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Estimation procedures for exchangeable Marshall

copulas with hydrological application∗

Fabrizio Durante† Ostap Okhrin‡

Abstract

Complex phenomena in environmental sciences can be conveniently represented by several
inter-dependent random variables. In order to describe such situations, copula-based
models have been studied during the last year. In this paper, we consider a novel family
of bivariate copulas, called exchangeable Marshall copulas. Such copulas describe both
positive and (upper) tail association between random variables. Specifically, inference
procedures for the family of exchangeable Marshall copulas are introduced, based on the
estimation of their (univariate) generator. Moreover, the performance of the proposed
methodologies is shown in a simulation study. Finally, an illustration describes how the
proposed procedures can be useful in a hydrological application.

Keywords: Copula; Kendall distribution; Marshall-Olkin distribution; Non-parametric
Estimation; Risk Management.
JEL Classification: C13, C14.

1 Introduction

Complex phenomena in hydrology are usually characterized by several dependent random
variables, but, even recently, most of the techniques and the methods focused on the univariate
analysis only. However, since a simple univariate approach could lead to an incomplete
risk assessment, several attempts have been done in order to consider higher–dimensional
models. In particular, copula-based multivariate models have gained a lot of popularity in
hydrology due to their flexibility and practical convenience. Among others, we mention:
De Michele and Salvadori (2003); Salvadori and De Michele (2004); Kao and Govindaraju
(2007) for rainfall frequency, Grimaldi and Serinaldi (2006a); Serinaldi and Kilsby (2013) for
design hydrograph, Evin and Favre (2004); Serinaldi (2009b); Bardossy and Pegram (2009);
Serinaldi (2009a); Vandenberghe et al. (2010) for rainfall models, Gebremichael and Krajewski
(2007); Villarini et al. (2008) for errors and uncertainty in radar-rainfall, Favre et al. (2004);
De Michele et al. (2005); Grimaldi and Serinaldi (2006b); Zhang and Singh (2006); Genest
et al. (2007); Salvadori and De Michele (2010) for flood frequency, Kao and Govindaraju
(2010); De Michele et al. (2013); Reddy and Singh (2014) for drought frequency, Bardossy
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(2006); Bardossy and Li (2008); Kazianka and Pilz (2010) for geostatistical interpolation,
Salvadori and De Michele (2006), and De Michele et al. (2007) for sea storm modeling. A
thorough list of papers concerning the application of copulas in hydrology is provided by
the International Commission of Statistics in Hydrology of the International Association of
Hydrological Sciences (www.stahy.org).

Motivated by the practical need of more complex models, during the years, several families
of copulas have been introduced and studied: see, for instance, Joe (1997); Nelsen (2006);
Jaworski et al. (2010, 2013); Kurowicka and Joe (2010); Mai and Scherer (2012); Okhrin et al.
(2013) and references therein.

Here we focus on a class of models that can be used as a possible alternative to all
the models that allow to describe in a convenient way the dependence in the tail of the
joint distribution (e.g. Gumbel copula models). Specifically, we focus on a generalization of
the bivariate Cuadras–Augé copula, which has been proposed in (Cuadras and Augé, 1981,
section 2.3), and, then, investigated in detail in Durante (2006); Durante et al. (2008), for the
bivariate case, and in Durante et al. (2007) for the multidimensional case. Specifically, such
copulas can be expressed in the form

Cf (u, v) = min(u, v)f(max(u, v)). (1.1)

for a function f : [0, 1]→ [0, 1] satisfying suitable conditions (see below). They can be inter-
preted as the exchangeable (i.e., invariant under permutation of their arguments) members of
the family proposed in (Marshall, 1996, Proposition 3.1). Since this latter reference was the
first work that explicitly has provided sufficient conditions to obtain copulas of type (1.1),
we refer to them as exchangeable Marshall copulas (shortly, EM copulas). Notice that EM
copulas are also known under the name semilinear copulas, a term used in Durante et al.
(2008), and justified by the fact that the these copulas are linear along suitable segments of
their domains.

EM copulas have some distinguished features that make them appealing for a variety of
situations. First, they are exchangeable and, moreover, extendible, in the sense that they
can be interpreted as the first segment of a sequence of exchangeable random variables (see
Durante et al. (2007)). Secondly, they can model positive quadrant dependence, and both
independence and comonotone dependence are accounted for by the family of EM copulas.
Third, they have a natural interpretation in terms of shock models, analogously to the mul-
tivariate exponential distributions by Marshall and Olkin (1967). Fourth, they exhibit a
non-trivial upper tail dependence coefficient (up to the case of the independence copula), a
feature of particular interest in the estimation of joint quantile exceedances (Poulin et al.,
2007).

