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Adjusting Body Mass for Measurement Error with 
Invalid Validation Data* 

 
We propose a new method for using validation data to correct self-reported weight and height 
in surveys that do not weigh and measure respondents. The standard correction from prior 
research regresses actual measures on reported values using an external validation dataset, 
and then uses the estimated coefficients to predict actual measures in the primary dataset. 
This approach requires the strong assumption that the expectations of actual weight and 
height conditional on the reported values are the same in both datasets. In contrast, we use 
percentile ranks rather than levels of reported weight and height. Our approach requires the 
much weaker assumption that the conditional expectations of actual measures are increasing 
in reported values in both samples, making our correction more robust to differences in 
measurement error across surveys. We then examine three nationally representative 
datasets and confirm that misreporting is sensitive to differences in survey context such as 
data collection mode. When we compare predicted BMI distributions using the two 
approaches, we find that the standard correction is biased by differences in misreporting 
while our correction is not. Finally, we present several examples that demonstrate the 
potential importance of our correction for future econometric analyses and estimates of 
obesity rates. 
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1 Introduction 

Obesity, defined as having a body mass index (BMI) of at least 30, leads to heart disease, 

diabetes, high blood pressure, stroke, and other health problems (Strum, 2002).1 The obesity rate 

among U.S. adults rose from 13% in 1960 to 34% in 2008, prompting a large literature 

examining the causes and consequences of this trend (Flegal et al., 1998; National Center of 

Health Statistics, 2008).  

Appropriate measurement of weight and height has long been a problematic issue for 

researchers in this literature. Medically measured weight and height are obviously ideal, but they 

are expensive to collect in large samples due to the need for trained personnel to have in-person 

contact with respondents. For this reason, only one large-scale U.S. government health dataset – 

the National Health and Nutrition Examination Surveys (NHANES) – contains measured 

weights and heights. The NHANES has several limitations that render it viable for only a small 

subset of the topics of interest to obesity researchers. Though large enough to produce national-

level descriptive statistics, it is often too small for more sophisticated estimation. Moreover, the 

NHANES consists of repeated cross-sections so it does not allow for the use of panel data 

methods. Finally, although the NHANES contains excellent health information, it includes only a 

limited number of economic and demographic variables.  

Other datasets include respondents’ self-reports of weight and height, often obtained through 

telephone surveys (e.g. Behavioral Risk Factor Surveillance System (BRFSS)). Such an 

approach permits a much larger sample size and broader geographic coverage, but is limited by 

the fact that self-reports are often subject to considerable measurement error. Some respondents 

1 BMI=weight in kilograms divided by height in squared meters. 
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may not know their current weight, while others might be dishonest about their weight and 

height in an effort to adhere to social norms. Cawley (2002) finds that underweight people tend 

to overreport their weight while those who are heavier tend to underreport. Overreporting among 

the underweight is greater for men, while underreporting among the overweight is greater for 

women. For both sexes, the distribution of self-reported weight is therefore more compressed 

than the actual weight distribution. Rowland (1990) finds similar results for weight and also 

documents a tendency to exaggerate height that is more pronounced among the overweight. 

These results imply that obesity rates computed from self-reported weight and height will be 

understated. Moreover, the systematic, non-classical nature of the measurement error suggests 

that bias in regression estimates is possible regardless of whether BMI is an independent or 

dependent variable, and that the direction of the bias is unclear.    

In two concurrent papers, Cawley (2002; 2004) corrects for the misreporting of height and 

weight using a procedure that was developed in the statistics literature. In a dilemma common in 

obesity research, the NHANES is not a suitable dataset for the topic of either paper.2  In both 

studies, Cawley uses the 1979 cohort of the National Longitudinal Survey of Youth, which 

contains self-reported weight and height, and attempts to correct these measures using the 

relationship between self-reports and measured values in the NHANES. For each race and 

gender group, Cawley regresses actual weight and height on the corresponding self-reports and 

their squares in NHANES, and then uses the resulting regression estimates to predict the 

NLSY79 respondents’ actual weights and heights.  

2 The first paper, Cawley (2002), tests for rational addiction in caloric intake, which requires panel data. The second, 
Cawley (2004), examines the impact of obesity on wages, and wages are not available in the NHANES. 
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Cawley’s correction for self-reported weight and height has since become commonly used in 

the economics of obesity literature. Several recent papers have used this correction when 

studying the impacts of obesity on labor market outcomes (e.g. Cawley and Danzinger, 2005; 

Gregory, 2010; Gregory and Ruhm, 2011; Majumder, 2013). This correction has also been used 

in a number of papers that examine potential economic determinants of obesity.3   

Unfortunately, the standard validation method of Cawley (2002, 2004) is not appropriate if 

the amount or type of measurement error differs between the primary and validation samples. As 

Han et al. (2009) point out, NHANES respondents expect to be weighed and measured when 

they report their height and weight, while respondents in the NLSY and other commonly used 

datasets do not. Furthermore, Pinkston (2013) notes that even being interviewed by phone 

instead of in person affects the self-reported values of respondents in the NLSY cohorts. 

Our paper develops an alternative correction for self-reported weight and height that relies 

on weaker assumptions about the relationship between true and reported values in the primary 

and validation datasets. Instead of relying on the reported values themselves, we predict actual 

measures using the percentile rank of reported values in their respective distributions. Our 

method is robust to differences across samples in the severity (or type) of measurement error as 

long as the rankings of respondents based on reported values resembles the rankings based on 

actual measures in both datasets. 

3 Potential determinates of obesity studied using Cawley’s correction include age (Baum and Ruhm, 2009), income 
(Cawley et al., 2010), unemployment rate (Ruhm, 2005), childhood socioeconomic status (Baum and Ruhm, 2009), 
food prices (Lakdawalla and Philipson, 2002; Chou et al., 2004; Courtemanche et al., forthcoming; Goldman et al., 
2011), cigarette prices (Chou et al., 2004; Baum, 2009), alcohol prices (Chou et al., 2004), food stamps (Fan, 2010; 
Baum, 2011), restaurant density (Chou et al., 2004), on-the-job physical activity (Lakdawalla and Philipson, 2002), 
smoking bans (Chou et al., 2004), urban sprawl (Plantinga and Bernell, 2007; Eid et al., 2008), and time preference 
(Courtemanche et al., forthcoming). 
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Using data from the Behavioral Risk Factor Surveillance System and the American Time 

Use Survey, we show that our percentile rank method produces predicted values of BMI that are 

consistent across datasets, and consistent with the distribution of actual BMI in the population. 

We also confirm that the standard approach in the literature is not appropriate in these datasets 

because it is sensitive to differences in misreporting across samples.  

Finally, we illustrate how the corrections can influence regressions coefficients and 

estimates of the prevalence of obesity. Using both the BRFSS and ATUS, we consider basic 

regressions that include BMI or obesity as either a dependent or an independent variable. In each 

case, we compare estimates with our adjustment to analogous estimates that use either no 

correction for measurement error or the standard correction. While using our correction generally 

does not affect the signs of coefficient estimates or statistical significance, it can lead to 

important differences in the magnitudes of the estimates. We then revisit the Centers for Disease 

Control’s (CDC’s) well-known map of obesity rates by state and demonstrate that correcting for 

measurement error dramatically increases the estimated prevalence for most states. 

2 The Problem of Transportability and an Alternative Approach 

For the sake of simplicity, our discussions in this section will consider the regression of some 

dependent variable on an independent variable that is measured with error. Both the standard 

method and our proposed method extend to cases in which the dependent variable is measured 

with error under similar assumptions.4 In what follows, we will note any changes in assumptions 

required by such extensions.  

4 L&S develop their approach to correct measurement error in either the dependent or independent variables of a 
nonlinear regression. See Chen et al. (2005) among others for applications that use fewer parametric assumptions. 
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Let b denote the true measures of height or weight in the population, and 𝑏𝑏�𝑗𝑗 denote the 

reported value in sample j, where 𝑗𝑗 = 𝑃𝑃,𝑉𝑉 indicates the primary or validation dataset. The 

reported values, 𝑏𝑏�𝑗𝑗, are allowed to have arbitrary (potentially nonclassical) measurement error.  

The standard validation approach used by Cawley (2002, 2004) is based on work by Lee 

and Sepanski (1995) (L&S in what follows) and others in the statistics literature.5 We can distill 

two conditions from this literature that must be met when validation data are used to correct for 

measurement error: 

C1. There must be a surrogate for b. A variable, 𝑏𝑏𝑗𝑗𝑠𝑠, is a surrogate for b if the distribution 

of y given (𝑏𝑏, 𝑏𝑏𝑗𝑗𝑠𝑠) is the same as the distribution of y given b.6  In cases where b is a 

dependent variable that is measured with error, 𝑏𝑏𝑗𝑗𝑠𝑠 is a surrogate if its distribution 

depends only on the true response (see Carroll et al., 2006). 

C2. The surrogate, 𝑏𝑏𝑗𝑗𝑠𝑠, must satisfy some form of transportability across datasets. 

