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Modes of ambiguous communication∗

Christian Kellner and Mark T. Le Quement

University of Bonn

Abstract

We study cheap talk communication in a simple two actions-two states model featuring am-

biguous priors. First, we find that in equilibrium, S typically mixes between messages trigger-

ing different behavior by R while R himself mixes after some message. Technically, the mixing

performed by S is equivalent to mixing over classical partitional strategies. We interpret mix-

ing by respectively S or R as embodying two different modes of ambiguous communication.

Second, we find that for sufficiently high ambiguity, more than two messages are often neces-

sary to implement the optimal decision rule of S, though only two actions are available to R. If

only two messages are available and S faces his preference twin, he may be unable to imple-

ment his optimal decision rule and influential communication may be altogether impossible.

We remark that these results would not emerge in an expected utility environment. Third, we

find that there often exist influential equilibria that do not implement the optimal decision rule

of S, which is not the case in the absence of ambiguity. Fourth, we show that the addition of a

little ambiguity may generate influential communication that is unambiguously advantageous

to S. Fifth, we consider a smooth version of our model and find that some of our key findings

extend to this setting.

Keywords: cheap talk, ambiguity.

JEL classification: D81, D83.
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“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just what I

choose it to mean - nothing more nor less.”. “The question is,” said Alice, “whether you can make

words mean so many different things.”. (Alice in Wonderland, Lewis Carroll)

1 Introduction

Ambiguity is an integral part of many situations of advice and typically simultaneously appears

in two forms that reflect the ambiguity of the very term "ambiguity". It is present on the one hand

in the prior distribution of states and on the other hand in the mode of communication of the

sender.

Advice often takes place under knightean uncertainty about the prior distribution of the state

of the world. In a medical advice context, the distribution of particular diseases across ethnic

groups may be unclear. In a financial advice context, the underlying process governing the state

of the economy may be unkown.

Ambiguity also often appears in the language of the sender in the form of messages that are

subject to a multiplicity of interpretations rather than simply vague. A statement is vague if it has

a unique unspecific meaning that all agree on, while a statement is ambiguous if different indi-

viduals are likely to derive different precise meanings from it. Vague and ambiguous statements

thus differ on two dimensions: the precision of the beliefs that they induce and the likelihood

of ex post disagreement between different receivers. Ambiguous sentences abound in everyday

language. A mentor asked to provide a recommendation letter may for example choose to write

"I cannot recommend X enough.", which can be interpreted in two mutually contradictory ways.

Necker cubes (see below) capture visually the notion of multiple interpretations. A Necker cube

representation is compatible with two different configurations of a simple cube. Some individuals

primarily see the one configuration, others rather see the other, while some see both immediately.
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We see two starting points for research on communication and ambiguity. First, the common

presence of Knightean uncertainty in situations of advice justifies examining a model of advice

featuring Knightean or "subjective" uncertainty. Second, the ubiquity of ambiguous language begs

for a theoretical explanation. Existing models of strategic communication, even when explicitly

purporting to study ambiguous communication, analyse vagueness. (see for example Alesina and

Cukierman (1990), Aragonès and Neeman (2000), Callander and Wilson (2008), Tomz and Van

Houweling (2009)).

We argue that the two above mentioned aspects are naturally addressed simultaneously. Our

insight is that ambiguous language arises spontaneously in a subjectively uncertain world pop-

ulated by ambiguity averse agents. We examine a simple binary model of advice in which the

distribution of the state of the world is subject to Knightean uncertainty, i.e. ambiguous. We char-

acterize the set of influential equilibria and discuss how key features of these relate to common

notions of ambiguous language. We briefly overview our main findings in what follows.

A first preliminary finding is that agents favour randomization for a subset of inconclusive or

intermediate signal realizations. This originates in ambiguity averse agents’ desire to hedge in the

face of ambiguity and is a typical feature of this family of models.

We first focus on the class of equilibria that implement S’s optimal decision rule (so-called

S-optimal equilibria), which is the only class featuring influential communication under no am-

biguity. A first important finding is that in every S-optimal equilibrium, S randomizes between

equilibrium messages that trigger strictly different beliefs and different (mixed or pure) actions by

R. The randomization performed by S may furthermore be echoed by randomization on the side

of R after certain messages.

We attach three comments on the randomization operated by S. First, in the classical Crawford

and Sobel model, any partitional equilibrium can be reinterpreted as an equilibrium in which

S mixes between messages, but such mixing only involves messages that cause identical beliefs

and identical actions. The involved mixing is therefore immaterial, as opposed to the mixing that

appears in the S-optimal equilibria of our model, which can in contrast not be disposed of. Second,

the mixing performed by S in an S-optimal equilibrium can be reinterpreted as mixing over a set of

classical partitional communication strategies, upon observation of his private signal. Third, the

randomization performed by S in S-optimal equilibria differs from that arising within the "noisy
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talk" model of Blume, Board and Kawamura (2007) to the extent that it is voluntary. We expand

on this point in the literature review.

