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1 Introduction

Since the seminal work of Becker (1973, 1991), the economic literature has
mostly modeled the marriage market as a bipartite matching game with
transferable utility (TU). Each couple consists of two partners coming each
from a separate subpopulation, whom we will call men and women. In
the TU framework, any potential couple generates a surplus that is (en-
dogenously) shared by its members. The resulting matching must satisfy
a stability property, reflecting robustness to unilateral and bilateral devia-
tions. The theoretical analysis of bipartite matching with transferable utility
was introduced by Koopmans and Beckmann (1957). Shapley and Shubik
(1971) studied the set of stable matchings under TU; they showed that it is
both the core and the set of competitive equilibria, that stable matchings
are the maximizers of aggregate surplus, and that the associated individual
surpluses solve the dual imputation problem.

The applications of bipartite matching go well beyond the marriage mar-
ket. Yet the bipartite assumption is restrictive in some contexts, where a
match does not have to include exactly one individual from each of two
exogenously given subpopulations. Even for marriage markets, a growing
number of countries or US states have authorized same-sex unions in some
form. In economic relationships the buyer-seller distinction is often endoge-
nously determined, as are positions on a presidential ticket, or roles within a
team in sports. The game where agents set out to match without the bipar-
tite requirement is classically called the roommate problem. It is well-known
since Gale and Shapley (1962) that when utility is not transferable, many
of the nice results of bipartite matching do not extend to the roommate
problem. In particular, Gale and Shapley showed that stable matchings
may not exist in the roommate problem with non-transferable utility. Since
this disappointing result, the literature on the roommate problem has been
very sparse; and most of it is in the non-transferable (NTU) setting1. A few
papers have studied the property of NTU stable matchings when they exist.
Gusfield and Irving (1989) showed that the set of singles is the same in all
stable matchings; Klaus and Klijn (2010) study whether any of them can be
“fair”. Efficient algorithms have also been available since Irving (1985). Nec-
essary and sufficient existence conditions under strict preferences have been
found by Tan (1991) for complete stable matchings and by Sotomayor (2005)
for stable matchings. Chung (2000) shows that a condition he calls “no odd

1In spite of the terminology “non-transferable utility,” this branch of the literature
usually makes no reference to utility, but just to ordinal preferences.
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rings” is sufficient for stable matchings to exist under weak preferences.
The TU case has been less studied in the theoretical literature, in spite

of its relevance in empirical applications. Chung (2000) shows that when
the division of surplus obeys an exogenous rule, odd rings are ruled out
and the roommate problem has a stable matching; but that is clearly not
an appealing assumption. Karlander and Eriksson (2001) provide a graph-
theoretic characterization of stable outcomes when they exist; and Klaus
and Nichifor (2010) study their properties. Talman and Yang (2011) give a
characterization in terms of integer programming.

We here prove two main results. First, a stable matching always exists
when the number of individuals in each type is even. Second, when the
number of individuals of any given type is large enough, there always exist
“quasi-stable” matchings: even if a stable matching does not exist, existence
can be restored with minimal policy intervention. To do this, one only
needs to convince one individual to leave the game in each type with an odd
number of individuals. If this requires a compensation to be paid, this can
be done at a per capita cost that goes to zero when the population of each
type goes to infinity.

The results of this paper are related to those of Azevedo, Weyl, and
White (2012) who show the existence of a Walrasian equilibrium in an
economy with indivisible goods, a continuum of agents and quasilinear util-
ity. Unlike their main results, ours apply in markets with finite numbers of
agents. Our methods are also original. As is well-known, in bipartite prob-
lems all feasible matchings that maximize social surplus are stable. This is
not true in roommate problems; but we show how any roommate problem
can be “cloned” in order to construct an associated bipartite problem. We
then exploit this insight to prove existence of stable matchings in roommate
problems with even numbers of agents within each type.

To the best of our knowledge, the connection between the unipartite and
bipartite problems stressed in this paper is new. Importantly, this implies
that the empirical tools devised for bipartite matching should carry over
directly to roommate matching when the populations under consideration
are large.

2 A Simple Example

We start by giving the intuition of our main results on an illustrative exam-
ple.
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2.1 Non-existence of Stable Matchings

That a stable matching may not exist for the roommate problem under
non-transferable utility has been known since Gale and Shapley. As it turns
out, it is almost equally easy to construct an example of non-existence of
a stable matching with transferable utility. Here a matching defines who
is matched to whom and how the corresponding surplus is divided between
the partners. Stability is defined exactly as in the NTU case, except that if
a new match forms, partners must also agree on splitting their joint surplus.
Consider the following:

Example 1 The population has three individuals. Any unmatched individ-
ual has zero utility. The joint surplus created by the matching of any two of
them is given by the off-diagonal terms of the matrix

Φ =

− 6 8
6 − 5
8 5 −

 (1)

so that individuals 1 and 2 create, if they match, a surplus of 6; 1 and 3
create a surplus of 8, etc.

