
Eichberger, Jürgen; Rheinberger, Klaus; Summer, Martin

Working Paper

Credit Risk in General Equilibrium

CESifo Working Paper, No. 4602

Provided in Cooperation with:
Ifo Institute – Leibniz Institute for Economic Research at the University of Munich

Suggested Citation: Eichberger, Jürgen; Rheinberger, Klaus; Summer, Martin (2014) : Credit Risk in
General Equilibrium, CESifo Working Paper, No. 4602, Center for Economic Studies and ifo Institute
(CESifo), Munich

This Version is available at:
https://hdl.handle.net/10419/93409

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/93409
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


 

Credit Risk in General Equilibrium 
 
 
 

Jürgen Eichberger 
Klaus Rheinberger 

Martin Summer 
 
 

CESIFO WORKING PAPER NO. 4602 
CATEGORY 12: EMPIRICAL AND THEORETICAL METHODS 

JANUARY 2014 
 

 
 
 
 

An electronic version of the paper may be downloaded  
• from the SSRN website:              www.SSRN.com 
• from the RePEc website:              www.RePEc.org 

• from the CESifo website:           Twww.CESifo-group.org/wp T 

http://www.ssrn.com/
http://www.repec.org/
http://www.cesifo-group.de/


CESifo Working Paper No. 4602 
 
 
 

Credit Risk in General Equilibrium 
 
 

Abstract 
 
This paper contributes to the literature on default in general equilibrium. Borrowing and 
lending takes place via a clearing house (bank) which monitors agents and enforces contracts. 
Our model develops a concept of bankruptcy equilibrium that is a direct generalization of the 
standard general equilibrium model with financial markets. Borrowers may default in 
equilibrium and returns on loans are determined endogenously. Restricted to a special form of 
mean variance preferences, we derive a version of the Capital Asset Pricing Model with 
bankruptcy. In this case we can characterize equilibrium prices and allocations and discuss 
implications for credit risk modeling. 

JEL-Code: D530, G100. 

Keywords: financial markets equilibrium, bankruptcy. 
 
 
 

  
Jürgen Eichberger 

University of Heidelberg 
Alfred-Weber-Institute 
Bergheimer Straße 58 

Germany – 69115 Heidelberg 
juergen.eichberger@awi.uni-heidelberg.de 

  
 

Klaus Rheinberger 
University of Applied Sciences Vorarlberg 

Research Center Process and Product 
Engineering 

Hochschulstraße 1 
Austria – 6850 Dornbirn 
klaus.rheinberger@fhv.at 

Martin Summer* 
Austrian National Bank 

Economic Studies Division 
Otto-Wagner-Platz 3 

Austria – 1090 Vienna 
martin.summer@oenb.at 

 
 
*corresponding author 
 
 
October 7, 2013 



Contents

1 Introduction 3

2 Bankruptcy Equilibrium: An Example 5

3 The Model 10
3.1 A Bond Equity Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Bankruptcy and the clearing house . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Bankruptcy Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Bankruptcy Equilibrium: Results 14
4.1 Bankruptcy Equilibrium: Existence . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Bankruptcy Equilibrium and the CAPM . . . . . . . . . . . . . . . . . . . 15
4.3 Equilibrium Security Pricing: Adjusting the Market Portfolio for Credit

Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4 Allocations: A Two Fund Separation Result . . . . . . . . . . . . . . . . . 18

5 Endogenous Risk 19

6 Conclusions 20

References 21

7 Appendix 24
7.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2



1 Introduction

This paper contributes to the literature about default in general equilibrium. It presents
a framework that allows us to use the central ideas of this literature while at the same
time keeping the model as close as possible to the standard general equilibrium model
with financial markets. We also aim at providing a framework which allows a character-
ization of equilibrium prices and allocations going beyond abstract existence results and
fully parametrized examples. We hope that this approach can mobilize the conceptual
power of general equilibrium thinking for financial stability analysis.

Our paper makes the following new contributions: First, we model default penalties by
extending the choices of agents to negative consumption plans. While the non-negative
parts of the consumption plan is interpreted in the usual way the negative part of the
consumption plan is identified with a default penalty. The utility function can simul-
taneously evaluate both consumption plans and default penalties. Second, we model
default by restricting the default options of individuals to situations where they default
only if all resources from endowments and other assets are insufficient to cover existing
promises. Such a bankruptcy mechanism can be implemented while keeping anonymity
of market exchange and price taking behavior. This is possible by introducing a clearing
house that pools financial promises and has a monitoring and enforcement technology
to verify bankruptcies and initiate the feasible payments. While building on the existing
literature on default in general equilibrium our approach provides a structure that allows
for a simple analysis of bankruptcy as an equilibrium phenomenon. It allows staying
close to the standard model without default on financial promises. While non-linearities
are introduced by driving a wedge between borrowing and lending rates, the single person
decision problems remain linear. Looking at bankruptcies rather than arbitrary defaults,
excludes equilibria of extreme pessimism, where financial markets break down. These
potential pessimism equilibria led to relatively complicated equilibrium refinements in
the previous literature. In our approach these refinements are not needed. We can thus
give a fairly standard existence proof. Furthermore, making some more specific assump-
tions on preferences, our approach allows for an application that yields a bankruptcy
version of the Capital Asset Pricing Model (CAPM). This bankruptcy-CAPM contains
the standard CAPM as a special case. This allows for a more detailed study of the eco-
nomics of bankruptcy and credit risk in general equilibrium by explicitly pinning down
equilibrium prices and allocations.

Related Research The older literature on bankruptcy (Green [1973], Grandmont [1977]
, Grandmont [1985]) is mostly conducted in a temporary equilibrium setting. It addresses
already the main issues regarding existence of equilibrium. In particular it analyzed how
to get a well-defined optimization problem of a borrower/lender. Issues that were already
discussed in this literature are equilibrium existence with choice sets that are unbounded
below, the modeling of penalties for choices which do not respect the feasibility of repay-
ment in all states of the world (”planned default”) as well as continuity of the budget and
demand correspondence when the asset span depends on endogenous variables (Radner
[1972]).
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The literature on debt contracts during the eighties is focused primarily on information
problems. An important topic in this literature was that costly state-verification can
provide a justification for debt contracts with state-independent payoffs in states with
no monitoring and where all assets of the debtor will be seized in states where no
repayment occurs and monitoring takes place(Townsend [1979], Gale and Hellwig [1985]).
This literature also discussed the idea that costly monitoring of debt contracts provides
a rationale for a specialized institution that can be interpreted as a bank (Diamond
[1984]).

The more recent literature most importantly Zame [1993] and Dubey et al. [2005]
focuses on default rather than bankruptcy. This means that agents, regardless of their
resources may decide to which degree they will fulfill financial promises, given a penalty
proportional to the shortfall. The general equilibrium model with default and penalties
was generalized to a continuum of states (Araujo et al. [1998]) and to infinite horizon
models (Araujo et al. [1996]).

While our model is close to the models used in this literature our model has three
main features in which it differs: First, we use a more general approach to model penal-
ties. Instead of working with a separable function that adds utility of consumption and
a penalty function for exceeding financial promises we use one function which simul-
taneously evaluates consumption and penalties. Second we study an ”ability to pay”
model (bankruptcy) rather than a ”willingness to pay model” (default). In combination
with our approach of modeling penalties, this feature allows an analysis that is closer to
the standard model without default than the previous literature. Moreover, in special
cases it also allows for a characterization of equilibrium prices and allocations. Finally
the bankruptcy approach excludes no trade-equilibria due to extreme pessimism and
therefore does not need equilibrium refinements as in Zame [1993] and Dubey et al.
[2005].

We appeal to monitoring- and state-verification costs in order to justify the institution
of a clearing house (bank) which acts as trading partner for debtors and lenders. It buys
and sells bonds at differing rates for borrowing and lending and guarantees feasibility
of contracts. It verifies the remaining assets of a debtor in case of bankruptcy and
determines an aggregate recovery rate. In our model, individuals buy bonds from the
clearing house at a guaranteed rate and lenders pay back to the clearing house either
the contracted amount or their assets will be verified and seized.

Modeling the choice set of agents in a way that allows for feasible choices with negative
components also arose in the finance literature discussing the notion of arbitrage. (see
Werner [1987]. Dana et al. [1999] 1 In contrast to our paper this comes from introducing
assets and securities directly in the preference relation. A negative component in a
choice vector of an agent is in this case to be interpreted as a short position in a security.
Negative consumption plans are not analyzed or allowed for in this literature.

Finally we would like to discuss our paper in the context of the large literature on

1 In addition to providing new results the paper by Dana et al. [1999]) contains an overview of this
literature and clarifies all the different arbitrage notions used there. Insead of enumerating the rather
long list of papers on arbitrage and general equilibrium we refer the interested reader to this paper.
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pecuniary default penalties in infinite horizon models, such as Kehoe and Levine [1993],
Alvaraez and Jerman [2001], Kocherlakota [2008], Hellwig and Lorenzoni [2009], Bloise
and Reichlin [2011] and Azariadis and Kaas [2013]. All of these papers consider in some
way or another the option of temporary or partial exclusion of agents from financial
markets trading as a consequence of defaulting on financial promises. This default
option creates additional constraints in the agents decision problem and impacts on the
welfare properties of equilibria. Actual default does not occur in equilibrium. In our
model default (bankruptcy) does occur in equilibrium.

Structure of the paper We begin in section (2) with the analysis of a simple example
of competitive borrowing and lending that illustrates the main concepts and idea of our
analysis of credit risk in general equilibrium. In section (3) we describe and analyze the
model, we define the concept of bankruptcy equilibrium. In section (4) we present the
central results. We first prove existence of a bankruptcy equilibrium. In a next step,
making more specific assumptions on preferences we derive a version of the Capital Asset
Pricing Model with bankruptcy. This allows us to characterize equilibrium prices and
quantities. Section (5) briefly discusses the implications of our analysis for credit risk
modeling. Finally section(6) concludes. An appendix contains proofs of propositions
stated in the main text.

2 Bankruptcy Equilibrium: An Example

We begin our analysis of bankruptcy equilibrium with an example that is simple enough
to allow for a graphic exposition, yet rich enough to introduce the main concepts and
ideas. The problem we would like to analyze is competitive markets for borrowing and
lending with the possibility of bankruptcy. Building on the main ideas in the literature
on default in general equilibrium, we aim at a conceptual framework that is both a
simple and a natural extension of the traditional concept of financial market equilibrium
as discussed for instance in Magill and Quinzii [1995].

In our example, two risk averse agents live for one period starting today (t = 0)
and ending tomorrow (t = 1). They have endowments of a consumption good today and
tomorrow. The endowments are described by the vectors ω1 = (ω1

0, ω
1
1) and ω2 = (ω2

0, ω
2
1)

with all entries positive. They have standard preferences for the consumption good
modeled by a utility function ui : Xi 7→ R, where Xi denotes the agent’s consumption
set.

At t = 0, agents competitively trade a bond which promises one unit of income at
t = 1. The bond trades at price q and the quantities of the bond chosen by the agents
are denoted by zi. The bond is in zero net supply. It is a financial instrument that allows
borrowing and lending and, thus, for an inter-temporal transfer of the consumption good.

In the textbook model of financial market equilibrium, institutional arrangements of
market exchange are such that, knowing only their own goals and endowments and
observing prices, agents will always be able to stay within their budget constraints in
each state of the world. We relax this assumption. Agents can make financial promises
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exceeding their resources tomorrow in some state of the world. Hence, bankruptcy may
occur. We will consider uncertainty in the general form of our model described in the
next section. In this example, however, for the sake of outlining our institutional setup
in the simplest possible way, we restrict attention to a single state of the world at t = 1.

