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Abstract 
 
World income grows fast without verifiable climate-change impacts on the economy. The 
growth spell can end if climate impacts turn real but this can take decades to learn. We 
develop a tractable stochastic climate-economy model with a hidden-state impact process to 
evaluate the contributions of the expanding economy and changing impact beliefs to the 
social cost of carbon. Taking a dataset of estimates for the social cost as a representation of 
beliefs, we assess how robust climate policies are to the delays of hard information. The 
carbon price should rise with income to the next century, even without observed impacts. The 
carbon price should grow faster than the economy as long as climate warming is not enough 
for generating impacts that are informative about the true social cost. 
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“Estimating impacts has been the most difficult part of all climate science”

—William W.D. Nordhaus, EAERE lecture 2012

1 Introduction

A price for carbon measures the social cost of releasing a unit of carbon dioxide to the

atmosphere, based on expected climate-change impacts.1 However, there is little or no

quantitative information on the impacts of persistent climate change on our economies,

although there is extensive research on what such impacts might be.2 The social cost

of carbon is based on beliefs about impacts that will be updated when the “climate

experiment” generates actual impacts. But this can take a long period of time; the

past century of carbon emissions has not yet led to precise estimates, and another 50-100

years may pass without additional hard evidence on the ultimate consequences of current

emissions. In view of such time delays for evidence, the carbon price as a concept may

appear elusive and difficult to defend.

Roe and Baker establish (2007) that, because of positive feed-back mechanisms of the

climate system, it is unlikely that we will better understand the temperature sensitivity

to emissions in the near future. The economic literature modeling the learning of climate

impacts has almost exclusively focused on the structural uncertainties of the climate

system, including those related to the climate sensitivity (Kelly and Kolstad 1999; Leach

2007; Kelly and Tan 2013) and to unknown thresholds leading to tipping points (Lemoine

and Traeger 2014; Cai, Judd, and Lontzek, 2013). For many economists, such climate

uncertainties and the implied low-probability but high-consequence events, which cannot

be ruled out by new information any time soon, have become the prime argument for

having a price for carbon (Weitzman, 2009, 2011, 2013; Pindyck 2013).3

1Most evaluations of the social cost of carbon build on a set of middle-of-the-road assumptions on

climate change impacts, commonly expressed in terms of GDP losses, and then use climate-economy

models such as DICE, FUND, or PAGE (see Greenstone, Kopits, and Wolverton, 2011, for a succinct

description and references) that combine the impact assumptions with background scenarios to obtain a

monetized value for the social cost. There is a pressing demand for such a number as it is required, for

example, in the cost-benefit analyses to assess regulations across wide domains; however, see Pindyck

(2013) for a critical review of the integrated-assessment models used in producing the numbers.
2See Tol (2009) for a survey on methods and results. There is a growing empirical literature on how

climate impacts various sectors of the economy (e.g., Deschenes and Greenstone, 2007, and Schlenker

and Roberts, 2009, Dell, Jones, and Olken, 2012).
3See also Heal and Millner (2013) for a survey on uncertainties in climate-change economics.
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Accepting climate-change “unknowns” as reasons for beliefs supporting a current

price for carbon, in this paper we argue that the reason for sustaining and increasing

the price over long periods without hard evidence is fundamentally different and a well-

understood economic variable: the growth of global income. For the coming century,

the global income is expected to grow by multiple factors, in part due to the rise of the

middle class in major emerging economies.4 The US government has recently developed

estimates for the carbon price, for regulatory purposes, assuming that the global GDP

increases by a factor that varies between five and seven in this time-span (see Greenstone

et al., 2011).

An economy grown five to seven times bigger values information on the social cost

of climate change differently — but how exactly? For the contributions of income and

beliefs to the social cost, we develop a tractable climate-economy model where impacts

are initially neither observed nor experienced — they may arrive through a hidden-state

impact response characterized by long delays and dependence on the past emissions

history.

We develop policy rules that separate sharply the carbon price determinants that are

clearly understood, such as the size of the economy, from those that involve beliefs about

future impacts. In contrast with the general tone of the previous literature, “threats”

originating from the natural science uncertainties of the climate problem are not the

source of time-increasing carbon prices.5 The well-understood part, that is, the expansion

of the economic stake through the growth of the global economy is enough. We find

conditions when carbon prices grow faster or slower than the economy. The price should

grow faster than the economy if the current level of climate change cannot generate

impacts substantial enough for learning the true social cost.

The model is set up to answer the question how the currently perceived social cost

should develop if income growth progresses without verifiable economic climate-change

impacts over periods such as the next 50-100 years. When no impacts occur over time,

it becomes more likely that impacts from a given climate change will never become

4See, for example, the IPCC Special Report on Emissions Scenarios (2000), U.S. Climate Change

Science Program (2007), Stanford Energy Modeling Forum (for example, in Weyant et al. 2006).
5By the nature of our quantitative exercise below, we rule out “tail events”. The supporting potential

high-damage climate event that justifies the estimated initial carbon price is equivalent to a GDP-loss

of about 10 per cent at temperatures that are 3 degrees Celsius above the pre-industrial level. Such an

event is economically significant but not a “tail event”in the sense of Weitzman (2009) where policies

become undefined since, effectively, it is not possible to transfer wealth to the high consequence events;

see, for example, Nordhaus (2010) and Millner (2013).
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very large. Considering carbon prices for such a “no news is good news” scenario, we

intentionally devise a conservative test for a climate policy ramp, that is, a gradual

tightening of policies as advocated by previous studies (Nordhaus, 2007).6 Taking a

dataset of estimates for the social cost as a representation of current beliefs, put together

by Tol (2009) in a study of existing estimates, we quantify how these initial social cost

perceptions would have to change to overturn the contribution of rising income to the

carbon price. To reverse the upward trend of the carbon price, the climate experts would

have to become more optimistic, and rule out severe impacts on the economy, by orders

of magnitude faster than what is implied by the scenario in our explorative calibration.

Arguably, the distribution of existing estimates arises from fundamental differences

between the individual studies, introducing also a strong subjective component to the

estimates (see Pindyck, 2013). But the subjective dispersion of views is exactly the

reason why, in our framework, beliefs are introduced for interpreting the existing carbon

price distribution. The approach to the calibration of beliefs is explorative; however, the

general conclusions seem quantitatively robust. We are unaware of previous attempts to

use current estimates of the social cost for assessing its dynamic development.

Interestingly, through growth, the economy may become fully decarbonized without

experiencing economic climate-change impacts. The key by-product of income growth for

climate policies is the increased willingness to pay for emissions reductions; Chichilnisky,

Heal, and Starrett (1993) discuss a similar effect in a static context, and Stokey (1998)

considers the effect in a dynamic setting. In our model with long-delayed learning, the

pollution impact on the economy may not occur but the carbon emissions still experience

a rise and decline much in the vein of the Environmental Kuznets curve –literature

(Grossman and Krueger, 1993, 1995; Selden and Song 1994; Holz-Eakin and Selden,

1992).

We build on the Brock-Mirman model (1972) for the climate-economy interactions,

following Golosov, Hassler, Krusell, and Tsyvinski (2011); however, we introduce climate

change differently through a hidden state that determines whether a negative productivity

shock can hit the economy in the future. Beliefs on the hidden state allows including

heterogeneity of views, and the structural interpretation of the social cost data.

The paper is structured as follows. In Section 2, we first explain the basic planning

problem, and then the learning dynamics as well as the emissions-temperature response

6It should be noted that there are other well-received arguments such as green technological change

for not following gradualism but rather a jump-start in emissions pricing (van der Zwaan et al. 2002;

Gerlagh, Kverndokk and Rosendahl 2009; and Acemoglu, Aghion, Bursztyn, and Hemous, 2012).
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that follows from the description of the global carbon cycle; this description is in full

detail in Gerlagh and Liski (2013).7 In Section 3, we first introduce the optimal policies

when the true state of nature is known, and then consider the policy before learning

the impacts. Section 4 introduces the calibration and the quantitative assessment. The

online supplementary file contains a program for reproducing the graphs in the text.8

2 The climate-economy model

2.1 The basic setting

We consider a climate-economy planning problem where production possibilities at time

t depend on capital kt inherited, and potentially also on the full history of carbon input

use,

st = (z0, ..., zt−1).