Transportability is usually described as the distribution of b conditional on 𝑏𝑏𝑗𝑗𝑠𝑠  being 

the same in both datasets; however, L&S use a weaker form of transportability, 

which requires 𝐸𝐸(𝑏𝑏|𝑏𝑏𝑃𝑃𝑠𝑠) = 𝐸𝐸(𝑏𝑏|𝑏𝑏𝑉𝑉𝑠𝑠). 7 

The first condition simply states that a surrogate for b contains no information about the 

dependent variable that is not also contained in b (and possibly other observed covariates). This 

condition is easily satisfied by the reported values, 𝑏𝑏�𝑗𝑗.  

5 See Bound et al. (2001) for a brief survey of this work, and Carroll et al. (2006) for more depth. 
6 In addition to L&S, see Carroll et al. (2006). 
7 See Bound et al. (2001) or Carroll et al. (2006) for examples of the stronger version of transportability. Strictly 
speaking, L&S assume that the expectation of y conditional on 𝑏𝑏𝑗𝑗𝑠𝑠 is the same in both datasets, but that reduces to 
𝐸𝐸(𝑏𝑏|𝑏𝑏𝑃𝑃𝑠𝑠) = 𝐸𝐸(𝑏𝑏|𝑏𝑏𝑉𝑉𝑠𝑠) in the current context.  
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The second condition, transportability, is essential if the procedure used to generate 

predicted values in the validation dataset is to be applied to the primary dataset. C2 requires that 

researchers make additional assumptions about the characteristics of the primary and validation 

datasets. Carroll et al. (2006) warn that transportability may not be satisfied when the validation 

data are drawn from external sources. They emphasize that validation data are ideally drawn 

from a random subsample of the primary data. Bound et al. (2001) point out that measurement 

error in survey data often varies with the context of the survey, which is potentially an issue 

when the validation data are drawn from an external source. 

Bound et al. (2001) also note that transportability requires that the primary and validation 

data are representative of the same population. As in previous work on obesity, we use datasets 

that are weighted to be nationally representative, which implies that the distribution of b, 𝐹𝐹(𝑏𝑏), 

does not vary across samples. In the next section, we will use this implication to demonstrate that 

transportability is not satisfied when using the standard approach. 

The rest of this section compares the standard validation approach used by Cawley (2002, 

2004) and our proposed alternative. In section 2.1, we focus on the assumptions required for the 

standard approach to satisfy transportability, and argue that they are not likely to hold. In section 

2.2, we propose an alternative surrogate that satisfies the transportability condition under weaker 

assumptions. In contrast to the standard approach, the method we develop is robust to differences 

in misreporting across samples. 
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2.1 The Standard Validation Method 

 Consider the regression of some dependent variable y on b and other covariates, but 

assume we only observe 𝑏𝑏�𝑃𝑃 in the primary data set. Following the previous literature on obesity, 

we would estimate 

 𝑏𝑏 = 𝜂𝜂�𝑏𝑏�𝑉𝑉� + 𝜖𝜖 (1) 

using the validation sample, and then use  

𝑏𝑏� = �̂�𝜂�𝑏𝑏�𝑃𝑃� 

in place of b as an independent variable in our primary sample.8 

This approach assumes that 𝑏𝑏�𝑗𝑗 is a surrogate for 𝑏𝑏, and that it is transportable. In this 

case, transportability is satisfied under the assumption that  𝐸𝐸�𝑏𝑏�𝑏𝑏�𝑃𝑃� = 𝐸𝐸�𝑏𝑏�𝑏𝑏�𝑉𝑉�.9 This 

assumption is violated if measurement error in 𝑏𝑏�𝑗𝑗 varies across samples, which is likely when 

NHANES data are treated as a validation sample for data from telephone surveys. As we noted 

above, respondents are more likely to misreport their height and weight in telephone surveys 

than in in-person surveys and misreport to a greater extent.  

2.2 An Alternative Method Based on Percentile Rank 

Fortunately, the theory supporting the use of validation data does not require us to 

directly use the reported measures, 𝑏𝑏�𝑗𝑗, when correcting for measurement error in b. Any 

surrogate for 𝑏𝑏 that satisfies transportability can be used.  

8 In Cawley (2004) and other papers in the obesity literature, the dependent variable is actually regressed on a 
nonlinear function of the predicted values, BMI. As we discuss later, L&S argue that it would be preferable to 
predict the nonlinear function directly. 
9 This is consistent with the weaker form of transportability used by L&S. 
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As before, we assume that the 𝑏𝑏�𝑗𝑗 are surrogates for b. Following the previous literature, 

𝑏𝑏�𝑗𝑗 are functions of 𝑏𝑏 and a random error term that is not correlated with 𝑦𝑦.10  This implies that 

the percentile rank of 𝑏𝑏�𝑗𝑗, given by the distribution function 𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗), is a function of b and the 

same random error. Therefore, 𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗) is also a surrogate for the true value, b, satisfying C1. 

Our approach uses the percentile rank of the report, 𝑏𝑏�𝑗𝑗, to generate predicted values of b. 

The advantage of this approach is that it requires a much weaker assumption about the 

relationship between 𝑏𝑏�𝑗𝑗 and the true values, b. Specifically, we assume:  

A1. The expected value of the true measure conditional on the reported value is 

monotonically increasing in the reported value; i.e., 𝑏𝑏�″ > 𝑏𝑏�′, implies that         

𝐸𝐸(𝑏𝑏|𝑏𝑏�″) > E(𝑏𝑏|𝑏𝑏�′).11 

In other words, A1 says that, given any two people who report their weight, the person who 

reports the higher weight is expected to actually weigh more. Assumption A1 is unaffected by 

differences in measurement error across samples, as long as reported values still allow a relevant 

(expected) ranking of respondents in each sample. Furthermore, if A1 does not hold, then it is 

not clear to us that respondent reports convey any useful information about actual height and 

weight. Finally, note that the monotonicity described by A1 is testable in the validation sample 

but not in the primary samples.12 

10 Following equation (1), 𝑏𝑏�𝑣𝑣 = 𝜂𝜂−1(𝑏𝑏 − 𝜖𝜖), where 𝜂𝜂−1( . ) describes how reported values differ from what 
respondents believe the actual measure is. Although 𝜖𝜖 is not correlated with 𝑦𝑦, it could be correlated with 𝑏𝑏. 
11 This is akin to the assumptions made in the principal-agent literature to allow the use of the first-order approach to 
solving maximization programs (see Milgrom, 1981, and Rogerson, 1985). A sufficient, but not necessary, condition 
for this assumption is the first-order stochastic dominance of 𝐹𝐹(𝑏𝑏|𝑏𝑏�″) over 𝐹𝐹(𝑏𝑏|𝑏𝑏�′). 
12 We test A1 for each race and gender group in NHANES using nonparametric regressions of actual height and 
weight on their reported values. We find no statistically significant violations of monotonicity in any case. 

8 
 

                                                           



Now consider the unconditional distribution of true values, 𝐹𝐹(𝑏𝑏).13 Both 𝐹𝐹(𝑏𝑏) and 𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗) 

are continuous, monotonically increasing functions with ranges in the interval [0, 1]. This 

implies that for every value of 𝑏𝑏�𝑗𝑗 there is a 𝑏𝑏 such that 

𝐹𝐹(𝑏𝑏) = 𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗). 

In general, 𝑏𝑏 ≠ 𝑏𝑏�𝑗𝑗; however, taking the inverse of 𝐹𝐹(∙), we have: 

𝑏𝑏 = 𝐹𝐹−1(𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗)), 

which maps reported values into the true values of 𝑏𝑏. 

 Note that 𝐹𝐹−1(∙) does not depend on whether the reported values, 𝑏𝑏�𝑗𝑗, are drawn from the 

primary or auxiliary sample. It simply takes the percentile rank associated with a reported value 

in sample 𝑗𝑗 and returns the actual value that has the same position in the distribution of true 

values. As a result, 𝐹𝐹�𝑏𝑏|𝐺𝐺𝑉𝑉(𝑏𝑏�𝑉𝑉)� = 𝐹𝐹�𝑏𝑏|𝐺𝐺𝑃𝑃(𝑏𝑏�𝑃𝑃)�. This implies that the percentile ranks, 𝐺𝐺𝑗𝑗(𝑏𝑏�𝑗𝑗), 

satisfy transportability, even when the reported values do not. Therefore, the percentile rank 

approach satisfies both of the conditions required for the use of validation data. 

3 Data and the Transportability of Self-Reported Measures 

This section begins with a brief introduction to the data sets we use in our analysis. We then 

demonstrate that self-reported height and weight do not satisfy transportability between these 

data sets. 

13 𝐹𝐹(∙) does not vary between datasets when the datasets are both representative samples of the same population. 

9 
 

                                                           



3.1 Three Data Sets 

We draw our primary datasets from two sources, the Behavioral Risk Factor Surveillance System 

(BRFSS) and the American Time Use Survey (ATUS). The BRFSS is a telephone survey 

conducted by the Centers for Disease Control in conjunction with state health departments. It 

focuses on health and risky behaviors, but also contains a variety of demographic information. 