To allow for anonymous and competitive exchange the institutional and informational
structure of financial market exchange is specified in the following way. There is a
clearing house through which the agents can indirectly exchange financial promises. The
clearing house is a passive intermediary. In t = 0, it collects payments from agents long
in the bond. With these funds it provides resources to agents with a short position in the
bond. In t = 1, the clearing house collects repayments. If there is a shortfall in contracted
repayments the clearing house will confiscate the resources of the respective agents and
use these proceeds to partially redeem financial claims of lenders. The distribution of
proceeds follows a proportional rationing rule. The amount of the collected proceeds
endogenously determines the rate of return for lenders. Moreover, if bankruptcy occurs,
a utility penalty is applied to the agent who does not fulfill his promises. The penalty
increases with the shortfall. Bankruptcy penalties are a modeling shortcut to describe
costs of default for the agent without modeling them in detail.

We view this institutional arrangement as a costly state verification setup ( Townsend
[1979]), where the clearing house monitors, collects and distributes payments. It has
the possibility to verify the state in case payments are not forthcoming and it has the
authority to enforce payments and apply penalties.

A simple way to formalize these ideas is to extend the domain Xi of preferences:
We assume that agents have a utility function with standard properties allowing to
evaluate both positive consumption plans as well as penalties. Penalties are identified
with negative consumption plans. Thus, with bankruptcy penalties, Xi ⊂ R+ × R, in
contrast to the no bankruptcy case Xi ⊂ R+ × R+. We will assume that a negative
consumption value, xi < 0, reflects the degree of bankruptcy, while a non-negative
consumption value, xi ≥ 0, represents actual consumption. With this interpretation,
our utility function embeds a penalty function which is strictly increasing in the value
of the planned shortfall in a bankruptcy:2 xi− := xi ∧ 0. Denoting the value of actual
consumption by the non-negative value xi+ = xi ∨ 0 we have xi1 = xi+1 + xi−1 . Thus, the
consumer evaluates a consumption plan with respect to both the real consumption xi+s
and the default penalty xi−s by a common utility index ui(xi0, x

i
1) = ui(xi0, (x

i+
1 + xi−1 )).

To our knowledge, this is a novel approach to model utility penalties for bankruptcy
that has not been used in the literature before.

The general idea to model costs of default by a utility penalty is not new and may
be traced back to Dubey et al. [2005] and Zame [1993]. As most of the older literature,
Dubey et al. [2005] and Zame [1993] model utility from real consumption ũi(xi0, x

i+
1 ) and

the penalty function wi(xi−1 ) as additively separable preferences ũi(xi0, x
i+
1 ) + λwi(xi−1 ).

This utility function can be viewed a a special case of our utility function which evaluates
real consumption and default penalty jointly: ui(xi0, x

i
1) := ui(xi0, (x

i+
1 + xi−1 )). Another

2 We use the notation ∨ and ∧ as the maximum and minimum operator. Applied to vectors the
operators give the component-wise maximum of minimum.
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example consistent with our modeling approach would be the quadratic utility function
as observed by Magill and Quinzii [2000] 3.

There are thus two key elements in our bankruptcy model which in combination dis-
tinguish it from the older literature: First agents can not arbitrarily default on their
promises. As long as their resources allow they have to pay. In our institutional frame-
work this can be enforced because the clearing house is assumed to have the monitoring
technology to enforce feasible payments. Second the utility function can rank bundles
of consumption plans and bankruptcy penalties thought of as negative consumption
plans. Since exchange of promises is intermediated by the clearing house this exchange
is anonymous. Agents only observe security prices and the repayment rate on the bond.

This institutional framework can be viewed as a standard debt contract as analyzed in
Gale and Hellwig [1985]: A standard debt contract is characterized by fixed repayment in
all states where no bankruptcy occurs and full recovery (seizure of the entire endowment)
in bankruptcy states.

For the simple example with two agents, one state and one bond, the equilibrium
problem can be discussed geometrically in a net trade diagram as in [Magill and Quinzii,
1995, Figure 10.1.]. The diagram is drawn in the space of net income transfers defined
by τ i = xi−ωi, with net income transfers in t = 0 on the x-axes and net income transfers
in t = 1 on the y-axes. With the possibility of bankruptcy, the payoff of a bond depends
on whether the agent is a borrower or a lender. Hence, long and short positions have
to be distinguished. At price q an agent can achieve all net income transfers along the
vector (−q, r) with a long position zi+ = (0 ∨ zi). With a short position zi− = −(0 ∧ zi)
he can achieve all net income transfers starting at the origin and extending along the ray
(q,−1) . The difference in the return rate on bond holdings and on bond sales reflects
the fact that in case of a bankruptcy the bond pays not the promise 1 but only the
smaller return rate r

r =
zi− ∧ ωi1
zi−

. (1)

If we denote by Z = R+ × R+ the set of feasible portfolios zi = (zi+, z
i
−) and by T the

bond return matrix

T =

[
−q q
r −1

]
,

the set of feasible income transfers is given by

C = {τ ∈ R2|τ = Tz z ∈ Z}

where the index of agents has been suppressed.
Without bankruptcy (the case r = 1) this set is a linear space since the promise of

the bond is always 1 no matter whether the position is long or short. This linear space
becomes the cone C in the bankruptcy case.

The rays of the net transfer space C are drawn from the upper-left orthant to the
lower right orthant reflect the fact that financial markets must be free of arbitrage

3Assume there are S + 1 states of the world, each state occurring with probability ρs > 0, this would
be the function ui(xi) = − 1

2

∑S
s=0 ρs(αi − xis)2.
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opportunities in equilibrium. So every unit long in the bond yielding a positive payoff r
tomorrow requires to give up −q in terms of consumption good today. Every unit short
in the bond pays q units of the consumption good today but carries an obligation of
repayment tomorrow and eventually a utility penalty. The requirement of no arbitrage
is equivalent to the requirement that there exist strictly positive state prices π = (π0, π1)
in the polar cone of the net transfer cone C:

C∗ = {π ∈ R2|πτ ≤ 0 ∀τ ∈ C} (2)

In the graph this is the shaded cone starting at the origin in the upper right orthant
of the net transfer space. In a model without bankruptcy this cone is a linear space.
Since long bonds have a different return than short bonds, however, the present value
of an income stream is different depending on whether it implies a positive or negative
transfer at t = 1. Hence, the net transfer space has a kink. Bankruptcy leads to a
non-linear equilibrium valuation of contingent claims. In Figure 1 it is shown that in
equilibrium contingent claims that amount to a long position in the bond are valued at
π̄l while contingent claims that amount to a short position are valued at π̄s.

The consumption spaces of agents 1 and 2 in the net trade diagram are half spaces
through the endowment points containing all bundles xi to their right. To mark the
difference to the textbook model the shadings of the axes are such that both negative
as well as positive consumption plans belong to the choice sets of agents.

In this example, agent 2 is the lender. He finds it optimal to choose a consumption
bundle which requires an investment in the bond. At his optimal decision the gradient
of his utility function is orthogonal to the ray (−q, r). Since negative consumption,
interpreted as utility penalties, is possible, budget sets are not bounded below because
the choice sets are not bounded from below4. Agent 1 is the borrower. His optimal
choice is a bundle with high consumption today at the cost of no consumption plus a
penalty tomorrow. At the optimum the gradient of his utility function is orthogonal
to the ray (q,−1). Borrowing excessively today, he can achieve this choice within the
prevailing financial structure.

We define a bankruptcy equilibrium as a situation where agents take optimal decisions,
financial markets clear for these decisions and positive consumption plans are compatible
with the available resources. The picture illustrates how the clearing house arrangement
makes such an equilibrium allocation feasible. Contrary to the standard model in which
q adjusts such that the net transfer space is rotated until all net trades balance, in a
bankruptcy equilibrium two parameters, bond price q and the recovery rate r, must be
adjusted.

Denoting the agents’ net transfers for given (q̄, r̄) by τ1(q̄, r̄)) and τ2(q̄, r̄), the bond
price and return rate (q̄, r̄) are a bankruptcy equilibrium when

(τ1(q̄, r̄)) ∨ −ω1) + (τ2(q̄, r̄) ∨ −ω2) = 0.

4 To obtain a bounded budget set additional assumptions are necessary. As explained in the next
section, one can either introduce a lower bound bond trades through some kind of short selling
restriction as in Radner [1972] or appeal to a stricter notion of no arbitrage as in Werner [1987] and
Dana et al. [1999].
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Figure 1: Bankruptcy equilibrium for the case with two agents and one state of the world. Agent
1 is the borrower and agent 2 is the lender. Agent 1 takes an optimal choice by going
bankrupt at t = 1. In equilibrium (q̄, r̄) are such that the actual net trades balance.
The bond is exchanged indirectly via a clearing house which has the opportunity to
enforce payments and apply penalties and rationing of claims in a bankruptcy. The
clearing house is like a passive intermediary. It’s balance sheet at t = 0 and at t = 1
are shown in the picture. The balance sheet shows that the claim of agent 2, the
lender is rationed to τ̄1b1 and the clearing house confiscates and distributes agent 1’s, the
borrower’s, endowment and applies the utility penalty x̄1−.

To interpret the equilibrium condition in terms of portfolio choices, let z1(q̄, r̄) and
z2(q̄, r̄) be the optimal portfolio choices and x1(q̄, r̄) and x2(q̄, r̄) the optimal consump-
tion choices at (q̄, r̄). Since agents must not choose a negative consumption in t = 0,
security markets must clear 5,

z1(q̄, r̄) + z2(q̄, r̄) = 0,

and consumption in t = 1 must be feasible,

(x1(q̄, r̄) ∨ 0) + (x2(q̄, r̄) ∨ 0) = ω1
1 + ω2

1.

The condition that consumption at t = 1 must be feasible is equivalent to rational
expectations about the return rate r̄, i.e., the return rate enters consumers’ decision

5 This condition is equivalent to τ10 + τ20 = 0.
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problems equals the return rate actually realized at t = 1. Hence, an alternative set
of equilibrium conditions would require security markets to clear and agents correctly
expecting the equilibrium return rate r̄.6

The diagram shows how the bond market can equilibrate with bankruptcy. The trans-
fer space of the lender has to be rotated by rationing his claim from the ray (−q, 1)
to (−q, r) such that if this ray is prolonged to an imaginary linear space it passes
through the zero consumption line of agent 1 at x̄1

1 = 0. In this position the mar-
ket can clear because at this point the actual net income transfers sum to zero and thus
(τ1(q̄, r̄)) ∨ −ω1) + (τ2(q̄, r̄) ∨ −ω2) = 0. The picture also shows the balance sheets of
the clearing house at t = 0 and at t = 1.

This example reveals in a nutshell the basic ideas and concepts of our notion of a
bankruptcy equilibrium. Clearly, in a two-agent example, the clearing-house mecha-
nism appears artificial. For many agents, however, trading financial promises solves a
complicated information and coordination problem. Moreover, there are securitization
markets which work exactly like asset pools financed by debt as in the clearing house
construction.

Finally, how is credit risk entering the picture? This aspect of bankruptcy can only
be seen in the general more complex model with many states of nature which we will
develop in the next section. In the context of several states of nature, an endowment of
zero in a single state would make loans impossible and, thus, eliminate all intertemporal
trade, if no bankruptcy were possible. In such a situation, a bankruptcy equilibrium can
be an improvement for all agents even in the face of bankruptcy penalties. This aspect
of default was a central point of Zame [1993] as well as Dubey et al. [2005].

The general model considers also other financial instruments which may be used for
risk sharing. Agents then take optimal portfolio decisions and financial instruments
are priced according to their risk characteristics. Clearly the decision of some agents
to choose a consumption plan that implies bankruptcy in some state is a credit risk
from the viewpoint of the lenders. This is a risk, however, that arises endogenously
as a consequence of the agents’ decisions. Hence, parameters of credit risk such as
the probability of default, the exposure at default and the recovery rate, which are
assumed to follow an exogenous probability law in the usual credit risk models, will be
endogenously determined in equilibrium.

