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Abstract

Principal component analysis denotes a popular algorithmic technique to dimension
reduction and factor extraction. Spatial variants have been proposed to account for
the particularities of spatial data, namely spatial heterogeneity and spatial auto-
correlation, and we present a novel approach which transfers principal component
analysis into the spatio-temporal realm.
Our approach, named stPCA, allows for dimension reduction in the attribute space
while striving to preserve much of the data’s variance and maintaining the data’s
original structure in the spatio-temporal domain. Additionally to spatial autocor-
relation stPCA exploits any serial correlation present in the data and consequently
takes advantage of all particular features of spatial-temporal data.
A simulation study underlines the superior performance of stPCA if compared to
the original PCA or its spatial variants and an application on indicators of economic
deprivation and urbanism demonstrates its suitability for practical use.

Keywords: dimension reduction, economic deprivation, factor extraction, PCA,
spatio-temporal analysis, urbanism

JEL codes: C31, C33, R11
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1 Introduction

Factor extraction refers to the process of concentrating several variables into a set of
factors with lower cardinality and has been applied in virtually any field of statistical
analysis. It denotes a dimension reduction technique, as well as a vehicle to disclose
latent factors. Due to the reduction factor extraction relieves the computational
burden in any subsequent analysis, might help to avoid the curse of dimensionality
and most importantly presents measurements of theoretical interest which would
otherwise remain hidden due to incomplete knowledge on the subject matter or
due to the latent nature of the variable of interest. Consequently, factor extraction
might be understood as an analysis tool, which helps to identify the relevant factors
of interest.

Principal component analysis (Pearson, 1901; Hotelling, 1933), which is also known
as discrete Karhunen–Loève transformation (Karhunen, 1947; Loève, 1948), Hotelling
transformation (Hotelling, 1933) or the method of empirical orthogonal functions
(Lorenz, 1956) among others, is frequently applied to extract factors from a set of
variables (e.g. Jolliffe, 2002, chap. 4). It is in fact based on a transformation of
the data, in which the orthogonal coordinates are rotated in order to load as much
variance as possible on the first components and less and less variance on subsequent
components. Consequently the first components, formed by a linear combination
of the original variables, represent an essential information content of the data and
might be understood as factors. By contrast the final components, presenting little
residual variance, might be ignored in the analysis and allow thus for dimension
reduction. In a strict implementation without any additional rotation and based
on standardized variables, principal component analysis (PCA) resembles more an
algorithm than a model and restricts the researcher’s influence on choosing the
appropriate number of latent factors. This feature distinguishes PCA from other
factor extraction techniques, most notably the model-based factor analysis (Spear-
man, 1904).

However, the application of the PCA algorithm is not exclusively restricted to the
attribute subspace, but in case of spatio–temporal data might also be used on the
geographical or temporal subspace and consequently reduce either the geographical
or the temporal dimension. Richman (1986) proposes a classification of PCA for
spatio-temporal data into six modes, where each mode describes exclusive combina-
tions of two subspaces. E.g., the application of PCA on multivariate spatial entities
is labeled R-mode and several spatial PCA variants have been proposed (Warten-
berg, 1985; Thioulouse et al., 1995; Fotheringham et al., 2002; Jombart et al., 2008).
Contrary to the original PCA, these techniques incorporate either spatial autocor-
relation or spatial heterogeneity into the PCA approach to factor extraction and
the authors demonstrate the superior performance of these spatial PCA variants to
disclose any spatial factor, if compared to the original PCA.

On the other hand, these spatial PCA variants only address spatial cross–sectional
data and do not apply to spatio-temporal data. In order to allow for a truly spatio-
temporal analysis we propose a novel PCA approach, that not only accounts for
the spatial peculiarities, but also incorporates serial correlation over time. This
spatio-temporal PCA variant (henceforth stPCA) allows for dimension reduction
on the attribute space, while preserving the geographical and temporal space, that
is, it extracts spatio-temporal factors from several spatio-temporal variables while
maintaining the geographical and temporal structure of the original variables.
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In the framework of Richman (1986) stPCA can be understood as the combined
PR-mode of PCA on spatio-temporal data and the technique describes a trans-
fer of the original PCA to the spatio-temporal realm of geographical and serial
correlation. Consequently the proposed technique shares some features with the
three-mode PCA of Kroonenberg and de Leeuw (1980), which however relies on
i.i.d. observations and has not been studied for correlated observations. Further-
more three-mode PCA includes a dimension reduction in every subspace, whereas
stPCA focuses exclusively on the attribute subspace.

The inclusion of latent factors in models for spatio-temporal data is also facili-
tated by Bayesian hierarchical models (Gelman and Hill, 2006). Recent examples
include Tzala and Best (2007); Lawson et al. (2008) and Choi et al. (2012) in public
health studies and Hogan and Tchernis (2004) in economics. These models rely on
latent factors to regress some explanatory variables on a dependent variable and the
latent factors consequently serve as an intermediate step and are not of particular
interest in the respective analysis. stPCA consequently represents a novel attempt
to incorporate spatial and temporal correlation into a PCA framework and hence
facilitates the inclusion of latent factors into spatio-temporal models.

