 0.001 0.001 0.001 -0.001 
 (0.004) (0.004) (0.050) (0.002) 
     
Spatial (λ) 0.482*** 0.553*** 0.608*** 0.540*** 
 (0.067) (0.070) (0.068) (0.065) 
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Market Structure:     
For-profit  -0.008  -0.018** 
  (0.014)  (0.007) 
Not-for-profit  0.000  -0.016*** 
  (0.012)  (0.006) 
Number of beds  -0.004*  -0.001 
  (0.002)  (0.001) 
Nurses per bed  -0.002  0.001 
  (0.007)  (0.004) 
Teaching Status  -0.002  -0.005 
  (0.007)  (0.004) 
CMI  -0.033**  -0.006 
  (0.026)  (0.008) 
     
State fixed effect? Yes Yes Yes Yes 
Year fixed effect? Yes Yes Yes Yes 
     
     
F-test statistic for state 
fixed effects 5.27*** 4.84*** 8.70*** 7.99*** 
F-test statistic for year 
fixed effects 241.1*** 240.7*** 621.33*** 623.75*** 
     
Number of hospitals 2,130 2,130 2,065 2,065 
Observations 8,520 8,520 8,260 8,260 

 

Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Table 4. Estimates of Spillover Effects and Hospital Characteristics with a 25-mile market radius 

  Heart Attack    Heart Failure Pneumonia 

Treatment Overall 
Medication at 

arrival 
Medication at 

discharge PCI   
  (1) (2) (3) (4) (5) (6) 
       
For-profit -0.009** -0.012*** -0.012** 0.011 -0.006 0.010** 
 (0.004) (0.004) (0.005) (0.019) (0.007) (0.004) 
Not-for-profit 0.003 -0.000 -0.001 0.055*** 0.020*** 0.021*** 
 (0.003) (0.003) (0.004) (0.016) (0.006) (0.003) 
Number of beds 0.003*** 0.002*** 0.004*** 0.001 0.002 -0.001 
 (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) 
Nurses per bed 0.006*** 0.006*** 0.004 0.034*** 0.010** 0.000 
 (0.002) (0.002) (0.003) (0.010) (0.004) (0.002) 
Teaching Status 0.009*** 0.009*** 0.014*** -0.023** -0.002 -0.007*** 
 (0.002) (0.002) (0.003) (0.010) (0.004) (0.002) 
Located  in an MSA 0.002 -0.000 0.002 0.018 0.002 0.002 
 (0.005) (0.005) (0.006) (0.040) (0.009) (0.005) 
HHI -0.012 -0.017** -0.010 -0.015 -0.034** -0.013 
 (0.009) (0.009) (0.012) (0.048) (0.017) (0.009) 
CMI 0.042*** 0.041*** 0.065*** 0.045** 0.061*** -0.003 
 (0.004) (0.004) (0.006) (0.020) (0.008) (0.004) 
% never married 0.044 0.034 0.056 -0.338** -0.086 -0.007 
 (0.029) (0.028) (0.039) (0.160) (0.057) (0.029) 
% HS dropouts -0.042 -0.037 -0.047 -0.176 -0.032 0.009 
 (0.032) (0.031) (0.044) (0.182) (0.060) (0.030) 
% HS grads 0.004 -0.002 -0.015 -0.227 0.030 0.016 
 (0.025) (0.025) (0.034) (0.139) (0.050) (0.025) 
Median earnings 0.005 0.005* 0.005 -0.013 0.002 0.004 
 (0.003) (0.003) (0.004) (0.018) (0.006) (0.003) 
% male 0.058 0.156 0.033 0.713 -0.351* -0.039 
 (0.112) (0.111) (0.154) (0.666) (0.211) (0.108) 
% Hispanic -0.010 -0.001 -0.012 -0.046 0.015 -0.030** 
 (0.014) (0.013) (0.019) (0.077) (0.025) (0.013) 
% black -0.020 -0.010 -0.020 -0.097 -0.001 -0.029* 
 (0.015) (0.015) (0.020) (0.084) (0.029) (0.015) 
% elderly 0.046 0.046 0.096 -0.071 0.015 -0.002 
 (0.052) (0.050) (0.069) (0.285) (0.100) (0.052) 
Population density -0.002 -0.001 -0.003 -0.003 0.001 -0.001 
 (0.002) (0.002) (0.003) (0.011) (0.004) (0.002) 
Spatial (λ) 0.324*** 0.215*** 0.403*** 0.480*** 0.509*** 0.495*** 
 (0.077) (0.083) (0.081) (0.086) (0.068) (0.065) 
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Market Structure:       
For-profit 0.007 0.006 0.013 -0.017 -0.007 -0.015** 
 (0.007) (0.007) (0.009) (0.028) (0.013) (0.007) 
Not-for-profit 0.015** 0.014** 0.022*** -0.077*** -0.002 -0.015** 
 (0.006) (0.006) (0.008) (0.024) (0.011) (0.006) 
Number of beds -0.003*** -0.003** -0.004*** -0.006* -0.004* -0.001 
 (0.001) (0.001) (0.001) (0.003) (0.002) (0.001) 
Nurses per bed 0.002 0.005 0.002 -0.030* -0.002 -0.002 
 (0.004) (0.004) (0.005) (0.016) (0.006) (0.003) 
Teaching Status -0.003 0.001 -0.006 0.026* -0.001 -0.005 
 (0.004) (0.004) (0.005) (0.015) (0.007) (0.004) 
CMI -0.002 -0.003 -0.009 -0.014 -0.021 0.001 
 (0.008) (0.008) (0.011) (0.028) (0.014) (0.007) 
       