3 The Model

3.1 A Bond Equity Economy

We consider a pure exchange economy with one commodity and a finite number I of
agents. There are two dates, t = 0 and t = 1, and a finite number S of states of the
world at date t = 1.

6 This is analogous to the general equilibrium, multigood financial market model, where agents have
to correctly anticipate equilibrium goods prices at t = 1 when making their plans today (see Radner
[1972]).
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Each agent is characterized by a closed and convex choice set Xi ⊂ R+ × RS , a
continuous, strongly monotone and concave utility function ui : Xi → R and an initial
endowment ωi ∈ Xi ∩ RS+1

++ . We denote by ωi0 the endowment at t = 0 and by ωi1 =
(ωi1, . . . , ω

i
S) the endowment vector at t = 1. In a similar manner we denote by xi =

(xi0, x
i
1) ∈ Xi a consumption-bankruptcy plan of agent i.

The choice set is the same for all agents and consists of both consumption plans and
potential bankruptcy penalties at t = 1. We assume that for all agents Xi ⊂ R+ × RS ,
since we identify negative consumption plans with bankruptcy penalties. There are no
outstanding claims in period 0. Hence, we assume that xi0 ≥ 0. As explained above, the
utility function ui evaluates both consumption plans and bankruptcy penalties.

To achieve a consumption profile optimally adapted to their risk preferences agents
can trade J + 1 securities. These securities are best thought of as a bond-equity security
structure as in [Magill and Quinzii, 1995, p. 177]. First, there are J securities with payoff
profile yj = (yj1, . . . , y

j
S) ∈ RS+. These state-contingent payoffs can be though of as the

exogenous output of J firms at t = 1. Equity represents claims to this output. Each
agent owns δi ∈ RJ+ claims initially. Equity can not be sold short. The S × J matrix
of all equity payoffs yj is denoted by Y . Each consumer chooses a portfolio θi ∈ RJ+ of
equity. The net-purchases (sales) of equities are denoted by zie = (θi − δi) ∈ RJ+ −

{
δi
}

.
The no-short sale constraint for equities requires that or zie must always be greater or
equal to −δi. Equity prices are denoted by qe ∈ RJ .

In addition to the equity markets there is also a market for a debt instrument. It
can be though of as a bond, which allows the agents to make loans. For simplicity, we
consider only one bond. The bond promises one unit of the consumption good in each
state of the world. Agents can take on debts by trading the bond. A consumer may
sell bonds even if the sale would require repayments exceeding the resources in some
state. The consumer may well choose a bond sale leading to ”negative consumption” in
some state if the benefits from the loan in other states justify it. As discussed before,
we interpret the disutility from ”negative consumption” as a bankruptcy penalty which
the agent suffers, even if the actual allocation will deliver a feasible consumption of zero
in such a state.

Trade in bonds takes place between consumers and an agency which operates as a
clearing house managing repayments. If there is a state where an agent’s endowment
does not suffice to cover the promised repayment from a bond sale, the agent will be
bankrupt. A bankrupt agent will lose all resources in the respective state to the clearing
house agency. The agency determines a return rate r1 ∈ (0, 1]S which is paid to the
bond holders. Hence, an agent who has invested in the bond has to take into account
that the payoff profile of a bond purchase is perhaps only r1 ∈ (0, 1]S , falling short of
the contracted repayment in some states.

We use a different notation for long and short positions in the bond. We define
the positions of agent i long in the bond by zib+ and the positions short in the bond
by zib−. We assume that there is a short-selling constraint κ on the bond. The set

of feasible portfolios is the set Z := R+ × [0, κ] × RJ+ −
{
δi
}

. A portfolio is a tuple
zi = (zib+, z

i
b−, z

i
e) ∈ Z. We assume that J < S. Hence, our analysis covers both the
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case of incomplete as well as complete markets. If J = S − 1 the availability of a bond
completes the financial market system. When J < S − 1 we have incomplete markets.

Normalizing the price of the consumption good to 1, we can now define the budget
set of agent i by

Bi(q, r1) =

(xi0, x
i
1) ∈ Xi

∣∣∣∣∣∣
xi0 − ωi0 ≤ −qbzib+ + qbz

i
b− − qezie

xi1 − ωi1 − Y δi ≤ r1z
i
b+ − 1zib− + Y zie

(zib+, z
i
b−, z

i
e) ∈ Z

 (3)

Note that the recovery rate rs on the bond in each state is taken as a parameter
by the consumer. Consumers are assumed to maximize their utility subject to this
budget constraint. Recall also that consumption xis may become negative in some state
s, indicating that the consumer is bankrupt in this state and receives a bankruptcy
penalty corresponding to this negative consumption value.

The bounds on short sales implicitly bound the choice set Xi from below 7. This is a
modeling assumption that ensures that we always have a well defined agent optimization
problem when security prices fulfill a standard no arbitrage condition as for instance in
Magill and Quinzii [1995]. An advantage of this lower bound is the fact, that we can
consider various special cases depending on the size of this borrowing constraint κ. For
κ = 0, we cover the case of an economy without credit. For κ > 0 but small enough, one
can consider an economy without bankruptcy. With κ > 0 sufficiently large, bankruptcy
is a possibility and returns on the bond will be determined endogenously.

3.2 Bankruptcy and the clearing house

Bankruptcy refers to a set of institutional arrangements specifying the reallocation of
claims among economic agents. An agent is bankrupt , when the value of his debts exceeds
the value of his assets. In the two period framework employed here this condition can
be unambiguously defined. 8

In case of a bankruptcy, all remaining assets of the debtor will be seized and dis-
tributed among the creditors. The remaining debt will be forgiven. Two institutional
aspects are essential for the economic outcome: Firstly, how will the remaining assets be
distributed among the claim holders? Secondly, what kind of penalty will be imposed
on the bankrupt agent for not paying back the contracted amount of debt?

7 There is a literature starting from Werner [1987] and analyzed in depth in Dana et al. [1999] where
stronger no-arbitrage notions together with additional assumptions on utility functions endogenously
bound the choice set, so that absence of arbitrage is necessary and sufficient for equilibrium existence
when the choice set is unbounded. Since we want to focus attention on the bankruptcy clearing
mechanism and the implications for the endogenous return on bonds we choose the short selling
constraint approach.

8 Such a formalization has been used in the literature in different versions by Modica et al. [1998],
Sabarwal [2003], Araujo and Pascoa [2002]. It is also close to the framework of Eisenberg and Noe
[2001], which shows how one can extend our bankruptcy rule to many loan instruments and non-
anonymous bankruptcy in a pure balance sheet mechanics framework. A bankruptcy occurs if agents
cannot repay their due liabilities. In contrast to Zame [1993] and Dubey et al. [2005], we do not
allow agents to default on their loans. Agents will repay their debts as long as the value of their
endowments and equity allows it. If liabilities exceed this value a bankruptcy occurs.
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Bankruptcy laws specify these rules. A penalty is necessary in order to provide in-
centives for borrowers to repay their debts. Penalties for bankruptcies usually consist in
excluding bankrupt individuals, at least temporarily, from further credit and constrain-
ing their consumption to a minimum for some period. These penalties depend also on
the size of the losses which creditors suffer. Modeling the consequences of bankruptcy
by a utility penalty is a simplification for not modeling these consequences in detail.

If a bankruptcy occurs existing nominal claims of the bond holders can no longer
be satisfied. In order to model bankruptcy in perfect competition, where agents act
as price takers, the bankruptcy mechanism must be anonymous. Anonymity of bank-
ruptcy can be formalized by assuming that bond transactions are mediated through
some central clearing institution that distributes shortfalls on promised payments among
creditors. In this model, the clearing house collects the remaining assets of bankrupt
agents ωis + Ys(δ

i + zie) < zib− and distributes their value to the creditors. If repayments(∑I
i=1 z

i
b− ∧ (ωis + Ys(δ

i + zie)
)

fall short of aggregate promises
∑I

i=1 z
i
b− in some state

s then these claims will be reduced proportionally.9 Hence, one obtains the return rate
10 rs ∈ [0, 1],

rs =


∑I

i=1 z
i
b−∧(ωi

s+Ys(δi+zie))∑I
i=1 z

i
b−

if
∑I

i=1 z
i
b− > 0

1 if
∑I

i=1 z
i
b− = 0

(4)

When planning their consumption and investments consumers will take this recovery
rate rs into account as an expected parameter which will be determined in equilibrium.

3.3 Bankruptcy Equilibrium

Let u = (u1, . . . , uI), ω = (ω1, . . . , ωI) and δ = (δ1, . . . , δI) be the vectors of individual
utility functions and individual endowments of goods and equity, respectively, and denote
by V = [−1, Y ] the exogenously given equity payoffs. We denote by E = (u, ω, δ, V ) the
corresponding economy.

9 Define for any two vectors x, y ∈ Rn the lattice operations x ∧ y := (min(x1, y1), · · · ,min(xn, yn))
and x ∨ y := (max(x1, y1), · · · ,max(xn, yn)). By Ys we denote the s-th row of the matrix Y

10 Since the recovery rate is only defined when there is some trade in the bond we define the recovery
rate in cases where there is no bond trade as 1 by a continuous extension.
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Definition 1 (Equilibrium). A financial market equilibrium with bankruptcy of the
economy E = (u, ω, δ, V ) is a tuple of consumption plans, portfolio choices, security
prices and recovery rates (x̄, z̄b+, z̄b−, z̄e, q̄, r̄1) ∈ XI × ZI × RJ+1

+ × (0, 1]S such that for
all i = 1, . . . , I

(i) x̄i ∈ arg max{ui(xi) | xi ∈ Bi(q̄, r̄1)}, (optimal behavior)

(ii)
∑I

i=1 z̄
i
b+ −

∑I
i=1 z̄

i
b− = 0 and

∑I
i=1 z̄

i
e = 0, (asset market clearing)

(iii)
∑I

i=1 x̄
i+ =

∑I
i=1(ωi + Y δi), (feasible allocation)

(iv) r̄s =


∑I

i=1(z̄ib−∧(ωi
s+Ys(δi+z̄ie))∑I

i=1 z̄
i
b−

if
∑I

i=1 z̄
i
b− > 0

1 if
∑I

i=1 z̄
i
b− = 0

(clearing mechanism)

The definition of equilibrium has some redundancy, since conditions (ii), (iii) and (iv)
are not independent. Indeed, in the appendix we use this fact in the existence proof.
The credit market clearing mechanism is a central feature of our economy. Including it
explicitly in the definition of an equilibrium makes the interrelation between the clearing
mechanism, the feasibility of consumption and the endogeneity of the return rate more
transparent.

In equilibrium feasibility of the consumption allocation is guaranteed by condition
(iii). This does not preclude that consumers choose an amount of debt which leads to a
negative value of the consumption plan in some state. Hence, x̄is can be negative in some
states, representing the bankruptcy penalty experienced by this consumer. Creditors
hold rational expectations about the recovery rate in states where bankruptcy occurs
(iv). Only in this case security market clearing (ii) and good market clearing (iii) can
be fulfilled simultaneously. Bankruptcy is factored into the asset price system q̄. Note
that the standard general equilibrium concept without bankruptcy is a special case of
the financial market equilibrium with bankruptcy when rs = 1 for all states s. This
special case can be obtained by choosing the credit constraint κ small enough.