In order to illustrate the performance of stPCA, we present a simulation study
and apply stPCA to a data set of economic deprivation and urbanism indicators in
Germany. In the Monte Carlo simulation stPCA improves the ordinary and spa-
tial PCA approaches, if a non-negligible spatial structure is present in the spatio-
temporal data. The reported difference is substantial and significant. A large gain
is made on small n, high t samples, whereas the additional value for large n data
seems less pronounced.

The application of stPCA on the indicators of economic deprivation and urbanism
illustrates the additional value of a combined spatio–temporal approach if compared
to a cross-sectional spatial approach. Only stPCA allows for time specific projec-
tions, which highlight the west–east and internal north-south divide in economic
deprivation and reliably indicates the big German metropolitan areas.

The following section 2 presents the proposed stPCA approach, which is after-
wards evaluated via a simulation in section 3. An actual implementation of stPCA
is presented in section 4 and section 5 concludes with a discussion.

2 The spatio-temporal PCA

The original principal component analysis of Pearson (1901) and Hotelling (1933)
describes a rotation of the p-dimensional coordinate system. The rotated coordi-
nates present the best orthogonal fit of the data, in which the first coordinate is
aligned in the direction of the data’s maximum variance. Any subsequent coordi-
nate is afterwards orientated to contain as much of the residual variance as possible
conditioned on being orthogonal to all former coordinates.

In this new coordinate system, the coordinates possessing much variance contain
most of the data’s information, whereas coordinates with a relative small amount
of variance contribute little additional information and consequently can be ignored
at little cost. This advantage of PCA is facilitated by the orthogonal rotation and
allows for dimension reduction in multivariate data while preserving the general
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structure of the individual data points.

Upon obtaining the new coordinates the p-dimensional and centred random variables
X ∈ Rp are projected onto this new coordinates system via a linear combination.
The projections φ onto the first coordinate are obtained via

φ = Xu,

where u denotes a weight vector which can be identified via the aforementioned
variance characteristics of the rotated coordinates. In detail, PCA maximizes the
variance in the rotated coordinates, that is, the variance of the projected data points
φ:

max
u

Var(φ) = max
u

Var(Xu)

= max
u

u>n−1X>Xu

= max
u

u>Σu (1)

where Σ denotes the covariance matrix of the centred X and the maximization is
subject to some identification restriction, like ||u|| = 1.

An eigendecomposition of Σ resolves the maximization requirement (1), as the eigen-
vector corresponding to the largest eigenvalue constitutes the optimal u (Härdle and
Simar, 2012). Likewise the projection onto subordinate components is conducted
via the remaining eigenvectors, where the corresponding eigenvalues describe the
variance explained by this component, and consequently its rank.

The just described original principal component analysis does not address the partic-
ularities of spatial data, like spatial autocorrelation or spatial heterogeneity. Spa-
tial extensions to PCA have been proposed, which explicitly account for either
heterogeneity (Fotheringham et al., 2002) or autocorrelation (Wartenberg, 1985;
Thioulouse et al., 1995; Jombart et al., 2008). In this paper we concentrate on the
second type, but would like to note that the suggested spatio-temporal approach
might also be adapted to the spatial heterogeneity case.

The suggested extensions amplify the maximization criterion by incorporating the
spatial autocorrelation of the projected data points φ. Consequently, the proposed
methods seek to project the observations onto a new coordinate system, while pre-
serving the spatial relation between the observations and this second objective dif-
ferentiates the spatial approaches from the ordinary PCA.

Moran’s I describes a frequently used statistic of spatial autocorrelation (Moran,
1950) which defines the spatial autocorrelation for some random variable X with
mean X as

I(X) =
N∑N

i=1

∑N
j=1wij

∑N
i=1

∑N
j=1wij

(
Xi −X

) (
Xj −X

)∑N
i=1

(
Xi −X

)2 , (2)

where wi,j , drawn from a spatial weight matrix W , describes the spatial weight im-
posed by observation j onto observation i. Choosing an appropriate spatial weight
matrix for either point or areal data and a suitable standardization is up to the
subject-matter researcher and might simplify the computation (2).
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Indeed the differences of the above mentioned spatial PCA approaches can be at-
tributed to the particular spatial weight matrix and specific transformation of the
original variables X chosen by the authors. In detail, MSC (Wartenberg, 1985)
standardizes the original variables and the distance based spatial weight matrix,
whereas the Global Structure by Thioulouse et al. (1995) relies on a standard-
ized binary connection matrix and transforms the original data by a mean which
is based on assigning weights according to the number of individual neighbours.
Finally sPCA (Jombart et al., 2008) applies a row standardization on the binary
connection matrix and, because of its specific application to alleles does not stan-
dardize the data, but subtracts only the mean.