State fixed effect? Yes Yes Yes Yes Yes Yes 
Year fixed effect? Yes Yes Yes Yes Yes Yes 
       
Number of hospitals 2,016 2,016 2,016 908 2,092 2,029 
Observations 8,064 8,064 8,064 3,632 8,368 8,116 
       

Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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Table 5. Estimates of Spillover Effects and Hospital Characteristics with a 35-mile market radius 

  Heart Attack   Heart Failure Pneumonia 

Treatment Overall 
Medication at 

arrival 
Medication at 

discharge PCI   
  (1) (2) (3) (4) (5) (6) 
       
For-profit -0.011*** -0.014*** -0.015*** 0.017 -0.003 0.011*** 
 (0.004) (0.004) (0.005) (0.018) (0.007) (0.004) 
Not-for-profit 0.001 -0.004 -0.003 0.056*** 0.021*** 0.024*** 
 (0.003) (0.003) (0.004) (0.016) (0.006) (0.003) 
Number of beds 0.003*** 0.002*** 0.004*** 0.002 0.002 0.000 
 (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) 
Nurses per bed 0.004** 0.002 0.003 0.034*** 0.007* -0.001 
 (0.002) (0.002) (0.003) (0.009) (0.004) (0.002) 
Teaching Status 0.008*** 0.008*** 0.014*** -0.018* -0.000 -0.007*** 
 (0.002) (0.002) (0.003) (0.010) (0.004) (0.002) 
Located  in an MSA 0.002 -0.001 0.004 0.018 0.001 0.001 
 (0.005) (0.005) (0.006) (0.029) (0.009) (0.005) 
HHI -0.016 -0.022** -0.011 0.011 -0.024 -0.009 
 (0.010) (0.010) (0.013) (0.049) (0.019) (0.010) 
CMI 0.050*** 0.051*** 0.073*** 0.025 0.068*** -0.002 
 (0.005) (0.005) (0.006) (0.019) (0.008) (0.004) 
% never married 0.043 0.030 0.049 -0.305** -0.076 -0.024 
 (0.029) (0.029) (0.039) (0.142) (0.055) (0.028) 
% HS dropouts -0.037 -0.041 -0.033 -0.124 -0.019 -0.012 
 (0.032) (0.032) (0.043) (0.169) (0.058) (0.030) 
% HS grads 0.008 0.009 -0.023 -0.210 -0.010 0.010 
 (0.026) (0.026) (0.034) (0.128) (0.049) (0.025) 
Median earnings 0.004 0.005 0.005 -0.009 0.001 0.003 
 (0.003) (0.003) (0.004) (0.017) (0.006) (0.003) 
% male -0.034 0.035 -0.042 0.567 -0.291 -0.077 
 (0.112) (0.115) (0.151) (0.607) (0.205) (0.104) 
% Hispanic -0.014 -0.006 -0.016 -0.077 0.020 -0.021 
 (0.014) (0.014) (0.019) (0.072) (0.025) (0.013) 
% black -0.021 -0.013 -0.021 -0.130* -0.004 -0.029* 
 (0.015) (0.015) (0.020) (0.076) (0.028) (0.015) 
% elderly 0.021 0.022 0.061 -0.185 -0.003 0.002 
 (0.054) (0.053) (0.069) (0.257) (0.099) (0.053) 
Population density -0.002 -0.001 -0.003 -0.005 0.001 -0.001 
 (0.002) (0.002) (0.003) (0.011) (0.004) (0.002) 
Spatial (λ) 0.449*** 0.346*** 0.527*** 0.375*** 0.650*** 0.587*** 
 (0.079) (0.084) (0.084) (0.085) (0.073) (0.064) 
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Market Structure:       
For-profit 0.005 0.004 0.012 0.002 -0.012 -0.020*** 
 (0.008) (0.008) (0.010) (0.028) (0.014) (0.007) 
Not-for-profit 0.014** 0.015** 0.020** -0.057** -0.001 -0.013** 
 (0.006) (0.006) (0.008) (0.024) (0.012) (0.006) 
Number of beds -0.003*** -0.003*** -0.005*** -0.007** -0.004* -0.002* 
 (0.001) (0.001) (0.002) (0.003) (0.002) (0.001) 
Nurses per bed 0.002 0.006 0.001 -0.023 -0.003 0.002 
 (0.004) (0.004) (0.006) (0.017) (0.007) (0.004) 
Teaching Status -0.007* -0.002 -0.011** 0.010 -0.001 -0.002 
 (0.004) (0.004) (0.005) (0.015) (0.008) (0.004) 
CMI -0.016* -0.016* -0.027** 0.002 -0.038** -0.006 
 (0.009) (0.009) (0.012) (0.003) (0.015) (0.008) 
       
State fixed effect? Yes Yes Yes Yes Yes Yes 
Year fixed effect? Yes Yes Yes Yes Yes Yes 
       
Number of hospitals 2,110 2,110 2,110 993 2,158 2,153 
Observations 8,440 8,440 8,440 3,972 8,632 8,612 

 
Standard errors are in parentheses. 
* Significant at 10%. 
** Significant at 5%. 
*** Significant at 1%. 
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