Recently, special classes of EM copulas have been used in order to model the spatial
behavior of some hydrological random variables (Durante and Salvadori, 2010; Salvadori and
De Michele, 2011); however, until now, their practical use has been limited, since standard
statistical techniques to fit such copulas have not been fully investigated up to special cases
(mostly related to those EM copulas that are also extreme value copulas).

The aim of this paper is to propose different estimation methods for EM copulas in order
to enhance their possible use. Specifically, using the fact that EM copulas are generated by a
univariate real-valued function (in a similar manner as Archimedean copulas are), different es-
timators of these generators are proposed both in a parametric as well as in a semi-parametric
setting.
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The paper is organized as follows. Section 2 discusses the main features of EM copulas.
The estimation procedures are presented in Section 3, while their performances are compared
in Section 4. Finally, Section 5 illustrates how to fit hydrological data with an EM copula.

2 Preliminaries about EM copulas

Here we recall some basic aspects about EM copulas.
Let I = [0, 1]. Let f : I → I be a continuous and increasing function. Following seminal

ideas by Marshall (1996), we call exchangeable Marshall copulas (shortly, EM copulas) any
copula Cf : I2 → I that can be expressed in the form (1.1). It is known from Durante et al.
(2008) that Cf is a copula if, and only if, f(1) = 1 and f(t)/t is decreasing on (0, 1]. A
function f associated with a copula of type (1.1) is called generator. In particular, notice
that, if f is concave and increasing with f(1) = 1, then it is a generator of an EM copula.

Notice that both the independence copula Π2(u, v) = uv and the comonotone copula
M2(u, v) = min(u, v) are examples of EM copula, generated by f(t) =t and f(t) = 1, re-
spectively. Moreover, an algorithm for simulating such copulas is illustrated in (Durante and
Salvadori, 2010, Algorithm 1) and is reported here.

Algorithm 2.1.

1. Generate three independent variates s1, s2, t uniform in I.

2. Set v1 = f−1(s1) and v2 = f−1(s2) .

3. Set z = g−1(t), where g(t) = t/f(t).

4. Return (u1, u2) = (max{v1, z},max{v2, z}).

Examples of random samples generated from EM copulas are reported in Figures 1 and
2, where they are compared with random samples generated from the Gumbel copula, which
is a standard model of extreme events in hydrology (see, e.g., Salvadori et al. (2007)). As it
can be noticed, EM copulas present a probability mass distribution along the main diagonal
of the unit square (i.e. they have a singular component). Thus, if (X,Y ) is an exchangeable
random pair with copula Cf , then P(X = Y ) > 0. In practice, for identically distributed
random variable, this implies that large values of one variable may correspond (with non-zero
probability) to the same large values in the other variable (see, e.g., Mai and Scherer (2013)).

Algorithm 2.1 is derived from the interpretation of EM copulas in terms of shock models.

In fact, if (X1, X2) is distributed according to an EM copula Cf , then X1
d
= max(U1, Z) and

X2
d
= max(U2, Z) for independent r.v.’s U1, U2, Z. Loosely speaking, Cf describes the type

of dependence that arises when a common shock affects a two-variable random system. Such
an interpretation is quite appealing for a possible use in environmental science. In fact, it is
often the case that the dependence between the occurrence of extremes (and their impacts)
is caused by a common external forcing factor that changes the probability of the two events
(compare with (Field et al., 2012, page 118)). Moreover, such a stochastic representation
allows to obtain easily Monte Carlo simulations, which are often necessary in order to assess
the uncertainty of the model at use (see, e.g., Serinaldi (2013)).

The generator f of an EM copula Cf is not only useful in order to provide several examples
of such copulas, but it is also the key ingredient in order to describe the upper tail dependence

3



Figure 1: 1000 random variates generated by EM copula (left) and Gumbel copula (right),
both with Kendall’s τ = 0.25.

Figure 2: 1000 random variates generated by EM copula (left) and Gumbel copula (right),
both with Kendall’s τ = 0.50.
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of these distributions. In fact, f equals the penultimate tail dependence function of Cf given
by t→ C(t, t)/t for every t ∈ (0, 1] (see Manner and Segers (2011)); moreover, the upper tail
dependence coefficient of Cf can be easily obtained via the formula λU = 1−f ′(1−) (Durante,
2006, Proposition 2). As stressed, for instance, by (Poulin et al., 2007), the process of selecting
the appropriate copula for a given multivariate phenomenon, should reflect the dependence in
the extremes (by allowing, e.g., non-zero tail dependence coefficients), especially when some
risk measures (in a broad sense), like multivariate return period, conditional densities, etc.,
should be adequately estimated. Thus, having at disposal a variety of copulas, with different
tail behaviour, may be useful in the process of quantifying the probability of occurrence of
extreme events.