All these spatial extensions to PCA seek to maximize the product of the variance
and spatial autocorrelation of φ:

max
v

Var(φ) I(φ) = max
v

Var(Xv) I(Xv)

= max
v
v>n−1X>WXv

= max
v
v>Ωv

where Ω = n−1X>WX denotes a spatial correlation matrix and the optimal v are
found via an eigendecomposition of Ω. Wartenberg (1985) and Thioulouse et al.
(1995) point out, that Ω might not be positive definite and state that the resulting
negative eigenvalues represent local structure. In case of a non-symmetrical spa-
tial weight matrix W , Jombart et al. (2008) observe, that the optimal v is given
by the eigenvector corresponding to the largest eigenvalue of (2n)−1X>(W+W>)X.

Spatio-temporal data add another subspace to the attribute and geographical space
of spatial data and present measurements of the same multivariate spatial entities
over time. Consequently PCA or any spatial PCA variant could be applied at ev-
ery t, and T eigendecompositions of the time dependent (spatial) covariance matrix
could be computed. Hence any serial correlation over time would be ignored and at
every t we would have a separate cross–sectional analysis.

Contrarily, stPCA forms a truly spatio-temporal technique. Instead of conduct-
ing an analysis at every t separately stPCA proposes to calculate a time average
of the spatial covariance matrix and apply an eigendecomposition on this average.
Consequently stPCA exploits any serial correlation and makes use of the fact that
the repeated measurements on the time stable spatial entities represent the same
information content, whereas any additional noise might vary over time. Hence the
time–averaged spatial covariance matrix will include a higher signal to noise ratio
and present time stable eigenvectors.

This feature of stPCA, contrary to the repeated application of PCA or its spatial
variants, will result in consistent signs and order of the components across t and
consequently facilitates the interpretation and further use of the findings. Finally,
stPCA is faster, as a function of t, than any repeated application of its non-temporal
siblings, as the time-consuming eigendecomposition has to be conducted only once
instead of t times.

In detail stPCA maximizes the time average of the product between the variance
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and spatial autocorrelation of the projected data points φ:

max
µ

T−1
T∑
t=1

Var(φt) I(φt) = max
µ

T−1
T∑
t=1

Var(Xtµ) I(Xtµ)

= max
µ

µ>

(
T−1n−1

T∑
t=1

X>t WXt

)
µ (3)

= max
µ

µ>Θµ,

where Θ = T−1n−1
∑T

t=1X
>
t WXt denotes a time average of the spatial correlation

matrix. If W is symmetric, the optimal weight vector µ may be extracted as before
from a direct eigendecomposition of Θ. Otherwise, and along the reasoning of
Jombart et al. (2008), the optimal µ may be found by the eigendecomposition of
(2Tn)−1

∑T
t=1X

>
t (W + W>)Xt. As in the ordinary PCA and its spatial variants

the projections φt of stPCA are obtained via multiplying the original data Xt with
the time stable principal eigenvectors µ.

3 Simulation

We present two simulations which compare the performance of the original PCA,
its spatial variants and the novel stPCA approach to detect spatio-temporal fac-
tors. In a first step, we apply the distinct PCA variants to an artificial data set
of a single, hidden and stable spatio-temporal factor, which is observed via three
noisy variables and is obscured by three additional random noise variables. As in
Wartenberg (1985) a ratio between the first eigenvalue and the sum of the absolute
value of all eigenvalues is presented to reveal the sensitivity of these techniques in
detecting the spatio-temporal factor. Obviously, a high ratio indicates that the re-
spective PCA procedure correctly identifies the single predetermined factor present
in the simulated data.

In a second simulation we apply PCA, its spatial variants and stPCA to a data
set with two different spatio-temporal factors in order to learn the accuracy of
these principal component approaches. Each factor exhibits a distinct and stable
spatial-temporal pattern, which affects three noisy variables each and is further-
more masked by six additional random noise variables. We check whether the PCA
variants identify the correct number of factors, how the PCA variants weigh the
original variables in the computation of the projections and compare to what ex-
tent the diverse projections match the original factors.

We start the first simulation by generating a spatial structure S(1) which takes

the form of a square grid of size
√
n ×
√
n. The n observations S

(1)
i∈{1,...,n} follow a

normal distribution with a mean depending on the grid’s column index c:

S
(1)
i,c ∼ N(0, 1), for c ≤ C

2

S
(1)
i,c ∼ N(δ, 1), for c >

C

2
,

where δ defines an increment and C =
√
n denotes the number of columns. Con-

sequently we simulate a patch, which differentiates between the left and right side

of the grid by the expectation E
[
S
(1)
i,c

∣∣ c ≤ C
2

]
= 0 and E

[
S
(1)
i,c

∣∣ c > C
2

]
= δ. This

spatial structure is standardized and subsequently introduced as a constant in the
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AR(1) process of the spatio-temporal factor F
(1)
i,t . Switching to vector notation, the

factor F
(1)
t = vec(F

(1)
1,t , . . . , F

(1)
n,t ) is generated via

F
(1)
t = S(1) + 0.5F

(1)
t−1 + εt, (4)

where we define the error vector by εt ∼ N(0n, 0.75In). This simulated factor pro-
duces n × t observations, which exhibit a stable spatial pattern over time defined
by the size of the increment δ. A high value of δ will result in a more pronounced
spatial pattern and, due to the standardization, will not automatically increase the
factor’s variance, which is instead defined by the coefficient and error vector in the
AR(1) process (4).