We add some remarks on a possible interpretation of the randomization performed by S or

by R in S-optimal equilibria. We find that the two types of randomization relate to two common

modes of ambiguous communication. When S mixes between messages triggering different re-

sponses, this bears some similarity to the choice of versatile formulations that might be perceived

differently by different individuals, just as a Necker cube might be perceived differently by dif-

ferent individuals. When instead S sends a message that gives rise to randomization by R, this is

somewhat equivalent to S taking an agnostic stance, abstaining from recommending a pure action

and instead stating that "the optimal pure action of R depends on the prior beliefs applied". These

two modes of ambiguous communication constitute two different versions of the "multiplicity of

interpretations" that is the essence of ambiguous language. One could distinguish between per-

ceptual and introspective ambiguity: While the first form of ambiguity arises in the process of

perception of the language, the second arises in the process of deriving the implications of the

perceived language.

Our second main finding is a technical observation that considerably simplifies our analysis

of the set of S-optimal equilibria. We show that in characterizing key comparative statics of the

set of S-optimal equilibria, whether regarding the effect of preference misalignment or the effect

of restrictions on the message space, we may focus on so-called z-equilibria. In these, S’s com-

munication strategy is described by three simple thresholds and associated mixing probabilities

computed on the basis of the two agents’ preference parameters.

Our third main finding considers the relevance of the message space cardinality for the exis-

tence of S-optimal equilibria. While it is trivial that no more than three messages are ever useful,

a key question is whether two are sufficient, given that the action set is after all of cardinality

two. We find that under high ambiguity, the availability of a third message is far from being in-

consequential. The use of three messages is necessary to guarantee the existence of an S-optimal

equilibrium if R has strongly misaligned preferences. More surprisingly, if S is restricted to using

only two messages, there sometimes arises what we term a "Doppelgänger Paradox": there exists

no S-optimal equilibrium even if R and S have exactly the same preferences. Furthermore, when

the latter paradox arises, an S-optimal equilibrium may instead exist if R is instead moderately

biased.
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Our fourth main finding is that there typically now also exist equilibria featuring influential

communication that do not implement the optimal decision rule of S. This is not the case in the

absence of ambiguity.

Our fifth result regards the effect of the addition of a little ambiguity, starting from no ambi-

guity. We demonstrate that this can generate the possibility of influential communication and be

unambiguously beneficial to S.

We conclude our analysis by examining a smooth version of our model. The main difference is

that the optimal decision rule of agents now features mixing that varies continuously as a function

of the available information. Results are otherwise very reminiscent of the Max-Min model. Equi-

libria feature randomization across messages as in the Max-Min model and can be interpreted as

randomization over classical partitional communication strategies. The use of more messages, as

in the previous model, can be beneficial for S. As in the Max-Min model, if restricted to using only

two messages, S may prefer to face a biased receiver rather than his alter ego.

Literature review Our contribution lies at the intersection on the literatures on respectively

cheap talk communication and ambiguity. The first was initiated by the seminal model of Craw-

ford and Sobel (1982). The equilibrium randomization over messages inducing different beliefs

featured in our model bears a relation to the noisy communication studied in Board, Blume and

Kawamura (2007). In the latter model, an emitted message may be randomly swapped with an-

other during the transmission process. The authors show that this exogenous randomization in

communication may be welfare beneficial, as it improves the truthelling incentives of the sender.

If the sender, however, had access to non noisy messages, he would strictly favour these over

noisy messages. The exogenously imposed randomization featured in the "noisy talk" model

thus contrasts with the endogenous randomization characterizing our model. Blume and Board

(2010, 2012) offer a further exploration of the concepts introduced in Blume, Board and Kawamura

(2007).

Our paper also relates to the literature of ambiguity. We model ambiguity based on the Max-

Min model (Gilboa (1987), Gilboa and Schmeidler (1989)) and the Smooth Ambiguity model (Klibanoff

et al. (2005)), which nests the Max-Min Model as a limit case. It is well-known that no common

practice on updating of ambiguity averse preferences has yet emerged. We refer to Siniscalchi

(2011) as well as Hanany and Klibanoff (2007, 2009) for a discussion of this issue. Recently, ambi-

guity has been brought to strategic settings by a number of authors. The contributions of Azrieli
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and Teper (2011), Bade (2010) as well as Riedel and Sass (2011) define general equilibrium con-

cepts under ambiguity. A large array of papers study more specific applications to finance, tour-

naments or contract theory. Somewhat more related contributions include a number of studies

of mechanism design under ambiguity (Bose and Renou (2011), Di Tillio et al. (2011)). The latter

contributions, in applying the Revelation Principle, analyze a messaging game in the presence of

ambiguity.