Furthermore, for a copula Cf of type (1.1), the associated Kendall distribution function
is given by the simple formula

Kf (t) = t− t log(t) + t log

(
g−1(t)

f(g−1(t))

)
, (2.1)

where g(t) = tf(t) (see Mesfioui et al. (2009); Quessy (2012)). We recall that, as illustrated in
Salvadori (2004); Salvadori et al. (2011); Gräler et al. (2013), the estimation of the Kendall’s
distribution function associated with two random variables is useful to calculate the joint
return period of an hydrological event.

After having shown some properties of EM copulas and their possible use, one may wonder
about appropriate inference procedures for such copulas. In fact, given a parametric class of
generators (fθ)θ∈Θ, it is not clear how a copula Cfθ could be estimated. On one hand, the
maximum-likelihood estimation could not easily handle since EM copulas are not absolutely
continuous (i.e. they do not admit density). On the other hand, one may think to mimick
the moment-based estimation of copulas, i.e. one may calculate some measures of association
(like Spearman’s ρ or Kendall’s τ) from the available data and by inverting the formulas of
(Durante, 2006, Theorem 4) (linking the parameter of an EM copula and the related measures
of association) a (numerical) estimation of the parameter can be obtained (see also Durante
and Salvadori (2010)). These estimators are also known to be consistent and asymptotically
Gaussian, but the regularity conditions on the copula structure that are usually required
(see, for instance, Genest et al. (2013)) are not generally satisfied in the class of EM copulas.
Indeed, alternative moment-based techniques should be implemented, as proposed for the
related class of Marshall–Olkin copulas in Hering and Mai (2012).

Thus, in order to avoid any drawback of these kinds of estimators, here we aim at giving
some alternative semi-parametric fitting procedures for EM copulas.

3 The estimation procedure

The starting point of all procedures consists in the fact that a suitable estimator of the
generator f produces a possible estimation of the whole copula Cf . In other words, a one–
dimensional function allows to get an higher dimensional dependence structure. In a copula
framework, procedures based on semi-parametric estimations of lower dimensional generators
are not new: see, e.g., Lambert (2007); Dimitrova et al. (2008); Hernández-Lobato and Suárez
(2011); Di Bernardino and Rullière (2013); Salvadori et al. (2013b) for the Archimedean class
of copulas, or Capéraà et al. (1997); Genest and Segers (2009); Bücher et al. (2011) for
extreme-value copulas. Obviously, different techniques will be adopted here.
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The general procedure for constructing an estimator of an EM copula Cf is described
below. Let (Xi, Yi)

n
i=1 be a random sample from a continuous random vector (X,Y ). Since we

are interested in the estimation of the dependence structure, we may assume that (X,Y ) has
uniform margins, moreover we suppose that its joint cumulative distribution function (=cdf)
is given by EM copula Cf . Obviously, if the margins are not uniform, the estimation of the
dependence may arise from a suitable component-wise rank-transformation of the original
sample, as explained in Genest and Favre (2007).

Moreover, suppose that M = max(X,Y ) is distributed according to the cdf H. It is well
known that, for every t ∈ I, H(t) = Cf (t, t), i.e. H coincides with the diagonal section of the
copula Cf . Moreover, f(t) = Cf (t, t)/t = H(t)/t for all t ∈ (0, 1).

By following this framework, we propose a two-step estimation procedure, which consists
at first in giving a suitable nonparametric estimation of H and, then, obtain a possible
parametric or nonparametric estimation of the generator f . In particular, the most natural
nonparametric estimation of the cdf H is given through the empirical cdf

Ĥ(x) =
1

n

n∑
i=1

1{(Xi∨Yi)≤x}

which by the Glivenko-Cantelli lemma converges a.s. to the true cdf. Basically, given an
estimator Ĥ of H, we can derive an estimator of f given by f̂(x) = Ĥ(x)/x. However,
notice that we have to impose additional constraints on f̂ in order to ensure that it is a true
generator of a copula of type (1.1).

To this end, it is convenient to deal with the case when f is concave and increasing
with f(1). Regardless of its convenience from a mathematical view point, the concavity of
f ensures that the models we are considering satisfy a strong positive dependence property
known as stochastic increasingness (Durante, 2006, Theorem 2). Loosely speaking, in fact,
a random pair (X,Y ) is stochastically increasing if the probability that one variable is large
increases when one knows that also the other variable is large (for the formal definition, see,
for instance, (Nelsen, 2006)).

In the following, without loss of generality we suppose that the component-wise maxima
Mi = Xi ∨ Yi are ordered, e.g. Mi ≤ Mj for i < j, i, j = 1, . . . , n. Moreover, we define
ξξξ = (ξ1, . . . , ξn) where ξi = Ĥ(Mi)/Mi.

3.1 Parametric Estimation

First, a simple estimation procedure may come into play, when the parametric form of f is
known, but the function depends on some unknown parameter θ, i.e. f = f(x; θ) for θ ∈ Θ.
In fact, a possible way for estimating θ may be obtained by using the least squares method,
i.e. by finding

θ̂LS1 = arg min
θ∈Θ

n∑
i=1

{ξi − f(Mi, θ)}2 .