In our simulation the standardized spatial factor affects p1 = 3 dependent variables

Xt,p1∈{1,...,3}, which are defined by the sum of the factor F
(1)
t and an individual

AR(1) noise process Zt,p1 :

Xt,p1 = F
(1)
t + Zt,p1 .

The noise process Zt,p1 differentiates the three variables Xt,p1 via its error compo-
nent:

Zt,p1 = 0.5Zt−1,p1 + εZ,t,

where εZ,t ∼ N(0n, 0.75In) denotes white noise. Consequently we separate the vari-
ables by their specific errors drawn from the same normal distribution

Apart from the dependent variables Xt,p1 , we also add p2 = 3 random noise variables
Xt,p2∈{4,...,6}, which are independent of the factors and follow an ordinary AR(1)
process:

Xt,p2 = 0.5Xt−1,p2 + εX,t,

where εX,t ∼ N(0n, 0.75In) denotes white noise. Hence these three variables pos-
sess the same mean and variance as the spatio-temporal factor and interfere with
its disclosure.

We run this simulation in two settings to cover small and large n applications.
At first we set n1 = 49 and t1 ∈ {5, 50, 100}. This specification allows for all pos-
sible combinations of n and t: t < n, t ≈ n and t > n. The same holds for the
second setting, where n2 = 400 and t2 ∈ {40, 400, 800}. The simulation is based
on a row weighted binary spatial weight matrix indicating direct neighbours and in
order to observe the effect of the spatial increment δ, we increase it gradually via
steps of 0.4 in the interval [0, 8] for all combinations of n and t. At δ = 0 obviously
no spatial factor is produced, as this particular parametrization describes an i.i.d.
scenario. Finally we run each combination of the parameters 1000 times and present
the respective mean ratio between the first eigenvalue and the sum of all eigenvalues
in Figure 1.

We observe, that PCA present a constant ratio between the largest eigenvalue and
the sum of all eigenvalues. This ratio remains unaffected by an increase in the spatial
increment δ and hence PCA fails to clearly identify the increasyingly pronounced
spatio-temporal factor. On the other hand the spatial PCA variants gain strongly
from an increase in δ. The initial ratio at δ = 0 is increased more than twofold at
δ = 8 and the spatial PCA variants cause higher ratios than the original PCA for
δ ≥ 1.2 (n1 = 49), respectively δ ≥ 0.4 (n2 = 400). Consequently we can verify the
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Figure 1: Mean ratio (with standard deviation for temporal sPCA) of the first
eigenvalue to the sum of all eigenvalues as assigned by PCA (thick solid grey
line), sPCA(solid grey line), MSC (dashed grey line), Global Structure PCA
(dotted grey line), temporal sPCA (solid black line), temporal MSC (dashed
black line) and temporal Global Structure PCA (dotted black line) for n1 = 49
(first row) with t1 = 5 (left graph), t1 = 50 (middle graph) and t1 = 100 (right
graph), and n2 = 400 (second row) with t2 = 40 (left graph), t2 = 400 (middle
graph) and t2 = 800 (right graph).

results of Wartenberg (1985), Thioulouse et al. (1995) and Jombart et al. (2008),
and observe that extending PCA by a spatial component improves the sensibility
of the spatial PCA variants to identify a spatial factor.

However, as can be observed in Figure 1, stPCA is even more responsive to an
increase in δ than the spatial PCA Variants. At δ ≥ 0.8 (n1 = 49), respectively
δ ≥ 0.4 (n2 = 400) the ratio reported by stPCA is larger than the ratio of any
other PCA variant including the purely spatial PCA variants. In detail, stPCA not
only reports larger ratios for any given n and t than the spatial PCA variants at the
aforementioned levels of δ, but also exploit an increase in n much stronger. Further-
more only stPCA makes use of the time dimension and reports higher ratios for an
increase in t. Unsurprisingly the solely spatial PCA variants do not gain on such an
increase in t, but only on an increase in n and this superior performance of stPCA
also holds, if the spatio-temporal factor consists of a spatial trend instead of a patch.

As stated before, any spatial principal component approach will also try to identify
local structure and report this structure as a negative eigenvalue. In the current
simulation, which does not explicitly include local structure, this feature appears
twice. At first, stPCA and the purely spatial PCA variants perform worse than
the original PCA on non-spatial or only slightly spatial data, as can be observed
by ratio which correspond to δ = 0. Secondly this search for local structure causes
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stPCA to possess a pronounced standard deviation as depicted in Figure 1, which
however disappears as the spatial increment grows.