Assume, now, that there exists a stable matching. A matching in which
all individuals remain single is obviously not stable; any stable matching
must be such that one person remains single and the other two are matched
together. Let (ux) be the utility that individual of type x = 1, 2, 3 gets out
of this game; stability imposes ux + uy ≥ Φxy for all potential matches, with
equality if x and y are actually matched—and ux ≥ 0 with equality if x is
single. One can readily check, however, that no set of numbers (u1, u2, u3)
satisfying these relationships for all x and y exists: whichever the matched
pair is, one of the matched partners would increase her utility by matching
with the single person. Indeed, if the matched pair is {1, 2}, then

u1 + u2 = 6, u3 = 0, u2 ≥ 0

contradicts u1 + u3 ≥ 8: agent 3, being single, is willing to give up any
amount smaller than 8 to be matched with 1, while the match between 1 and
2 cannot provide 1 with more than 6. Similarly, if the matched pair is {2, 3},
then

u2 + u3 = 5, u1 = 0, u2 ≥ 0, u3 ≥ 0

contradicts both u1 + u2 ≥ 6 and u1 + u3 ≥ 8 (so that 1 is willing to give
more than 5 and less than 6 to agent 2 to match with her, and more than 5
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and less than 8 to 3). Finally, if the matched pair is {1, 3}, then

u1 + u3 = 8, u2 = 0, u1 ≥ 0, u3 ≥ 0

is incompatible with u1 +u3 ≥ 11, which follows from combining u1 +u2 ≥ 6
and u2 +u3 ≥ 5 with u2 = 0 (since agent 2 is single, 1 could match with her
and capture almost 6, while 3 could match with her and capture almost 5;
these outside options are more attractive than anything 1 and 3 can achieve
together). We conclude that no stable matching exists.

Note that there is nothing pathological in Example 1. The surpluses can
easily be (locally) modified without changing the result. Also, the conclusion
does not require an odd number of agents; one can readily introduce a
fourth individual, who generates a small enough surplus with any roommate,
without changing the non-existence finding.

2.2 Cloning

However, there exists a simple modification that restores existence. Take
Example 1. Let us now duplicate the economy by “cloning” each agent;
technically, we now have three types x = 1, 2, 3 of agents, with two (iden-
tical) individuals of each type. The joint surplus created by a matching
between two individuals of different types x 6= y is as in Example 1; but we
now also need to define the surplus generated by the matching of two clones
(two individuals of the same type.) Take it to be 2 for every type—more on
this later. We then have the matrix:

Φ′ =

2 6 8
6 2 5
8 5 2

 (2)

Consider the following matching µ∗: there is one match between a type
1 and a type 2 individuals, one between type 1 and type 3, and one be-
tween type 2 and type 3. Assume individuals share the surplus so that each
individual of type 1 gets 4.5, each individual of type 2 gets 1.5, and each
individual of type 3 gets 3.5. This is clearly feasible; and it is easy to verify
that it is a stable matching.

Less obvious but still true is the fact (proved later on) that existence
would still obtain for any values chosen for the diagonal of the matrix,
although the stable matching pattern that would emerge may be different2.

2For instance, if the diagonal elements are large enough, the stable matching matches
each individual with her clone.
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In other words, our cloning operation always restores the existence of a stable
match, irrespective of the values of the joint surpluses created by matches
between clones.

2.3 Surplus Maximization

Our main result is better understood when related to another, closely linked
problem: finding a feasible matching that maximizes total surplus. Total
surplus is simply the sum of the joint surpluses of every match (keeping to
a normalized utility of zero for singles). In the standard, bipartite frame-
work, the adjective “feasible” refers to the fact that each individual can only
be matched to one partner or stay single. Roommate matching, however,
introduces an additional feasibility constraint. For any two types x 6= y,
denote µxy the number of matches between an individual of type x and an
individual of type y; since a roommate matching for which µxy and µyx dif-
fer would clearly not be feasible, it must be the case that µxy = µyx. This
additional symmetry constraint is absent from the bipartite model, where
these two individuals would belong to two separate subpopulations and the
number of marriages between say, a college-educated man and a woman
who is a high-school graduate may well differ (and typically does) from the
number of marriages between a college-educated woman and a man who is
a high-school graduate.

As we will see, this symmetry constraint is the source of the difficulty
in finding stable roommate matchings; and our cloning operation addresses
it. To see this on our Example 1, first go back to roommate matching with
one individual of each type x = 1, 2, 3, and neglect the symmetry constraint.
Since there is only one individual of each type x, she cannot match with a
partner of the same type: µxx ≡ 0; and neglecting symmetry, the only other
feasibility constraints are

for every x,
∑
y 6=x

µxy ≤ 1

and
for every y,

∑
x6=y

µxy ≤ 1.

The two matchings

µ1 =

0 0 1
1 0 0
0 1 0

 and µ2 =

0 1 0
0 0 1
1 0 0


7



are feasible in this limited sense; and they both achieve the highest possible
surplus when the symmetry conditions are disregarded. The existence of
two solutions is not surprising: given the symmetric nature of the surplus
matrix Φ, if a matrix µ maximizes total surplus, so does its transpose µt.
Unfortunately, neither is symmetric, and therefore neither makes any sense
in the roommate problem. For instance, µ1 has agent 1 matched both with
agent 3 (in the first row) and with agent 2 (in the first column). Also, note
that a third solution to this relaxed problem is the unweighted mean of µ1

and µ2,

µm =

 0 1/2 1/2
1/2 0 1/2
1/2 1/2 0


However, while this matrix is indeed symmetric, its coefficients are not in-
teger and thus it is not a feasible matching either; moreover, and quite in-
terestingly, it cannot be interpreted as the outcome of randomization since
it is not a convex combination of feasible roommate matching matrices3.

Let us now reintroduce the symmetry constraint. The (now fully) fea-
sible matching that maximizes total surplus can only have one matched
pair and one single; and the pair that should be matched clearly consists of
individuals 1 and 3:

µ̄ =

0 0 1
0 0 0
1 0 0

 .