This estimation, however, may lead to some problems around the point 0, in view of the very
definition of ξξξ. As such, we propose also to apply least squares method with the slightly
different expression:

θ̂LS2 = arg min
θ∈Θ

n∑
i=1

{
Ĥ(Mi)−Mi · f(Mi, θ)

}2
.

6



Obviously, for large enough n both estimation procedures yield same results (except near the
point 0).

The previous estimators can be used when the explicit expression for the generator f
is known (with uncertainty about the parameter), which is often not available in practice.
However, one may think that, since the generator f is a continuous function, in view of
Weierstrass approximation theorem it might be convenient to approximate it by means of by
some polynomial functions of order J of type fpJ (x,a) =

∑J
j=0 ajx

j . In other words, when no
information is available about the parametric form of the generator f , one may also suppose
that f is a polynomial function of order J (for sufficiently large J).

Now, while this approach is theoretically sound, it turns out to be slightly complicated
when we set up the constrains for a polynomial generator f , which reflect on a number of
constraints on the aj ’s. In our simulation study we limit ourselves to consider polynomial
functions of second and third order, where the computational burden becomes more tractable.
Specifically, the second order polynomial estimate has a form

âp2 = arg min
a

n∑
i=1

{ξi − fp2(Mi,a)}2

s.t.
2∑
i=0

ai = 1; a2 < 0; a1 + 2a2 ≥ 0; a1 ≥ 0.

Moreover, the third order polynomial estimate is given via

âp3 = arg min
a

n∑
i=1

{ξi − fp3(Mi,a)}2

s.t.
3∑
i=0

ai = 1; a1 ≥ 0; a2 < 0; a2 + 3a3 < 0; a1 + 2a2 + 3a3 ≥ 0.

As will be seen in the simulation study, the adoption of such simpler forms for the generator
may be sometimes convenient.

Finally, notice that all the parametric estimations fulfill by the very construction the
condition of f̂ being the generator of the EM copula, e.g. concavity, monotonicity, and
boundary conditions.

3.2 Regression-based Estimation

As it is noticed above, the graph of the unknown generator f may be empirically approximated
by a suitable function that, loosely speaking, is close to the points (M1, ξ1), . . . , (Mn, ξn).
Thus, a possible way to find f may consist in adopting some regression techniques that
allow to interpolate (M1, ξ1), . . . , (Mn, ξn) (see, for instance, Figures 5–7). Two regression
techniques will be used here: concave and isotonic regression and splines regression, that will
be described in detail below.

Notice that one problem may occur in the empirical application of the previous idea. In
fact, while M1, . . . ,Mn constitutes a random sample, ξ = Ĥ(M1)/M1, . . . , ξn = Ĥ(Mn)/Mn

may not be a random sample since Ĥ may affect the independence of ξ1, . . . , ξn. Thus the
validity of the procedure has to be tested carefully, as done later in section 4.
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3.2.1 Regression-based Estimation via concave regression

Here we propose the iterative approach based on the concave (and isotonic) regression in order
to find out the approximation of the generator of an EM copula. In general, for a concave
regression C(ξξξ), the estimation f̂ is obtained by identifying the n–dimensional vector c that
minimizes

ĉξ = arg min
c

n∑
i=1

(ξi − ci)2 , s.t.
ci − ci−1

Mi −Mi−1
≥ ci+1 − ci
Mi+1 −Mi

, (3.1)

for 1 ≤ i ≤ n and c0 = cn+1 = −∞.

However, the resulting vector ĉξ is not necessarily increasing. To overcome such problem, we
run an isotonic regression I(c) on ĉξ by using the greatest convex minorant as

m̂c = arg min
m

n∑
i=1

(mi − ĉξ,i)2, s.t. mi ≥ mj for i ≥ j (3.2)

This step leads to m̂c, which is not necessarily concave: thus, a further iteration C(m̂c) is
necessary. As none of the above steps are satisfying the boundary condition f̂(1) = 1 we
propose the boundary correction B(b) in the spirit of Genest and Segers (2009)

b∗i = bi −Mi(bn − 1) (3.3)

where b is related to either c or m as obtained after application of either concave or isotonic
regression. Thus, to summarize the procedure for finding f by concave monotone regression
with the boundary condition we give the following algorithm.

Algorithm 3.1.

1. Given ξξξ, set ĉξξξ := C(ξξξ).

2. Apply the boundary correction B(ĉξξξ) to ĉξξξ and call ĉ∗0 the resulting vector.

3. Set ` = 0

4. If (ĉ∗` is not monotone)

(a) Set m̂` := I(ĉ∗` )

(b) Apply the boundary correction B(m̂`) by obtaining m̂∗`

else r = ĉ∗` and go to END

5. If (m̂∗` is not concave)

(a) Set ĉ` := C(m̂∗` )

(b) Apply the boundary correction B(ĉ`) by obtaining ĉ∗` .

else r = m̂∗` and go to END

6. ` = `+ 1 and go to step 4.