The primary advantage of the BRFSS for obesity studies is its size. With over 300,000 

respondents per year in the later waves, the BRFSS is large enough to compute reliable state-

level descriptive statistics. Additionally, the large sample size makes it popular among 

economists seeking to identify causal effects using inherently inefficient estimation techniques 

such as instrumental variables.  

The ATUS was designed to measure how people spend their time rather than to study 

health outcomes. It is a telephone survey that asks respondents to sequentially report what they 

did on the day prior to the interview. In addition to the time diary, the ATUS collects 

demographic information about respondents and members of the respondent’s household, and 

employment status information for the respondent and the respondent’s spouse. In 2006, 2007, 

and 2008, the U.S. Department of Agriculture’s Economic Research Service (ERS) sponsored 

Eating and Health Modules that collected information about the respondent’s health, including 

weight and height, and additional information on time spent eating and drinking.  

 Following the previous literature, our external validation data are drawn from the 

National Health and Nutrition Examination Survey (NHANES). NHANES is collected by the 

Centers for Disease Control and Prevention with the goal of assessing the health status and 

behaviors of children and adults in the United States. While BRFSS and ATUS only include self-

reported measures of height and weight, respondents in NHANES were measured and weighed 
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after they were asked to report height and weight. We use data on race, gender, and age from the 

demographic background files of the 2007-2008 wave; reported values of height and weight 

from the Weight History questionnaire; and measures of actual height and weight from the 

physical examination.  

 For the sake of consistency, we restrict the samples from all three data sets to 2007 and 

2008. We also focus on respondents between the ages of 19 and 64 who identify as Caucasian, 

African-American or any other racial or ethnic group.14 All estimation uses weights to ensure 

that each sample is representative of the same population. 

 Table 1 presents basic summary statistics for the three datasets. Even with all race and 

gender groups pooled together, average reported weight is higher in the NHANES (180 lbs) 

sample than either BRFSS (178.6) or ATUS (178). Average actual weight, on the other hand, is 

roughly two pounds heavier for the full NHANES sample. 

 The demographic variables in Table 1 are very similar across samples, which is 

consistent with the samples being representative of the same populations. The one notable 

exception is that black respondents appear to be underrepresented in the BRFSS. Such 

differences may point to shortcomings in the sample weights used; however, any shortcomings in 

our sample weights would affect both of the correction methods we compare.15 Therefore, we 

ignore this difference in the work that follows. 

14 All respondents who identify as Hispanic are included in the “other” category. We did not divide this category 
further due to the sample size in NHANES. For the sake of convenience, we refer to these groups as though they are 
defined by race, even though that is not strictly correct. 
15 Additionally, our point can also be demonstrated using only data from race and gender groups that appear to be 
equally represented across samples. 
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3.2 The Transportability of Self-Reported Height and Weight 

 The most relevant difference between the samples is that respondents in the BRFSS and 

ATUS are surveyed by telephone, while respondents in the NHANES are interviewed in person 

with reason to believe they will be weighed and measured.16 It seems natural to expect 

misreporting to be more severe in telephone surveys than in surveys conducted in person prior to 

a medical examination. Pinkston (2013) points out that phone interviews in the NLSY cohorts 

are associated with lower reported weights for white women than in-person interviews, even 

though NLSY respondents have no reason to believe they will be measured in either case. Any 

such difference in misreporting, however, implies that 𝐸𝐸�𝑏𝑏�𝑏𝑏�𝑃𝑃� ≠ 𝐸𝐸�𝑏𝑏�𝑏𝑏�𝑉𝑉� when 𝑏𝑏�𝑃𝑃 = 𝑏𝑏�𝑉𝑉 and 

that the transportability condition does not hold when using the standard approach.  

 Comparing differences in misreporting between our data sets is straightforward. We 

expect the distribution of actual height and weight to be the same in all three datasets because 

they are all representative samples from the same population. If the distributions of a reported 

value are not the same in two samples that have the same distribution of actual measures, the 

relationships between actual and reported measures are also not the same. Therefore, a simple 

comparison of reported height and weight across samples is sufficient to evaluate whether the 

key assumption of the standard approach holds.  

 Figures 1A compare the densities of reported height and weight across samples for white, 

black and other women. Relative to white women in NHANES, white women in both BRFSS 

and ATUS report weights between 120 and 150 pounds more frequently and report higher 

weights less frequently. The comparison of reported weight produces a similar picture for 

women of other races. We only see a difference in the reported weights of black women in the 

16 See Han et al. (2009) and the online documentation for NHANES.  
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upper half of their distributions; however, self-reported height appears more sensitive to context 

for black women than for white or other. 

Figures 1B provide analogous comparisons for men. Differences in reported weight are 

less pronounced for men than for women; but differences in height appear to be larger, especially 

for black and other men. In sharp contrast to the results for women, black men and men from 

other races appear more likely to report higher weights when interviewed on the phone than 

when interviewed in person. 

Tables 2A and B compare the self-reported measures in BRFSS and ATUS to those from 

NHANES. Each table presents averages of reported height and weight, followed by the medians, 

75th and 90th percentiles. The final row of each table then presents nonparametric Kolmogorov-

Smirnov tests for the equality of distributions between samples. 

In both tables, we see that women reported lower weights over the phone than in person, 

but this result is more consistent for black and white women than for women of other races. The 

differences in average reported weight appear to driven more by the upper tail for black and (to a 

lesser degree) other women than for white women. 

The differences in reported distributions are less pronounced for men. We only see 

differences in reported weight for black men and men of other races, and again they appear to 

report higher weights when they cannot be observed by the interviewer. There are small 

differences in reported height, but they are less obvious in the summary statistics than the kernel 

densities. 

The Kolmogorov-Smirnov tests reject the equality of at least some distributions for every 

race and gender group. The only cases in which we cannot reject the equality across samples of 
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either measure are for white and black men in BRFSS compared to NHANES; however, even 

then we can reject the equality of reported BMI distributions (not shown) for black men. Overall, 

these results strongly suggest that the key assumption of the standard approach does not hold, 

and that NHANES data cannot be reliably used as validation data for the BRFSS and the ATUS 

when using the standard approach.  

Finally, it is worth noting that some differences in the results for BRFSS and ATUS may 

be expected. Although both are conducted over the telephone, they have very different focuses. 

The differences in the reported height of black men in ATUS and BRFSS (Figure 1B), for 

example, could be caused by something as simple as differences in the preceding questions or in 

the surveys’ introductions. 

4 Comparing Methods for Predicting BMI 

The standard method used by Cawley (2002, 2004) to correct BMI for measurement error 

involves regressing actual height and weight in NHANES on respondents’ reported values, and 

then predicting the actual measures in the primary dataset. Specifically, for each race and gender 

category, we regress actual height (or weight) on cubic polynomials in age and reported height 

(weight). We then predict actual height and weight, and use those values to calculate predicted 

BMI.17 

17 L&S argue that constructing a nonlinear function of mismeasured variables from predicted values of those 
variables may provide a useful approximation, but predicting the nonlinear function directly is preferable. In the 
case of BMI, this means that researchers who are interested in BMI should predict BMI directly instead of 
constructing it from predicted height and weight; however, we find that the mean squared error associated with the 
prediction of BMI is higher in NHANES when BMI is predicted directly than when it is constructed from predicted 
height and weight. Furthermore, predicting height and weight is more consistent with the previous obesity literature. 
Therefore, we do not follow the advice of L&S in this particular case. 
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 The estimation used in our method is similar, but uses the percentile rank of the reports 

and a more flexible functional form. Consistent with the fact that percentile ranks are (roughly) 

distributed uniformly between zero and one, we found that regressing the actual measures on 

simple polynomials of the percentile ranks resulted in predicted values in NHANES that were 

poor fits for the actual measures.18 For that reason, we regress the actual measures on cubic b-

splines in the percentile rank of reported values.19 

 Figures 2A through 2F compare kernel densities of predicted BMI using our percentile-

rank method to predictions using the standard validation approach for each race and gender 

group. Each figure contains four graphs, one for each prediction method and primary data set. 

Each graph compares predicted BMI from a primary data set to the analogous prediction from 

NHANES, as well as actual BMI from NHANES. At the bottom of each figure, we include 

results for Kolmogorov-Smirnov tests of the differences observed in each graph. 

 Figure 2A shows that the standard method can produce values of predicted BMI that 

differ significantly between samples. These differences follow the differences between samples 

in reported weight, and the Kolmogorov-Smirnov tests strongly reject the hypothesis that the 

standard method produces predicted values in ATUS or BRFSS that are equal to those in 

NHANES. Again, this suggests that the standard method is inappropriate in our context. 

 In contrast, the density functions of BMI predicted using the percentile rank method are 

very similar across samples. The density of predicted BMI in ATUS is almost indistinguishable 

from the analogous density in NHANES. The Kolmogorov-Smirnov tests both have p-values 

18 The distributions of percentile ranks differ from uniform distributions because reported values of height and 
weight have clustering at certain numbers (e.g., intervals of five pounds). 
19 The details of our estimation are included in the Appendix. 
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over 0.8, providing no reason to doubt that the density functions of predicted BMI are the same 

across samples when our method is used. 