2 The Max-Min model

2.1 The model

The following section introduces the game G, the considered strategies as well as the equilibrium

concept invoked.

There are two agents, a sender S and a receiver R. The state of the world ω ∈ Ω = {A, B} has a

subjectively uncertain distribution
{

1− Pj(B), Pj(B)
}

, for j ∈ {l, h} , where for both agents, Ph(B)

is the maximal prior weight assigned to state B and Pl(B) is the minimal prior weight assigned

to state B. We assume that Ph(B) =
1
2 + e and Pl(B) =

1
2 − e, for some e ∈

(
0, 1

2

)
. We sometimes

explicitly denote priors by Pe
h(B) and Pe

l (B) to mark the dependence on e. R can choose among

two actions a and b.

The preferences of each agent i ∈ {S, R} are described by a parameter qi ∈ (0, 1). Given a state

and a given action, payoffs to agent i ∈ {S, R} are given by πi (b, A) = −qi, πi (a, B) = − (1− qi) ,

while πi (a, A) = πi (b, B) = 0. The parameter qi thus denotes an agent’s relative aversion to type

I and type I I errors. Defining E (πi(j) | I, Pk(B)) as the expected payoff of action j for agent i given

information I and prior Pk(B):

E (πi(b) | I, Pk(B)) = −qiP(A | I, Pk(B))

E (πi(a) | I, Pk(B)) = −(1− qi)P(B | I, Pk(B)),

meaning that for a given prior Pk(B) and a given information set I, an ambiguity neutral agent

i favours action b iff P(B | I, Pk(B)) ≥ qi and otherwise strictly favours action a. An ambiguity

neutral agent thus always strictly prefers a pure action, given his information, except in the knife-

edge case where qi = P(B | I, Pk(B)). The preference parameter qS and qR are public information

and qR < qS.
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A jury trial environment matches the basic features of this model. Jurors, whatever their exact

sensibilites, agree that a guilty defendant should be convicted while an innocent defendant should

be acquitted. They however differ as to their exact threshold of reasonable doubt. Letting B stand

for the guilty state, our assumptions on preferences imply that S is less eager to convict than R.

Preferences given ambiguous beliefs The agent chooses the mixed action ρ = (ρa, ρb) that

maximizes the minimal expected payoff over all possible priors. I.e. the agent chooses the mixed

action ρ∗R s.t.

ρ∗ = arg max
ρ∈∆ab

min
Pk(B)∈[Pl(B),Ph(B)]

∑
j={a,b}

ρjE (πi(j) | I, Pk(B)) ,

where ∆ab is the set of all distributions over the action space {a, b} . Let Pj(B |I ) denote the

conditional probability of state B given information I, when applying prior Pj(B). It is easily seen

that the optimal decision rule of an agent with preference parameter q is given as follows. First,

choose a for sure if Ph(B |I ) < q. Secondly, randomize with probability {q, 1− q} over respectively

a and b if Pl(B |I ) ≤ q ≤ Ph(B |I ). Finally, choose b for sure if q ≤ Pl(B |I ).

Information structure S receives a signal σ which is drawn from a state dependent continuous

distribution Fω(σ) with density function fω(σ). FA(σ) and FB(σ) are s.t.
fB(σ)
fA(σ)

is strictly increasing

in σ, thus satisfying MLRP. It follows that if
fB(σ)
fA(σ)

is sufficiently low for low values of σ while
fB(σ)
fA(σ)

is sufficiently large for large values of σ, there exist, for each agent i ∈ {S, R}, thresholds t1
i (qi),

t2
i (qi) ∈ (l, u) , t1

i (qi) < t2
i (qi), s.t. the following is true: for σ < t1

i (qi), agent i strictly favours

a, for σ ∈
(
t1
i (qi), t2

i (qi)
)
, agent i strictly favours randomizing by choosing a with probability qi,

and for σ > t2
i (qi), agent i strictly favours action b. It is immediate that t1

R(qS) < t1
S(qS) and

t2
R(qR) < t2

S(qS) given that qR < qS.

Figures 1a and 1b: the optimal decision rule in the Max-Min model.
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In Figure 1.a., the decreasing (increasing) line shows the expected utility of action a (b) as a

function of the prior probability of state B. The horizontal dot-dashed line shows the expected

utility of the randomization policy (q, 1 − q) as a function of the prior probability assigned to

state B. If the interval of priors considered is (pL, pH), it is clear that the Max-Min policy is the

randomization policy (q, 1− q). On the other hand, if the interval of priors considered is (p′L, p′H),

the Max-Min policy is to always choose action b. Figure 1.b. shows the optimal decision rule of an

agent with preference parameter q as a function of the received signal σ.