END
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Thus the final estimator is increasing concave and satisfies the boundary restrictions. It
is defined by f̂CR(Mi) = ri and can be extended to I by the linear interpolation via

f̂CR(x) =

{
ri for x = Mi

(ri − ri−1) x−Mi−1

Mi−Mi−1
+ ri−1 for x ∈ (Mi−1,Mi)

(3.4)

In the practice, we have found that up to 6 iterations of the estimation algorithm are needed,
however already the first steps give almost the required monotonicity, with some slight prob-
lems on the right boundary. For more details about theoretical aspects, see Dümbgen et al.
(2004), where it is clarified how to apply also an isotonic constraints on f̂ (see also Hanson
and Pledger (1976); Aguilera et al. (2011)).

3.2.2 Regression-based Estimation via shape-restricted spline regression

Another possibility to compute a suitable concave approximation of the generator of an EM
copula is by splines. Starting with the scatterplot of the points {Mi, ξi}, following Meyer
(2008) the procedure to derive a regression spline of order k consists of selecting N grid points
tk+1, . . . , tk+N and define the knots M1 = t1 = · · · = tk < · · · < tN+k+1 = · · · = tN+2k = Mn.
Order 1 M -splines are the piecewise constant functions

M
(1)
i (x) =

{
1/(ti+1 − ti), for ti ≤ x ≤ ti+1

0, otherwise

for i = 1, . . . , N + 1. Order k M -splines are computed recursively as

M
(k)
i (x) =

{
k{(x−ti)M

(k−1)
i (x)+(ti+k−x)M

(k−1)
i+1 (x)}

(k−1)(ti+1−ti) , for ti ≤ x ≤ ti+k
0, otherwise

Then the I splines, i.e. those splines designed for monotone increasing regression, are con-
structed as

I
(k)
i (x) =

∫ x

t1

M
(k)
i (u) du, for i = 1, . . . , N + k = m, for x ∈ [M1,Mn].

Furthermore, in order to obtain convex splines we integrate increasing ones as

C
(k)
i (x) =

∫ x

t1

I
(k)
i (u) du, for i = 1, . . . , N + k = m, for x ∈ [M1,Mn].

Then a convex (concave) regression function is estimated using linear combinations of the basis
functions with nonnegative coefficients, together with an unrestricted linear combination of
the constant function and the identity function id(x) = x. Since the underlying function
should be both increasing and convex, we impose the coefficients to be nonnegative. Thus,
after defining through σj ∈ Rn a set of vectors containing the values of j-th basis function

evaluated at the x-values, for k-th order we have σji = C
(k)
j (Mi). Let also V be the linear space

contained in the constrained set V = L (1, x), where L denotes the linear space spanned by
1 = (1, . . . , 1)> and x = (M1, . . . ,Mn)>. A set of generating vectors that are orthogonal to

9



V is given by δj = σj − Π(σj |V ), with Π being a projector operator. It follows that our
estimator is obtained via

ŝ = arg min
s

n∑
i=1

(ξi − si)2

s.t. s = v +

m∑
j=1

bjδ
j , where bj ≥ 0, j = 1, . . . ,m, v ∈ V

It can be also derived from Meyer (2008) that at each knot exactly one basis function has
a positive second derivative, so that for our convex splines the proper set of basis functions
is up to order four. In the same work, it is also shown that for the unrestricted case and
bounded mesh ratio the asymptotically optimal number of knots is l ≈ n1/(2p+1) with p being
the order of the polynomial pieces. This choice allows hence the estimation attaining the
pointwise convergence at the rate OP(n−p/(2p+1)).

For our simulation purposes we used the code provided by Meyer (2008) in the supple-
mentary material. As this estimate returns convex and monotone result, only the boundary
condition is not necessarily satisfied. This possible deficiency is corrected by the step B(ŝ)
previously described. Specifically, if the resulting vector ŝ∗ will not be convex or monotone,
we repeat the spline estimation again and proceed until convergence is obtained. Finally,
similarly to (3.4), we interpolate our estimator as

f̂SR(x) =

{
si for x = Mi

(si − si−1) x−Mi−1

Mi−Mi−1
+ si−1 for x ∈ (Mi−1,Mi)

by obtaining a piecewise linear function that satisfies the constraints for a generator of a
copula of type (1.1).

4 Simulation Study

To see the performance of the estimation techniques discussed above, we run the following
simulation study. We select various types of generator functions, allowing for different models:

• Model 1: the generator is f1(t; θ) = t1−θ for θ ∈ I with f−1
1 (x; θ) = x1/(1−θ). It

corresponds to the Cuadras–Augé copula family (Cuadras and Augé, 1981).