Given kt and history st at time period t, consumption, ct, and carbon inputs, zt, are

chosen to maximize the expected discounted utility

maxEt
∑∞

τ=0
δτut+τ (1)

where 0 < δ < 1 is the discount factor and ut+τ is the periodic utility, specified below.

The chosen allocations must satisfy

ct + kt+1 = yt, (2)

with yt = ft(kt, st, zt) denoting the output at time t. Losses due to climate change arise

as reduced output, and depend on the history of emissions st through variable Dt that

is a measure of the global mean temperature increase above the pre-industrial levels at

time t. We assume that this measure is a function of history st,

Dt =
∑t

τ=1
R(τ)zt−τ (3)

where the weights R(τ) define the “emissions-temperature response”. That is, current

emissions zt affect temperatures at some later time t+ τ according to a known response

function R(τ):

7A longer working paper version Gerlagh and Liski (2012) contains a detailed description of the

energy sector that is needed in the quantitative analysis of the current paper. That paper focuses on

the valuation of far-distant climate impacts, without uncertainty.
8Follow the link https://www.dropbox.com/sh/7meos655j14jh5p/_dlr8X_FHI
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dDt+τ

dzt
= R(τ) > 0. (4)

The key characteristic of the calibrated R(τ), explained below, is the considerable

delay of the response following an impulse of emissions; it has a non-linear shape peak-

ing several decades after the date of the emissions, and a fat tail of almost permanent

impacts. Simplistically, there is no uncertainty about R(τ); the response serves the pur-

pose of introducing delays to the potential impacts on the economy that, in turn, will be

uncertain.

Output is given by a production function where capital contribution takes the Cobb-

Douglas form, with 0 < α < 1,

yt = kαt At(zt) exp(−∆y,tDt), (5)

where the contribution of carbon inputs zt enter through the function At(zt) that cap-

tures the energy sector of the economy. The current policy will be free of details of

the energy sector; we merely assume that carbon input zt has a positive but diminish-

ing marginal product.9 Losses from climate change arise as reduced output, as in most

applied climate-economy models (e.g., Nordhaus, 2008); moreover, they depend on the

history of emissions through variable Dt and damage coefficient ∆y,t > 0, as in Golosov

et al. (2011).

There are two climate-economy states, It ∈ {0, 1}. If It = 0, no damages have been

experienced by t. If It = 1, damages have appeared, and once It = 1, then It+τ = 1 for

all τ ≥ 0. The damage coefficient at time t is ∆y,t = ∆yIt, where ∆y > 0 is a constant,

independent of time. Thus, there is a dichotomy between climate change, captured by

Dt, and impacts, ∆y,t, where only the latter will be unknown.10 The economy starts with

∆y,t = 0; below, we specify the learning process for the future values of ∆y,t > 0.

Periodic utility is

ut = u(ct)−∆u,tDt, (6)

where u (ct) = ln(ct), ∆u,t = ∆uIt, and ∆u > 0. We thus allow for intangible damages

that can appear together with the production losses, once It = 1.

9However, the details of the energy sector will affect the future development of the economy and thus

the future states of the economy and future policies. For this reason, we introduce a structure for the

energy sector in detail in Section 4.2 and in the Appendix
10The dichotomy can be broken by assuming a smooth arrival process for impacts; the extension in

the Appendix can be interpreted this way. The approach in the main text allows sharper analytics, and

the substance-related differences between the two approaches are small.
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The economic problem defined through (1)-(6) has a well-explored structure, apart

from the climate-economy interactions. The state vector is (kt, st, It). Because of the

log-utility for consumption, full capital depreciation in one period, and Cobb-Douglas

capital contribution, the consumption choice model follows Brock and Mirman (1972) so

that share

g = αδ

of gross output will be saved; the dynamic programming arguments leading to this policy

are well known in analytical macro-economics (Sargent, 1987). Moreover, given the

exponential form for the potential output loss, the contribution of kt and st to value of

the program in (1) will be separable in these variables. Thus, the climate policy analysis

can be conducted by taking savings g as given and by tracking the direct utility impacts of

the potential loss from climate change.11 It proves useful to aggregate both the potential

output and direct utility losses into one measure:

Remark 1 For It = 1, the present-value loss of utils from marginal climate change at

time t is

∆ ≡ −
∑∞

τ=0
δτ
dut+τ
dDt

= ∆u +
∆y

1− g
. (7)

Thus, in equilibrium, output and direct utility losses can be made interchangeable

in terms of utility; for convenience, we will use ∆ as an aggregate measure of both

losses. For the proof, consider the effect of temperature Dt+τ on utility in period t + τ

when It = 1 (climate impacts have arrived). Recall that the consumption utility is

ln(ct+τ ) = ln((1− g)yt+τ ) = ln(1− g) + ln(yt+τ ) so that, through the exponential output

loss, the consumption utility loss is given by ∂ln(ct+τ )/∂Dt+τ = −∆y. As there is also

the direct utility loss, captured by ∆u in (6), the full loss in utils at t+ τ is

− dut+τ
dDt+τ

= ∆y + ∆u.

But, part g of the output loss at t+ τ also propagates through savings to period t+ τ + 1

and further to periods t + τ + n with n > 0, so that the full loss of utils, discounted to

time t and denoted by ∆, is given by (7)

2.2 Beliefs

The hazard rate for damages, denoted as p, is the probability that damages start and

It = 0 moves to It+1 = 1. The hazard rate is a given constant for each period, but

11See Golosov et al. (2011) or Gerlagh and Liski (2013).
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unknown to the policy maker. We assume that p has a discrete prior distribution: it can

either take value p = 0 or p = λ. The hazard rate can depend on the degree of climate

change as measured by Dt, for example, so that only for periods where Dt > D > 0 the

state can switch. We postpone this extension in Section 3.3, and assume now learning in

all periods by setting D = 0.12

There is no prior climate experiment; we do not know the value of p, but we assume

a subjective prior probability µ0 > 0 for a positive hazard rate, p = λ. The probability

for eventual climate impacts satisfy:

1− µ0 = Pr( lim
t→∞

It = 0) = Pr(p = 0)

µ0 = Pr( lim
t→∞

It = 1) = Pr(p = λ > 0).

Let µt denote the posterior probability that p = λ, at time t, conditional on no

learning by time t, It = 0. Each period where Dt > D = 0, but where no damages have

appeared so far, It = 0, climate change runs an experiment. If the outcome is It+1 = 1,

which happens with probability µtλ > 0, we have learned that p = λ, so µt+1 = 1. If

the outcome is It+1 = 0, we have not learned the state of nature with certainty, but the

beliefs are updated to µt+1. We can write the Bayesian updating rule as13

µt = Pr(p = λ |It = 0) (8)

=
µ0(1− λ)t

µ0(1− λ)t + 1− µ0

which is the probability that climate change impacts will ultimately arrive even though

such damages have not been experienced by time t. Note that µt declines over time:

“no news is good news”; the assessment of the distribution for damages becomes more

optimistic over time.14 The triple (µt, λ,∆) describes the current beliefs, the underlying

stochastic process for damages, and the size of damages, respectively.

12For example, D can correspond to 2-degrees Celsius warming, but since we have little information

about the learning thresholds, we will set D = 0 in the calibration. The solution of the model can be

easily extended to the case of different temperature brackets, all having different hazard rates.
13Note that Pr(p = λ |It = 0)× Pr(It = 0) = Pr(p = λ ∩ It = 0). The probability that there has been

no news by time t is Pr(It = 0) = µ0(1− λ)t + 1− µ0. The probability that there has been no news by

time t and that p = λ is Pr(p = λ ∩ It = 0) = µ0(1− λ)t. Combining gives the equation.
14One could argue that impacts must ultimately arrive for a sufficiently severe climate change. While

the model can be extended to include temperature brackets where impacts arrive almost surely, it is also

reasonable to think that, for example, a long period of 2-degrees warming without impacts is evidence

for not having impacts at such temperatures. Even if one considers “no news is good news” learning to

be biased, this bias is consistent with the idea of having a conservative test against the climate policy

ramp, as explained in the Introduction.
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Variants of the learning dynamics considered here are common in other fields of

economics but some features of the setting deserve attention. Malueg and Tsutsui (1997)

were among the first to consider learning of unknown Poisson rates in an R&D race; see

also, for example, Keller, Rady, and Cripps (2005), and Bonatti and Hörner (2011). In

this literature, new information is generated by periodic effort; no current effort means no

new information. In climate change, the arrival of new information depends on persistent

temperature increases that follow from past actions with a considerable delay. The

literature on catastrophic environmental events assumes that the hazard rates for the

high-consequence events depend on past actions by making them dependent on variables

such as pollution stocks (Clarke and Reed 1994; Tsur and Zemel 1996; and, for example,

Polaski, de Zeeuw, and Wagener 2011). However, this literature has not considered

uncertainty in the sense that the parameters of the primitive distributions are not known

at the outset, as in our case. We connect to this literature in Section 3.3, where belief

updating depends on the temperature level.