Obviously, µ̄ is not a solution to the maximization problem without sym-
metry constraint; in other words, the symmetry constraint is binding in
this example. As we shall see below, this is characteristic of situations in
which the roommate problem with transferable utility does not have a sta-
ble matching. Indeed, we prove in the next section that a stable matching
exists if and only if the symmetry constraint does not bind.

Now take the “cloned” version of Example 1, in which each type x has
two individuals. It is easy to see that the solution to the relaxed problem
which neglects the symmetry constraint is the µ∗ of section 2.2, which is
symmetric; therefore the symmetry constraint does not bind, and a stable
matching exists. This is a general result: we shall see below that in any
cloned roommate matching setup, at least one solution to the relaxed prob-
lem is symmetric—which implies the existence of a stable match.

3For any stable roommate matching matrix, the sum of coefficients equals 2, reflect-
ing the fact that one agent must remain single. This property is preserved by convex
combination; however, the sum of coefficients of µm equals 3.
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2.4 A Bipartite Interpretation

The relaxed problem, in turn, has a natural interpretation in terms of bipar-
tite matching. Start from the three-agent Example 1, and define an associ-
ated bipartite matching problem as follows: clone the population again, but
this time assign a label (such as “man” or “woman”) to each of the two sub-
populations. Then consider the bipartite matching problem between these
subpopulations of “men” and “women”, with the joint surplus matrix given
by Φ′ in (2).

By standard results, there always exists a stable matching in this asso-
ciated bipartite matching problem; and it maximizes the associated total
surplus. In our example, µ1 and µ2 are the two stable matchings. Any con-
vex combination such as µm can be interpreted as a randomization between
these two matchings; it is natural to focus on µm since it is the only symmet-
ric one and feasible roommate matchings must be symmetric. As remarked
above, in the original roommate problem µm cannot be stable, since it has
non-integer elements.

Now if the roommate problem is cloned we can proceed as in the above
paragraph, except that with twice the number of individuals we should work
with 2µm. As an integer symmetric matrix, reinterpreted in the cloned
roommate matching setup, it defines a feasible roommate matching which is
stable—in fact it is the stable matching µ∗ of section 2.2. This construction
is general: we shall see below that any roommate problem in which the
number of individuals in each type is even has a symmetric stable match.

We now provide a formal derivation of these results.

3 The Formal Setting

We consider a population of individuals who belong to a finite set of types X .
Individuals of the same type are indistinguishable. We denote nx the number
of individuals of type x ∈ X , and we collect them in a vector n = (nx). We
also denote

N =
∑
x∈X

nx

the total size of the population.
Without loss of generality, we normalize the utilities of singles to be zero

throughout.
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3.1 Roommate Matching

A match consists of two partners who are characterized by their types. An
individual of any type can be matched with any individual of the same or
any other type, or remain single. Let Φxy be the surplus generated by a
match between partners of types x and y.

In the roommate problem (Φ, n), individuals match by pairs and the
members of a pair share the surplus generated. Unmatched individuals
obtain zero utility.

In principle the two partners could play different roles. In sections 3
and 4 we will assume that they are in fact symmetric within a match, so
that Φxy is assumed to be a symmetric function of (x, y):

Assumption 1 The surplus Φxy is symmetric in (x, y).

As shown in section 5, there is no loss of generality in making this as-
sumption. Indeed, if Φxy fails to be symmetric in (x, y), then the partners
will choose their roles so to maximize output; and our results hold with
Φ̃xy = max (Φxy,Φyx) (which is symmetric) instead of Φxy.

A matching can be described by a matrix of numbers
(
µxy
)

indexed by
x, y ∈ X , such that

• µx0 is the number of singles of type x

• when y 6= 0, µxy is the number of matches between types x and y.

The numbers µxy should be integers; given Assumption 1, they should be
symmetric in (x, y); and they should satisfy the scarcity constraints. More
precisely, the number of individuals of type x must equal the number µx0
of singles of type x, plus the number of pairs in which only one partner has
type x, plus twice the number of pairs in which the two partners are of type
x—since such a same-type pair has two individuals of type x.

We define the set of feasible roommate matchings as follows.

Definition 1 (Feasible roommate matching) The set of feasible room-
mate matchings, denoted P (n), is defined as

P (n) =

µ =
(
µxy
)

:

2µxx +
∑

y 6=x µxy ≤ nx
µxy = µyx
µxy ∈ Z+

 . (3)
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3.2 Stability and optimality

We define an outcome of the roommate problem, or roommate outcome (µ, u)
as the specification of a feasible roommate matching µ and an associated
vector of payoffs ui to each individual i in a set I. Define xi as the type of
individual i. Then a first remark is that, at any stable matching, individuals
of the same type must have the same payoff.4 Formally:

Lemma 1 For any stable matching, we have

∀i, j, xi = xj ⇒ ui = uj

Proof. Consider a stable outcome (µ̃, ũ). Note, first, that stability implies:

ũi = max
j∈I

(
Φxiyj − ũj , 0

)
. (4)

since ũi ≥ max
(
Φxiyj − ũj , 0

)
for all j by stability, and equality is reached

either at 0 (for unmatched individuals) or for the match of individual i.
Next, for any type x, define

ux = max
j∈I

(
Φxyj − ũj , 0

)
(5)

From (4) and (5), we must have ũi = uxi, and the conclusion follows.

An important implication of this Lemma is that, since we are only inter-
ested in stable matchings, we may restrict to roommate outcomes (µ, u) such
that the associated vector of payoffs uxi is defined exclusively as a function
of the individual’s type.