4 Bankruptcy Equilibrium: Results

4.1 Bankruptcy Equilibrium: Existence

We first show that our equilibrium concept is well defined. We show that, given the
assumptions on preferences, endowments and securities in Proposition 1, a bankruptcy
equilibrium will always exist.
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Proposition 1 (Existence of Bankruptcy Equilibrium). Let E =(u, ω, δ, V ) be a finance
economy. If

A1 (consumption sets) Xi is a non-empty, closed and convex subset of R+ × RS ,

A2 (preferences) ui : Xi → R is continuous, strongly monotone, and concave,

A3 (endowments) ωi = (ωi0, ω
i
1) ∈ Xi ∩ RS+1

++ and
∑I

i=1 δ
i ∈ RJ++,

A4 (asset returns) the matrix V = [−1 Y ] has full column rank,

A5 (asset trades) there is κ ≥ 0 such that zib− ≤ κ for all i = 1, . . . , I.

then a bankruptcy equilibrium exists.

Proof: The proof is given in the appendix. �
In the appendix, we prove existence of a bankruptcy equilibrium. Mostly, we could use

standard arguments. We had to modify the market equilibrium lemma of Grandmont
[1988], however, in order to guarantee the existence of a consistent bankruptcy scheme
operated by a clearing house.

Existence of a bankruptcy equilibrium has been proved in slightly different settings by
Sabarwal [2003] and for a slightly different version of the model by Modica et al. [1998]
and Araujo and Pascoa [2002].11 Zame [1993] and Dubey et al. [2005] prove existence for
a similar model with default. In these models consumers can deliberately decide what
fraction of their promise they are going to repay. Hence, returns on a loan may become
zero and there can be equilibria where expectations on bond recoveries are so pessimistic
that there is no trade in the bond. In contrast, in our model where bankruptcy of an
agent implies the seizure of all remaining assets by the clearing house, there is always
some positive return on a loan from the endowments of the debtor. Hence, no trade in
the bond due to overly pessimistic expectations cannot occur in an equilibrium under
bankruptcy.

4.2 Bankruptcy Equilibrium and the CAPM

To make the bankruptcy model more useful for economic analysis, we want to go beyond
the abstract discussion of the previous sections and add enough structure to the model
such that we are able to study equilibrium prices and allocations explicitly. The aim
is thus to arrive at a formulation of the model that is more specific than the abstract
discussion yet more general than a fully parametrized example.

The formulation we are going to suggest and analyze now is to specify the bankruptcy
model along the lines of a CAPM model, widely used in finance and economics.

11Araujo and Pascoa [2002] have no utility penalties but short selling constraints on the debt instruments,
Sabarwal [2003] has T periods and no penalties but short selling constraints on the debt instruments.
Modica et al. [1998] study a model where agents can become bankrupt without penalty in states of
the world of which they are ex ante unaware of. Obviously all these models are closely related.
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Instead of general preferences we now assume that preferences are defined by an ad-
ditively separable, linear quadratic utility function

ui(xi) = αi0x
i
0 −

1

2

S∑
s=1

ρs(α
i
1 − xis)2, i = 1, . . . , I, (5)

where we have also time 1 state probabilities are given by the ρs for s = 1, . . . , S.
Note that this utility function provides a natural example of the class of preferences
we studied in the previous section. It jointly evaluates the utility from consumption
and utility penalties identified with negative consumption plans. This is an observation
that has been made by Magill and Quinzii [2000] to give an interpretation to negative
consumption plans usually admitted in the CAPM.12

Define α0 =
∑

i α
i
0, α1 =

∑
i α

i
1 and ω1 =

∑
i ω

i
1 and δ =

∑
i δ
i. By assuming

that all preference parameters (αi0, α
i
1) ∈ R2

++ are chosen such that for each agent
αi11− ω1 ∈ RS++ where 1 is the S-dimensional vector consisting of components equal to
1 we can exclude specific technical problems associated with potential satiation. Such
an assumption is used for instance in Nielsen [1989] to ensure existence of equilibrium
with preferences allowing satiation. Basically the assumption ensures monotonicity of
utility on those regions of the choice set X that correspond to a feasible allocation.

Our specification of preferences assumes agents who care about the mean and the
variance of their consumption plans. The advantage of this specific restriction is that it
allows a characterization of equilibrium prices, portfolios and consumption.

We are now going to discuss equilibrium pricing and allocations in this CAPM spec-
ification of the model with bankruptcy. We discuss these results along the lines of the
exposition in [Magill and Quinzii, 1995, chapter 3, 17] to highlight the similarity as well
as the differences to the standard CAPM model.

4.3 Equilibrium Security Pricing: Adjusting the Market Portfolio for Credit
Risk

Our first result refers to security pricing with linear quadratic preferences. To simplify
the exposition we assume that the short selling constraints on equity will not be bind-
ing in equilibrium. We can always achieve this by an appropriate choice of security
endowments δi.

For our discussion we use the probability induced inner products

〈x1, y1〉 =

S∑
s=1

ρsxsys ∀ x1, y1 ∈ RS and (6)

〈x, y〉 =

S∑
s=0

ρsxsys ∀ x, y ∈ RS+1, (7)

12 Unlike in the general case discussed before these preferences have a satiation point and thus the utility
function is not monotone on its whole domain. It is well-known that one can obtain monotonicity on
the relevant compact and convex set of state-contingent consumption by choosing for instance for all
consumers satiation points outside the set of feasible allocations.
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where ρ0 := 1.
Define the vector

γ̄ :=
I∑
i=1

∇ui(x̄i) = (α0, α11− ((ω1 + Y δ)− d1))T ,

where d1 =
∑I

i=1 d
i
1 :=

∑I
i=1(1−r 1)zib− is the aggregate shortfall from promises on the

bond. This vector γ̄ expresses the equilibrium marginal evaluation of income streams
that can be generated within the given financial structure.

Proposition 2. If (x̄, z̄, q̄, r̄1) is a bankruptcy equilibrium of the economy E(u, ω, δ, V )
with non-binding short selling constraints on equity and strictly positive date zero con-
sumption x̄i0 then

(i) there exist strictly positive constants a and b such that γ̄, fulfills

γ̄1 = a1− b ω̃1,

(ii) denote the equilibrium market value of any income stream m that can be generated
by a linear combination of the existing securities by c(m). It fulfills the weak
inequality

c(m) ≥ 〈γ̄1,m〉 = E(γ̄1)E(m)− b cov(ω̃1,m),

where ω̃1 =
(
(ω1 + Y δ)− (1− r1)

∑
i z̄
i
−
)

is the aggregate endowment ω1+Y δ reduced
by the aggregate shortfall in promises on the bond market.

Proof: The proof is given in the appendix. �
From Proposition 2 we see that security prices in a bankruptcy equilibrium look simi-

lar to security prices in a financial market equilibrium without bankruptcy and quadratic
preferences (see for instance [Magill and Quinzii, 1997, Proposition 1]. The most im-
portant change is that in a bankruptcy equilibrium the role taken by the aggregate
endowment ω1 is now replaced by the aggregate endowment corrected for the aggregate
shortfalls from bankruptcy ω̃ 1.

The pricing formula that results from the CAPM without bankruptcy shows that the
price of a security is a decreasing linear function of the covariance of the income stream
provided by this security with aggregate income risk in the economy as a whole. If for
instance ω1 ∈ span(Y ), the aggregate income risk could be interpreted as a benchmark
portfolio, called the market portfolio in the finance literature. If a security is positively
(negatively) correlated with aggregate income it’s covariance value is negative (positive).
Bankruptcy changes this insight in the sense that aggregate income risk can only be
described in equilibrium. Aggregate income risk or the ”market portfolio” has to be
adjusted by the planned shortfall in financial promises. Aggregate income risk that is
relevant for determining the covariance value of securities is endogenous.

Since this quantity determines the marginal value of income that can be achieved
by trading in financial securities, the prices of all securities whether or not they are
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affected by credit risk are influenced by the trading of a defaultable security. This is of
course a typical general equilibrium effect. The specific structure of our model allows
however to say much more. The bankruptcy CAPM says that in the valuation of any
financial security in a market containing at least one defaultable financial instrument,
we can make a CAPM like valuation by correcting the market portfolio by the aggregate
shortfall in promises on the credit instruments.

Since in a bankruptcy equilibrium agents can’t go short in the security promising
r1 and also can’t go long in the security 1 income streams m that can be generated
from the existing securities can not anymore be valued by a linear function. However
Proposition 2 shows that we can give valuation bounds for income streams that can be
replicated, similar as in the literature on portfolio constraints (see Luttmer [1996]).

4.4 Allocations: A Two Fund Separation Result

We can also characterize equilibrium allocations such that the relationship to two fund
separation theorems characteristic for the CAPM can be seen. Again for simplifying
notation and to make the analogy to the CAPM more visible, let us assume that short
selling constraints on equity are not binding. The structure of bankruptcy equilibrium
requires that we characterize the consumption-default plans of agents depending on
whether they are long or short in the bond in a bankruptcy equilibrium. As in the case
with pricing the role of the aggregate endowment ω 1+Y δi is now taken by the aggregate
endowment corrected for aggregate shortfalls in promises ω̃1. Since constraints on the
possible bond positions (zi+b , zi−b ) may bind for some agents, we get additional terms
that depend on the Lagrangian multipliers of the respective constraints.

Proposition 3. Let (x̄, z̄, q̄, r̄1) is a bankruptcy equilibrium of the economy E(u, ω, δ, V )
with non-binding short selling constraints on equity and strictly positive date zero con-
sumption x̄i0: If in a bankruptcy equilibrium an agent i trades long in the bond, her
equilibrium consumption plan is given by

x̄i1 = ωi1 + PYb+

(
(αi1 −

αi0
α0
α1)1− (ωi1 + Y δi − αi0

α0
ω̃1)

)
− σb+

αi0
α0
r1e,

where σb+ :=
∑I

i=1 σ
i
b+ is the sum of all agents’ Lagrange multipliers corresponding to

the constraints zib+ ≥ 0 , PYb+ is the projection on the span of the matrix (r1, Y ) and

r1e :=
r1 − PY (r1)

||r1 − PY (r1)||2
.

If agent i trades short in the bond, her equilibrium allocation is given by

x̄i1 = ωi1 + PYb−

(
(αi1 −

αi0
α0
α1)1− (ωi1 + Y δi − αi0

α0
ω̃1)

)
− σb−

αi0
α0
1e,

where σb− :=
∑I

i=1 σ
i
b− is the sum of all agents’ Lagrange multipliers corresponding to

the constraints zib− ≥ 0, PYb+ is the projection on the span of the matrix (−1, Y ) and

1e :=
1− PY (1)

||1− PY (1)||2
.
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If in equilibrium agent i does not trade in the bond, her equilibrium allocation is given
by

x̄i1 = ωi1 + PY

(
(αi1 −

αi0
α0
α1)1− (ωi1 + Y δi − αi0

α0
ω̃1)

)
.

Proof: The proof is given in the appendix. �
From Proposition 3 we see that in the bankruptcy equilibrium consumption is char-

acterized by an approximate linear risk sharing rule both for agents long and short in
the bond with the aggregate endowment corrected for shortfalls in the promises made
by bond trading. (compare to the no bankruptcy case in Magill and Quinzii [1997]).

In the standard CAPM an investor’s date 1 consumption is obtained from aggregate
income via a linear sharing rule. In this model therefore investor’s hold fully diversified
portfolios and each investor’s portfolios are a proportion of the ”market portfolio”. In
a bankruptcy equilibrium this property is changed in two ways. First, and most im-
portantly even, if the aggregate endowment is in the span of the available equities as
can thus be interpreted as an aggregate output, the relevant benchmark portfolio is en-
dogenous. This is because aggregate output has to be corrected by the planned shortfall
in financial promises. Second, the optimal date one consumption allocations and thus
portfolio decisions differ between agents who are short in the bond and agents who are
long in the bond. It is as if the agents who are going long in the bond and agents who
are going short in the bond face a different asset structure. For the first class of agents
the bond pays r1, for the others the relevant promise is 1.