In a second simulation we apply PCA, its spatial variants and stPCA to a data
set with two different spatio-temporal factors in order to learn the accuracy of these
principal component approaches. Hence we extend the preceding simulation by an
additional spatio-temporal factor, which is based on the spatial structure S(2):

S
(2)
i,r ∼ N(0, 1), for r ≤ R

2

S
(2)
i,r ∼ N(δ, 1), for r >

R

2
,

where δ describes the spatial increment, r denotes a row indicator and R =
√
n

indicates the number of rows. Consequently the spatial structure S(2) describes a
spatial patch, which differentiates between the upper and lower half of the grid.

The resulting structure defines the spatial distribution of the second spatio-temporal

factor F
(2)
i,t by serving as a constant in the respective AR(1) process:

F
(2)
t = S(2) + 0.5F

(2)
t−1 + εt,

where εt is defined as above. As in the preceding simulation, the hidden spatio-

temporal factor F
(2)
t is observed via three noisy variables, which differ, as before, in

their error components. In this context we set the white noise of variables affected

by the first factor to ε
(1)
Z,t ∼ N(0n, 0.375In) and the error vector of the variables

defined by the second factor to ε
(2)
Z,t ∼ N(0n, 1.125In).

Furthermore we add three additional iid noise processes and consequently observe

three variables affected by the spatio-temporal factor F
(1)
t , three variables influenced

by spatio-temporal factor F
(2)
t and six additional noise variables, which complicate

the disclosure of the two spatio-temporal factors.

As before we run this simulation in two settings to account for small (n1 = 49) and
large (n2 = 400) data sets and allow for varying time dimensions: t1 ∈ {5, 50, 100}
and t2 ∈ {40, 400, 800}. We increase the spatial increment gradually in the interval
[0, 8] to observe its effect, make use of the aforementioned spatial weight matrix,
and run each combination of parameters 1000 times.

We begin our inspection of the simulation results by assessing the power of the
diverse principal component approaches to identify the correct number of factors.
Figure 2 and Figure 3 presents modified scree plots for PCA, sPCA and stPCA in
which the mean eigenvalues are interpolated to allow for several spatial increments
δ to be shown in the same graph.

At first we observe that the distinct principal component approaches return different
eigenvalues. The original PCA does not react to an increase in δ, as this non-spatial
approach presents nearly the same eigenvalues for all levels of δ. On the other hand
sPCA and stPCA do respond to an increase in the spatial increment. Especially
the two largest and the smallest eigenvalues increase with δ and their reaction is
amplified by more observations.
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Figure 2: Scree plots for PCA (first column), sPCA (second column) and
stPCA (third column) depicted for n1 = 49, the time frame t1 = 5 (first row),
t1 = 50 (second row), t1 = 100 (third row) and the spatial increments δ ∈ [0, 8]
indicated by an increase in the grey strength.

At n1 = 49 the scree plot of PCA presents a slight decrease in the gradient starting
at the third eigenvalue and consequently indicates the presence of two factors. These
factors arise due to the constant in the simulation’s AR(1) process. At n2 = 400
PCA presents three obvious changes in the gradient resulting in two or more fac-
tors and consequently the scree plot does not clearly indicate the correct number of
factors.

In contrast sPCA and stPCA react explicitly to an increase in δ. At δ ≤ 0.8
the eigenvalues returned by sPCA do not indicate any obvious change in the gra-
dient, but rather suggest a smooth curve. Only at δ > 0.8 one can make out a
clear change in the curvature after the second eigenvalue and consequently sPCA
identifies the two spatio-temporal factors. This finding is even more apparent as δ
and n are increased. However, sPCA also returns large negative eigenvalues, which
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Figure 3: Scree plots for PCA (first column), sPCA (second column) and
stPCA (third column) depicted for n1 = 400, the time frame t1 = 40 (first
row), t1 = 400 (second row), t1 = 800 (third row) and the spatial increments
δ ∈ [0, 8] indicated by an increase in the grey strength.

erroneously indicate a high level of local structure.

The application of stPCA results in eigenvalues, which possess a similar structure
as sPCA, but which is much more pronounced. At the low level of δ ≤ 0.8 the
respective eigenvalues also suggest a smooth curve without any clear indication of
the number of factors. At δ > 0.8 stPCA increasingly indicates the presence of
the two factors. However the difference between the second and third eigenvalue is
much wider in the case of stPCA than sPCA, e.g. the ratio at δ = 4, n2 = 400 and
t2 = 400 for stPCA (1:151.071) surpasses the ratio of sPCA (1:7.163) more than
twentyfold and consequently stPCA indicates the two factors more evidently than
sPCA. Furthermore stPCA indicates the presence of local structure only at very
low levels of δ and the clarity of its scree plot is not only amplified by an increase
in the spatial increment δ and the sample size n, but also by the time dimension t.
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Figure 4: Mean weight (with standard deviation for temporal sPCA) assigned
by PCA (thick solid grey line), sPCA(solid grey line), MSC (dashed grey line),
Global Structure PCA (dotted grey line), temporal sPCA (solid black line), tem-
poral MSC (dashed black line) and temporal Global Structure PCA (dotted black
line) in the two eigenvectors to the respective variables for n1 = 49 (first row)
with t1 = 5 (left graph), t1 = 50 (middle graph) and t1 = 100 (right graph), and
n2 = 400 (second row) with t2 = 40 (left graph), t2 = 400 (middle graph) and
t2 = 800 (right graph).