2.3 Climate dynamics

The temperature response to emissions is a key determinant of the expected present-value

utility impacts of the current emissions, that is, the social cost of carbon emissions. For

tractable policies, we build on a closed-form for R(τ) that is derived in Gerlagh and Liski

(2013); see Theorem 1. For exposition, we outline here the two main determinants of

the response: the carbon cycle and the relationship between carbon concentrations and

temperatures.

The carbon cycle refers to a diffusion process of carbon between reservoirs of carbon,

such as those in the atmosphere, oceans and biosphere. Obviously, the atmospheric

reservoir is the one relevant for climate warming but the other reservoirs are relevant

for the delays and persistencies of changes in the atmospheric stock. Assuming a linear

diffusion, the system can be de-coupled by eliminating interactions between the reservoirs,

leading to an isomorphic system of separable impulse-responses for carbon stocks (Maier-

Reimer and Hasselman 1987). Let I denote the set of impulse-responses, with fraction

0 < ai < 0 of emissions having decay rate 0 6 ηi < 1, i ∈ I. The shares and decay rates

have intuitive meanings, discussed below, and they follow from the physical description

of the system of carbon reservoirs.15

15The true diffusion process is non-linear (Joos et al. 2013). The linear representation is an approxi-

mation.
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The carbon cycle is relatively well understood in natural sciences but the relation-

ship between temperatures and carbon concentrations is fundamentally uncertain (see,

for example, Roe and Baker, 2007). Acknowledging these complications, we note that

economic impacts introduce yet another layer of fundamental uncertainty; we focus on

this uncertainty and make the following simplistic assumptions on the determinants of

the climate equilibrium. Emissions zt increase the atmospheric CO2 stock, through the

carbon cycle, and there is a linear relationship between the steady state atmospheric CO2

stock and the steady state level of Dt. This relationship is captured by parameter π: a

one-unit increase in the steady-state atmospheric CO2 stock leads to a π-unit increase

in the steady-state level of Dt. Outside steady state, there is a delay in the effect from

concentrations to temperatures, and this delay is captured by parameter 0 < ε < 1: a

one-unit increase in emissions increases the next period CO2 stocks one-to-one but the

direct temperature increase is only επ -units

Remark 2 Consider a carbon diffusion process, described by shares 0 < ai < 0 for

depreciation rates 0 6 ηi < 1, i ∈ I. For temperature sensitivity π and adjustment speed

ε, the impact of emissions at time t on temperatures at time t+ τ is

dDt+τ

dzt
= R(τ) =

∑
i∈I

aiπε
(1− ηi)τ − (1− ε)τ

ε− ηi
> 0. (9)

The result follows from Gerlagh and Liski (2013, Theorem 1). Parameter ηi captures,

for example, the carbon uptake from the atmosphere by forests and other biomass, and

oceans. The term (1 − ηi)
τ measures how much of carbon zt under decay i still lives

after τ periods, and the term −(1− ε)τ captures the slow temperature adjustment. The

limiting cases can be helpful. Consider one CO2 reservoir. If atmospheric carbon-dioxide

does not depreciate at all, η = 0, then the temperature slowly converges at speed ε to the

long-run equilibrium climate sensitivity π, giving R(τ) = π[1− (1− ε)τ ]. If atmospheric

carbon-dioxide depreciates fully, η = 1, the temperature immediately adjusts to πε,

and then slowly converges to zero, R(τ) = πε(1 − ε)τ−1. If temperature adjustment is

immediate, ε = 1, then the temperature response function directly follows the carbon-

dioxide depreciation R(τ) = π(1 − η)τ−1. If temperature adjustment is absent, ε = 0,

there is no response, R(τ) = 0.

When multiplying temperature measure Dt by given output-loss coefficient ∆y > 0,

we can interpret the emissions-temperature response as an emissions-damage response.

Fig. 1 shows the life path of damages (percentage of total output) caused by an impulse

of one Teraton of Carbon [TtCO2] in the first period.16 The output loss is thus measured

16One TtCO2 equals about 25 years of global CO2 emissions at current levels (40 GtCO2/yr.)
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Figure 1: Emissions-damage response. The path depicts the output loss associated with

1TtCO2 impulse of carbon at time t = 0 for ∆y = 1 and π = .0156.

per TtCO2, and it equals 1 − exp(−∆yR(τ)), τ periods after the impulse. The non-

monotonicity of the response, as depicted in Fig. 1, captures well the climate impact

dynamics, for example, in DICE-2007 (Nordhaus, 2008).

The physical data on carbon emissions, stocks in various reservoirs, and the observed

concentration developments can be used to calibrate a three-reservoir carbon cycle rep-

resentation; we choose to the following emission shares and depreciation factors per

decade:17

a = (.163, .184, .449)

η = (0, .074, .470).

Thus, about 16 per cent of carbon emissions does not depreciate while about 45 per cent

has a half-time of one decade. We assume ε = .183 per decade, implying a global tem-

perature adjustment speed of 2 per cent per year. Normalizing the output loss parameter

at unity, ∆y = 1, and setting π = .0156 [per TtC02, see Gerlagh and Liski (2013)] is con-

sistent with the Nordhaus (2008) baseline where a temperature rise of 3 degrees Celsius

leads to about 2.7 per cent loss of output.18 These quantitative choices parametrize the

17Some fraction of emissions depreciates within one decade from the atmosphere, and therefore the

shares ai do not sum to unity. The choices here are based on Gerlagh and Liski (2013) but similar

representative numbers can be found in the scientific literature; see, e.g., Maier-Reimer and Hasselman

(1987).
18To clarify the units, the damages are measured per Teraton of CO2 [TtonCO2], and the 3 degrees

11



emissions-temperature response that is depicted in Figure 1. In the calibration below,

we allow ∆y to be determined by the distribution for the carbon prices obtained from

previous studies; throughout, ∆y = 1 refers to the Nordhaus’ baseline.

3 General-equilibrium policies

3.1 After learning, I = 1

To obtain the carbon price, that is, the social cost of current carbon emissions zt, consider

the effect of emissions at t on a stream of future utilities. The full loss of utils per increase

of temperatures as measured by Dt+τ , caused by zt at time t, when discounted to t with

factor 0 < δ < 1, is denoted by h. It follows with the aid of (7) and (9):

h ≡ −
∑∞

τ=1 δ
τ dut+τ
dzt

= ∆
∑∞

τ=1 δ
τ dDt+τ

dzt
= ∆

∑∞
τ=1 δ

τR(τ) (10)

= ∆
∑

i∈I

aiπε

ε− ηi
∑∞

τ=1 δ
τ (1− ηi)τ − δτ (1− εj)τ

= δ∆π
ε

1− δ(1− ε)
∑

i∈I

ai
1− δ(1− ηi)

. (11)

The present-value utility costs of current emissions can thus be compressed to a num-

ber, h, that will be an input to the determination of the currently optimal carbon price.

The first term, δ∆π, describes the utility loss associated with one emission unit when

steady state damages would happen immediately at the next period. The second term

discounts damages because of the time-delay associated with temperature adjustment.

The third term with the summation describes the persistence of damages as the atmo-

spheric CO2 stock decays slowly.

Proposition 1 Conditional on It = 1, the optimal carbon price is

τ t =
∂yt
∂zt

= (1− g)ytδ∆π
ε

1− δ(1− ε)
∑

i∈I

ai
1− δ(1− ηi)

. (12)

Thus, the optimal carbon price in (12) is proportional to income, with proportionality

depending only on δ, ∆, and the carbon cycle parameters in (9). Given loss parameter ∆,

Celsius rise follows from doubling the CO2 stock. We have chosen the value of π such that the normal-

ization ∆y = 1 gives the Nordhaus case. For this reason, the interpretation of π is “climate damage

sensitivity” rather than “climate sensitivity”.
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the same tax is optimal for any division between utility and production losses satisfying

(7).