• Model 2: the generator is f2(t; θ) = (1−θ)t+θ for θ ∈ I with f−1
2 (x; θ) = (x−θ)/(1−θ).

It is the Fréchet copula family.

• Model 3: the generator is f3(t; θ) =
t

1− θ(1− t)
for θ ∈ I with f−1

3 (x; θ) = (x−θx)/(1−

θx).

All the models include as limiting cases the independence copula (θ = 0) and the comonotone
copula (θ = 1). Moreover, their positive dependence increases at the increase of the parameter
value.

The sample size for each model is taken to be n ∈ {250, 500}. We simulated from each
model with the parameters θ corresponding to a value of Kendall’s τ in {0.25, 0.50, 0.75}
and repeated the whole procedure N = 100 times. Then, we report the squared error loss

10



(SEL) between the estimated model and the true model by using the estimated and the true
generator (which fully characterizes the copula structure) given by

SEL =
1

n

n∑
i=1

{
f(Mi)− f̂(Mi)

}2
.

In the formulae above f̂(·) is one of the estimators considered in the previous section, i.e.

f̂ ∈ {f(·; θ̂LS1), f(·; θ̂LS2), fp2(·; â), fp3(·; â), f̂CR, f̂SR}.

Notice that spline regression is performed by using 3 knots.
Box plots of the distances over N runs for all models are reported in Figures 3 and

4. Specifically, for each estimation method, we report three box plots that are related to
the considered values of the generator parameters, and hence of the related Kendall’s τ , in
increasing order. There we also show the time t (in seconds) needed to get the estimator in
each of the proposed methodology. These simulations are also visualized (for the sample size
n = 500) in Figures 5, 6 and 7. Similar results are obtained for the sample size n = 250. Notice
that, around each estimate we also plot the 95% pointwise confidence interval to visualize the
efficienty of estimators.

As it can be seen, the parametric methods (when the true functional form of the generator
is correctly specificied) obviously perform better than the other methods, being f(·; θ̂LS1)
slightly preferable to f(·; θ̂LS2) since the latter generally provides a larger variance of the
estimate. Moreover, the polynomial approximations also show good performances (with the
exception of generator f3), which are generally comparable with the parametric methods.
Both splines regression and concave isotonic regression estimators, instead, provide similar
results in terms of quality, regardless the sample size and the considered model. However,
spline regression requires usually a larger computational time. Overall, all the methods seem
to be promising in terms of the relative performance. Moreover, we can argue that, in practice,
a polynomial approximation of the generator is a reasonable choice when the generator is
sufficiently smooth, otherwise a non-parametric regression estimation is desirable.

Finally, we would like to discuss the issue of misspecification of the model. To this end,
we simulate from two popular copula models like Clayton and Gumbel copulas, but we try to
fit the data with an EM copula using polynomial approximation or nonparametric regression
techniques. Specifically, we choose the set of parameters corresponding to a value of Kendall’s
τ ∈ {0.25, 0.50, 0.75} and fix a sample size of length 500. For each simulated sample (in total
we simulate N = 100 times from each copula), we hence compare the misspecification error
in terms of distance between the true Kendall’s function (as determined from the copula
generating the data) and the estimated Kendall’s function.

Simulation results are summarized in the Figure 8 for samples generated from a Gumbel
copula, and in the Figure 9 for samples generated from a Clayton copula. As it can be seen
from both pictures, the misspecification error is smaller in the case of Gumbel copula. This
is not surprising since both Gumbel copulas and EM copulas share the property of having a
non-zero upper tail dependence coefficient, while Clayton copulas are not able to capture this
feature of a multivariate model. In other words, EM copulas seem to provide a reasonable fit
for practical purposes also when the data generating process comes from another distribution
with upper tail dependence.
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Figure 3: Simulation results for the sample size n = 250. Box plots.
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H−Ĥ, τ=0.25

0.000.04
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Figure 5: Simulation from f1(·) with τ = 0.25 (red), τ = 0.5 (green), τ = 0.75 (blue) and
estimated via (left to right, top to bottom) LS1, LS2, p2, p3, CR and SR.. Left figure in each of
six panels represents the fit (dot-dashed line) with 95% pointwise confidence interval (shade)
and the true (solid line) generator function f(·). Right panel shows the absolute deviations
between true and estimated H(·) (mean in solid, median in dashed) with the pointwise 95%
confidence interval.
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H−Ĥ, τ=0.25