These payoffs have to be feasible: that is, the sum of payoffs across the
population has to be equal to the total output under the matching µ. Now
in a roommate matching µ, the total surplus created is5

SR(µ,Φ) =
∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
. (6)

This leads to the following definition of a feasible outcome:

4We thank an anonymous referee for suggesting that we prove Lemma 1.
5Note that in the second sum operator the pair {x, y} appears twice, one time as (x, y)

and another time as (y, x); but the joint surplus Φxy it creates must only be counted once,
hence the division by 2.
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Definition 2 (Feasible roommate outcome) A roommate outcome (µ, u)
is feasible if µ is a feasible roommate matching and∑

x∈X
nxux =

∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
. (7)

We define stability as in Gale and Shapley (1962): an outcome (µ, u) is
stable if it cannot be blocked by an individual or by a pair of individuals.
More precisely:

Definition 3 (Stable roommate outcome) A roommate outcome (µ, u)
is stable if (µ, u) is feasible, and if for any two types x, y ∈ X , (i) ux ≥ 0,
and (ii) ux+uy ≥ Φxy. By extension, a roommate matching µ is called stable
if there exists a payoff vector (ux) such that the outcome (µ, u) is stable.

In bipartite matching, stability is equivalent to optimality : stable match-
ings maximize total surplus. Things are obviously more complicated in
roommate matchings—there always exist surplus-maximizing matchings, but
they may not be stable. The maximum of the aggregate surplus over the set
of feasible roommate matchings P(n) is

WP (Φ, n) = max
µ≥0

∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
(8)

s.t. 2µxx +
∑
y 6=x

µxy ≤ nx

µxy = µyx

µxy ∈ Z+.

While no stable roommate matching may actually achieve this value, it plays
an important role in our argument.

3.3 The Associated Bipartite Matching Problem

We shall now see that to every roommate problem we can associate a bi-
partite matching problem, and that the comparison between these problems
provides crucial insights on the existence of a stable matching. We start with
a quick reminder of standard, bipartite matching problems. These are de-
fined by two populations, one described by a vector of type numbers (nx)x∈X
and the second by a vector of type numbers (my)y∈X . Each agent in the
first population should be matched with an agent in the second population

12



or remain single; similarly, each agent in the second population should be
matched with an agent in the first population or remain single. Two indi-
viduals from the same population cannot match6. If an individual of type
x ∈ X from the first population matches with an individual of type y ∈ X ,
they share surplus φxy between them. As before, individuals who remained
unmatched get a surplus that can be normalized to zero.

A bipartite matching is a vector (νxy)x,y∈X such that νxy is the number
of matches between individuals of type x in the first population and inviduals
of type y in the second population. The set of feasible bipartite matchings,
denoted B(n,m), is formally defined as follows:

Definition 4 (Feasible bipartite matching) The set of feasible bipar-
tite matchings in the bipartite problem, denoted B(n,m), is defined by

B (n,m) =

ν = (νxy) :

∑y νxy ≤ nx∑
x νxy ≤ my

νxy ∈ Z+

 . (9)

LetWB (φ, n,m) be the maximal total surplus attainable in the bipartite
matching problem. We formally define

WB (φ, n,m) = max
ν ∈ B(n,m)

∑
x,y∈X

νxyφxy. (10)

We define a bipartite outcome as a triple (ν, u, v) where νxy is the number
of individuals of type x matched with individuals of type y, ux is the payoff
of any individual of type x, and vy is the payoff of any individual of type y.
A feasible bipartite outcome is defined by:

Definition 5 (Feasible bipartite outcome) A bipartite outcome (ν, u, v)
is feasible if ν ∈ B (n,m), and∑

x∈X
nxux +

∑
y∈X

myvy =
∑
x,y∈X

νxyφxy.

We also define stability of a bipartite outcome (ν, u, v) in the usual way:

6The set of types X is the same for agents of the two populations, but these populations
are distinct. For instance, X is the set of possible ages, and the two populations are men
and women.
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Definition 6 (Stable bipartite outcome) A bipartite outcome (ν, u, v)
is stable if (ν, u, v) is feasible, and if for any two types x, y ∈ X , (i) ux ≥ 0,
(ii) vy ≥ 0, and (iii) ux + vy ≥ φxy. By extension, a bipartite matching ν
is called stable if there exist payoff vectors (u, v) such that bipartite outcome
(ν, u, v) is stable.

By classical results of Shapley and Shubik (1971), there exist stable bi-
partite matchings ν, and they coincide with the solutions of (10). More-
over, the associated payoffs (u, v) solve the dual program; that is, they
minimize

∑
x∈X nxux +

∑
y∈X myvy over u ≥ 0 and v ≥ 0 subject to con-

straint ux + vy ≥ φxy. Finally, for any stable matching, µxy > 0 implies
ux + vy = φxy, and µx0 > 0 implies ux = 0.

Note that the marriage problem obviously is a particular case of the
roommate problem: if in a roommate problem Φxy = −∞ whenever x and y
have the same gender, and Φxy = φxy otherwise, then any optimal or stable
matching will be heterosexual.

Finally, to any roommate problem we associate a bipartite matching in
the following way:

Definition 7 (Associated bipartite matching problem) For each room-
mate problem (Φ, n), the associated bipartite matching problem is the bipar-
tite matching problem (φ, n, n) with

φxy = Φxy/2.

Note that in the associated bipartite matching problem, the first popu-
lation and the second population have the same distributions of types.