For the proof, given the Brock-Mirman structure (1972), the payoff implications of

temperature changes are separable from capital capital wealth. The climate policy can

be found by balancing the present-value of future utility costs of emissions (11) with the

current utility-weighted marginal product of carbon: ∂yt
∂zt

∂u
∂c

= h. Since ∂ut
∂ct

= 1/ct =

1/(1− g)yt, we can express the optimal carbon price as

τ t =
∂yt
∂zt

= h(1− g)yt

which gives the result.

Let us comment on the property that the optimal tax is proportional to income.

This follows since, effectively, through the Brock-Mirman structure we assume a unit

elasticity of losses with respect to income, which represents an intermediate position in

the literature. Some economic climate-change losses, such as decreased agricultural yields

in tropical areas, are likely to increase less than one-to-one with income, as the share of

the agricultural sector tends to decrease when income grows. At the same time, as these

agricultural impacts are expected to be more severe in the currently warm-climate and

less-developed countries, the share of damages in world-wide income will increase when

those economies grow at rates larger than the world-wide average growth rate. Also,

the monetary evaluation of economically intangible impacts such as ecological losses are

expected to increase more than proportionally with income (Mendelsohn, Dinar and

Williams 2006; Mendelsohn et al 2012).

3.2 Carbon price distribution before learning, I = 0

Once damages appear, the policies can be determined exactly as in Proposition 1. Prior

to their appearance, the model generates a parametric distribution for the time when

damages occur. Let Z be the stochastic variable, measuring the full future utility cost

from increasing current emissions zt marginally. Let ht = EtZ be the expected present

value of future utility losses associated with one unit of current emissions. Z can take the

values Z1, Z2, ...., where Zτ is the current social cost of carbon if damages appear for the

first time, precisely at period t + τ . Thus, Zτ characterizes the present-value marginal

utility losses from current emissions zt, assuming that the damage indicator It remains

at zero for all periods prior to t + τ but then turns positive. Proceeding as in Section

3.1, and using the emissions-temperature response from Section 2.3, we can obtain the
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present-value of such delayed utility losses in closed-form:

Zτ = ∆
∑∞

s=τ
δsR(s)

= ∆
∑

i∈I

πaiε

ε− ηi
δτ
(

(1− ηi)τ

[1− δ(1− ηi)]
− (1− ε)τ

[1− δ(1− ε)]

)
.

Given our model of learning, we find for the distribution of Z that

Pr(Z = Zτ |It = 0) = Pr(Iτ = 1 ∩ Iτ−1 = 0|It = 0)

which gives the probability that damages turn positive exactly after τ periods when the

current time t subjective belief for the climate problem is µt. To find the corresponding

cumulative distribution function for the utility losses, denoted by Ft(Z), we first establish

the probability that the damage has revealed itself at period t, irrespective of if t is the

first time:

Pr(It = 1) = (1− µ0) Pr(It = 1|p = 0) + µ0 Pr(It = 1|p = λ)

= µ0[1− Pr(It = 0|p = λ)]

= µ0[1− Pr(I1 = ... = It = 0|p = λ)]

= µ0[1− (1− λ)t].

We can generalize this to expectations at period t,

Pr(It+τ = 1|It = 0) = µt[1− (1− λ)τ ]

so that the distribution for Z is then given by

Ft(Zτ ) = Pr(Z ≤ Zτ |It = 0) = Pr(It+τ−1 = 0|It = 0) (13)

= 1− µt + µt(1− λ)τ−1.

We can use this distribution to determine the social cost of carbon at time t as

dependent on beliefs µt.

Theorem 1 Conditional on no experience of impacts by time t (It = 0), the previous-

period distribution of the social cost of carbon Ft−1(Z) stochastically dominates the cur-

rent distribution Ft(Z). The social cost of carbon as measured by ht = EtZ declines over

time conditional on It = 0. Moreover,

ht ≡ EtZ =
∑∞

τ=1 δ
τEt

dut+τ
dzt

= µth
l

hl ≡ δ∆π
ε

1− δ(1− ε)
∑

i∈I

ai
1− δ(1− ηi)

−δ(1− λ)∆π
ε

1− δ(1− λ)(1− ε)
∑

i∈I

ai
1− δ(1− λ)(1− ηi)

.
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Proof. The expected utility losses from current emissions are equal to

ht = Et∆
∑∞

τ=1 δ
τIt+τ

dDt+τ

dzt
= ∆

∑∞
τ=1 δ

τ Pr(It+τ = 1|It = 0)R(τ)

= µt∆[
∑∞

τ=1 δ
τR(τ)−

∑∞
τ=1(1− λ)τδτR(τ)].

Using our temperature-response function leads to the expression for ht. Decreasing car-

bon prices measured in utils and stochastic dominance follow from (13) and µt decreasing

over time.

The result gives a closed-form expression for the optimal carbon price policy depend-

ing both on the climate system parameters and on the current belief of the damage

distribution characterized by (µt, λ,∆). The first term that defines hl equals h, the full

information policy variable (defined in (11). The second term subtracts the present value

of damages that in expectations do not occur, substituting δ(1 − λ) for the discount

factor.

Recall that the optimal general-equilibrium carbon price is the income-weighted future

utility-cost of current actions, analogous to (12), giving:

Proposition 2 The optimal learning-adjusted carbon price is

τ t = µth
l(1− g)yt. (14)

The results follows from the same arguments as for the full information case, using

Theorem 1 for the expected future utility-costs.

The “climate policy ramp”, that is, the gradually tightening carbon-price policy over

time, can follow even with increasing climate optimism over time: despite the declining

µt, sufficient growth of income growth yt, implies that the economy becomes, in expected

terms, more exposed to losses from climate change.

Limiting cases reveal the mechanisms at work. Consider time t = 0, where the

subjective belief of damages is given by µ0 < 1. If damages are almost surely observable,

λ↗ 1, the optimal initial policy prior to experimentation is the full information policy,

weighted with the subjective probability for damages, hl → h. However, if damages do

not appear the next period, I1 = 0, then the subjective assessment µ1 drops to zero by

the updating rule (8) as beliefs become very optimist, and the carbon price drops to zero,

µ1 ↘ 0, h1 = µ1h
l ↘ 0. In this case, no news reveals the true climate-economy state

precisely. On the other hand, if climate change damages are not easily observable, λ↘ 0,

climate change is a problem with a non-significant rate of appearances in all cases and
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carbon prices are low, hl ↘ 0. But this case also implies that climate experiments are

not very informative; there will be no learning, and the subjective assessment µt in (8)

remains almost unchanged over time.

The carbon price formula developed here differs from that in Golosov et al. (2011),

who also build on the Brock-Mirman consumption choice framework for climate change

impacts, in two main ways. First, our formula incorporates a delayed response of tem-

peratures to atmospheric CO2, without losing tractability. Golosov et al. assume that

the temperature and associated potential impact of emissions reaches its maximum im-

mediately after the date of emissions, which is hard to reconcile with the carbon cycle

representations of the applied models typically used for carbon pricing.19 Second, we

introduce a structure for beliefs and their tractable updating (8) so that the carbon price

has a closed form and the contributions of beliefs and income become explicit in (14).

Moreover, we will exploit in a following section the closed-form distribution of Z in (13)

to connect the quantitative assessment to carbon price estimates in the literature.

3.3 Learning thresholds

Before moving to the quantitative assessment, consider the case the degree of climate

change determines the intensity of experimentation. Suppose learning takes place only

above a temperature threshold, Dt ≥ D, corresponding, for example, to 1 or 2 degrees

Celsius above the pre-industrial temperature levels.

Proposition 3 Assume that temperatures generate information on impacts only if Dt ≥
D. Let D0 < D and t′ < ∞ be the first period such that Dt′ > D. Then, prior to t′,

the expected present-value utility impact of emissions increases over time: ht < ht+1 for

0 < t < t′.

19Gerlagh and Liski (2013) compare the emissions-damage responses of DICE-2007, Golosov et al.