0.000.04
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Figure 6: Simulation from f2(·) with τ = 0.25 (red), τ = 0.5 (green), τ = 0.75 (blue) and
estimated via (left to right, top to bottom) LS1, LS2, p2, p3, CR and SR. Left figure in each of
six panels represents the fit (dot-dashed line) with 95% pointwise confidence interval (shade)
and the true (solid line) generator function f(·). Right panel shows the absolute deviations
between true and estimated H(·) (mean in solid, median in dashed) with the pointwise 95%
confidence interval.
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Figure 7: Simulation from f3(·) with τ = 0.25 (red), τ = 0.5 (green), τ = 0.75 (blue) and
estimated via (left to right, top to bottom) LS1, LS2, p2, p3, CR and SR. Left figure in each of
six panels represents the fit (dot-dashed line) with 95% pointwise confidence interval (shade)
and the true (solid line) generator function f(·). Right panel shows the absolute deviations
between true and estimated H(·) (mean in solid, median in dashed) with the pointwise 95%
confidence interval.
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Figure 8: Simulation from Gumbel copula with τ = 0.25 (red), τ = 0.5 (green), τ = 0.75
(blue) and estimated via (left to right, top to bottom) polynomials or concave and spline
regressions. Left figure in each of four panels represents the fit (dot-dashed line) with 95%
pointwise confidence interval (shade) and the true (solid line) Kendall’s function, where the
right panel show the absolute deviations between true and estimated (mean in solid, median
in dashed) with the pointwise 95% confidence interval.
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Figure 9: Simulation from Clayton copula with τ = 0.25 (red), τ = 0.5 (green), τ = 0.75
(blue) and estimated via (left to right, top to bottom) polynomials or concave and spline
regressions. Left figure in each of four panels represents the fit (dot-dashed line) with 95%
pointwise confidence interval (shade) and the true (solid line) Kendall’s function, where the
right panel show the absolute deviations between true and estimated (mean in solid, median
in dashed) with the pointwise 95% confidence interval.
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Figure 10: Plot of (Q,V ) (left) and related rank plot (right).

5 A case study in hydrology

As mentioned above, EM copulas are particularly useful when the data at disposal present
some positive dependence among the variables of interest. Here we present an illustration of
the estimation procedures for EM copulas in an hydrological application.

The data we are considering are collected at the Ceppo Morelli dam, and are essentially
the same as those investigated in De Michele et al. (2005) (see also Salvadori et al. (2011,
2013a)), to which we make reference for further details. The dam is located in the valley of
Anza catchment, a sub-basin of the Toce river (Northern Italy), and was built to produce
hydroelectric energy. Two hydrological variables are recorded for 49 years, from 1937 to 1994;
viz. the maximum annual flood peak Q (m3/s) and the volume V (106m3) from the same
flood event. As stressed in De Michele et al. (2005), such variables are of interest in order
to assess the adequacy of the dam spillway, which is one of the main issues in order to avoid
dam failures due to overtopping.

Since we are mainly interested to the dependence structure of these variables, we consider
only the estimation of the copula associated with these variables, while for the estimation
of the univariate margins we refer to De Michele et al. (2005). Specifically, we recall that
the copula estimation may be obtained directly from a pseudo–sample of the observations
as recovered via rank transformations of the original time series (see, e.g., Genest and Favre
(2007)). By applying the rank transformation to the original data (Figure 10, left), we obtain
the bivariate scatterplot of pseudo–observations (Figure 10, right). As it can be noticed, the
plot highlights the presence of positive dependence between Q and V (especially for larger
values of the variables), a feature that could be modeled via EM copulas.

The empirical cumulative distribution function Ĥ related to the sample (corresponding
to the diagonal section of the empirical copula of (Q,V )) is reported in Figure 11(left), while
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Figure 11: Plot of the ecdf Ĥ related to (Q,V ) (left) and its corresponding function Ĥ(x)/x.

Figure 11(right) shows the graph of Ĥ(x)/x. We recall that, if the data are generated by
an EM copula Cf , then Ĥ(x)/x represents an empirical approximation of f . In particular,

Ĥ(x)/x should satisfy suitable assumptions (i.e. concavity). Therefore, according to Figure
11(right), the empirical generator should be regularized in order to get a true generator.
In particular, notice that the values assumed by the empirical generator are quite scattered
around the origin. Fortunately, this will not cause too many problems in practice, since the
tail of the distribution that is of our interest is near the corner (1, 1).

In order to obtain a suitable generator of an EM copula, we perform a fitting to the data
by using the different methods outlined before.

Specifically, we fit the pseudo–sample with the above indicated estimators, namely f(·; θ̂LS2)
(the results for f(·; θ̂LS1) are similar), fp2(·; â), fp3(·; â), f̂CR, and f̂SR. Moreover, in order
to take into account the variability of the estimates we perform 1000 bootstrap replications
from the original sample, we re-fit an EM copula (with the different methods) each time, and
we calculate the related 95% confidence band. The results are displayed in Figures 12–12 and
highlights the possible uncertainty due to small sample size (a fact that is often encountered
in hydrological data).

As it can be seen from the graphs of the generators f , the parametric models and the
polynomial approximations do not provide a good fit. They do get neither a reasonable
estimation of the empirical generator nor a reasonable fit to the empirical Kendall function.