The scree plots of the spatial or spatio-temporal variants of MSC or Global Struc-
ture present a very similar pattern in the respective eigenvalues and we consequently
do not present them here.

In a second evaluation step, we examine the eigenvectors which correspond to the
two largest eigenvalues. These specify the weights in the linear combination of the
variables to obtain the projections. In our simulated data the first spatio-temporal
factor affects only the first three variables, whereas the second spatio-temporal fac-
tor defines the fourth, fifth and sixth variables. Consequently we would expect the
first eigenvector to carry large weights on the first, second and third variable and
the second eigenvector to accentuate the fourth, fifth and sixth variable. Further-
more, an optimal principal component approach would assign zero weights to all the
other variables, as these do not contain any information on the two spatio-temporal
factors.

Figure 4 presents the mean weight the two eigenvectors assign to the respective vari-
ables, that is the mean of the weight assigned by the first eigenvector to the first,
second and third variable and the weight given by the second eigenvector to the
fourth, fifth and sixth variable. Obviously a high ratio indicates that the respective
principal component approach does not erroneously highlight variables, which do
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not incorporate any information on the spatio-temporal factors.

At first we observe, that the original PCA attributes substantial weights to the
respective variables, and the weights increase with n. However, PCA does not re-
act to an increase in either the spatial increment δ nor the time dimension t and
produces constant weights in this respect. Contrary to this indifference the spatial
variants do react to an increase in δ and the corresponding weights surpass the
original PCA’s weights at δ ≥ 3.2 for n1 = 50, respectively δ ≥ 2.8 for n2 = 400. A
further increase in the spatial increment widens the margin between PCA and the
spatial PCA variants even more. But the spatial PCAs do not react to an increase in
t and due to their cross–sectional approach they fail to exploit the serial correlation
in order to improve the weights even further.

This is instead accomplished by the new stPCA procedure. The mean weights
presented by this spatio-temporal technique improve upon an increase of either the
spatial increment δ, the number of observations n and also upon an increase in the
time dimension t. stPCA exceeds the weights of the alternative approaches at a
spatial increment between δ ≥ 2 (n1 = 49 and t1 = 5) and δ ≥ 0.8 (n2 = 400
and t2 = 800), and this difference is amplified as t is increased. For example, at
a parametrization of n2 = 400, t2 = 400 and δ = 4 the mean weight of the eigen-
vectors presented by stPCA exceeds the weights of second-best procedure by 19.5%.

In a third evaluation step we directly compare the spatio-temporal factors with
its projections. In detail we compute the mutual information MI(·, ·) between the

artificially created factor values F
(1,2)
t and the projections F̂

(1,2)
t identified by the di-

verse principal component approaches. The computation is based on the two largest
positive eigenvalues of every principal component approach. Figure 5 reports on the
average mutual information over time, which we define as

1

2T

T∑
t=1

max
{

MI
(
F̂
(1)
t ,F

(1)
t

)
+ MI

(
F̂
(2)
t ,F

(2)
t

)
,MI

(
F̂
(1)
t ,F

(2)
t

)
+ MI

(
F̂
(2)
t ,F

(1)
t

)}
to address issues arising from factor switching.

It might first be noted from Figure 5, that all PCA approaches struggle with a
more and more pronounced spatial patch. All techniques report a decrease in the
mutual information, if the spatial increment δ is increased up to its maximum.
This observation can be accredited to the particular simulation setting in which the
spatial patch is obscured by normally distributed noise. Consequently this error
component prohibits a clearer identification of the increasing spatial structure, as
the diverse PCA procedures weight the key variables and hence their accompanying
noise stronger, as δ is increased. However, this effect is not observed, if a spatial
trend is modelled instead of a patch and might ultimately be explained by the par-
ticular spatial structure.

The original PCA approach explains nearly half of the entropy of the factor values.
It performs only marginally better, if the number of observation n is increased and
does not react to the time dimension. As explained above its performance worsens
as the spatial increment δ is raised.