While Proposition 2 and 3 show the analogy between the standard CAPM and the
bankruptcy CAPM, they do not allow to explicitly calculate equilibrium values from the
exogenous parameters, since the short positions of the bond traders have to be known
to determine ω̃1, the shortfall corrected market portfolio. Still the modeling approach
to bankruptcy suggested here, does allow - in contrast to other models in the literature
- to arrive at characterizations of equilibrium prices and allocations which are slightly
more general than fully parameterized numerical examples. We hope that these results
will turn out useful for the further study of the economics of bankruptcy and default in
a general equilibrium context.

One issue where the explicit equilibrium characterization presented here might add
new insights to the existing literature is the question of welfare benefits of default in
incomplete markets as initiated in examples by Zame [1993] and Dubey et al. [2005].
Our characterization in combination with the analysis in Magill and Quinzii [1997] might
help to investigate these issues more systematically. We leave this for future research.

5 Endogenous Risk

Our model provides a framework to reflect some recent developments in credit risk
modeling (see McNeil et al. [2005] for an overview). Most of the models emerging from
this literature and applied in risk management at banks and financial institutions try to
capture default risk and credit losses from debt exposures by deriving a loss distribution
of a portfolio of debt instruments by taking the probability of default, the recovery rate
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and the exposure at default as stemming from an exogenous source of randomness. In
this viewpoint risk management decisions are conceptually treated like a game against
nature or a single person decision problem. While our model has also an abstract notion
of exogenous randomness, modeled as different states of the world, the parameters of
credit risk are really endogenous variables that are determined by the self interested
interactions of many different individuals. In the perspective of our model, credit risk is
conceptually more like an equilibrium problem rather than a decision problem. It would
be an interesting problem for future research to systematically derive the consequences
for credit risk modeling for risk management purposes. Our paper could provide a useful
starting point for such a project. Clearly, a discussion of this kind needs to build on a
more specific model such as the linear quadratic utility case studied in section 4.2.

The perspective on credit risk as an endogenous risk also has consequences for ana-
lyzing liquidity. For instance in Figure 1 used in our introductory example, it becomes
immediately clear that the liquidity of the bond market is directly related to the credit
risk of the bond. If credit risk is high, return spreads between long and short bond
positions are high. If we look at liquidity from this perspective it immediately becomes
clear that it makes no sense to think of liquidity as an exogenous property of particular
asset classes, as it frequently seems to be done in policy discussions. Liquidity, like credit
risk, is endogenous and is an equilibrium phenomenon.

6 Conclusions

In this paper we have studied a model of bankruptcy in general equilibrium that devel-
ops the bankruptcy model as a simple generalization of the standard general equilibrium
model with financial markets. The key idea to achieve this is to extend the choices of
agents to negative consumption plans and to interpret the utility of a negative consump-
tion plan as a utility penalty. This idea together with the requirement that individuals
can only be in default when all their resources are exhausted (bankruptcy) makes the
model particularly tractable at the level of individual decisions. With the assumption of
strictly positive endowments it also rules out extreme pessimism equilibria where finan-
cial market trading breaks down. We therefore can dispense with equilibrium refinements
used in the literature on default in general equilibrium. The simplicity of the model also
allows together with the assumption of mean variance preferences the formulation of a
bankruptcy version of the Capital Asset Pricing Model (CAPM). This allows for this
case also the characterization of equilibrium prices and allocations.

We hope that this paper helps to make the literature on default in general equilibrium
more useful for economic applications. In particular the CAPM version of the model
could be an interesting starting point to study some issues concerning default in general
equilibrium beyond specific examples. Two questions, which we hope to tackle in future
research concern the welfare effects of default and the question of coherent approaches to
credit risk management once it is acknowledged that credit risk has conceptually more
the nature of an equilibrium problem rather than a single person decision problem.
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7 Appendix

7.1 Proof of Proposition 1

Our proof consists of eight steps. In Step (i), we show that the set of arbitrage-free
security prices for a recovery rate of 1, i.e., without bankruptcies, remains arbitrage-
free for all return rates with bankruptcies, r1 ≤ 1. Appealing to strong monotonicity
of preferences (A2), we show in Step (ii) that no consumer will go long and short in
the bond simultaneously and that the budget constraints in all states in period 1 must
be binding as long as the recovery rates are strictly positive in every state r1 > 0.
Step (ii) shows that utility as a function of a portfolio and consumption in period 0 is
continuous and strongly monotone. Given assumptions A3 and A5, standard arguments
show that the budget correspondence in period 0 must be compact-, convex-valued and
continuous (Step (iii)). Using the concavity of the utility function (A2), in Step (iv), we
prove that demand for assets and consumption in period 0 is a compact- and convex-
valued u.h.c. correspondence of prices and recovery rates. In Step (v) we study excess
demand correspondences for assets and consumption in period 0. In particular, we derive
boundary conditions and show that Walras’ law holds. Step (vi) shows that the recovery
rates are continuous functions of asset trades and, for strictly positive endowments (A3)
and a borrowing constraint κ (A5) are bounded away from zero, i.e., r1 > 0. Step (vii)
adapts the market equilibrium lemma of Grandmont [1988] in order to prove that there is
an asset price system and consistent recovery rates for all states such that asset markets
and the market for consumption in period 0 clear. Finally, in step (viii), we prove that
consistent return rates and asset market clearing ensures that consumption in all states
of period 1 is feasible, i.e., that also condition (iii) of Definition 1 is satisfied.

(i) Arbitrage-free prices: We begin with a characterization of the security prices which
admit no arbitrage.

By assumptions A3 and A5, aggregate bond supply
∑

i∈I z
i
b− is bounded above by

|I| · κ and aggregate equity holdings are δ :=
∑

i∈I δ
i ∈ RJ++. since there are no short

sales in equity, the set of feasible security trades is Z = R+ × [0, κ]× (RJ+ − δ). Recall
with the payoff matrix

T =

[
−qb qb −qe
r1 −1 Y

]
,

the set of net income transfers that can be generated by security trades is

C = {τ ∈ RS+1|τ = Tz z ∈ Z}.

Given T the financial markets admit no arbitrage opportunities if there is no (zb+, zb−, ze) ∈
Z such that T (zb+, zb−, ze) ≥ 0. This is the same as saying that C ∩ (RS+1

+ \ {0}) = ∅,
i.e., it is impossible to find a portfolio which generates a non-negative state-contingent
consumption plan.

Since Z is bounded below, we need to modify the fundamental theorem of arbitrage-
free pricing appropriately. Denote by R := (0, 1]S the set of state-contingent return
rates.
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Lemma 1. For given r1 ∈ R, there are no arbitrage opportunities if and only if there is
a vector of positive state prices π ∈ RS++ such that πT ≤ 0.

Proof: Let ∆ = {τ ∈ RS+1
+ |

∑S
s=0 τs = 1} denote the non-negative simplex in RS+1.

Then C ∩ (RS+1
+ \ {0}) = ∅ implies that C ∩∆ = ∅. Obviously, both C and ∆ are convex

sets. Since C is the image of the closed polyhedral set Z ⊂ RJ+2 under the linear map
T , it is closed. Moreover, the simplex ∆ is a compact set. Hence, we can apply a strict
separation theorem (e.g., Magill and Quinzii [1995], Theorem 9.4, p. 73) in order to
conclude that there is a linear functional 0 6= π ∈ RS+1 such that

sup
τ∈C

πτ < inf
τ∈∆

πτ.

Applying the same arguments as in the proof of Magill and Quinzii [1995] Theorem
9.3. (iii), one obtains the inequality πτ ≤ 0 for all τ ∈ C. This inequality cannot be
turned into an equality, however, because τ ∈ C does not imply that −τ ∈ C because of
the lower bound on Z. �

For incomplete markets, there will be many π fulfilling the no arbitrage inequality 13.
For a given recovery rate r1 ∈ R := (0, 1]S , let us denote by

Q̃(r1) :=
{
q ∈ RJ+1|πT ≤ 0, π ∈ RS+1

++

}
the set of all arbitrage free security prices. This can be written equivalently as

Q̃(r1) :=
{

(qb, qe) ∈ RJ+1| π1r1 ≤ π0qb ≤ π11, π1Y − π0qe ≤ 0, for some (π0, π1) ∈ RS+1
++

}
Since (π0, π1) > 0, w.l.o.g., one can normalize π0 = 1. For any j ∈ J, denote by

yj = min
{
yjs| s ∈ S

}
, r = min {rs| s ∈ S}

and let
y = min

{
yj | j ∈ J

}
.

Lemma 2.

Q̃(r1) =
{

(qe, qb) ∈ RJ+1| qb > 0, qje > yqb for all j ∈ J.
}
.

Proof: (i) Necessity : Suppose there exists π ∈ RS+1
++ such that

for all j ∈ J
∑
s∈S

yjsπs ≤ qje,
∑
s∈S

rsπs ≤ qb ≤
∑
s∈S

πs.

By Assumption A4 and the premise r1 ∈ R := (0, 1]S , yj 6= 0 for all j ∈ J and r1 6= 0.
Hence,

qje ≥
∑
s∈S

yjsπs > 0,

qb ≥
∑
s∈S

rsπs > 0.

13 For general convex constraint sets the characterization is more involved (see Elsinger and Summer
[2001]).
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Moreover, by Assumption A4, yj cannot be constant. Hence, for all j ∈ J,

qje ≥
∑
s∈S

yjsπs > yj
∑
s∈S

πs ≥ yqb.

(ii) Sufficiency: Suppose (qe, qb) ∈ RJ+1 are such that

qb > 0, qje > yqb for all j ∈ J.

Since qje > 0 for all j ∈ J and qb > 0, there exists ε such that, for all j ∈ J,

0 < ε
∑
s∈S

yjs < qje,

0 < ε
∑
s∈S

rs < qb.

a) If there exists s ∈ S such that yjs = 0 for all j ∈ J , then one can choose any π with
πs ≥ ε for all s ∈ S and

∑
s∈S

πs ≥ qb.

b) If for all s ∈ S there exists some j ∈ J such that yjs > 0, then consider the following
optimization problem

max
π

∑
s∈S

πs

subject to qje −
∑
s∈S

yjsπs ≥ 0 for all j ∈ J

πs − ε ≥ 0 for all s ∈ S.

For J < S,14 the constraint set is compact and convex with a non-empty interior. The
objective function is continuous. Hence, a maximizer exists and it is characterized by
the FOC of the appropriate Lagrangian function.
Given non-negative multipliers λj , j ∈ J, and µs, s ∈ S, the FOCs of the Lagrangian∑

s∈S
πs +

∑
j∈J

λj

[
qje −

∑
s∈S

yjsπs

]
+
∑
s∈S

µs [πs − ε]

are
(i) 1−

∑
j∈J

λjy
j
s + µs = 0 for s ∈ S,

(ii) λj
[
qje −

∑
s∈S

yjsπs

]
= 0, for all j ∈ J,

(iii) µs [πs − ε] = 0 for s ∈ S.

By (i) and (ii),
∑
j∈J

λjy
j
s = 1 + µs > 0. Hence, for some j ∈ J, λj > 0 and

qje −
∑
s∈S

yjsπs = 0.

14Note that we write J < S to be consistent with our assumption (A4). The proof of Lemma 2 would
also work with J ≤ S. In the motivating example we have J = S = 1. In this case there are no issues
stemming from potential linear dependencies in the asset span, since there is only the bond.
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Also from (i), we can conclude for all s ∈ S,

µs =
∑
j∈J

λjy
j
s − 1 ≥ 0.

It is impossible that µs > 0 for all s, since πs = ε for all s implies∑
s∈S

yjsπs = ε
∑
s∈S

πs < qje

for all j ∈ J, which contradicts the fact that, for some j ∈ J, we have qje −
∑
s∈S

yjsπs = 0.

Hence, µs = 0 must hold for some s ∈ S. It follows from (iii) that

µs =
∑
j∈J

λjy
j
s − 1 = 0 for all s with yjs = y for some j ∈ J

µs =
∑
j∈J

λjy
j
s − 1 > 0 for all s with yjs > y for all j ∈ J.