In Figure 16, instead, we report the estimation by using concave isotonic regression and
spline regression (with 3 knots). As it can be noticed, these estimates are more accurate in
describing the upper tail of the generator and of the Kendall distribution function, which is
the of practical interest.

Finally, two considerations are needed here. First, notice that the large variability of the
estimates are often usual in small dataset, as also underlined in Serinaldi (2013). Secondly,
the graphical comparison of different copula models become necessary when it is not possible
to distinguish formally via standard selection procedure (like Akaike information criteria)
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Figure 12: Estimation of hydrological data. Parametric model f1(·) with LS2 procedure.
Black points, or lines, show the empirical estimates. The bands correspond to the 95%
bootstrap confidence level. The red line is the mean of the bootstrap estimates, and the blue
line is the estimation based on the original sample.
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Figure 13: Estimation of hydrological data. Parametric model f2(·) with LS2 procedure.
Black points, or lines, show the empirical estimates. The bands correspond to the 95%
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Figure 14: Estimation of hydrological data. Parametric model f3(·) with LS2 procedure.
Black points, or lines, show the empirical estimates. The bands correspond to the 95%
bootstrap confidence level. The red line is the mean of the bootstrap estimates, and the blue
line is the estimation based on the original sample.

or a goodness-of-fit test which one of the proposed model fits the best. In fact, generally
these tests (see, e.g., Genest et al. (2009)) require the absolute continuity or some regularity
conditions on the derivatives of the underlying copulas, but such conditions are not satisfied
by EM copulas.

Summarizing the results of the case study, we may say that regression methods should be
preferred when the aim of the investigation is to provide a reasonable estimation of the tail
of the copula and/or of the related Kendall’s distribution function. If, instead, a global fit is
the main issue, polynomial approximations may provide a valid alternative.

6 Conclusions

In this paper, we have focused on the estimation of the class of bivariate exchangeable Mar-
shall copulas. Since such copulas are characterized by a univariate function f (also known
as a generator), the proposed estimators rely on fitting parametric and semi-parametric gen-
erators to the empirical counterpart. In particular, we suggest parametric models, low-order
polynomials, and two types of smoothing techniques (i.e., concave and isotonic regression and
spline regression). Since the generator f must fulfill some conditions (concavity, monotonicity,
and boundary conditions) to produce a genuine EM copula, we tailor the fitting procedure by
introducing suitable conditions for polynomial regressions and an iterative algorithm for the
regression methods. The estimators are tested via a simulation study. Finally, the proposed
methodology is illustrated in a case study involving hydrological data.

About possible future works, similar procedures can be applied as well to the estimation
of the d-dimensional extendible version of EM copulas proposed in Durante et al. (2007). In
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Figure 15: Estimation of hydrological data. Polynomial model of second and third order.
Black points, or lines, show the empirical estimates. The bands correspond to the 95%
bootstrap confidence level. The red line is the mean of the bootstrap estimates, and the blue
line is the estimation based on the original sample.
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Figure 16: Estimation of hydrological data. Regression-based estimation with concave isotonic
regression and spline regression. Black points, or lines, show the empirical estimates. The
bands correspond to the 95% bootstrap confidence level. The red line is the mean of the
bootstrap estimates, and the blue line is the estimation based on the original sample.
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fact, since extendible EM copulas are also generated by a univariate generator, the latter can
be estimated by averaging all the possible estimators obtained from the pairwise margins,
a procedure that is analogous to several methods available for multivariate Archimedean
copulas. Extendible EM copulas cab be used, for instance, in spatial models based on copulas
(see, e.g., Kazianka and Pilz (2010)), where the exchangeability of the dependence structure
is required.

In general, however, in order to obtain more flexible models, multivariate EM copulas
should be combined with different techniques. Two methods are suggested here. First,
following the idea of shock models, one can include an EM copula as one of the block of
the hierarchical structure proposed by Durante et al. (2010). Such copulas can be applied,
for instance, in spatial model when the gauge stations are divided into homogeneous regions,
but some external factors (i.e., the so-called shocks) may affect the whole system. Secondly,
one may consider EM copulas and apply to them some asymmetrization techniques known
in copula theory (see, e.g., Durante (2009); Liebscher (2008)) and successfully applied in
hydrological context (Salvadori and De Michele, 2010).
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L. Dümbgen, S. Freitag, and G. Jongbloed. Consistency of concave regression with an application to current–
status data. Math. Methods Stat., 13(1):69–81, 2004.

F. Durante. A new class of symmetric bivariate copulas. J. Nonparametr. Stat., 18(7-8):499–510, (2007), 2006.
ISSN 1048-5252.

F. Durante. Construction of non-exchangeable bivariate distribution functions. Statist. Papers, 50(2):383–391,
2009.

F. Durante and G. Salvadori. On the construction of multivariate extreme value models via copulas. Environ-
metrics, 21(2):143–161, 2010.
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