2011, and the one presented here. Moreover, the supplementary material of that paper contains a note

that illustrates the importance of the non-monotonicity of the response in replicating the carbon price

predictions of the applied climate-economy models.
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Proof. Let T be the set of periods τ such that Dτ > D. The expected utility losses

for 0 < t < t′ satisfy

ht = Et∆
∑∞

s=1 δ
sIt+s

dDt+s

dzt

= ∆
∑
τ∈T

{
Pr(Iτ = 1 ∩ Iτ−1 = 0|It = 0)

∑∞
s=τ−t δ

sdDt+s

dzt

}
= ∆

∑
τ∈T

{
Pr(Iτ = 1 ∩ Iτ−1 = 0|It = 0)

∑∞
s=τ−t δ

sR(s)
}

< ∆
∑
τ∈T

{
Pr(Iτ = 1 ∩ Iτ−1 = 0|It = 0)

∑∞
s=τ−t−1 δ

sR(s)
}

= ∆
∑
τ∈T

{
Pr(Iτ = 1 ∩ Iτ−1 = 0|It+1 = 0)

∑∞
s=τ−(t+1) δ

sR(s)
}

= ∆
∑
τ∈T

{
Pr(Iτ = 1 ∩ Iτ−1 = 0|It+1 = 0)

∑∞
s=τ−(t+1) δ

sdDt+1+s

dzt+1

}
= Et+1∆

∑∞
s=1 δ

sIt+1+s
dDt+1+s

dzt+1

= ht+1

The second line follows because It = 0 with certainty for 0 < t < t′. The inequality

follows as we subtract one period to take one period of delay away. The fifth line follows

as beliefs do not change between t and t+ 1.

As long as no information can be obtained, no damages will occur but policy ht

becomes more strict over time as the expected first appearance of damages comes closer.

The tightening of policies continues until the temperatures start generating information.

Proposition 4 For 0 < t < t′, defined in Proposition 3, the optimal carbon tax grows

faster than the economy.

Since the actual carbon tax is a multiple of income, the tax implied by ht for Dt < D

will be growing over time at a rate exceeding the growth of the economy, by Proposition

3. Further, recall that our emissions-temperature response implies that the tempera-

ture peak for a given emissions impulse lags 60-70 years behind the date of emissions:

the learning of effects described here can start several decades after the emissions that

caused climate change to break through the threshold. Meanwhile, optimal policies are

characterized by constant beliefs, but by potentially sharply increasing carbon prices.

The shape of the emissions-temperature response, R(τ) is thus not only important as

a measure of the development over time for the potential shock on the economy; it also

dictates how quickly the climate experiment can become informative. The result above

can be extended to a more sophisticated representation of arrival rates, depending on
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the temperature level. However, in the interest of designing a conservative test for the

climate policy ramp, we assume that any level of temperature increase allows learning

of the climate impacts on the economy in the quantitative analysis below. Moreover,

our approach ignores the possibility of learning the climate impacts from the shorter-

term temperature volatility (see, for example, Kelly and Tan 2013); in the Appendix, we

extend the tractable carbon price formula to this case.

4 Quantitative assessment

Throughout the quantitative analysis, we assume 10-year periods; the first year is ’2010’

corresponding to period 2006-2015. We assume only (potential) output losses from cli-

mate change so that ∆y = ∆ and ∆u = 0, to maintain an easy comparison with earlier

studies. We take the Gross Global Product as 600 Trillion Euro [Teuro] for the decade,

2006-2015 (World Bank, using PPP). Throughout we assume a capital share of α = .3

and one per cent pure rate of annual time preference, implying δ = .90 for decadal periods

and resulting in savings g = .27.

Normalizing the output loss parameter at unity, ∆ = 1, and assuming that these losses

exist at the outset gives us results comparable to Nordhaus’ (2007) baseline. Together

with our carbon cycle, such damages result in a carbon price of 22 EUR/tCO2, equivalent

to about 105 USD/tC, for 2010. This estimate is higher than the Nordhaus baseline

(2007) because of our lower pure rate of time preference that facilitates the calibration

presented in Section 4.1.20

4.1 Matching carbon price distributions

For an informed approach to quantifying the belief component in the model, we use now

a distribution of existing carbon price estimates as external data. The underlying idea in

this, admittedly unorthodox, calibration is that each number in the data presents a point

estimate of the social cost. Our model gives a structural interpretation for the dispersion

of the estimates, allowing calibration of the parameters that quantify the initial beliefs

20Note that 1 tCO2 = 3.67 tC, and 1 Euro is about 1.3 USD. Our number 105 USD/tC is almost

precisely equal to the DICE-2007 carbon price when in that model the elasticity of substitution parameter

is set to one and the pure rate of time preference is set to 1 per cent per year, as in our analytical model.

The number appearing in Nordhaus (2007), that is 35USD/tC, can be matched by setting 2.7 per cent

pure rate of time preference. However, Tol’s data, used in the calibration below, does not exist for this

value of time preference.
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in the model. The policy-maker, that is, the decision-maker in the model, then forms

one initial point estimate for the social cost, and evaluates its evolution over time given

the learning dynamics assumed.21

Tol (2009) conducted a comprehensive survey of the existing estimates for the social

cost of carbon. From a sample of 232 estimates he derived a distribution for the carbon

price measured in 1995 USD/tC, controlling for the time discount rates used in the stud-

ies. We focus on Tol’s sample corresponding to 1 percent pure rate of time preference.22

Tol’s mean value for the carbon price is 32.7 for 2010 EUR/tCO2 (his Table 2, 2009). We

calibrate the climate system parameters as reported in Section 2.3 and choose economic

parameters as above, and then fit our cumulative damage distribution function F (Z) by

choosing the initial prior µ0, the hazard rate λ, and the damage parameter ∆. Note that

in this interpretation of the data, the heterogeneity in the point estimates comes from

different possible outcomes for the arrival date of the damage.

Fig. 2 depicts a spline connecting the 33, 50, 67, 90 and 95 percentiles of the carbon

price distribution, expressed in 2010 EUR/tCO2, as reported by Tol, jointly with the

distribution that follows from our calibration, depicted as a smooth line. We can match

the two cumulative distributions either by minimizing the errors at the reported percentile

points, or, more directly, by matching the means and the end-points of the distributions.

The approaches are almost outcome-equivalent. We followed the latter approach to allow

for the interpretation set out below.

There is a mass point at zero, corresponding to a 20 per cent assessment that in-

significant or positive climate change impacts will occur.23 For interpretation, we may

think that 1 − µ0 represents the share of climate experts having the assessment that

climate-change impacts will be negligible or even positive; to match the lower end of the

distribution, we set µ0 = .8.

In the other extreme, there are experts who have strong views that income losses are

21The social cost of carbon is an elusive concept in the applied work that has generated the data

discussed below. Many of the studies do not optimize to find the optimal shadow value of the current

carbon constraint; rather, the cost of carbon is the evaluated cost from a marginal increase of emissions

given a background scenario for the economy; see, for example, the model descriptions in the Stanford

Energy Modeling Forum (in Weyant et al, 2006). Our planner optimizes the social cost which, obviously,

differs from the non-optimized estimates but is not necessarily inconsistent with them.
22Tol reports distributions for 0, 1 and 3 per cent discount rates, respectively. Our analysis of the 3-

percent case produced very similar qualitative results; the levels of the policy variables are systematically

lower.
23This number we inferred from Tol (2008).
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Figure 2: Fitting cumulative distribution with Tol’s (2009) distribution.

high, arrive almost surely and soon: the high end of the carbon prices pins down the

damages conditional on bad news, as captured by the value ∆y. To avoid giving too much

weight to a few extreme cost estimates in the sample, we truncated the fitted distribution

at 87.7 EUR/tCO2 by setting ∆y = 4. That is, maximum damages are by factor four

higher than the middle-of-the-road damages assumed in Nordhaus (2007) — the implied

output loss is then about 10.7 per cent from doubling the CO2 stock, if climate impacts

materialize.

The continuum of views between the extremes are described through the third pa-

rameter, λ. We obtain the value λ = .077 such that the initial carbon price implied

by our model exactly matches Tol’s mean value of 32.7. Choice λ = .077 means that

information is generated very slowly – there is about 8 per cent probability of learning

per decade. A geometric distribution with this arrival rate per decade means that the

expected arrival time for a severe climate change damage event is about 130 years. After

100 years without damages, the posterior for the eventual impact arrival µt is still 64 per

cent.