The spatial variants of PCA surpass its ordinary cousin at δ ≥ 2.8, but its per-
formance depends on the level of the spatial increment. An increase in δ at low
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Figure 5: Normalized mutual information (with standard deviation for tem-
poral sPCA) between the simulated factor values and the factor scores indicated
by PCA (thick solid grey line), sPCA(solid grey line), MSC (dashed grey line),
Global Structure PCA (dotted grey line), temporal sPCA (solid black line), tem-
poral MSC (dashed black line) and temporal Global Structure PCA (dotted black
line) for n1 = 49 (first row) with t1 = 5 (left graph), t1 = 50 (middle graph) and
t1 = 100 (right graph), and n2 = 400 (second row) with t2 = 40 (left graph),
t2 = 400 (middle graph) and t2 = 800 (right graph).

levels will strengthen its performance up to a maximum and a further increase in
δ will afterwards worsen the mutual information between the factor values and its
projections. The same observation holds for an increase in the number of observa-
tions n and as before the spatial PCA approaches do not respond to an increase in t.

In contrast to the ordinary and spatial PCA variants stPCA exploits an increase
in the time dimension and the corresponding mutual information exceeds the alter-
native ones at δ ≥ 2 (n1 = 49), respectively δ ≥ 1.6 (n2 = 400). However like the
spatial PCA approaches its performance on an increase in δ and n is mixed. On
low levels of the spatial increments the mutual information rises steeply, if either δ
or n are increased, but on high levels of δ a further increase of either the spatial
increment or the number of observation worsen the mutual information of stPCA.

However, stPCA outperforms the ordinary and spatial PCA approaches on all pa-
rameter values apart from very low levels of δ and the difference is significant.
Obviously the largest gain is made on small n, high t samples, whereas the addi-
tional value for large n data seems less pronounced.

In order to visualize the observed difference in the mutual information, Figure 6
presents the simulated factor values and corresponding projections returned by the
distinct principal component approaches for n2 = 400, t2 = 40 and δ = 4 at an
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Figure 6: Simulated factor values and projections by the respective principal
component approaches for n2 = 400, t2 = 40 and δ = 4 for an exemplary point
in time.

exemplary point in time. In order to get a better contrast in the graph, we added,
respectively subtracted, 1 from the original values and projections.

The original factor values present the aforementioned patch between either the left
and right or upper and lower half of the grid. Whereas the single projections by
stPCA do not resemble the original factors perfectly, as a whole they clearly present
the same basic structure of two diverse spatial structures. This observation does not
hold for either the original PCA nor its spatial variants, as both techniques present
a spatial structure which clearly discriminates between four disjunct parts in ev-
ery corner, but fail to present the original spatial structure of one north-south and
one west-east patch. Consequently and as noted above both techniques incorporate
lower mutual information values.

4 Application on urbanism and economic de-

privation

Apart from case-by-case specific impact factors, criminological theory and research
based on data for areal units have persistently and mainly in the United States
identified two broad dimensions of social structure that have proven to be robust
predictors of violent crime rates: (1) economic well-being/relative deprivation, (2)
population structure/urbanism (McCall et al., 2010). In a recent study, Messner et
al. (2013) have confirmed the explanatory power of these two factors with regard to
German assault and robbery rates collected in 413 geographic-administrative dis-
tricts called “Kreise” (counties) and aggregated over the years 2005-2007.

In this study, the factor Urbanism was constructed via PCA performed on four
indicators: (1) the average population size across the three-year period; (2) pop-
ulation density, i.e., population per square kilometer; (3) the proportion of the
workforce employed in agriculture or forestry; (4) percent of the foreign–born pop-
ulation, which tends to be concentrated in urban areas.
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Figure 7: Scree plot for the indicators on urbanism and economic deprivation.

The factor economic well-being/deprivation was constructed via PCA performed on
five indicators: (1) the percentage of the civilian labor force that is unemployed; (2)
the percentage of those persons who receive social assistance; (3) average monthly
household income; (4) the proportion of households receiving housing assistance;
(5) a measure of high school dropouts.

In our own analysis we have removed the fifth indicator from the economic depri-
vation factor, since in a subsequent study using roughly the same data base Thome
and Stahlschmidt (2013) have presented theoretical arguments and empirical evi-
dence demonstrating that high school attendance should be included, together with
three additional indicators, in another factor labelled “disintegrative individualism.”
Since our present article does not deal with theoretical issues we have limited our
analysis, i.e. the application of stPCA, to the two factors most commonly applied
in criminological research based on areal units, economic deprivation and urbanism.
Furthermore we exclude the percentage of foreign–born population, as this variable
is closely related to both factors, urbanism and relative deprivation, and therefore
interferes with our aim to construct two clearly distinguished factors.

Whereas Messner et al. (2013) averaged their data over a three-year period to gen-
erate the factor scores in a cross-sectional approach, stPCA allows to include every
year separately in the analysis. Hence, the presented projections are based on more
data points and take into account serial correlation.

Figure 7 presents the scree plot generated by stPCA and based on a row weighted
binary spatial weight matrix indicating direct neighbouring counties. An aggre-
gation of the seven indicators into two factors seems reasonable, as the first two
eigenvalues clearly stand out, if compared to the remaining ones.