3.3.1 Links Between WP and WB

It is not hard to see thatWP (Φ, n) ≤ WB (Φ/2, n, n) . In fact, we can bound
the difference between these two values:

Theorem 1 Under Assumption 1,

WP (Φ, n) ≤ WB (Φ/2, n, n) ≤ WP (Φ, n) + |X |2 Φ

where
Φ = max

x,y∈X
Φxy.
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and |X | is the cardinality of the set X , i.e. the number of types in the
population.
Proof. See appendix.

In some cases, WP (Φ, n) and WB (Φ/2, n, n) actually coincide. For in-
stance:

Proposition 1 If nx is even for each x ∈ X , then under Assumption 1,

WP (Φ, n) =WB (Φ/2, n, n) .

Proof. See appendix.

3.3.2 Stable Roommate Matchings

The existence of stable roommate matchings is directly related to the diver-
gence of WP (Φ, n) and WB (Φ/2, n, n). Indeed, one has:

Theorem 2 Under Assumption 1,
(i) There exist stable roommate matchings if and only if

WP (Φ, n) =WB (Φ/2, n, n) .

(ii) Whenever they exist, stable roommate matchings achieve the maxi-
mal aggregate surplus WP (Φ, n) in (8).

(iii) Whenever a stable roommate matching exists, individual utilities at
equilibrium (ux) solve the following, dual program:

min
u,A

∑
x

uxnx (11)

s.t. ux ≥ 0

ux + uy ≥ Φxy +Axy

Axy = −Ayx

Proof. See appendix.

Note that while the characterization of the existence of a stable matching
in terms of equality between an integer program and a linear program is a
well-known problem in the literature on matching (see Talman and Yang
(2011) in the case of the roommate problem), the link with a bipartite
matching problem is new.
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Also note that in program (11), the antisymmetric matrix A has a natural
interpretation: Axy is the Lagrange multiplier of the symmetry constraints
µxy = µyx in the initial program (8). Our proof shows that if µxy > 0
in a stable roommate matching, then the corresponding Axy must be non-
positive; but since µyx = µxy the multiplier Ayx must also be non-positive,
so that both must be zero. The lack of existence of a stable roommate
matching is therefore intimately linked to a binding symmetry constraint.

Given Proposition 1, Theorem 2 has an immediate corollary: with an
even number of individuals per type, there must exist a stable roommate
matching. Formally:

Corollary 1 If nx is even for each x ∈ X , then under Assumption 1, there
exists a stable roommate matching.

In particular, for any roommate problem, its “cloned” version, in which
each agent has been replaced with a couple of clones, has a stable matching;
and this holds irrespective of the surplus generated by the matching of two
identical individuals. Of course, in general much less than full cloning is
needed to restore existence; we give this statement a precise meaning in the
next paragraph.

Our next result shows that one can restore the existence of a stable
matching by removing at most one individual of each type from the popula-
tion; if these individuals have to be compensated for leaving the game, this
can be done at limited total cost:

Theorem 3 (Approximate stability) Under Assumption 1, in a popu-
lation of N individuals, there exists a subpopulation of at least N −|X | indi-
viduals among which there exist a stable matching, where |X | is the number
of types. The total cost for the regulator to compensate the individuals left
aside is bounded above by |X |Φ.

Proof. See appendix.

4 Matching in Large Numbers

We now consider the case of a“large”game, in which there are“many”agents
of each type. Intuitively, even though an odd number of agents in any type
may result in non-existence of a stable roommate matching, the resulting
game becomes “close” to one in which a stable matching exists. We now
flesh out this intuition by providing a formal analysis.
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We start with a formal definition of a large game. For that purpose, we
consider a sequence of games with the same number of types and the same
surplus matrix, but with increasing populations in each type. If nkx denotes
the population of type x in game k and Nk =

∑
x n

k
x is the total population

of that game, then we consider situations in which, when k →∞:

Nk →∞ and nkx/N
k −→ fx

where fx are constant numbers.
As the population gets larger, aggregate surplus increases proportionally;

it is therefore natural to consider the average surplus, computed by dividing
aggregate surplus by the size of the population. We also extend the definition
of WB to non-integers vectors of type distributions in the obvious way so as
to define the limit average bipartite problem WB (Φ/2, f, f). Note that the
linearity of the program implies

WB(Φ/2, cn, cm) = cWB(Φ/2, n,m)

for any c > 0.

Proposition 2 In the large population limit, under Assumption 1, the av-
erage surplus in the roommate problem converges to the limit average surplus
in the related bipartite matching problem. That is,

lim
k→∞

WP
(
Φ, nk

)
Nk

= lim
Nk→∞

WB
(
Φ/2, nk, nk

)
Nk

=WB (Φ/2, f, f) .

Proof. See appendix.
Our approximation results crucially rely on the number of types becom-

ing small relative to the total number of individuals. By definition, two
individuals of the same type are indistinguishable in our formulation, both
in their preferences and in the way potential partners evaluate them. This
may seem rather strong; however, a closer look at the proof of Theorem 2
shows that our bound can easily be refined. In particular, we conjecture
that with a continuum of types, Theorem 2 would hold exactly.

A related effect of the number of individuals becoming much larger than
the number of types is that the costs of the policy to restore stability in
Theorem 3 become negligible:
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Proposition 3 In the large population limit and under Assumption 1,
(i) one may remove a subpopulation of asymptotically negligible size in

order to restore the existence of stable matchings.
(ii) the average cost per individual of restoring the existence of stable

matchings tends to zero.

Proof. See appendix.