The matching of our carbon price distribution with Tol’s distribution ensures consis-

tency between our quantitative assessment of the first-period social cost of carbon and the

views as held by the profession; updating of the distribution depends on our structural

interpretation of the learning process.

4.2 The climate-policy ramp

The above calibration sets the optimal initial carbon price at the mean in Tol’s survey:

32.7 EUR/tCO2 in 2010. Consider now the development of the optimal carbon price
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over time. We set D = 0, assuming that any level of temperature increase produces

information.

Given the closed-form formula for the carbon price in (14), one approach is to conjec-

ture future output or income levels, say, in 2050 and, conditional on no observed impacts

by that time, obtain the future carbon price for that state of the world. However, future

states of the world result partly from past policy decisions; carbon pricing decisions shape

current, and through investments, also future income levels. To obtain consistent policy

scenarios, in the Appendix we introduce a structure for At(zt) in the production func-

tion to describe the two main mechanisms through which the economy adjusts to carbon

policies: energy savings that typically feature the early decades of the adjustment, and

then decarbonization of energy that is needed to meet the long-run climate targets.

The benchmark for our assessment is the “Climate policy ramp” (dotted line in Fig.

3), based on Nordhaus’ DICE (2007) middle-of-the-road damage estimate, correspond-

ing to ∆y = 1 sure-loss damages; that is, damages are immediately observed with no

uncertainty. For 2010, with 1 per cent annual pure time-discounting and log-utility,

the benchmark sure-loss policy path gives 22 EUR/tCO2 as the optimal price which is

almost identical to what DICE produces under this choice for discounting and prefer-

ences.24 This middle-of-the-road sure-loss path involves a tightening of the policies over

the coming century, typical for most no-uncertainty climate-policy assessments.

We now look at the optimal time path for the carbon price for high potential damages,

but conditional on not observing these damages ; that is, we consider the evolution of

the policy when future impacts are potentially severe, ∆y = 4, as determined by the

calibration procedure above, but when no news on climate impacts arrive. Then, we

compare this policy path to the baseline. Without impacts, the economy is unaffected

by climate change but, since the carbon policies are in place, emissions and output will

be reduced below the business-as-usual path. The optimal carbon price is depicted as a

solid line in Fig. 3 over the coming century and beyond. The two climate policies —one

with immediate damages based on the central estimate, and the other with high but only

potential damages and gradual updating of beliefs to the no-news situation— have the

same shape for the first century.25 The main result of the quantitative assessment follows:

policies should become tighter over time even if climate optimism increases. Strikingly,

for this particular learning scenario, it takes close to 200 years without observed climate

24Illustration available on request.
25The difference in levels follows since the baseline estimate by Nordhaus is close to the median, but

lower than the mean in Tol’s distribution.
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damages for beliefs to become optimistic enough for the carbon price to decline – the

social cost of carbon declines very slowly.
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Figure 3: The carbon price for a sure income loss of 2.7 per cent from doubling the carbon

concentration (µ = 1; ∆y = 1), and for uncertain damages, conditional on no news on

damages (µ0 = 0.8;λ = 0.077,∆y = 4).

To assess the shape of the carbon price path, we decompose its level into its two

main components. Recall that the optimal carbon price is proportional to ht capturing

the expected utility losses from current emissions, and to income yt; τ t = ht(1 − g)yt,

ht = µth
l. See Table 1, for the contribution of income (yt) and learning (µt) to the

carbon price.26 Expected income growth is prodigious; in our evaluation, based on the

IPCC scenarios (see Appendix), income rises five-fold during the coming century. Such

an estimate is not unheard of, and is driven by an increasing population and the rise of

the middle class in emerging economies. The development of beliefs is captured through

µt in the Table. Observing no major climate damages over the coming century, leads to

substantial increase in optimism, but, as is evident from the Table, it is the changing

scale of the global economy that matters for the development of carbon pricing. The

stake affected by the potential inverse income shocks from climate change increase so

26It is illuminating to consider the units of measurement for the utility loss measure ht = µth
l, which

has the same unit as the constant in the legend of the table: years per emissions. The variable ht

measures the life-time equivalent of welfare that is lost per unit of emissions. For the year 2010, annual

emissions are about .04 TtonCO2, implying .75× .04 = .03 years of expected life-time destroyed by these

emissions.
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much that stabilizing carbon prices at the initial level — thus ruling out a climate policy

ramp completely — would require that the climate experiment is by orders of magnitude

more informative than considered here. The assessment of the probability of major utility

losses, as captured by µt, would need to decline by 50 per cent by 2050.

income beliefs, µt carbon price

[Te/yr] [.] [e/tCO2]

2010 60 .80 33

2050 146 .74 74

2100 304 .66 137

2150 510 .57 197

2200 703 .47 224

Table 1: Decomposing the contribution of income and learning to the carbon price.

Multiplying the first column and the second column, with a constant hl(1 − g) = 0.68

[yr/T tCO2], gives the last column.

Such carbon prices imply substantial value. Current CO2 emissions exceed 30 Gton

annually, while the annual world output is about 60 trillion euro. A carbon price of 100

EUR/tCO2, worldwide, then represents about 5% of the value of the output, but such

a value share is unlikely to be reached along the path as emissions decline in response

to higher carbon prices; even without carbon prices, emissions tend to increase less than

proportionally to output. But, then, can carbon prices continue to rise as emissions go

down and the climate returns to its natural state? To answer this question consider the

persistence of atmospheric carbon, as shown in Figure 1. Current atmospheric CO2 con-

centrations are about 400 particles per million (ppm), 125 ppm above the pre-industrial

levels of 275 ppm. Even when CO2 emissions fall to zero before 2100, it is expected

that atmospheric CO2 concentrations will not drop below 400 ppm before the end of the

century, and stay above 350 ppm for centuries to come. In that sense, the climate is not

expected to return to its natural state for a long period, and carbon prices continue to rise

with income. For this reason, in our calibration of the energy sector (in the Appendix),

the economy becomes decarbonized during the coming century; the combination of rising

incomes and the persistence of carbon concentrations leads to an Environmental Kuznets

Curve for the observables of the economy.
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4.3 Bad news

It may seem surprising that carbon prices under learning, as depicted in Fig. 3, reach

such high levels, despite no actual damage taking place. Obviously, in addition to the

income growth development, the persistent tightness of the climate policy is supported

by the possibility of real damages that may arrive at any time period, and, if damages

arrive, the historical emissions have persistent real impacts on future utilities. The bad

news carbon price captures the economic meaning of the threat; it is the carbon price at

time t that would be socially optimal if bad news arrived at time t. Fig. 4 depicts both

the no news and bad news carbon price path for the near and longer terms. Note that

the bad news price path is “virtual” because it is drawn against the economy that does

not, but could, experience the damage, that is, output has not dynamically adjusted.

The starting level is given by our calibration at 87.7 EUR/tCO2, as this is the highest

price estimate that we pulled from Tol’s survey and applied to the immediate arrival of

impacts. The virtual price increases for a long period of time reflecting the expanding

world economy.
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Figure 4: Bad news and the no news carbon price

5 Concluding Remarks

We developed a tractable climate-economy model that allows a stylized but transparent

and self-contained quantitative assessment of the optimal carbon price when the impacts
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of climate change can only be learned gradually over time. Rather than producing an-

other estimate for the carbon price, we took the distribution of the existing estimates

as given and provided a structural interpretation for it, stemming from the strong sub-

jective components in the estimates. The current paper is the first attempt to use the

current estimates in a quantitative assessment of the sensitivity of policies to the fact

the dispersion of views may converge slowly over time. The optimal carbon pricing poli-

cies building on the current estimates is robust to significant delays in obtaining hard

evidence on the socio-economic impacts of climate change; it is the size of the economy

that drives the carbon price.

Since there is a pressing policy need for a meaningful estimate of the carbon price, it is

important that the framework is detailed enough for replicating the more comprehensive

applied climate-economy models that, despite their shortcomings, are currently used for

regulatory purposes such as those reported in Greenstone et al. (2011). Other analytical

approaches are often more stylized (e.g., Weitzman 2009), and as such provide valuable

insights but cannot directly contribute to the quantitative determination of the optimal

policies. Our model, while still very stylized, has a tractable emissions-damage response

building on the insights from the natural science literature that, when combined with the

macro-economic approach of Golosov et al. (2011), enables us to construct a transparent

quantitative policy tool, with explicit component for beliefs.27

The closed-form approach to policies and their calibration to the distribution of esti-

mates is very different from the recent numerical approaches to uncertainty and learning

in climate change (Lemoine and Traeger, 2014; Cai et al. 2013). The tractability can

be maintained while extending the current simplistic approach to learning that allows

a gradual arrival of information, say, learning of economic losses from extreme weather

events. In the Appendix, we show how the analysis can be extended to this direction

while keeping the main results: a tractable carbon price distribution that allows cali-

bration and that features similar qualitative implications for belief updating over time.