 The results for black women (Figure 2C) and women of other races (2E) are similar to 

those for white women. The densities of predicted BMI using our approach are noticeably closer 

to the corresponding densities in NHANES, which makes them more similar to actual BMI in 

NHANES (and presumably the national population). Kolmogorov-Smirnov tests again reject the 

equality of the standard method across data sets, but fail to reject our approach. 

 The results for men are less striking than the results for women, but still support our 

approach. The density functions for white men (Figure 2B) appear more similar when the 

percentile method is used than when the standard method is used, but testing the equality of 

distributions suggests that none of these differences are statistically significant. Although the 

graphs of kernel densities for black men do not tell an obvious story, the K-S tests reject the 

standard approach and fail to reject our percentile method.20 Finally, the standard method is 

rejected for men of other races when we compare the ATUS to NHANES, and the percentile 

method again produces predictions of BMI that are more consistent across contexts. 

 As a robustness check, we also tested for differences in the density functions of predicted 

BMI between the ATUS and BRFSS (not shown). We would not expect our percentile correction 

to produce different distributions between the two primary samples, and we find no evidence that 

it does. On the other hand, we find statistically significant differences for men and women of 

20Regardless of method, the BMI of black men appears to be more difficult to predict that the BMI of other groups. 
This is appears to be due to errors in the prediction of height for black men. 
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other races in these surveys when the standard correction is used, which suggests that differences 

in context that are less obvious than mode of collection may affect misreporting.21 

5 Do These Differences Matter? 

The results of sections 3 and 4 strongly suggest that using the relationship between reported and 

actual height and weight in the NHANES to predict BMI in data from the ATUS or BRSS is 

inappropriate. Furthermore, the alternative we propose appears to work well in practice, 

producing predictions of BMI that are consistent across random samples of the same population. 

In this section we provide results that demonstrate the potential importance of our adjustment to 

empirical work. 

5.1 Effects of BMI Correction on Regression Estimates 

This section is intended to illustrate the impact our adjustment might have on empirical work that 

uses BMI or obesity in regressions. For both the BRFSS and ATUS, we consider one case where 

BMI or obesity is an explanatory variable and one case where it is the dependent variable. We 

report the results both for the full sample and for each race×gender subgroup. None of the 

estimates presented in this section consider endogeneity or any other complications researchers 

might encounter. These results are presented for demonstration purposes only. 

 To assist with the interpretation of results, Table 3 presents average BMI and percentages 

overweight, obese (BMI≥ 30), and class II/III obese (BMI≥ 35) by correction method and 

race×gender group for both the BRFSS and ATUS samples. Averages for the actual measures 

from NHANES are included for comparison.  

21 Kolmogorov-Smirnov tests reject the equality of distributions of BMI predicted using the standard correction with 
p-values less than or equal to 0.001 for other women and men. No other test suggests a statistically significant 
difference in predicted values between any ATUS and BRFSS subsamples. 
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In the full sample of either dataset, correcting for measurement error increases average 

body mass, and the effects are most pronounced for the upper tail of the distributions. Roughly 

10.5% of population reports a BMI of 35 or higher. Applying the standard correction raises this 

to 12.5%. Applying our percentile-based correction produces estimates of nearly 14%, which is 

consistent with the rate of class II/III obesity using measured height and weight from NHANES. 

 The patterns seen in the full sample are seen to some degree in most of the race and 

gender groups, but they are most pronounced for white women. The average reported BMI for 

this group is 26.9. The standard correction increases average BMI to 27.6, and our correction 

increases it further to 28.2, which is the same as the average actual BMI from NHANES. The 

differences in the correction methods are larger at the upper tails of the distribution. For 

example, the overall obesity rate based on uncorrected reports is 25.5%. The standard correction 

increases the rate to 30%, and our correction increases it further to 32.7%.  The actual rate from 

NHANES is 33.8%. Thus our correction still slightly underestimates the obesity rate for white 

women, but it does significantly better than the standard approach. Looking at class II/III 

obesity, the rate is under 11% when self-reported measures are used, just over 13% using the 

standard correction, and around 16% using our percentile-based correction, which again is lower 

than the actual rate from NHANES (17.3%). 

 Black men are the most obvious exception to the pattern seen in the full sample. The 

average self-reported BMI in both the BRFSS and the ATUS samples is nearly indistinguishable 

from average measured BMI in NHANES for black men. Furthermore, while black men appear 

to under-report obesity and class II/III obesity slightly, the incidence of self-reported overweight 

status is higher than the actual incidence for black men.  
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5.1.1    BRFSS: Food Prices and BMI 

For our first empirical example, we use the BRFSS to evaluate the relationship between 

state-level food prices and BMI. Table 4 reports coefficient estimates of interest from OLS 

regressions of BMI on food price and other basic control variables, as well as probit estimates 

(presented as average marginal effects) of the effects of food prices on the probabilities of being 

obese or class II/III obese. In each case, results are presented with no adjustment, adjustment 

using the standard approach, and then adjustment using our percentile rank method. The control 

variables include race (dummies for non-Hispanic black and non-Hispanic white), education 

(dummies for some high school, high school, some college, and four-year college degree or 

greater), marital status (dummies for married, divorced, and widowed), age, inflation-adjusted 

household income, and a dummy for whether the year was 2008. The state food price measure is 

computed from city-level data from the Council for Community and Economic Research 

(formerly American Chamber of Commerce Researchers Association) Cost of Living Index.22 

The sample average food price is $2.56, so a one-unit increase in food price represents 

approximately a 40% increase relative to the mean. 

The results presented in Table 4 suggest that neither the standard correction nor our 

correction affect the conclusion that higher food prices are associated with lower body mass; 

however, the choice of correction method has potentially important implications for the 

magnitudes of coefficients. For the full sample and for most subgroups, the standard correction 

leads to larger magnitudes than no correction, while our correction leads to even larger 

magnitudes than the standard correction. This is consistent with the aforementioned result that 

22 Following Chou et al. (2004), for each city we average over the prices of each grocery food item, weighting by the 
C2ER shares of each item’s importance in the basket of goods. We then define state prices as the population-
weighted average of the prices in the state’s C2ER markets. Prices are in 2008 dollars. 

19 
 

                                                           



measurement error in self-reported weight and height serves to compress the BMI distribution. 

The more measurement error is eliminated, the more “stretched out” the BMI distribution 

becomes. In other words, the smaller the measurement error, the larger the change in BMI that is 

associated with a given change in food prices. For the 0-1 variables, this stretching out of the 

distribution increases the number of lower-BMI individuals (i.e. those closer to the cutoff) that 

are categorized as obese or class II/III obese. It is therefore not surprising that our correction, 

which purges the most measurement error, would lead to larger magnitudes than the standard 

correction, which purges some measurement error, which in turn leads to larger magnitudes than 

using no correction.  

More specifically, consider the whole-sample regressions. The effect of food price on BMI 

using our percentile rank correction is 23% larger (-0.937 compared to -0.764) than that using no 

correction, and 9% larger (-0.937 compared to -0.858) than that using the standard levels-based 

correction. For obesity, the estimated effect using our approach is 20% larger than with no 

correction, and 3.4% larger than with the standard correction. The differences are most striking, 

however, for class II/III obesity. The estimates with our correction are 64% and 28% larger than 

those using no correction and the standard correction, respectively. The finding that mitigating 

measurement error matters most for class II/III obesity makes sense in light of the 

aforementioned results from the literature that the extent of misreporting of both weight and 

height increases as weight increases (Rowland, 1990; Cawley, 2002). In other words, correcting 

measurement error leads to the largest increases in BMI among the right tail of the distribution, 

where the Class II/III obesity cutoff lies.  

Accurately estimating effects on class II/III obesity is vital, as a recent meta-analysis has 

shown that an increased risk of mortality from high BMI does not begin until crossing the class 
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II/III obesity threshold (Flegal et al., 2013). To illustrate, suppose we are interested in predicting 

lives saved from a calorie tax that raises the price of the food basket by $1. Obesity is estimated 

to cause 112,000 deaths per year (Flegal et al., 2005), and Flegal et al.’s (2013) results suggest it 

is reasonable to attribute all of the premature mortality from obesity to class II/III obesity. The 

class II/III obesity rate in the 2007-2008 NHANES is 14.4%. Therefore, using the estimate with 

our correction of -0.041 a $1 increase in food prices would reduce class II/III obesity by 28.5%, 

compared to 22.2% using the standard correction’s estimate of -0.032 and 17.4% using the 

estimate with no correction of -0.025. Multiplying these numbers by the annual deaths from 

obesity, the estimated lives saved from the hypothetical policy are 31,889 using our correction, 

compared to 24,889 using the standard correction and 19,444 with no correction. Therefore, the 

chosen correction method can lead to important differences in policy implications, even if the 

general conclusions about sign and statistical significance are unaffected. 