Hence

µs =
∑
j∈J

λjy
j
s − 1 = 0 for all s with yjs = y for some j ∈ J

µs =
∑
j∈J

λjy
j
s − 1 > 0 for all s withyjs > y for allj ∈ J.

For an optimal (π, λ, µ), complementary slackness implies

0 =
∑
j∈J

λj

[
qje −

∑
s∈S

yjsπs

]
+
∑
s∈S

µs [πs − ε]

=
∑
j∈J

λjq
j
e −

∑
j∈J

λj
∑
s∈S

yjsπs +
∑
s∈S

µsπs −
∑
s∈S

µsε

=
∑
j∈J

λjq
j
e − ε

∑
s∈S

µs −
∑
s∈S

∑
j∈J

λjy
j
s − µs


︸ ︷︷ ︸

=1

πs

=
∑
j∈J

λjq
j
e − ε

∑
s∈S

µs −
∑
s∈S

πs.
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Hence, the optimal π satisfies:∑
s∈S

πs =
∑
j∈J

λjq
j
e − ε

∑
s∈S

µs︸ ︷︷ ︸
:=A

>
∑
j∈J

λjyqb − εA

= qb

∑
j∈J

λjy


︸ ︷︷ ︸

=1

− εA

= qb − εA

where the strict inequality follows from the premise yqb < qje for all j ∈ J. From µs =∑
j∈J

λjy
j
s − 1 >

∑
j∈J

λjy − 1 = 0 for some s ∈ S , one concludes A > 0. Hence, for ε small

enough, we have ∑
s∈S

πs ≥ qb.

�
The set

Q̃(r1) =
{

(qe, qb) ∈ RJ+1| qb > 0, qje > yqb for all j ∈ J.
}

is clearly an open cone in RJ+1.
Note that, for any r1, we have rqb ≤ qb for all s. Hence, the set of arbitrage-free asset

prices for any r1 ∈ R, is given by
Q̃ := Q̃(r1).

The set Q̃ is also an open cone.

(ii) Induced utility function: For given r1 ∈ R and q ∈ Q̃, each consumer i ∈ I
maximizes ui(xi0, x

i
1) by choosing asset trades (zib+, z

i
b−, z

i
e) ∈ Z and a consumption

allocation (xi0, x
i
1) ∈ Xi subject to

(a) xi0 − ωi0 ≤ −qbzib+ + qbz
i
b− − qezie,

(b) xi1 − ωi1 − Y δi ≤ r1z
i
b+ − 1zib− + Y zie,

(c) zib− ≤ κ,
(d) zie ≥ −δi,

where the constraint (c) follows from A5 in Proposition 1.
Strong monotonicity of ui(Proposition 1, A2) implies for an optimal choice (xi0, x

i
1, z

i
b+, z

i
b−, z

i
e)

that condition (b) is binding:

xi1 = ωi1 + Y
(
δi + zie

)
+ r1z

i
b+ − 1zib−. (8)

28



Moreover, for r1 6= 1, the consumer will never take a short position zib− > 0 and a long
position zib+ > 0 simultaneously. These observations allow us to restrict attention to
net trades in bonds zib and to simplify notation by restricting asset trades

(
zib, z

i
e

)
to the

space RJ+1.
Noting that zib :=

(
zib+ − zib−

)
=
(
zib ∨ 0

)
+
(
zib ∧ 0

)
∈ R, Equation 8 allows us to define

the following induced utility function vi : R+ × RJ+1 ×R→ R

vi(xi0, z
i
b, z

i
e; r1) := ui(xi0, ω

i
1 + Y

(
δi + zie

)
+ r1

(
zib ∨ 0

)
+ 1

(
zib ∧ 0

)
)

By Assumption A2, the induced utility function vi is a continuous function. Moreover,
vi is strongly monotone in

(
xi0, z

i
b, z

i
e

)
.

(iii) Budget correspondence in period t = 0: Using the induced utility function, we
can now study the simplified consumer problem of maximizing vi(xi0, z

i
b, z

i
e; r 1) subject

to
(a) xi0 − ωi0 ≤ −qbzib − qezie,
(b′) xi0 ≥ 0,
(c′) zib ≥ −κ,
(d) zie ≥ −δi.

Without loss of generality, we give up the normalization of commodity prices in period
t = 0, p0 = 1, which has been used in the text so far. Denote by

Bi0(p0, qb, qe) :=
{

(xi0, z
i
b, z

i
e) ∈ R+ × RJ+1| p0

(
xi0 − ωi0

)
+ qbz

i
b + qez

i
e ≤ 0, zib ≥ −κ, zie ≥ −δi

}
the budget correspondence for t = 0.

Lemma 3. Bi0 : R++ × Q̃→ R+ ×RJ+1, is a compact- , convex-valued, and continuous
correspondence.

Proof: Since prices (p0, qb, qe) ∈ R++×Q̃ are strictly positive and consumption and asset
trades are bounded below (Assumptions A3 and A5), the set Bi0(p0, qb, qe) is compact.
It is obviously convex. Continuity follows by standard arguments, e.g., Debreu [1956],
p. 63. �

(iv) Demand correspondences for consumption in period t = 0 and asset trades:
Since Bi0(λp0, λqb, λqe) = Bi0(p0, qb, qe) holds for any λ > 0, one can normalize prices to
the unit simplex. Consider the price simplex in RJ+2

+ ,

Q :=
{

(p0, qb, qe) ∈ RJ+2
+ | p0 + qb +

∑
qje = 1

}
.

Q is a compact and convex subset of RJ+2
+ . Let Q̂ := Q∩

(
R++ × Q̃

)
. It is easily checked

that Q̂ is an open and convex subset of Q.
For r1 ∈ R and q ∈ Q̂, define the demand correspondence f i : Q̂×R→ RJ+2 by

f i(p0, q; r1) = arg max
{
vi(xi0, z

i
b, z

i
e; r1)|

(
xi0, z

i
b, z

i
e

)
∈ Bi0(p0, qb, qe)

}
.
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Lemma 4. f i(p0, q; r1) is a non-empty, compact- and convex-valued, u.h.c. correspon-
dence from Q̂×R into RJ+2.

Proof: The indirect utility vi is a continuous function on R+ × RJ+1 × R. By Lemma
3, Bi0(p0, qb, qe) is a compact-, convex-valued and continuous correspondence on Q̂.
Hence, by the maximum theorem, the demand correspondence f i(p0, q; r1) is non-empty,
compact-valued, and u.h.c. for all (p0, q; r1) ∈ Q̂×R. It remains to show that f i(p0, q; r1)
is convex-valued. Suppose there are two maximizers

(
x̂i0, ẑ

i
b, ẑ

i
e

)
and

(
x̃i0, z̃

i
b, z̃

i
e

)
both in

f i(p0, q; r1). To simplify notation, let R(zb) := r1
(
zib ∨ 0

)
+1

(
zib ∧ 0

)
. It is easy to check

that R(zb) is a concave function. Consider the state-contingent consumption x̂i1 and x̃i1
corresponding to the portfolios

(
ẑib, ẑ

i
e

)
and

(
z̃ib, z̃

i
e

)
,

x̂i1 = ωi1 + Y
(
δi + ẑie

)
+R(ẑib) and x̃i1 = ωi1 + Y

(
δi + z̃ie

)
+R(z̃ib),

and note that, for any λ ∈ [0, 1], the convex combination xiλ1 of x̂i1 and x̃i1 satisfies

xiλ1 := λx̂i1 + (1− λ)x̃i1

= λ
[
ωi1 + Y

(
δi + ẑie

)
+R(ẑib)

]
+ (1− λ)

[
ωi1 + Y

(
δi + z̃ie

)
+R(z̃ib)

]
≤ ωi1 + Y

(
δi + λẑie + (1− λ)z̃ie

)
+R(λẑib + (1− λ)z̃ib),

where the weak inequality follows since R(zb) is a concave function. Hence, xiλ1 is
affordable with the portfolio

(
ziλb, z

i
λe

)
:=
(
λẑib + (1− λ)z̃ib, λẑ

i
e + (1− λ)z̃ie

)
. Moreover,

since the budget correspondence is convex-valued(
xiλ0, z

i
λb, z

i
λe

)
:=
(
λx̂i0 + (1− λ)x̃i0, λẑ

i
b + (1− λ)z̃ib, λẑ

i
e + (1− λ)z̃ie

)
∈ Bi0(p0, qb, qe).

Case (i): If x̂i1 = x̃i1, then xiλ1 = x̂i1 = x̃i1 and ui(xiλ0, x
i
λ1) = ui(x̂i0, x̂

i
1) = ui(x̃i0, x̃

i
1).

Hence,
vi
(
xiλ0, z

i
λb, z

i
λe; r1

)
= vi

(
x̂i0, ẑ

i
b, ẑ

i
e; r1

)
= vi

(
x̃i0, z̃

i
b, z̃

i
e; r1

)
and (xiλ0, z

i
λb, z

i
λe) ∈ f i(p0, q; r1).

Case (ii): If x̂i1 6= x̃i1, then

ui(xiλ0, x
i
λ1) ≥ λui(x̂i0, x̂i1) + (1− λ)ui(x̃i0, x̃

i
1)

since ui is concave by Assumption A2. Hence,

vi
(
xiλ0, z

i
λb, z

i
λe; r1

)
≥ ui(xiλ0, x

i
λ1)

≥ λui(x̂i0, x̂
i
1) + (1− λ)ui(x̃i0, x̃

i
1)

= λvi(x̂i0, ẑ
i
b, ẑ

i
e; r1) + (1− λ)vi(x̃i0, z̃

i
b, z̃

i
e; r1),

where the first inequality follows from the fact that the utility of any x∗i1 which maximizes
ui(xiλ0, x

i
1) subject to xi1 ≤ ωi1+Y

(
δi + ziλe

)
+r1

(
ziλb ∨ 0

)
+1

(
ziλb ∧ 0

)
, yielding indirect

utility vi
(
xiλ0, z

i
λb, z

i
λe; r1

)
= ui(xiλ0, x

∗i
1 ), must be at least as high as the utility of the

feasible consumption vector (xiλ0, x
i
λ1). Hence, (xiλ0, z

i
λb, z

i
λe) ∈ f i(p0, q; r1).

This proves that f i(p0, q; r1) is convex-valued. �

30



(v) Excess demand correspondences Define the individual excess demand correspon-
dence ζi : Q̂×R→ RJ+2 as

ζi(p0, q; r1) := f i(p0, q; r1)−
{

(ωi0, 0, 0)
}
.

Obviously, ζi inherits all relevant properties of f i, in particular, ζi is a non-empty,
compact- and convex-valued u.h.c. correspondence. Since f i(p0, q; r1) ⊆ Bi0(p0, q), indi-
vidual excess demand correspondences ζi are bounded below by (−ωi0,−κ,−δi). Conse-
quently, the aggregate excess demand correspondence

∑
i∈I ζ

i(p0, q; r1) is bounded below
by
(
−
∑

i∈I ω
i
0,−|I|κ,−

∑
i∈I δ

i
)
. Feasibility, i.e., 0 ∈

∑
i∈I ζ

i(p0, q; r1), implies that, in
any equilibrium, the aggregate allocation must be also bounded above by(∑

i∈I
ωi0, |I|κ,

∑
i∈I

δi

)
.

Denote by K :=
[(
−
∑

i∈I ω
i
0,−|I| · κ,−

∑
i∈I δ

i
)
,
(∑

i∈I ω
i
0, |I|κ,

∑
i∈I δ

i
)]
⊂ RJ+2 the

compact and convex cube of feasible allocations in RJ+2. By assumption A3 and A5, K
is not empty.