In particular, in the case of a continuum of individuals (that is, when
there is a finite number of types and an infinite number of individuals of each
type), we recover the results of Azevedo, Weyl, and White (2012) (hereafter,
AWW). To make the connection with this paper, the partner types in our
setting is replaced by goods in AWW’s. The social welfare in our setting
translates into the utility u of a single consumer in AWW. u is such that
u (C) = Φ ({x, y}) for C = {x, y}, u ({x}) = 0, and u = −∞ elsewhere (or
very negative). Then it can be shown without difficulty that the existence
of a TU stable matching in our setting is equivalent to the existence of a
Walrasian equilibrium in the AWW setting. Thus existence and TU stability
in the case of a continuum of individuals follow from the Theorem and the
Proposition in AWW.

A question worthy of interest is whether there is a way for the social
planner to restore stability in the roommate problem at no cost7. This is
obviously possible if we allow a constant per capita tax which applies both
to matched and unmatched individuals. If only matched individuals can be
taxed, this is a more delicate matter. Indeed, assume a constant tax is levied
per matched invidividual. In that case, the incentive to match is distorted,
and hence the endogenous surplus share will be likely to be altered. In that
case, more agents may have an incentive in exiting the market, and some
agents who were intended by the social planner to remain matched may
actually prefer to break away from their match and receive the monetary
compensation for exiting the market. In this case, it is difficult to qualify the
outcome as “stable”. As a result, we can think of a new matching problem,
where the social planner is required to break even, and it is impossible to
levy tax on unmatched individuals.

In this problem, two groups of agents are formed by the social planner.
A first group of individuals are compensated by the social planner to leave
the market; their compensation may depend on their type. Individuals from
a second group participate in a standard roommate matching, and are levied

7We thank an anonymous Referee for suggesting the essence of this discussion.
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a per capita tax if they are matched. The social planner faces a balanced
budget constraint: payments to agents in the first group must be financed by
payments from agents in the second group. An outcome specifies (i) which
group each agent belongs to; (ii) who is unmatched, and which partner each
matched agent has; and (iii) what payoff each agent obtains. An outcome is
stable if (a) the roommate problem in the second group is stable in the sense
developed in this paper, and (b) no agent from either group would strictly
prefer to belong to the other group. The existence of stable outcomes in this
problem is an interesting question, which we leave for future exploration.

5 The Asymmetric Roommate Problem8

We now investigate what happens when the surplus Φxy is not necessarily
symmetric. This will arise when the roles played by the partners are not
exchangeable. For instance, a pilot and a copilot on a commercial airplane
have dissymmetrical roles, but may be both chosen from the same popu-
lation. Hence, in this section, we shall assume away Assumption 1, and
we refer to the “asymmetric roommate problem”; it contains the symmetric
problem as a special case.

As it turns out, this can be very easily recast in the terms of an equivalent
symmetric roommate problem. Indeed if Φxy > Φyx, then any match of an
(ordered) 2-tuple (y, x) will be dominated by a matching of a (x, y) 2-tuple,
and the partners may switch the roles they play and generate more surplus.
Therefore, in any optimal (or stable) solution there cannot be such a (y, x)
2-tuple. As a consequence, the asymmetric roommate problem is equivalent
to a symmetric problem where the surplus function is equal to the maximum
joint surplus x and y may generate together, that is

Φ′xy = max (Φxy,Φyx) ;

and since this is symmetric our previous results apply almost directly. De-
noting πxy the number of (x, y) pairs (in that order), one has

µxy = πxy + πyx, x 6= y

µxx = πxx

and obviously, πxy need not equal πyx. The population count equation is

nx =
∑
y∈X

(πxy + πyx) , ∀x ∈ X

8We are grateful to Arnaud Dupuy for correcting a mistake in a preliminary version of
the paper.
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and the social surplus from a matching π is∑
x,y∈X

πxyΦxy.

so that the optimal surplus in the asymmetric problem is

W ′P (n,Φ) = max
∑
x,y∈X

πxyΦxy

s.t. nx =
∑
y∈X

(πxy + πyx) , ∀x ∈ X .

The following result extends our previous analysis to the asymmetric
setting:

Theorem 4 The asymmetric roommate problem is solved by considering the
surplus function

Φ′xy = max (Φxy,Φyx)

which satisfies Assumption 1. Call optimized symmetric problem the prob-
lem with surplus Φ

′
xy and population count nx. Then:

(i) the optimal surplus in the asymmetric roommate problem coincides
with the optimal surplus in the corresponding optimized symmetric problem,
namely

W ′P (Φ, n) =WP
(
Φ′, n

)
(ii) the asymmetric roommate problem has a stable matching if and only

if the optimized symmetric problem has a stable matching.

Given Theorem 4, all results in Sections 3 and 4 hold in the general
(asymmetric) case. In particular:

• Theorem 1 extends to the general case: the social surplus in the room-
mate problem with asymmetric surplus Φxy is approximated by a bi-
partite problem with surplus function φ′xy = max (Φxy,Φyx) /2, or
more formally:

W ′P (Φ, n) ≤ WB
(
φ′, n, n

)
≤ W ′P (Φ, n) + |X |2 Φ,

and as an extension of Proposition 1, equality holds in particular when
the number of individuals in each types are all even.
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• Theorem 2 extends as well: there is a stable matching in the roommate
problem with asymmetric surplus Φxy if and only if there is equality
in the first equality above, that is:

W ′P (Φ, n) =WB
(
Φ′/2, n, n

)
.

• All the asymptotic results in Section 4 hold true: in the asymmetric
roommate problem, there is approximate stability and the optimal
matching solves a linear programming problem.