The corresponding variable weights for each factor are detailed in Table 1. The vari-
ables are grouped as expected by criminological theory. The unemployment rate,
social welfare rate, household income and housing allowance rate together describe
a factor interpreted as relative economic deprivation, whereas population size, pop-
ulation density and employment in agriculture jointly specify the level of urbanism.
Most of the single variables can clearly be attributed to one of the two factors. Only
the social welfare rate takes on similar weights in both factors since the need for
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Eco. Deprivation Urbanism
Unemployment rate 0.563 0.222
Social welfare rate 0.446 0.339
Household income -0.465 0.293

Housing allowance rate 0.503 -0.092
Population size -0.013 0.396

Population density -0.060 0.554
Employment in agriculture 0.105 -0.527

Table 1: The first and second eigenvector corresponding to the two largest
eigenvalues.

such payments arises less often in rural areas.

Finally Figures 8 and 9 display the projections resulting from the application of the
weights to the single counties. The projections of the economic deprivation factor
depict two spatial patterns. First, there remains a clear disparity between East and
West Germany, as counties of the former German Democratic Republic possess less
economic means than their western counterparts. Second, inside these two blocks
there arises a North–South divide as the southern part of Germany has, during the
last two decades, achieved a more advanced, higher–level balance between tradi-
tional and modernized sectors of economic development. These two patterns remain
stable over the inspected time horizon. This stationarity over time is also observed
in case of the urbanism factor. The corresponding projections clearly highlight the
big urban hubs of Berlin, Munich, Hamburg or the Rhine-Ruhr metropolitan region
and the sparsely populated north-eastern part of Germany.

5 Conclusion

The analyses of purely spatial data are confronted with the implied peculiarities of
such data, namely spatial correlation and heterogeneity. Consequently such analy-
ses entail a need for a high amount of data in order to obtain reliable estimates of
any parameter of interest. But due to natural limits, which are especially obvious
in the case of areal data, sample sizes can not be enlarged indefinitely over space.
However, a feasible solution in dealing with this problem can be forged ahead by
the extension of such data over time resulting in spatio-temporal analyses. This ap-
proach requires the transformation of well-known instruments and techniques from
the i.i.d. or spatial environment to the spatio-temporal one.

To our knowledge, stPCA offers a first attempt to transfer the original PCA to
the spatio-temporal realm of geographical and serial correlation. The proposed
technique allows for dimension reduction on the attribute space while preserving
the geographical and temporal structure and it offers a promising approach to gen-
erate consistent factors from spatio-temporal data. It differs from any explicit factor
modelling approach by its algorithmic nature, which can be viewed as a welcomed
feature or a drawback depending on substantive issues given in a particular research
context.

In any case stPCA possesses a superior performance in terms of sensibility to detect
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Figure 8: Projections of the factor “Economic Deprivation” on German
Kreise. Digital map provided and copyrighted by GeoBasis-DE / BKG 2013
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Figure 9: Projections of the factor “Urbanism” on German Kreise. Digital
Map provided and copyrighted by GeoBasis-DE / BKG 2013
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and of accuracy to disclose spatio-temporal factors, if compared to the original PCA
and the proposed spatial variants thereof. Especially the original PCA lacks power
to correctly identify spatial factors and its spatial variants fail to exploit any serial
correlation to improve their results due to their static nature. Furthermore stPCA
is much faster than its archetypes, as the time-consuming eigendecomposition has
to be calculated only once instead of t times.

As PCA and the spatial variants have to be applied separately for every t, they
are prone to sign and factor switching over t. This behaviour complicates an analy-
sis, as such instances have to be detected and resolved before the projections can be
analysed or supplied for further use. stPCA avoids such issues, as it presents time
stable weights for the linear combinations and consequently allows for a direct and
consistent interpretation of these values. Summing up, stPCA seems to be better
suited than its static forerunners to address the specific requirements arising from
spatio-temporal analyses.

However, the projections resulting from stPCA obviously depend on the variable
scale and on the appropriateness of the spatial weight matrix. Furthermore the per-
formance of stPCA might be amplified by a suitable orthogonal or oblique rotation,
which will consequently restrict the algorithmic nature of stPCA and increase the
researcher’s influence.

Finally, we would like to mention two modifications of stPCA, from which certain
applications might benefit. First, the spatial weight matrix could be understood as
time dependent and, upon availability, a time-specific Wt could be introduced into
the optimisation (3) to refine the technique. Second, stPCA could also be developed
into an adaptive approach, in which the projections for t are not obtained via the
time average of the spatial covariance matrix over the whole time frame T , but only
over the interval [t − t?, t + t?], where t? < T/2 denotes a tuning parameter. An
appropriate weighting schema over this interval could furthermore enhance the flex-
ibility. This moving window approach resides between the spatial variants of PCA
and stPCA, as it exploits serial correlation over time, but foregoes any computa-
tional advantage, as an eigendecomposition has to be obtained at every t separately.
Yet this adaptive stPCA might allow for time trends in the data and consequently
account for not only the spatial peculiarities in spatial-temporal data, but also for
the temporal ones.
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