Define the bounded excess demand correspondence ζ
i

: Q̂×R→ K as

ζ
i
(p0, q; r1) = arg max

{
vi(zi0 + ωi0, z

i
b, z

i
e; r1)|

(
zi0 + ωi0, z

i
b, z

i
e

)
∈ Bi0(p0, qb, qe) ∩K

}
.

Noting that Bi0(p0, qb, qe) ∩K is a compact-, convex-valued, and continuous correspon-

dence15, it is obvious from the proof of the Lemma 4 that ζ
i
(p0, q; r1) is a non-empty,

compact- and convex-valued u.h.c. correspondence.

Finally, let Ξ(p0, q; r1) :=
∑

i∈I ζ
i
(p0, q; r1) be the bounded aggregate excess de-

mand correspondence. We will denote aggregate excess demand by (sz0, szb, sze) :=(∑
i∈I z

i
0,
∑

i∈I z
i
b,
∑

i∈I z
i
e

)
, in order to distinguish it from an excess demand allocation

(z0, zb, ze) :=
(
(z1

0 , z
1
b , z

1
e ), ..., (zI0 , z

I
b , z

I
e )
)
.

It remains to check Walras law and to investigate the boundary behavior of Ξ(p0, q; r1).

Lemma 5. (i) Let (pn0 , q
n; rn1) be a sequence in Q̂×R such that (pn0 , q

n; rn1)→ (p0, q; r1) ∈
∂Q̂ × R. Then for every sequence (szn0 , sz

n
b , sz

n
e ) ∈ Ξ(pn0 , q

n; rn1) there exists

(p̃0, q̃b, q̃e) ∈ Q̂ such that

(p̃0, q̃b, q̃e) (szn0 , sz
n
b , sz

n
e ) > 0

holds for infinitely many n.

15 If one views K as a constant correspondence on Q̂ × R, it is clearly a non-empty, compact- and
convex-valued correspondence. Hence, Bi

0(p0, qb, qe)∩Z is a non-empty, compact- and convex-valued
correspondence.
The intersection of two closed-valued u.h.c. correspondences is always a u.h.c. correspondence
(Green and Heller [1981], u.h.c.-Property (8), p. 48). The intersection of two convex-valued l.h.c.
correspondences is l.h.c. if the intersection of their interiors is not empty (Green and Heller [1981],
l.h.c.-Property (8), p. 48). The correspondences Bi

0(p0, qb, qe) and K satisfy these properties. Thus,
we can conclude that Bi

0(p0, qb, qe) ∩K is a continuous correspondence.
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(ii) Ξ(p0, q; r1) satisfies Walras law: for all (sz0, szb, sze) ∈ Ξ(p0, q; r 1),

(p0, qb, qe) (z0, zb, ze) = 0.

Proof:

(i) Consider a sequence of prices (pn0 , q
n; rn1)→ (p0, q; r 1) ∈ ∂Q̂×R and suppose the

claim is not true. Then there exists a sequence

(szn0 , sz
n
b , sz

n
e ) =

(∑
i∈I

zin0 ,
∑
i∈I

zinb ,
∑
i∈I

zine

)
∈ Ξ(pn0 , q

n; rn1)

with
(
zin0 , z

in
)
∈ ζi(pn0 , qn; rn1) for all i ∈ I such that for all (p0, qb, qe) ∈ Q̂

(p0, qb, qe) (szn0 , sz
n
b , sz

n
e ) ≤ 0 (9)

holds for all but a finite number of n.

For all i ∈ I, the sequence
(
zin0 , z

in
)

is contained in the compact set K. Thus, there

exists a converging subsequence
(
ziν0 , z

iν
)
→
(
zi0, z

i
)

with
(
ziν0 , z

iν
)
∈ ζi(pν0 , qν ; rν1). By

strong monotonicity (Assumption A2), (pν0 , q
ν
b , q

ν
e )
(
ziν0 , z

iν
b , z

iν
e

)
= 0 and, by continuity,

(p0, qb, qe)
(
zi0, z

i
b, z

i
e

)
= 0.

We show that (zi0, z
i) maximizes utility vi(zi0 + ωi0, z

i; r1) at (p0, q; r1) for all consumers
i ∈ I for whom

(
p0ω

i
0 + qbκ+ qeδ

i
)
> 0 holds. By assumptions A3 and A5 and the fact

that (p0, q) 6= 0, there exist consumers i ∈ I with
(
p0ω

i
0 + qbκ+ qeδ

i
)
> 0.

Consider a consumer i ∈ I with
(
p0ω

i
0 + qbκ+ qeδ

i
)
> 0 and assume that (zi0, z

i) were
not optimal at (p0, q; r1), then there would exists (z̃i0, z̃

i) such that (z̃i0+ωi0, z̃
i) ∈ Bi0(p0, q)

with vi(z̃i0 + ωi0, z̃
i; r1) > vi(zi0 + ωi0, z

i; r1). Since
(
p0ω

i
0 + qbκ+ qeδ

i
)
> 0 holds, there

exists a sequence
(
z̃iν0 , z̃

iν
)
→ (z̃i0, z̃

i) with
(
z̃iν0 + ωi0, z̃

iν
)
∈ Bi0(pν0 , q

ν) and, by continuity
of vi, vi(z̃iν0 +ωi0, z̃

iν ; rν1) > vi(ziν0 +ωi0, z
iν ; rν1) for all ν sufficiently large. This contradicts

the claim
(
ziν0 , z

iν
)
∈ ζi(pν0 , qν ; rν1) for all ν. Thus (zi0, z

i) must be optimal at (p0, q; r1) .

For (p0, q) ∈ ∂Q̂, however, the budget set is unbounded. This is obvious if some
price (p0, q) equals zero. If, for some j ∈ J, qje = yqb holds, then the portfolio(
zib, z

i
e

)
=
(
−y, ej

)
a, where ej denotes the j-th unit vector in RJ , is self-financing,

i.e.,
(
qje − qby

)
a = 0 for any a > 0, and yields a return

(
yjs − y

)
a ≥ 0, which is strictly

positive in at least one state s ∈ S, by Assumption A4. Strong monotonicity of ui

(Assumption A2) implies that (zi0, z
i) is an element of the upper boundary of K. Since

(zi0, z
i) is in the upper boundary of K, we have zi0 > 0 if p0 = 0, zib > 0 if qb = 0

and z
ji

e > 0 if qje = 0. Moreover, if qje = qby, we have zjie = κ
y > 0 and zib = −κ with(

qjezie + qbz
i
b

)
=
(
qje − qby

)
κ
y = 0. Choose (po0, q

o
b , q

o
e) such that po0 = ε0 > 0 if p0 = 0,
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qob = εb > 0 if qb = 0, qjoe = εje+qby with εje > 0 if qje = qby, and ε0 +εb+
∑

j∈J ε
j
e = 1. By

construction, (po0, q
o
b , q

o
e) ∈ Q̂ and (po0, q

o
b , q

o
e)
(
zi0, z

i
b, z

i
e

)
> 0. Let I ′ ⊆ I be the non-empty

set of consumers with
(
p0ω

i
0 + qbκ+ qeδ

i
)
> 0. Then, for α > 0

(p̃0, q̃b, q̃e) := α (po0, q
o
b , q

o
e) + (1− α) (p0, qb, qe) ∈ Q̂

and (p̃0, q̃b, q̃e)
(
zi0, z

i
b, z

i
e

)
> 0 for all i ∈ I ′.

Hence, (p̃0, q̃b, q̃e)
∑

i∈I′
(
zi0, z

i
b, z

i
e

)
> 0 and, since

(
ziν0 , z

iν
b , z

iν
e

)
→
(
zi0, z

i
b, z

i
e

)
, it fol-

lows that there exists N such that

(p̃0, q̃b, q̃e)
∑
i∈I′

(
ziν0 , z

iν
b , z

iν
e

)
> 0 for all ν > N.

Moreover, (p̃0, q̃b, q̃e)
∑

i∈I\I′
(
ziν0 , z

iν
b , z

iν
e

)
converges to α (po0, q

o
b , q

o
e)
∑

i∈I\I′
(
zi0, z

i
b, z

i
e

)
since, for all i ∈ I, (p0, qb, qe)

(
zi0, z

i
b, z

i
e

)
= 0. Hence, there is α small enough such that

(p̃0, q̃b, q̃e)
∑
i∈I

(
zi0, z

i
b, z

i
e

)
= (p̃0, q̃b, q̃e)

∑
i∈I′

(
zi0, z

i
b, z

i
e

)
+ α (po0, q

o
b , q

o
e)
∑
i∈I\I′

(
zi0, z

i
b, z

i
e

)
> 0.

This implies that there is N such that, for all ν > N,

(p̃0, q̃b, q̃e) (szν0 , sz
ν
b , sz

ν
e ) = (p̃0, q̃b, q̃e)

∑
i∈I

(
ziν0 , z

iν
b , z

iν
e

)
> 0

in contradiction to Equation 9.

(ii) For every (sz0, szb, sze) ∈ Ξ(p0, q; r 1), strong monotonicity of vi implies

p0z
i
0 + qbz

i
b + qez

i
e = 0

for all
(
zi0, z

i
b, z

i
e

)
∈ ζi(p0, q; r1). Summing over i ∈ I, yields the result. �

Finally, we denote by ζ : Q̂×R→ K
I
,

ζ(p0, q; r1) := ζ
1
(p0, q; r1)× ...× ζI(p0, q; r1),

the Cartesian product of individual excess demand correspondences. By Lemma 4,
ζ(p0, q; r1) is a non-empty, compact- and convex-valued u.h.c. correspondences on Q̂×R.
as a product of correspondences with these properties.
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(vi) The bankruptcy clearing mechanism: Let K ⊂ RJ+2 be the set of individually
feasible excess demands. A vector of individual excess demands z = (z0, zb, ze) :=(
(z1

0 , z
1
b , z

1
e ), ..., (zI0 , z

I
b , z

I
e )
)

is an element of K
|I|
.

The bankruptcy clearing mechanism (compare Equation 4) is a function ρ : K
|I| →

R := (0, 1]S defined by its component functions

ρs(z0, zb, ze) =


∑I

i=1(−zib∨0)∧(ωi
s+Ys(δi+zie))∑I

i=1(−zib∨0)
. for

∑I
i=1

(
−zib ∨ 0

)
> 0

1 for
∑I

i=1

(
−zib ∨ 0

)
= 0

.

ρs(z0, zb, ze) is a continuous function on K
|I|
. Notice that, by Assumption A3, ωis > 0

for all s ∈ S and all i ∈ I. Hence,
(
−zib ∨ 0

)
∧ (ωis +Ys(δ

i + zie)) = −zib for 0 < −zib < ωis.
This implies that ρs(z0, zb, ze) = 1 in a neighborhood of zb = 0. Thus, ρs(z0, zb, ze) is

well-defined and continuous at zb = 0. Moreover,
(−zib∨0)∧(ωi

s+Ys(δi+zie))

(−zib∨0)
is an increasing

function of zib with a minimum κ∧(ωi
s+Ys(δi+zie))

κ ≥ κ∧ωi
s

κ at zib = −κ. Therefore, we have

ρs(z0, zb, ze) =

∑I
i=1

(
−zib ∨ 0

)
∧ (ωis + Ys(δ

i + zie))∑I
i=1

(
−zib ∨ 0

)
=

I∑
i=1

[(
−zib ∨ 0

)
∧ (ωis + Ys(δ

i + zie))(
−zib ∨ 0

) ] (
−zib ∨ 0

)∑I
i=1

(
−zib ∨ 0

)
≥

I∑
i=1

[
κ ∧ ωis
κ

] (
−zib ∨ 0

)∑I
i=1

(
−zib ∨ 0

)
≥ min

i∈I

[
κ ∧ ωis
κ

] I∑
i=1

(
−zib ∨ 0

)∑I
i=1

(
−zib ∨ 0

)︸ ︷︷ ︸
=1

= min
i∈I

[
κ ∧ ωis
κ

]
=: ρ

s
> 0.