6 Conclusion

While our analysis has been conducted in the discrete case, an interesting
extension of our results is to the case where there is an infinite number of
agents with a continuum of types. The relevant theory here is the theory of
optimal transportation, see Villani (2003) and McCann and Guillen (2010).
For the precise connection between matching models and optimal trans-
portation theory, see Ekeland (2010), Gretsky, Ostroy, and Zame (1999) and
Chiappori, McCann, and Nesheim (2010). We believe these results could be
easily extended to the unipartite matching. It is also worth mentioning that
recent papers by Ghoussoub and Moameni (2013) and Galichon and Ghous-
soub (2013) use the same type of mathematical structure for the purpose of
the study of “2-monotone” and “N-monotone” operators.

Some roommate problems involve extensions to situations where more
than two partners can form a match; but the two-partner case is a good
place to start the analysis. Here, we have shown that when the population
is large enough with respect to the number of observable types, the struc-
ture of the roommate problem is the same as the structure of the bipartite
matching problem. Most empirical applications of matching models under
TU use a framework as in this paper in order to understand, depending on
the context, how the sorting on a given matching market depends on age,
education or income, but also height, BMI, caste, etc.9. As a consequence of
our results, the empirical tools developed in the bipartite setting, especially
for the analysis of the marriage markets (see Choo and Siow (2006), Chiap-
pori, Salanié, and Weiss (2010), Fox (2010), Galichon and Salanié (2011),
to cite only a few10) can be extended to other contexts where the bipar-

9See for instance Choo and Siow (2006), Hitsch, Hortacsu, and Ariely (2010), Banerjee,
Duflo, Ghatak, and Lafortune (2009), Chiappori, Oreffice, and Quintana-Domeque (2009)
among many others.

10Graham (2011) has a good discussion of this burgeoning literature.
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tite constraint is relaxed. These include marriage markets incorporating
same-sex households, tickets in US presidential elections, team jobs such as
pilot/copilot, team sports and many others.

Finally, it seems natural to apply our “cloning technique” when utility
is not transferable. One may think of assigning arbitrarily genders to both
clones of each type, and considering a bipartite stable matching between
the two genders. Such a matching will be stable in the roommate matching
framework if the bipartite matching of the cloned populations is symmetric.
However, such a symmetric stable bipartite matching of the cloned popula-
tion may not exist. Therefore, the usefulness of cloning to restore stability
in the non-transferable utility version of the roommate problem is an open
question.
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A Appendix: Proofs

Our proofs use an auxiliary object: the highest possible surplus for a frac-
tional roommate matching, namely

WF (Φ, n) = max
µ∈F(n)

∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2

 . (12)

where F (n) is the set of fractional (roommate) matchings, which relaxes the
integrality constraint on µ:

F (n) =

(µxy) :

2µxx +
∑

y 6=x µxy ≤ nx
µxy = µyx
µxy ≥ 0

 . (13)

The program (12) has no immediate economic interpretation since frac-
tional roommate matchings are infeasible in the real world; and while ob-
viously WP (Φ, n) ≤ WF (Φ, n), the inequality in general is strict. We are
going to show, however, that the difference between the two programs van-
ishes when the population becomes large. Moreover, we will establish a link
between (12) and the surplus at the optimum of the associated bipartite
matching problem.

We start by proving:

Lemma 2
WF (Φ, n) =WB (Φ/2, n, n) . (14)

Moreover, problem (12) has a half-integral solution.

Proof of Lemma 2. First consider some fractional roommate matching
µ ∈ F (n), and define

νxy = µxy if x 6= y

νxx = 2µxx.

As a (possibly fractional) bipartite matching, clearly ν ∈ B (n, n); and∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
=

1

2

∑
x,y∈X

νxyΦxy.

Now the right-hand side is the aggregate surplus achieved by ν in the bi-
partite matching problem with margins (n, n) and surplus function Φ/2. It
follows that

WF (Φ, n) ≤ WB (Φ/2, n, n) . (15)
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Conversely, let (νxy) maximize aggregate surplus over B(n, n) with sur-
plus Φ/2. By symmetry of Φ, (νyx) also is a maximizer; and since (10) is a
linear program, ν ′xy =

νxy+νyx
2 also maximizes it. Define

µ′xy = ν ′xy if x 6= y

µ′xx =
νxx
2
.

Then

2µ′xx +
∑
y 6=x

µ′xy = νxx +
1

2

∑
y 6=x

(νxy + νyx)

=
1

2
(νxx +

∑
y 6=x

νxy)

+
1

2
(νxx +

∑
y 6=x

νyx).

Now νxx +
∑

y 6=x νxy ≤ nx by the scarcity constraint of “men” of type x,
and νxx +

∑
y 6=x νyx ≤ nx by the scarcity constraint of “women” of type x.

It follows that µ′ ∈ F (n), and∑
x

µ′xxΦxx +
∑
x 6=y

µ′xy
Φxy

2
=

1

2

∑
x,y∈X

νxyΦxy.

Therefore the values of the two programs coincide. Finally, it follows from
the Birkhoff-von Neumann theorem that B (n, n) is the set of extreme points

of the set
{
ν ≥ 0 :

∑
y νxy = nx;

∑
x νxy = ny

}
; thus, WB (Φ/2, n, n) coin-

cides with

max
ν≥0

1

2

∑
x,y∈X

νxyΦxy :
∑
y

νxy = nx,
∑
x

νxy = ny


thus there always exists an integral solution ν of the latter program, and

the construction of µ′ shows that µ′ can be taken half-integral11.

Given Lemma 2, we can now prove Theorem 1.