Turning to the subsamples, we observe the same general pattern of the magnitudes 

increasing as measurement error is purged for all groups except black women, black men, and 

men of a race other than white or black. Even for these three groups, however, our correction still 

leads to the largest magnitudes for class II/III obesity – substantially larger magnitudes for black 

women and other men. For BMI, our correction increases the food price effect most substantially 

relative to the standard correction for other men (14% larger estimated food price effect), black 

women (14% larger), and white women (13%). For obesity, we observe the largest percentage 

increases in magnitudes using our correction as opposed to the standard correction for black 

women (30%) and white women (11%). Importantly, for class II/III obesity our correction 

increases the estimated food price effect by over 20% relative to the standard correction for all 
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groups except men. The largest changes are among other men (44%), white women (41%), and 

black women (37%).  

5.1.2    ATUS: Food Prices and BMI 

 Table 5 is analogous to Table 4, but presents estimated effects of food prices on body 

mass using data from the ATUS. Overall, the results are very similar, but the standard errors are 

larger in Table 5 due to the smaller sample size. Looking at the entire sample, the estimated 

effect of food prices on BMI is smallest when reported BMI is used and largest when our rank-

based correction is used. Furthermore, correcting for measurement error appears to have the 

largest effect when we consider class II/III obesity. The estimated effect of an increase in food 

prices on the probability of class II/III obesity is 29% larger with the standard correction than 

with reported values (-0.036 versus -0.028), and 22% larger with our correction than with the 

standard correction (-0.044 versus -0.036). 

 Looking within race and gender groups, the results for white women again show that 

correcting for measurement error results in larger estimated effects of prices on body mass. The 

estimated effects of food prices on BMI fall for black men as we correct for measurement error, 

which is consistent with black men reporting themselves as overweight more often than they are. 

5.1.3    BRFSS: BMI and Diabetes 

We next turn to an examination of the implications of our percentile rank correction in 

regressions with a weight-related independent variable. For the BRFSS, we consider a question 

of broad interest to epidemiologists and health policy researchers: the impact of obesity on 

diabetes. We estimate probit models with a dummy for whether the individual has ever been 

diagnosed with diabetes as the dependent variable; either BMI, obese, or class II/III obese as the 
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independent variable of interest; and the same set of controls as our preceding BRFSS analysis in 

Section 5.1.1.  

Average marginal effects of BMI, obesity, and class II/III obesity on P(Diabetes) are 

reported in Table 6. In all regressions, the association between BMI, obesity, or class II/III 

obesity and diabetes is positive and statistically significant, so the correction method again does 

not influence the general conclusions. However, important differences again emerge in the 

magnitudes. In most regressions, the standard correction leads to smaller magnitudes than no 

correction, while our correction leads to even smaller magnitudes than the standard correction. 

This is the opposite of the pattern observed when the weight-related variable was the outcome, 

and is again consistent with the observation that measurement error in self-reported weight and 

height compresses the BMI distribution. Correcting measurement error leads to a larger change 

in BMI being associated with a given change in diabetes, and therefore a smaller coefficient 

estimate when BMI is an explanatory variable. 

Turning to the more specific results for the full sample, the most interesting observation 

is that the corrections have only a minimal effect on the estimated relationship between BMI and 

diabetes, but more substantial effects on the estimates for obesity and class II/III obesity. Being 

obese is estimated to increase P(Diabetes) by 6.9 percentage points using no correction, 6.5 

percentage points using the standard levels correction, and 6.2 percentage points using our 

percentile-rank correction. Our correction therefore leads to a 10% smaller magnitude than no 

correction, and a 5% smaller magnitude than the standard correction. 

For most subsamples, we observe the same pattern of the estimated effects of obesity and 

severe obesity on P(diabetes) decreasing with the extent of the measurement error purged. The 

most notable exceptions are for black men, but they are also the only group for which the 
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incidence of class II/III obesity appears to be lower when our correction is used than it is when 

the standard correction is used. In the BMI regressions, our correction makes the biggest 

difference for black women (10% smaller magnitude than no correction, 8% smaller magnitude 

than the standard correction). In the obesity and class II/III obesity regressions, our correction is 

most consequential for white women. The estimated effect of obesity on P(diabetes) using our 

correction is 14% smaller than using no correction, and 7% smaller than using the standard 

correction. For class II/III obesity, these numbers are 10% and 6%, respectively. It is not 

surprising that the correction is important for white women since they are the group among 

which underreported weight is the most common.  

 

5.1.4    ATUS: BMI and Disability 

The results in Table 7 provide another example of how correcting for measurement error can 

affect estimates that use a measure of body mass as an independent variable. In this case, we use 

data from the ATUS to consider effects of BMI, obesity and class II/III obesity on the probability 

of being out of labor force due to disability.23 The results in Table 7 are average marginal effects 

from probit models that use the same controls as previous regressions in the section. 

 As in the case of diabetes, adjusting for measurement error does not affect the basic 

conclusion that body mass is positively associated with disability, but it does reduce the 

estimated effects. The average marginal effect of obesity on disability falls by 26%, from 0.024 

(0.005) to 0.018 (0.004), when the standard correction is applied; and by 32%, to 0.016 (0.004) 

when our percentile correction is used. The difference between our correction and the standard 

correction is more pronounced when we consider the effects of class II/III obesity. The estimated 

23 This variable equals one if the respondent reported being out of the labor force due to disability in either the 
ATUS or the CPS. Its mean (standard deviation) is 0.0559 (0.2297). We acknowledge that this is variable is not an 
ideal measure of disability; however, it is still useful for the purpose of our demonstration. 
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effects fall by 22% when our correction is used, but by only 6% when the standard correction is 

used. The results, therefore, are again consistent with measurement error compressing the upper 

tail of the BMI distribution and resulting in fewer people being classified as obese or class II/III 

obese.  

 The patterns of effects for most race and gender groups are similar to those for the entire 

sample. The results for white women again mirror those for the full sample most closely; 

however the results for black women may be the most striking. The average marginal effect of 

class II/III obesity on the probability a black woman is disabled falls by nearly 26% when the 

standard correction is applied, but by more than half when our percentile rank correction is used. 

5.2 Obesity Maps 

Finally, we demonstrate the effect of measurement error correction on the estimated 

prevalence of obesity in the United States. Figure 3 is inspired by the well-known obesity maps 

produced by the CDC using data from BFRSS.24 Figure 4 is similar to Figure 3, but we use the 

standard validation method to correct for measurement error before calculating the prevalence of 

obesity. Finally, Figure 5 shows the map after our percentile rank method has been used.  

These three figures demonstrate that correcting for measurement error can have dramatic 

effects on the estimated prevalence of obesity. Our percentile rank correction has a larger effect 

than the standard validation approach because the standard approach is biased by the 

measurement error it aims to correct. Looking at the nation as a whole, we find that 27.3% of the 

population reports being obese, 30.8% are found to be obese using the standard correction, and 

33.3% are found to be obese using the correction we propose. 

24 There are a couple minor differences between our maps and those produced by the CDC. While the CDC map 
considers all states and uses data on all adults, we focus on adults between the ages of 19 and 64 in the continental 
United States. We also pool data from 2007 and 2008 into one map instead of creating separate maps for each year. 
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Table 8 summarizes the pattern of obesity prevalence in Figures 4-5. When no correction is 

made, the obesity rates for most states (34) are higher than 25 percent and less than or equal to 

30 percent, while no state has an obesity rate over 35 percent. With the standard correction, most 

states (29) fall into the 30-35 percent range and three fall into the 35-40 percent range. Using our 

correction, the modal obesity rate still falls into the 30-35 percent range, but now 15 states have 

obesity rates in the 35-40 percent range. Furthermore, we find at least a quarter of the adult 

population in every state is obese when our correction is applied.  

It is also interesting to look at the number of states that move to a higher interval of obesity 

prevalence when we correct for measurement error. When using the standard correction, 36 

states move to the next highest prevalence interval, while 12 states do not change ranges. Using 

our approach, no state remains in the same prevalence interval and 14 move up two intervals, 

which is consistent with a median increase in the prevalence of obesity (not shown) of just over 

six percentage points. 

Effects of correcting for measurement error also vary by state. The largest absolute 

increases in prevalence when our correction is applied are in West Virginia and Iowa (7.5 and 

7.1 percentage points, respectively). The smallest increases, 5.0 and 5.2 points, are in New York 

and Rhode Island. As a percent of reported obesity prevalence, estimated prevalence increased 

the most (by over 27 percent) in Delaware and Utah, and the least (around 17.4 percent) in 

Mississippi and South Carolina. Finally, the corrections increase the variance between states (not 

shown) from 5.88 to 6.21 with the standard correction and 6.53 with our correction. 
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6 Conclusion 

Since Cawley (2002, 2004) it has been common in the economics-of-obesity literature to 

correct for measurement error in self-reported height and weight by using data from the 

NHANES as an external validation sample for the authors’ primary data. The standard approach 

is to regress actual height and weight on reported height and weight using NHANES data, and 

use the estimated coefficients to predict height and weight in the primary dataset. This approach 

relies on the assumption that the misreporting of height and weight is the same in both surveys, 

even though one survey is followed by a physical examination and (in most cases) the other 

survey interviews respondents by telephone. 