Hence, for all s ∈ S, ρs(z0, zb, ze) is bounded below by a strictly positive value ρ
s
. Let

R̂ :=
∏
s∈S

[
ρ
s
, 1
]
⊂ R. Then ρ is a continuous function K

|I| → R̂.

(vii) Existence of Equilibrium in period t = 0: In order to prove existence of an equi-
librium in t = 0, we will adapt the existence proof of Grandmont [1988] (pp. 11-12).

Consider an increasing sequence of compact and convex subsets Qkof Q̂ such that Q̂
is contained in the union of all Qk.

For each k and every (p0, qb, qe, r1) ∈ Qk × R̂, the Cartesian product of individual
excess demand correspondences ζ(p0, qb, qe; r1) is a non-empty, compact- and convex-
valued and u.h.c. correspondence.
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For any excess demand vector z :=
(
z1, ..., zI

)
=
((
z1

0 , z
1
b , z

1
e

)
, ...,

(
zI0 , z

I
b , z

I
e

))
∈ K |I|,

let

µk(z) := arg max

{
p0

I∑
i=1

zi0 + qb

I∑
i=1

zib + qe

I∑
i=1

zie| (p0, qb, qe) ∈ Qk
}

be the set of prices in Qk that maximize the value of the excess demand . Since Qk is
compact and p0

∑I
i=1 z

i
0 + qb

∑I
i=1 z

i
b + qe

∑I
i=1 z

i
e is a continuous function on Qk, µk(z)

is not empty. By the maximum theorem, µk : K
|I| → Qk is a compact, convex-valued,

and u.h.c. correspondence on K
|I|
.

For each (p0, qb, qe, r1, z) ∈ Qk × R̂× Z
|I|

, define the correspondence

Φk(p0, qb, qe, r1, z) := µk(z)× {ρ(z)} × ζ(p0, qb, qe, r1).

The correspondence Φk is a mapping Qk × R̂ ×K |I| → Qk × R̂ ×K |I|. The correspon-
dence Φk is non-empty, compact, convex-valued, and u.h.c., as a Cartesian product of
correspondences with these properties. Hence, by Kakutani’s fixed point theorem, there
is (pk0, q

k
b , q

k
e , r

k
1, z

k) ∈ Φk(pk0, q
k
b , q

k
e , r

k
1, z

k).
By construction of µk,

0 = pk0

I∑
i=1

z
ik
0 + qkb

I∑
i=1

zikb + qke

I∑
i=1

zike ≥ p0

I∑
i=1

zik0 + qb

I∑
i=1

zikb + qe

I∑
i=1

zike (10)

for all (p0, qb, qe) ∈ Qk. The sequence
(
pk0, q

k
b , q

k
e

)
∈ Qk must be bounded away from

∂Q̂ or one would contradict Lemma 5 (i).

Since Qk × R̂ × K |I| ⊂ Q × R̂ × Z |I|, there exists a converging subsequence (same

notation) (pk0, q
k
b , q

k
e , r

k
1, z

k)→ (p0, qb, qe, r1, z) ∈ Q× R̂×K
|I|

such that

(i) r1 = ρ(p0, qb, qe, r1),

(ii) z ∈ ζ(p0, qb, qe, r1),

(iii) (p0, qb, qe) ∈ µk(zk) for all k.

By continuity, Equation 10 implies

0 = p0

I∑
i=1

zi0 + qb

I∑
i=1

zib + qe

I∑
i=1

zie ≥ p0

I∑
i=1

zi0 + qb

I∑
i=1

zib + qe

I∑
i=1

zie

for all (p0, qb, qe) ∈ Q̂. Since (p0, qb, qe) ∈ Q̂ implies (p0, qb, qe) > 0, one can conclude
that

∑
i∈I z

i = 0.
In summary, we have a consistent return rate r1 for the bond and a price system

(p0, qb, qe) for which the asset markets and the market for commodities in period t = 0
clear:

(i) r1 = ρ̂(p0, qb, qe, r1),

(ii) z ∈ ζ(p0, qb, qe, r1), with
∑

i∈I z
i = 0.
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(viii) Existence of Equilibrium in period t = 1: It remains to show that in a bankruptcy
equilibrium

(i) r1 = ρ̂(p0, qb, qe, r1),

(ii) z ∈ ζ(p0, qb, qe, r1), with
∑

i∈I z
i = 0,

consumption will be non-negative in every state s ∈ S, i.e., condition (iii) of the
definition of a bankruptcy equilibrium

I∑
i=1

(
xis ∨ 0

)
=

I∑
i=1

(ωis + Ysδ
i)

for all s ∈ S is also satisfied.
Recall that, for an equilibrium price system (p0, qb, qe, r1) and an equilibrium alloca-

tion
(
zi0, z

i
b, z

i
e

)
∈ ζi(p0, qb, qe, r1), by Equation 8,

xis = ωis + Ys
(
δi + zie

)
+ rs(z

i
b ∨ 0) + (zib ∧ 0)

and, by Equation 4,

rs =

∑I
i=1

(
−zib ∨ 0

)
∧ (ωis + Ys(δ

i + zie))∑I
i=1(−zib ∨ 0)

for all s ∈ S hold. These conditions imply non-negative consumption in all states.

Lemma 6. If for all i ∈ I and all s ∈ S equations 8 and 4 hold, then∑I
i=1 z

i
b = 0 and

∑I
i=1 z

i
e = 0

imply
I∑
i=1

(
xis ∨ 0

)
=

I∑
i=1

(ωis + Ysδ
i)

for all s ∈ S.

Proof: Consider an arbitrary s ∈ S. By Equation 8, summing over all consumers
i ∈ I, one obtains

I∑
i=1

(
xis − ωis − Ysδi

)
=

I∑
i=1

[
rs(z

i
b ∨ 0) + (zib ∧ 0) + Ysz

i
e

]
,

which is equivalent to

I∑
i=1

[
(xis ∨ 0)− ωis − Ysδi

]
=

I∑
i=1

[
rs(z

i
b ∨ 0) + (zib ∧ 0) + Ysz

i
e − (0 ∧ xis)

]
.
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The asset market equilibrium conditions∑I
i=1 z

i
b = 0 and

∑I
i=1 z

i
e = 0

imply

I∑
i=1

[
rs(z

i
b ∨ 0) + (zib ∧ 0) + Ysz

i
e − (xis ∧ 0)

]
= rs

I∑
i=1

(zib ∨ 0)︸ ︷︷ ︸
=−

∑I
i=1(zib∧0)

+

I∑
i=1

(zib ∧ 0)−
I∑
i=1

(xis ∧ 0) + Ys

I∑
i=1

zie︸ ︷︷ ︸
=0

= rs

I∑
i=1

(−zib ∨ 0) +
I∑
i=1

(zib ∧ 0)−
I∑
i=1

(xis ∧ 0).

Denote by I+ := {i ∈ I| zib ≥ 0} the set of consumers who are not borrowing, by
I−s := {i ∈ I| zib < 0, xis ≥ 0} the set of loan takers who are solvent, and by I−i : {i ∈
I| zib < 0, xis < 0} consumers who are insolvent, then substituting Equation 4 for rs
yields

rs

I∑
i=1

(−zib ∨ 0) +
I∑
i=1

(zib ∧ 0)−
I∑
i=1

(xis ∧ 0)

= rs
∑
i∈I−

(−zib ∨ 0) +
∑
i∈I−

(zib ∧ 0)−
∑
i∈I−

(xis ∧ 0)

=
∑
i∈I−

[(
−zib

)
∧ (ωis + Ys(δ

i + zie))
]
−
∑
i∈I−

(−zib)−
∑
i∈I−

(xis ∧ 0)

=
∑
i∈I−i

[
ωis + Ys(δ

i + zie))
]
−
∑
i∈I−i

(−zib)−
∑
i∈I−i

(xis)

=
∑
i∈I−i

[(
ωis + Ys

(
δi + zie

)
+ zib

)
− xis)

]
= 0,

since xis < 0 implies xis = ωis +Ys
(
δi + zie

)
+ zib < 0. Hence,

∑I
i=1

(
xis ∨ 0

)
=
∑I

i=1(ωis +
Ysδ

i). �

7.2 Proof of Proposition 2

We partition the matrix

T =

[
−qb qb −qe
r1 −1 Y

]
and the portfolio vector zi ∈ Zi into long-bond, short-bond, and equity trades by T =
(Tb+, Tb−, Te) and zi = (zib+, z

i
b−, z

i
e)
T , respectively. Using Lagrange multipliers πi ∈
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RS+1, σib+ ≥ 0, and σib− ≥ 0, and assuming we are at an interior solution (δi are such
that short sales constraints on equity are not binding at equilibrium, and parameters
are such that xi0 > 0 at equilibrium), the KKT conditions for the minimization of the
Lagrange function

Li(xi, zi, πi, σib+, σ
i
b−) = −ui(xi) + 〈πi, xi − ωi − ei − Tzi〉 − σib+zib+ − σib−zib−

imply that

〈∇ui(x̄i), Te〉 = (0, . . . , 0),

〈∇ui(x̄i), Tb+〉 = −σib+ ≤ 0, and

〈∇ui(x̄i), Tb−〉 = −σib− ≤ 0,

Since the optimization problem is convex, the KKT conditions are also sufficient for an
optimal solution to the agent’s problem.

The gradient of the linear quadratic utility function fulfills in the equilibrium allocation
x̄i

〈∇ui(x̄i), τ〉 ≤ 0 ∀τ ∈ C.

Summing up all agent’s equilibrium gradients we define the vector

γ̄ :=
I∑
i=1

∇ui(x̄i) = (α0, α11− ((ω1 + Y δ)− d1))T ,

where d1 =
∑I

i=1 d
i
1 :=

∑I
i=1(1−r 1)zib− is the aggregate shortfall from promises on the

bond. Still we have 〈γ̄, τ〉 ≤ 0 ∀τ ∈ C. Since any trade τ ∈ C can be decomposed as
τ = (−c(m),m) we get for 1

α0
γ̄ that γ1 = α1

α0
1− 1

α0
ω̃1 and c(m) ≥ 〈γ̄1,m〉, which proves

the lemma. �

7.3 Proof of Proposition 3

Suppose agent i goes long in the bond. Define the matrix by Tlong =

(
−qb qe
r1 Y

)
. We

know from proposition 2 that

〈T Tlong,∇ui(x̄i)〉 =

(
0
0

)
and (11)

〈T Tlong, γ̄〉 =

(
−σb+

0

)
, (12)

where ∇ui(xi) = (αi0, α
i
1 − xi1)T and γ̄ = (α0, α11 − ω̃1)T . Divide equation (11) by αi0

and equation (12) by α0 , subtract the equations and multiply the result by αi0 again.
With τ̄ i1 := x̄i1 − ωi1 − Y δi this gives

〈Y T
b+, τ̄

i
1〉 = 〈Y T

b+, (α
i
1 −

αi0
α0
α1)1− ((ωi1 + Y δi)− αi0

α0
ω̃1)〉 − αi0

α0

(
σb+
0

)
.
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We can write (
σb+
0

)
= 〈Y T

b+, σb+
r1 − PY (r1)

||r1 − PY (r1)||2
〉 = 〈Y T

b+, σb+r1e〉.

Now, since 〈Y T
b+, v1〉 = 〈Y T

b+, PYb+(v1)〉 for any vector v1 ∈ RS , it follows that

τ̄ i1 = PYb+

(
(αi1 −

αi0
α0
α1)1− ((ωi1 + Y δi)− αi0

α0
ω̃1)− σb+

αi0
α0
r1e

)
.

Finally, since r1 − PY (r1) ∈ span(Yb+), the result follows.
The results for agents going short and for agents that do not trade in the bond are

proved similarly. �
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