Proof of Theorem 1. The first inequality simply follows from the fact
that P (n) ⊂ F (n). Let us now show the second inequality. Lemma 2 states

11The half-integrality of the solution of problem (12) also follows from a general theorem
of Balinski (1970); but the proof presented here is self-contained.
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thatWF (Φ, n) =WB (Φ/2, n, n). Let µ achieve the maximum inWF (Φ, n),
so that

WF (Φ, n) =
∑
x

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
.

Let bxc denote the floor rounding of x; by definition, x < bxc+ 1, so that

WF (Φ, n) <
∑
x

bµxxcΦxx +
∑
x 6=y

⌊
µxy
⌋ Φxy

2
+
∑
x

Φxx +
∑
x 6=y

Φxy

2
.

The right-hand side can also be rewritten as∑
x,y

⌊
µxy
⌋

Φxy +
∑
x,y

Φxy.

But bµc is in P(n), and is integer by construction; therefore∑
x,y∈X

⌊
µxy
⌋

Φxy ≤ WP (Φ, n) .

Finally, ∑
x,y∈X

Φxy ≤ |X |2 Φ

so that
WF (Φ, n) ≤ WP (Φ, n) + |X |2 Φ.

A.1 Proof of Proposition 1

Proof. Let n′x = nx
2 . By Lemma 2, problem WF (Φ, n′) has an half-integral

solution µ′; therefore problem WF (Φ, n) has an integral solution 2µ′, which
must also solve (10). It follows that

WP (Φ, n) =WF (Φ, n) .
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A.2 Proof of Theorem 2

Proof. By Lemma 2, Problem (12) coincides with a bipartite matching
problem between marginal (nx) and itself. It follows from Shapley and
Shubik (1971) that there exist vectors (vx) and (wy) such that

vx ≥ 0, wy ≥ 0

vx + wy ≥ Φxy

and the latter inequality is an equality when µxy > 0. Setting

ux =
vx + wx

2

the symmetry of Φ implies

ux ≥ 0

ux + uy ≥ Φxy

and ∑
x∈X

nxux =
∑
x∈X

µxxΦxx +
∑
x6=y

µxy
Φxy

2

so that the outcome (µ, u) is stable. Conversely, assume that µ is a stable
roommate matching. Then by definition, there is a vector (ux) such that

ux ≥ 0

ux + uy ≥ Φxy

and ∑
x∈X

nxux =
∑
x∈X

µxxΦxx +
∑
x 6=y

µxy
Φxy

2
.

Therefore (u,A = 0) are Lagrange multipliers for the linear programming
problem (12), and µ is an optimal solution of (12); finally, µ is integral since
it is a feasible roommate matching.

(i), (ii) and (iii) follow, as there exist integral solutions of (12) if and
only if

WP (Φ, n) =WF (Φ, n) ,

and WF (Φ, n) coincides with WB (Φ/2, n, n) from Lemma 2.
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A.3 Proof of Theorem 3

Proof. For each type x, remove one individual of type x from the population
if nx is odd. The resulting subpopulation differs from the previous one by
at most |X | individuals, and there is an even number of individuals of each
type; hence by Proposition 1 there exists a stable matching.

Each individual so picked can be compensated with ux, the payoff of
individuals of the same type who have not been removed. Since ux ≤ Φ, the
total cost of compensating at most one individual of each type is bounded
from above by |X |Φ.

A.4 Proof of Proposition 2

Proof. By Theorem 1, in the large population limit

lim
k→∞

WP
(
Φ, nk

)
Nk

=WF (Φ, f)

and Lemma 2 yields the conclusion.

A.5 Proof of Proposition 3

Proof. (i) The number of individuals to be removed is bounded from above
by |X |, hence its frequency tends to zero as |X | /N → 0. (ii) follows from
the fact that

WF (Φ, n)−WP (Φ, n)

N
→ 0.

A.6 Proof of Theorem 4

Proof. (i) Consider an optimal solution µxy to WP (Φ′, n). For any pair
x 6= y such that Φxy > Φyx, set πxy = µxy, and πxy = 0 if Φxy < Φyx.
If Φxy = Φyx, set πxy and πyx arbitrarily nonnegative integers such that
πxy + πyx = µxy; set πxx = µxx. Then π is feasible for the optimized
symmetric problem, and one has

∑
x∈X

µxxΦ′xx +
∑
x6=y

µxy
Φ′xy

2
=
∑
x,y∈X

πxyΦxy

so that
WP

(
Φ′, n

)
≤ W ′P (Φ, n) .
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Conversely, consider πxy an optimal solution toW ′P (Φ, n). First observe
that if Φxy < Φyx then πxy = 0; otherwise subtracting one from µxy and
adding one to πyx would lead to an improving feasible solution, contradicting
the optimality of π. Set

µxy = πxy + πyx, x 6= y

µxx = πxx

so that ∑
x∈X

µxxΦ′xx +
∑
x 6=y

µxy
Φ′xy

2
=
∑
x,y∈X

πxyΦxy

and hence
W ′P (Φ, n) ≤ WP

(
Φ′, n

)
.

(ii) Assume there is a stable matching πxy in the asymmetric roommate
problem. Then if there is a matched pair (x, y) in that order, one cannot
have Φyx > Φxy; otherwise the coalition (y, x) would be blocking. Hence
one can define

µxy = πxy + πyx, x 6= y

µxx = πxx

and the matching µ is stable in the optimized symmetric problem. Con-
versely, assume that the matching µ is stable in the optimized symmetric
problem. Then it is not hard to see that, defining π from µ as in the first
part of (i) above, the matching π is stable in the asymmetric roommate
problem.
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