We propose an alternative approach that requires much weaker assumptions about the data 

and is robust to differences in measurement error between samples. Specifically, we assume that 

if person A says she weighs more than an otherwise similar person B, the conditional expectation 

of A’s actual weight is higher than B’s. We show that, if this assumption holds, the relationship 

between the percentile rank of a respondent’s reported height and weight and her actual height 

and weight will be the same in both samples, even if misreporting is more severe in one sample 

than the other. If this assumption does not hold, then it is not clear what we can learn from self-

reported height and weight. 

Our approach replaces the reported measures used in the standard approach, which are 

surrogates for the actual measures, with surrogates that are more likely to be transportable across 

datasets.  We use the percentile ranks of reported values, as opposed to the reported values 

themselves, to predict actual height and weight. Our regressions use functional forms of the 

percentile ranks that are more flexible than the polynomials that are traditionally used with self-

reported values, but our approach is otherwise similar to the standard approach. The result is a 
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correction for measurement error that is more robust than the standard approach, while still being 

easy to implement. 

To illustrate the value of our correction, we compare data from the NHANES and two 

nationally representative telephone surveys, the BRFSS and the ATUS. First, we compare 

reported values of height and weight within race and gender subsamples of each dataset to 

demonstrate that misreporting does vary by context. We find that misreporting appears to be 

more sensitive to context among groups (e.g., white women) that are more prone to misreporting. 

When we compare predictions of BMI using the standard approach and our percentile-rank 

approach, we find that the standard approach predicts statistically significant differences in the 

distribution of BMI across samples that are representative of the same populations, and those 

differences reflect the differences in reported values. We find no evidence of such differences 

between samples when BMI is predicted using our alternative method. In other words, our results 

confirm that the standard approach is biased by differences in misreporting between samples, 

while our approach is not. 

We also consider how corrections for misreported height and weight might matter in future 

empirical work. We find that the estimated prevalence of obesity and class II/III obesity is higher 

when our rank-based correction is used than when either the standard correction or no correction 

is used. Next, we present examples of regression estimates with body mass as a dependent and an 

independent variable. In each of these examples, we find differences in coefficient estimates that 

are consistent with measurement error compressing the upper tail of the distribution. The 

differences in coefficient estimates between our correction and the standard correction are often 

similar in size to the differences in estimates between the standard correction and uncorrected 
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reports. These differences are often economically significant and could affect the conclusions 

researchers and policymakers draw.   

There are a few caveats we wish to discuss. First of all, we must acknowledge that an 

internal validation sample, drawn at random from the primary data, should be preferred to an 

external validation sample, even when our correction is used. The rank-based correction we 

propose allows the use of an external validation sample under weaker assumptions than the 

standard approach does, but it still requires more assumptions than an internal validation sample 

would. In many cases, however, an internal validation study is not feasible. 

More broadly, our work should be seen as a warning (or reminder) that the misreporting of 

height and weight is sensitive to the context of the survey. The differences in context between 

the NHANES and the BRFSS or NLSY cohorts, for example, are relatively obvious but still 

sometimes forgotten. It is also possible that context varies in ways that affect misreporting even 

within a given survey. For example, there is no reason to assume that misreporting in a survey 

that spans decades, such as BRFSS, has remained constant over time because social norms may 

have changed as waistlines expanded. Additionally, some surveys, such as the NLSY, mix 

telephone interviews with in-person interviews, which can cause differences in misreporting 

between interviews with the same respondent.25  

As a final note, we must emphasize that body mass is not the same as body composition. 

As discussed by Burkhauser and Cawley (2008) and others, body fat percentage or other 

measures of adiposity may be preferable to BMI in many applications. Unfortunately, measures 

of body composition are rarely available in large datasets because, like actual weight and height, 

25 As mentioned above, Pinkston (2013) notes that white women in the NLSY97 claim to weigh less in years when 
they are interviewed by phone than in years when they are interviewed in person. 
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they are more expensive to collect than self-reported weight and height. Therefore, the 

widespread use of self-reported BMI is likely to continue in the future, and measurement error 

will continue to be a problem as long as self-reported BMI is used. 
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Appendix: How to Use Our Percentile-Based Correction 

Although our percentile-based approach may sound more complicated to implement than the 

standard approach, we want to assure the reader that the added complication is trivial. Our 

approach adds two simple steps to the standard approach. Each of those two steps requires one 

line of code in Stata. 

First, we find the percentile rank of the reported measure in the relevant subsample. This 

is easily done in Stata using the “cumul” command by dataset, race or ethnic group, and gender. 

Using reported weight as an example, we would have: 

bysort dataset race sex: cumul reported_weight [aw= samp_wt], g(wt_rank) equal 

where wt_rank is the newly created percentile rank in the distribution of reported_weight for the 

subsample determined by the indicators dataset, race and sex. 

 Actual weight must then be regressed on a flexible function of wt_rank, and a polynomial 

in age. We found that simple polynomials in wt_rank were not flexible enough to predict actual 

weight, and used cubic basis splines in wt_rank instead. The second step our method adds to the 

standard approach generates the splines with the user-written command “bspline”.1 For example, 

bspline, xvar(wt_rank) p(3) gen(wt_spline) knots(0, .05, .1, .25, .5, .75, .9, .95, 1) 

where wt_spline is the prefix of the generated splines.2 

 From this point on, our approach closely resembles the standard approach. Our splines 

simply replace the polynomial in reported weight that previous authors have used: 

1The command “bspline” was written by Roger Newson. Documentation and code can be found here: 
http://econpapers.repec.org/RePEc:boc:bocode:s411701 
2 The number and spacing of knots can be adjusted as needed to improve the fit of the predicted values. 
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reg actual_weight (i.race##i.sex)##(c.age##c.age##c.age  c.wt_spline*) [aw=samp_wt], nocons 

Weight is predicted in both the validation sample, which contains actual_weight, and the primary 

sample. Finally, the process can be repeated for height, allowing a predicted BMI measure to be 

constructed.3  

 

  

3 Alternatively, BMI itself could be predicted directly following the same approach. 
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Table 1. Summary Statistics by Dataset 
  BRFSS ATUS NHANES 
Reported Height 67.37 67.21 67.24 

 
(4.18) (4.10) (4.08) 

    Reported Weight 178.6 178 180 

 
(44.67) (43.60) (45.15) 

    Actual Height …. …. 66.9 

 
(3.88) 

    Actual Weight …. …. 181.8 

 
(47.18) 

    White 0.680 0.689 0.674 

 
(0.466) (0.463) (0.469) 

    Black 0.103 0.114 0.119 

 
(0.303) (0.318) (0.323) 

    Other Race/Ethnicity 0.217 0.197 0.207 

 
(0.412) (0.397) (0.405) 

    Male 0.516 0.513 0.504 

 
(0.500) (0.500) (0.500) 

    Age 41.29 41.34 41.05 

 
(12.48) (12.54) (12.67) 

    Observations 17,721 539,072 4,113 
Notes:  Standard deviations are in parentheses. All samples weighted to be representive of 
adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other 
Race/Ethnicity" includes all respondents who indentify as Hispanic. 
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Table 2A. Comparison of Self-Reported Values: BRFSS vs. NHANES 
    Mean Percentiles of Distribution Kolmogorov-Smirnov 
    Median 75th 90th Test (p-value) 

 
White Women 

Weight NHANES 163.907 155  185  220  0.003 
BRFSS  159.947 150  180  210  

       
Height NHANES  64.828 65  67  68  0.972 

BRFSS  64.857 65  67  68  

       
 

White Men 

Weight NHANES  199.387 195  220  250  0.591 
BRFSS  200.060 195  220  250  

       
Height NHANES  70.690 71  73  74  0.559 

BRFSS  70.731 71  72  74  

       
 

Black Women 

Weight NHANES  182.627 170  214  250  0.047 
BRFSS  178.571 170  200  240  

       
Height NHANES  64.729 65  67  68  0.572 

BRFSS  64.793 65  67  68  

       
 

Black Men 

Weight NHANES  198.628 190  225  250  0.179 
BRFSS  201.797 195  225  260  

       
Height NHANES  70.221 70  72  74  0.317 

BRFSS  70.279 70  72  74  

       
 

Other Women 

Weight NHANES  154.718 148  175  205  0.498 
BRFSS  153.868 148  172  200  

       
Height NHANES  62.893 63  65  66  0.025 

BRFSS  63.171 63  65  67  

       
 

Other Men 

Weight NHANES  180.930 175  200  230  0.017 
BRFSS  183.433 179  200  230  

       
Height NHANES  67.585 67  70  72  <0.001 

BRFSS  68.142 68  71  72  
Notes: All samples weighted to be representative of adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other" 
includes all respondents who identify as Hispanic. 
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Table 2B. Comparison of Self-Reported Values: ATUS vs. NHANES 
    Mean Percentiles of Distribution Kolmogorov-Smirnov 
    Median 75th 90th Test (p-value) 

 
White Women 

Weight NHANES 163.907 155 185 220 0.002 
ATUS 159.348 150 180 210 

       
Height NHANES  64.828 65 67 68 0.993 

ATUS 64.773 65 67 68 

       
 