More precisely, in the Appendix we introduce random productivity shocks where we can-

not, before experimenting, tell apart persistent climate impacts from temporary shocks.

Using a standard normal learning approach about the underlying climate-economy fun-

27The supplementary material of Gerlagh and Liski (2013) includes a note that evaluates numerically

the deviation of our carbon price prediction (in the absence of uncertainty and learning) from the

prediction produced by Nordhaus-DICE (2007). We generate data for the DICE carbon price by sampling

the key model parameters. Our carbon price formula, that uses only a subset of the sampled parameters,

can explain 99 per cent of the variation in the DICE carbon price.

25



damental, we can reproduce the policies of the simple framework in the text for a case

that allows a richer set of observables. We find that, when observed damages accord with

the prior median damage estimate, learning tends to lower the carbon price; but the rise

of income increases the carbon price much in the same way as here.

The main observation that follows from the the carbon price formulas and their quan-

titative assessment is novel and likely to hold in more general settings: the trend in the

optimal carbon price path is mostly driven by the expansion of the global economy and

the resulting growth of the potential expected economic losses. Changes in impact as-

sessments will likely have smaller impacts on optimal carbon policies.
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Appendix: Extension to smooth learning

We consider the same model as in the main text but introduce smooth learning about the

true damage parameters ∆y and ∆u. Assume that priors are normally distributed with

mean µ∆,y (µ∆,u respectively) and variance σ2
∆,y (σ2

∆,u, resp.). Signals are the realizations

of damages that come from the true distributions, but initially we cannot tell apart

damages from weather volatility and those from more persistent climate impacts. For

illustration, we consider the two cases separately: first, a log-normal distribution for

output losses that lead to a normal distribution for utility impacts; and second, log-

normal direct utility losses. For each case, we denote the posterior mean for ∆y (∆u)

based on cumulative experience at time t by µt. There is ’no news’ at time t when the

posterior mean equals the prior mean, µt = µ∆,y (µ∆,u respectively). We consider the

carbon policy ht as defined in (12), and study how ht develops; specifically, we test

whether ht remains constant or declines when ’no news’ appears. This allows us to see

which formulation is consistent with the model in the main text.
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Output losses: normally distributed utility impacts

Consider first output losses only (i.e., ∆u = 0), and assume experienced (relative) losses

given by

1− exp(−Λy,tDt)

where the state of the climate captured by Dt is observed, and output losses contain a

stochastic signal for the persistent damage sensitivity

Λy,t = ∆y + εy,t

with εy,t ∼ N(0, σ2
ε) and i.i.d. across periods and also independent of ∆y. We observe Λy,t

but cannot tell apart the contribution of the noise and the true damage that has an initial

prior ∆y ∼ N(µ∆,y, σ
2
∆,y) with µ∆,y > 0. Thus, in expectations, temperature causes

output losses but there can also be temporary positive productivity shocks, εy,t < 0.

Then, in this setting, we can apply the normal learning rule (De Groot, 1970) to see that

after t observations, the posterior distribution for Λy,τ , τ > t is given by

Λy,τ ∼ N(µt, σ
2
t ) (15)

µt ≡ Et[Λy,τ ] = µ∆,y +
t

t+ σ−2
∆,yσ

2
ε,y

(Λy,t − µ∆,y) (16)

σ2
t ≡ V art[Λy,τ ] =

σ2
∆,y

1 + tσ2
∆,yσ

−2
ε,y

+ σ2
ε,u. (17)

where Λy,t is the average observation after t observations. Thus, the future utility losses

due to output reduction at τ > t can be obtained using the posterior at t:

Et[Λy,τDτ ] = Et[Λy,τ ]Dτ = µtDτ . (18)

We define the sure-loss policy as in the main text through h which gives the present-value

utility losses for initial mean expectation µ∆,y and σ2 = 0.

Proposition 5 (output losses) The optimal policy at time t is proportional to the sure-

loss policy h,revised upwards or downwards only because of more pessimistic or optimistic

beliefs on expected damages:

ht =
µt
µ∆,y

h,

with h0 = h.

32



Proof. Follows directly from the independence between the variation in future im-

pacts and the delay structure of impacts:

ht ≡ Et[−
∑∞

τ=1 δ
τ dut+τ
dzt

]

≡ Et[−
∑∞

τ=1 δ
τΛy,τ

dDt+τ

dzt
]

= µt
∑∞

τ=1 δ
τ dDt+τ

dzt
= µt

∑∞
τ=1 δ

τR(τ)

=
µt
µ∆,y

h.

The proposition reveals no trend in carbon policies when no news arrives: ht = h0 if

µt = µy,∆. From the perspective at t = 0, future policies ht have a normal distribution

determined by the distribution of µt:

E0[ht/h] = E0[µt/µ∆,y] = 1 (19)

V ar0[ht/h] = V ar0[µt/µ∆,y] =

(
t

t+ σ−2
∆,yσ

2
ε,y

)2
σ2

∆,y + t−1σ2
ε,y

µ2
∆,y

(20)

=
t

t+ σ−2
∆,yσ

2
ε,y

σ2
∆,y

µ2
∆,y

(21)

From the ex-ante perspective, the expected future policies show a slow divergence towards

the prior distribution for ∆y as information and better observations enter; more precise

obserations as captured by smaller σε,y result in faster adjustment.

Direct utility losses: right-skewed utility impacts

Consider then utility losses only (i.e., ∆y = 0), and assume that the damage parameter

is log-normally distributed. As was the case in the main text, here, the level of policies

will adjust in a ”no news” scenario. Consider intangible damages in the periodic utility,

having a log-normal distribution,

ut = ln(ct)− exp(Λu,t)Dt,

where

Λu,t = ∆u + εu,t,

with zero-mean normal realizations εu,t that are i.i.d. across periods and also independent

of ∆u. Here, too, the initial prior is normal, ∆u ∼ N(µ∆,u, σ
2
∆,u). Thus, again, the realized
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(experienced) damage depends on the unknown damage-generating process and on the

noise term. As above, we obtain the expected intangible damage, after a given history

of observed damages at time t; for notational convenience, we will now use for τ > t:

Λu,τ ∼ N(µt, σ
2
t ).

The expected damages then have a right-skewed distribution with potentially a fat

tail for large damages, so that the expected future utility loss at τ > t is given by

Et[exp(Λu,τ )Dτ ] = exp(µt +
1

2
σ2
t )Dτ (22)

where µt = E[Λu,τ ] and σ2
t = V ar[Λu,τ ] are given by the same equations as above for

E[Λy,t] and V ar[Λy,t].

Proposition 6 (utility losses) The optimal policy at time t is revised upwards or down-

wards consistently with the updated damage estimate, but it also has a markup because of

uncertainty, which declines through learning:

ht = exp(µt − µ∆,u +
1

2
σ2
t )h, (23)

with

h0 = exp(
σ2

∆,u + σ2
ε,u

2µ2
∆,u

)h. (24)

Proof. The proof follows from independence between variation in damages and the

time structure of damages, see the previous proposition, with the damage coefficient

defined through (22).

The initial distribution for the carbon price (µ∆,u and σ∆,u) can be calibrated to Tol’s

(2009) data as in the main text. Importantly, the policy at t = 0 immediately deviates

from the sure-loss policy h, as the optimal carbon price at t = 0 now demands a markup

due the probability of high-damage events. When no news arrives, µt = µ∆,u, there is a

systematic downwards drift in future policies, as 1
2
σ2
t goes down: (17) implies that the

fat-tail markup effect on damages declines, through learning, σ2
t ↘ σ2

ε,u. No news is good

news in this setting, as in the main text.