White Men 

Weight NHANES  199.387 195 220 250 0.270 
ATUS 197.917 190 220 250 

       
Height NHANES  70.690 71 73 74 0.020 

ATUS 70.487 70 72 74 

       
 

Black Women 

Weight NHANES  182.627 170 214 250 0.017 
ATUS 176.208 170 200 237 

       
Height NHANES  64.729 65 67 68 0.116 

ATUS 64.434 64 66 68 

       
 

Black Men 

Weight NHANES  198.628 190 225 250 0.331 
ATUS 198.814 195 225 257 

       
Height NHANES  70.221 70 72 74 0.060 

ATUS 69.827 70 72 74 

       
 

Other Women 

Weight NHANES  154.718 148 175 205 0.001 
ATUS 150.478 140 170 197 

       
Height NHANES  62.893 63 65 66 0.764 

ATUS 62.853 63 65 66 

       
 

Other Men 

Weight NHANES  180.930 175 200 230 0.010 
ATUS 184.299 180 200 238 

       
Height NHANES  67.585 67 70 72 0.036 

ATUS 67.931 68 70 72 
Notes: All samples weighted to be representative of adults in the US between the ages of 19 and 64 in the years 2007 and 2008. "Other" 
includes all respondents who identify as Hispanic. 
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Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile
Method Method Method Method Method Method Method Method

Full Sample 28.51 67.0% 33.6% 14.4%
 BRFSS 27.68 28.21 28.49 63.4% 65.9% 67.2% 28.0% 31.4% 33.0% 10.5% 12.5% 13.8%
 ATUS 27.71 28.22 28.52 64.0% 66.2% 67.4% 28.5% 31.7% 33.0% 10.7% 12.5% 13.9%

White Women 28.20 60.6% 33.8% 17.3%
 BRFSS 26.91 27.63 28.22 53.2% 57.9% 60.8% 25.5% 30.0% 32.7% 10.8% 13.3% 15.8%
 ATUS 26.94 27.65 28.20 53.6% 58.0% 61.0% 25.6% 30.2% 32.6% 10.9% 13.2% 16.0%

White Men 28.42 71.2% 31.3% 10.2%
 BRFSS 28.02 28.41 28.45 71.2% 71.8% 72.0% 27.9% 30.8% 31.8% 9.1% 10.9% 11.0%
 ATUS 27.98 28.35 28.47 71.8% 72.2% 72.0% 28.2% 30.7% 31.8% 9.0% 10.8% 10.9%

Black Women 31.50 76.5% 48.1% 28.7%
 BRFSS 30.13 30.96 31.52 74.0% 76.6% 78.9% 42.2% 46.0% 47.6% 22.0% 24.9% 28.2%
 ATUS 30.11 30.90 31.52 74.5% 76.9% 79.5% 42.5% 45.8% 47.8% 21.0% 23.1% 28.2%

Black Men 28.51 65.8% 35.9% 14.0%
 BRFSS 28.45 28.60 28.47 69.7% 68.4% 67.0% 33.5% 35.5% 36.1% 12.0% 14.6% 13.6%
 ATUS 28.50 28.64 28.48 70.0% 68.8% 66.5% 33.7% 36.1% 35.1% 12.8% 14.6% 13.5%

Other Women 28.39 64.1% 35.1% 15.7%
 BRFSS 27.22 27.87 28.25 56.2% 60.8% 63.5% 27.5% 30.7% 32.7% 10.4% 12.1% 14.7%
 ATUS 27.06 27.71 28.27 54.0% 57.8% 62.9% 27.3% 30.1% 31.8% 10.3% 11.9% 14.4%

Other Men 28.13 70.8% 29.1% 9.6%
 BRFSS 27.75 28.07 28.14 68.4% 69.5% 68.9% 26.5% 29.1% 29.7% 7.9% 8.8% 9.0%
 ATUS 27.99 28.30 28.18 70.4% 71.8% 69.4% 28.6% 30.9% 30.2% 8.5% 9.2% 9.1%
Notes: Actual measures from NHANES are underlined and in italics. All samples weighted to be representive of adults in the US between the ages of 19 and 64.

BMI Obese Class II/III ObeseOverweight

Table 3.  Average Body Mass by Correction Method  and Race/Gender Group from
BRFSS and ATUS, Compared to Actual Measures from NHANES
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Table 4. BRFSS Estimated Effects of Food Prices on BMI, P(Obese), and P(Class II/III Obese) 
by Race-Gender Group and BMI Correction Method 

 BMI Obese Class II/III Obese 
 

Reported 
Standard 
Method 

Percentile 
Method Reported 

Standard 
Method 

Percentile 
Method Reported 

Standard 
Method 

Percentile 
Method 

Whole Sample 
 

-0.764 
(0.170)*** 

 

-0.858 
(0.187)*** 

-0.937 
(0.189)*** 

-0.050 
(0.010)*** 

-0.058 
(0.011)*** 

-0.060 
(0.012)*** 

-0.025 
(0.007)*** 

-0.032 
(0.009)*** 

-0.041 
(0.010)*** 

White Women 
 

-0.704 
(0.216)*** 

 

-0.786 
(0.218)*** 

-0.890 
(0.226)*** 

-0.042 
(0.012)*** 

-0.046 
(0.012)*** 

-0.051 
(0.013)*** 

-0.021 
(0.008)*** 

-0.027 
(0.008)*** 

-0.038 
(0.009)*** 

White Men 
 

-0.415 
(0.191)** 

 

-0.479 
(0.193)** 

-0.510 
(0.208)** 

-0.032 
(0.015)** 

-0.037 
(0.015)** 

-0.038 
(0.015)*** 

-0.013 
(0.011) 

-0.014 
(0.010) 

-0.017 
(0.011) 

Black Women 
 

-0.894 
(0.368)** 

 

-0.871 
(0.362)** 

-0.991 
(0.401)** 

-0.029 
(0.029) 

-0.020 
(0.033) 

-0.026 
(0.029) 

-0.050 
(0.017)*** 

-0.049 
(0.018)*** 

-0.067 
(0.021)*** 

Black Men 
 

-1.565 
(0.229)*** 

 

-1.785 
(0.258)*** 

-1.721 
(0.276)*** 

-0.130 
(0.019)*** 

-0.129 
(0.022)*** 

-0.105 
(0.019)*** 

-0.055 
(0.011)*** 

-0.077 
(0.014)*** 

-0.081 
(0.011)*** 

Other Women 
 

-1.478 
(0.321)*** 

 

-1.539 
(0.301)*** 

-1.640 
(0.334)*** 

-0.098 
(0.022)*** 

-0.113 
(0.026)*** 

-0.119 
(0.025)*** 

-0.037 
(0.010)*** 

-0.047 
(0.013)*** 

-0.061 
(0.013)*** 

Other Men 
 

-0.710 
(0.286)** 

-0.855 
(0.355)** 

-0.975 
(0.364)*** 

-0.042 
(0.017)** 

-0.063 
(0.021)*** 

-0.061 
(0.019)*** 

-0.028 
(0.011)** 

-0.036 
(0.014)** 

-0.052 
(0.020)** 

Notes: All cells report estimated effects of $1 increase in state food price basket in the corresponding regression; the average food price is $2.56. Average 
marginal effects are reported in the probit regressions for obesity and Class II/III obesity. Standard errors, heteroskedasticity-robust and clustered by state, are in 
parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for race, education, marital 
status, age, inflation-adjusted household income, and a dummy for whether the year was 2008. The BRFSS sampling weights are used. 
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Table 5. ATUS Estimated Effects of Food Prices on BMI, P(Obese), and P(Class II/III Obese) 
by Race-Gender Group and BMI Correction Method 

  BMI Obesity Class II/III Obesity 

 Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile 
  Method Method Method Method Method Method 
Whole Sample -1.099*** -1.179*** -1.251*** -0.083*** -0.083*** -0.084*** -0.028*** -0.036*** -0.044*** 

 
(0.182) (0.192) (0.207) (0.015) (0.018) (0.016) (0.008) (0.007) (0.011) 

 
  

 
    

 
  

   

White Women -1.050*** -1.137*** -1.139*** -0.057** -0.073*** -0.075*** -0.030 -0.034** -0.044** 

 
(0.376) (0.391) (0.408) (0.024) (0.024) (0.026) (0.018) (0.016) (0.021) 

 
  

 
    

 
  

   

White Men -0.605 -0.695 -0.822* -0.080** -0.085** -0.074* -0.020* -0.021 -0.008 

 
(0.430) (0.458) (0.487) (0.036) (0.043) (0.041) (0.012) (0.016) (0.014) 

 
  

 
    

 
  

   

Black Women -1.499 -1.675 -1.800 -0.077 -0.073 -0.084 -0.007 -0.055 -0.097 

 
(1.079) (1.169) (1.294) (0.071) (0.082) (0.088) (0.052) (0.046) (0.067) 

 
  

 
    

 
  

   

Black Men -1.316** -1.290** -1.198** -0.029 -0.058 -0.028 -0.049* -0.038 -0.059** 

 
(0.521) (0.558) (0.536) (0.067) (0.065) (0.040) (0.027) (0.039) (0.029) 

 
  

 
    

 
  

   

Other Women -0.929 -0.901 -0.978 -0.099** -0.047 -0.055 -0.015 -0.019 -0.055*** 

 
(0.658) (0.671) (0.677) (0.040) (0.057) (0.064) (0.014) (0.017) (0.021) 

 
  

 
    

 
  

   

Other Men -1.876*** -2.051*** -2.174*** -0.130*** -0.119** -0.150*** -0.047 -0.075** -0.079** 
  (0.692) (0.690) (0.683) (0.049) (0.049) (0.045) (0.034) (0.035) (0.032) 
Notes: All cells report estimated effects of $1 increase in state food price basket in the corresponding regression; the average food price is $2.56. Average marginal effects are reported in the 
probit regressions for obesity and Class II/III obesity. Standard errors, heteroskedasticity-robust and clustered by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% 
level; * 10% level. The regressions include control variables for race, education, marital status, age, inflation-adjusted household income, and a dummy for whether the year was 2008. The 
ATUS sampling weights are used. 
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Table 6 – BRFSS Estimated Effects of BMI, Obesity, and Class II/III obesity on P(Diabetes)  
by Race-Gender Group and BMI Correction Method 

 BMI Obese Class II/III Obese 
 

Reported 
Standard 
Method 

Percentile 
Method Reported 

Standard 
Method 

Percentile 
Method Reported 

Standard 
Method 

Percentile 
Method 

Whole Sample 0.0042 
(0.0001)*** 

 

0.0041 
(0.0001)*** 

0.0041 
(0.0001)*** 

0.069 
(0.002)*** 

0.065 
(0.003)*** 

0.062 
(0.002)*** 

0.107 
(0.005)*** 

0.102 
(0.005)*** 

0.096 
(0.004)*** 

White Women 0.0036 
(0.0001)*** 

 

0.0035 
(0.0001)*** 

0.0034 
(0.0001)*** 

0.073 
(0.002)*** 

0.068 
(0.002)*** 

0.063 
(0.002)*** 

0.103 
(0.003)*** 

0.098 
(0.003)*** 

0.088 
(0.003)*** 

White Men 
 

0.0044 
(0.0002)*** 

 

0.0042 
(0.0002)*** 

0.0044 
(0.0002)*** 

0.065 
(0.003)*** 

0.062 
(0.002)*** 

0.061 
(0.002)*** 

0.114 
(0.004)*** 

0.107 
(0.004)*** 

0.105 
(0.004)*** 

Black Women 
 

0.0051 
(0.0002)*** 

 

0.0050 
(0.0002)*** 

0.0046 
(0.0002)*** 

0.079 
(0.004)*** 

0.077 
(0.004)*** 

0.072 
(0.004)*** 

0.100 
(0.007)*** 

0.098 
(0.007)*** 

0.097 
(0.006)*** 

Black Men 
 

0.0064 
(0.0005)*** 

 

0.0058 
(0.0004)*** 

0.0060 
(0.0004)*** 

0.081 
(0.008)*** 

0.073 
(0.008)*** 

0.078 
(0.009)*** 

0.125 
(0.013)*** 

0.116 
(0.015)*** 

0.121 
(0.013)*** 

Other Women 
 

0.0040 
(0.0002)*** 

 

0.0043 
(0.0002)*** 

0.0043 
(0.0003)*** 

0.072 
(0.007)*** 

0.067 
(0.006)*** 

0.068 
(0.006)*** 

0.094 
(0.013)*** 

0.093 
(0.012)*** 

0.093 
(0.010)*** 

Other Men 
 

0.0040 
(0.0004)*** 

0.0041 
(0.0004)*** 

0.0041 
(0.0005)*** 

0.057 
(0.005)*** 

0.052 
(0.006)*** 

0.050 
(0.005)*** 

0.111 
(0.017)*** 

0.099 
(0.021)*** 

0.083 
(0.017)*** 

Notes: All regressions are probits; the cells report average marginal effects of BMI and average effects of a switch from 0 to 1 in obesity and Class II/III obesity 
status. The dependent variable is a dummy for ever being diagnosed with diabetes; its sample mean is 0.065. Standard errors, heteroskedasticity-robust and 
clustered by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for 
race (dummies for non-Hispanic black and non-Hispanic white), education (dummies for some high school but no degree, high school degree but no further, 
some college but no degree, and four-year college degree or greater), marital status (dummies for married, divorced, and widowed), age, inflation-adjusted 
household income, and a dummy for whether the year was 2008. The BRFSS sampling weights are used. 
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Table 7. ATUS Estimated Effects of  BMI, Obesity, and Class II/III Obesity on P(Disabled) 
by Race-Gender Group and BMI Correction Method 

  BMI Obesity Class II/III Obesity 

 Reported Standard Percentile Reported Standard Percentile Reported Standard Percentile 
  Method Method Method Method Method Method 
Whole Sample 0.0020*** 0.0019*** 0.0017*** 0.0237*** 0.0175*** 0.0161*** 0.0414*** 0.0388*** 0.0319*** 

 
(0.0003) (0.0003) (0.0002) (0.0045) (0.0041) (0.0041) (0.0042) (0.0041) (0.0037) 

 
  

 
    

 
  

   

White Women 0.0027*** 0.0026*** 0.0025*** 0.0369*** 0.0295*** 0.0239*** 0.0533*** 0.0498*** 0.0442*** 

 
(0.0005) (0.0005) (0.0005) (0.0078) (0.0076) (0.0078) (0.0093) (0.0090) (0.0081) 

 
  

 
    

 
  

   

White Men 0.0004 0.0003 0.0004 0.0050 0.0048 0.0032 0.0198** 0.0152* 0.0133* 

 
(0.0008) (0.0007) (0.0006) (0.0072) (0.0068) (0.0067) (0.0081) (0.0084) (0.0080) 

 
  

 
    

 
  

   

Black Women 0.0039*** 0.0038*** 0.0031*** 0.0271 0.0145 0.0164 0.0820*** 0.0607*** 0.0369** 

 
(0.0011) (0.0010) (0.0009) (0.0201) (0.0174) (0.0152) (0.0184) (0.0156) (0.0148) 

 
  

 
    

 
  

   

Black Men 0.0022 0.0014 0.0013 0.0617* 0.0126 0.0290 0.0709** 0.0781** 0.0622** 

 
(0.0032) (0.0028) (0.0025) (0.0373) (0.0290) (0.0269) (0.0316) (0.0394) (0.0301) 

 
  

 
    

 
  

   

Other Women 0.0026*** 0.0026*** 0.0026*** 0.0345*** 0.0350*** 0.0345*** 0.0411*** 0.0413*** 0.0337*** 

 
(0.0004) (0.0005) (0.0005) (0.0069) (0.0067) (0.0073) (0.0111) (0.0105) (0.0100) 

 
  

 
    

 
  

   

Other Men 0.0020** 0.0023*** 0.0022*** 0.0229*** 0.0198*** 0.0223*** 0.0431*** 0.0430*** 0.0373*** 
  (0.0008) (0.0008) (0.0007) (0.0077) (0.0072) (0.0070) (0.0117) (0.0099) (0.0127) 
Notes: All regressions are probits; the cells report average marginal effects of BMI and average effects of a switch from 0 to 1 in obesity and Class II/III 
obesity status. The dependent variable is a dummy for being out of labor market due to disability. Standard errors, heteroskedasticity-robust and clustered 
by state, are in parentheses. *** indicates statistically significant at 1% level; ** 5% level; * 10% level. The regressions include control variables for race 
(dummies for non-Hispanic black and non-Hispanic white), education (dummies for some high school but no degree, high school degree but no further, 
some college but no degree, and four-year college degree or greater), marital status (dummies for married, divorced, and widowed), age, inflation-adjusted 
household income, and a dummy for whether the year was 2008. The ATUS sampling weights are used. 
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Table 8: Summary of State-Level Obesity 
Prevalence Results 

     Reported 
Obesity 

Standard 
Correction 

Percentile 
Correction 

Number of States in Each Range of Obesity Prevalence 
   20-25% 8 1 0 
   25-30% 34 15 3 
   30-35 % 6 29 30 
   35-40% 0 3 15 
      

Number of States Moving to a Higher Prevalence Category,  
Relative to Reported Prevalence   
   No Change -- 12 0 
   Up 1 Category -- 36 34 
   Up 2 Categories -- 0 14 
Notes: This table summarizes results presented in Figures 3, 4 and 5. The 
data are from the 2007 and 2008 BRFSS. Observations are limited to the 48 
states in the continental U.S. 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.006 0.908 
BRFSS vs. NHANES 0.006 0.826 

  

46 
 



 

Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.809 0.480 
BRFSS vs. NHANES 0.819 0.382 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.049 0.734 
BRFSS vs. NHANES 0.043 0.959 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.075 0.312 
BRFSS vs. NHANES 0.001 0.158 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.001 0.263 
BRFSS vs. NHANES 0.005 0.254 
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Kolmogorov-Smirnov Tests (p-values) for Equality of Density Functions 
 Standard Method Percentile Method 
ATUS vs. NHANES 0.018 0.461 
BRFSS vs. NHANES 0.813 0.579 
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