We can also consider more generally the distribution of expected carbon policies

at future time t: they are distributed log-normally, based on the underlying normal

distribution for µt−µ∆,u+ 1
2
σ2
t . There is a systematic downwards drift in future policies,

as 1
2
σ2
t goes down (17), while the expected value of µt − µ∆,u is zero. The variation in

34



future policies comes from µt (16), while the expected value of µt−µ∆,u is zero. Consider

the dynamics for the underlying normal distribution:

E0[ln(ht/h0)] =
1

2
σ2
t −

1

2
σ2

0 = −1

2

t

t+ σ−2
∆,yσ

2
ε,y

σ2
∆,y

V ar0[ln(ht/h0)] = V ar0[µt] =
t

t+ σ−2
∆,yσ

2
ε,y

σ2
∆,y

We can then derive the expected mean and variation of future carbon policies through:

E0[ht/h0] = exp(E0[ln(ht/h)] +
1

2
V ar0[ln(ht/h)]) = 1 (25)

V ar0[ht/h0] = exp(V ar0[ln(ht/h)]− 1)(E0[ht/h])2 (26)

= exp(
t

t+ σ−2
∆,yσ

2
ε,y

σ2
∆,y)− 1 (27)

Here we see that the expected future carbon policy is constant: E0[ht] = h0. There are

two opposing forces. In a majority of scenarios, the policy variable ht will decrease as the

impact estimate becomes more precise and not more pessimistic; so that the probability of

future high-impacts decreases. But when a high impact is observed, the size of expected

impacts is revised upwards and carbon policies ht go up relatively sharply, as in the main

text.

Appendix: detailed energy-sector model

We specify the economy’s production function (5) as follows:28

yt = kαt [At(ly,t, et)]
1−α exp(−∆y,tDt) (28)

At(ly,t, et) = min {Ay,tly,t, Ae,tet} (29)

et = ef,t + en,t (30)

ef,t = min{Af,tlf,t, Btzt} (31)

en,t =
ϕ+ 1

ϕ
(An,tln,t)

ϕ
ϕ+1 (32)

lt = lf,t + ln,t + ly,t. (33)

Before explaining the structure in detail, we note that there will be time-trends for total

labor lt, and for productivities (Ay, Ae, Af , An); solution to the energy-sector allocation

problem allows us to express the energy-labor composite At(ly,t, et) as depending only on

time and carbon inputs, At(zt), as in the main text.

28This specification builds on Gerlagh and Liski (2012).
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The labor-energy composite At(ly,t, et) takes a Leonfief form capturing an extremely

low elasticity of substitution between labor in the final-good sector ly,t and energy et.

The assumption avoids unrealistically deep early reductions of emissions through labor

reallocation; see also Hassler, Krusell and Olovsson (2011). Final-good and energy pro-

ductivities Ay,t and Ae,t are calibrated so that the model matches the business-as-usual

(BAU) quantities for fossil-fuel and non-carbon energy with the A1F1 SRES scenario

from the IPCC (2007). We introduce production for total energy et that depends, effec-

tively, only on labor allocation at t: the core allocation problem in the energy sector is

how to allocate a given total labor lt at time t between final output ly,t, fossil-fuel energy,

lf,t, and non-carbon energy, ln,t. Thus, the energy and climate policy steers the labor

allocation (ly,t, lf,t, ln,t)t≥0 and thereby the quantities of fossil-fuel, ef,t, and non-carbon

energy, en,t. Both energy sources are intermediates, summing up to the total energy

input, et = ef,t + en,t.

In (31), we assume that ef,t can be produced with a constant-returns to scale tech-

nology using labor lf,t and the fossil-fuel zt, where Af,t and Bt describe productivities.

The fuel resource is not a fixed factor and commands no resource rent; by this assump-

tion, our focus is on the “coal phase”, as in Golosov et al. (2011), where the fossil-fuel

resource is in principle unlimited. In contrast, in equation (32), where ϕ > 0 describes

the elasticity of supply from the non-carbon sector; the non-fossil fuel energy production

is land-intensive and subject to diminishing returns and land rents (as in Fischer and

Newell, 2008).

The model structure described here can reasonably well capture the two main adjust-

ment channels to carbon policies: energy savings that typically feature the early decades

of the adjustment, and then decarbonization that is needed to meet the long-run climate

targets; that is, a transition to non-carbon energy is a long-run rather than short-run

option. The calibration of the energy sector is detailed Gerlagh and Liski (2012), where

it progresses as follows. Without carbon policy, h = 0, the labor market allocation can be

solved in closed form; thus, we can invert the model to map from quantities (l, y, ef , en)t≥0

to productivities (Ay, Ae, Af , An)t≥0. We express all energy in carbon units; to obtain

this, we set Bt = 1 and then obtain three distinct energy productivities (Ae, Af , An). We

match the business-as-usual (BAU) quantities (y, ef , en)t≥0 with the A1F1 SRES scenario

from the IPCC (2007). Population follows a logistic growth curve based on World Bank

forecasts. Population in 2010 is set at 6.9 [billion], while the maximum population growth

rate is chosen such that in 2010 the effective population growth rate per decade equals

0.12 [/decade]. The maximum expected population (reached at about 2200) is set at 11
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[billion].

The online supplementary file contains a program for reproducing the graphs in the

text, https://www.dropbox.com/sh/7meos655j14jh5p/_dlr8X_FHI. The labor alloca-

tion is numerically obtained as follows. The allocation can be solved period-by-period

taking the (i) productivity parameters, (ii) total labor, (iii) savings g, and (iv) carbon

policies ht as given. We drop the time subscript in the variables:

1. We normalize prices for the final good to equalize marginal utility, so that factor

prices can be interpreted as marginal welfare per factor endowment:

p =
1

c
=

1

(1− g)y
.

2. Final-good producers of y take capital k, wages w, and prices of energy q and output

p as given. Since y = kα[min {Ayly, Aee}]1−α exp(−∆y,tDt), factor compensation for

labour and energy together receives a share (1− α) of the value of output py:

wly + qe = (1− α)py

where e = ef + en.

3. Fossil-fuel energy production combines labor and fuels, with technology ef,t =

min{Af,tlf,t, Btzt}. Fossil fuel use and labour employed, z, lf ≥ 0, are strictly

positive if q covers the factor payments, including the carbon price τ[
q −

(
w

Af
+
τ

B

)]
× lf ≤ 0.

The zero profit condition for fossil fuel energy allocates the value of fossil fuel energy

to labour and emission payments; using the production identity we can express it

in terms of labour employed,

qef = wlf + τz = (w +
τAf
B

)lf .

4. Carbon-free energy inverse supply is given by the first-order condition

q = w
∂ln
∂en

=
wt

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 .

The value share of labour employed in the carbon-free energy sector equals ϕ/(1 +

ϕ), so that the rent value is expressed in labour employed:

qen = (1 +
1

ϕ
)wln
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We obtain four equations in four unknowns ly, lf , ln, w:

Ayly = Ae(Af lf +
ϕ+ 1

ϕ
(Anln)

ϕ
ϕ+1 ) (34)

wl +
τAf
B

lf +
1

ϕ
wln =

1− α
1− g

(35)

w

Af
+
τ

B
≥ w

(An)
ϕ

ϕ+1

(ln)
1

ϕ+1 ⊥ lf ≥ 0 (36)

ly + lf + ln = l (37)

For (34) note that, for strictly positive input prices, At(·) = min {Ayly, Aee} ⇒ Ayly =

Aee. In equation (35) we allocate the value of output that is not attributed to capital (the

right-hand side) to the labour, carbon emissions, and land rent for the non-carbon energy

(where we latter two terms are expressed in labour units). Equation (36) compares the

production costs for fossil fuel energy with non-carbon energy, and the last equation is

the labor market clearing equation. Note that the solution depends on the state of the

economy only through total labor l and productivities Ay, Ae, Af , An.

In the absence of a carbon policy, τ = 0, we can solve the allocation in closed-form:

ln,t =
Aϕn,t

Aϕ+1
f,t

(38)

wt =
1− α
1− g

ϕ

ϕlt + ln,t
(39)

ly,t =
Ae,t

Ay,t + Ae,tAf,t
[Af,t(lt − ln,t) +

ϕ+ 1

ϕ
(An,tln,t)

ϕ
ϕ+1 ] (40)

lf,t = lt − ly,t − ln,t (41)

Here we include the time subscripts to emphasize the drivers of the solution. This

business-as-usual allocation is used to calibrate the productivities. When τ > 0, the

solution is numerical, and available in the supplementary file.
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