Communication protocol and equilibrium S can communicate costlessly with R by emitting a

message m ∈ M, where M is a set of cardinality n ≥ 3 in which individual messages are numbered

m1, ..., mn. A communication strategy δS of S specifies, for each information set I of S, a distribution

over messages belonging to M.

The timing of the game G is given as follows:

0. Nature draws a state ω,

1. Nature draws a signal according to Fω,

2. S issues a message,

3. R chooses an action.

A decision strategy δR of R specifies a distribution (δR(a, m), 1− δR(a, m)) over actions (a, b)

for each possible message in M. A Weak Perfect Bayesian equilibrium E of the game G is given

by: 1) a communication strategy δS of S, 2) a decision strategy δ
R

of R and 3) a system of beliefs

satisfying the following two requirements. First, δS and δ
R

are sequentially rational given the

system of beliefs. Secondly, for each prior P̃(B) in the set of possible priors and each message

m ∈ M, posterior beliefs are derived by Bayes’ rule whenever possible. Let the belief function

τ(m, P̃(B)) specify the probability assigned by R to state B upon reception of a message m, when

applying the prior distribution P̃(B).

Sequential rationality of δR implies that R chooses action a given m if and only if τ(m, Ph(B)) <

qR, chooses a with probability qR iff τ(m, Pl(B)) ≤ qR ≤ τ(m, Ph(B)) and chooses action b otherwise.

Let E (πS |m, δR, Pk(B), I ) denote the expected payoff of S under the prior Pk(B) at information set

I, if R uses the decision strategy δR. Sequential rationality of δS implies that at any information set
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I, if the strategy δS specifies the distribution ϑ∗ = (ϑ∗1 , .., ϑ∗n) over messages in M, then

ϑ∗ = arg max
ϑ∈∆M

min
Pk(B)∈[Pl(B),Ph(B)]

∑
r=1..,n

ϑrE (πS |mr, δR, Pk(B) ) , (1)

where ∆M is the set of all distributions over M. We do not define any out of equilibrium beliefs.

Indeed, by a standard argument, for any equilibrium in which only a strict subset of the messages

contained in M is emitted with strictly positive probability, there exists an outcome equivalent

equilibrium in which all messages in M are emitted with strictly positive probability. We say

that an equilibrium is influential if there exist two different messages m and m′ that are sent with

strictly positive probability and s.t. δR(a, m) 6= δR(a, m′). We say that two equilibria are outcome

equivalent if they induce, at every information set of S, the same distribution over actions of R.

Note that two outcome equivalent equilibria may differ as to the communication strategy used by

S.

2.2 Main analysis

We start by a brief characterization of the set of influential communication equilibria in the absence

of ambiguity.

Remark 1 If e = 0 (No ambiguity) and if there exists an equilibrium with influential communication, the

following equilibrium exists. S emits m1 if he favours a, m2 if he favours b. R chooses action a after m1 and

action b after m2.

Proof: omitted.

Equilibrium behavior in the absence of ambiguity is thus very simple. If there exists an equi-

librium with influential communication, then it implements S’s optimal decision rule, which is

furthermore deterministic. S simply announces truthfully his favoured action and his recommen-

dation is followed. Note that this equilibrium only exists if R is willing to take action a after

message m1, which requires that qR is not excessively low.

In what follows, we perform a general analysis of the set of influential equilibria of the game,

in the presence of a positive amount of ambiguity. The set of influential equilibria now consists

of two separate subsets, those that implement S’s optimal decision rule and those that do not. We

call the first set S-optimal equilibria (SOE) and the latter non S-optimal equilibria (NSOE).
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We first state a Lemma that applies to all influential equilibria and that implies that we may

restrict ourselves without loss of generality to influential equilibria in which no more than 3 mes-

sages are used with positive probability on the equilibrium path. The intuition for the result

resides in the fact that the best response of R to his beliefs can only take three possible forms: a for

sure, b for sure or mixing over {a, b} with probabilities {qR, 1− qR} .

Lemma 1 For every influential equilibrium, there is an outcome equivalent equilibrium in which no more

than three messages are sent with positive probability.

Proof: See Appendix A.

We now focus on the class of S-optimal equilibria. Note first, as simple observation, that there

exists no S-optimal equilibrium in which S does not randomize between equilibrium messages.

Lemma 2 There exists no S-optimal equilibrium in which S never randomizes between messages.

The proof of the result is immediate. We know that S, for intermediate signal realizations,

favours mixing over {a, b} with probabilities {qS, 1− qS} . In a putative S-optimal equilibrium in

which S would never randomize over messages, one of his equilibrium messages would have to

trigger mixing by R over {a, b} with probabilities {qS, 1− qS}. Yet we know that if R mixes, he

does so with probabilities {qR, 1− qR} . Such an equilibrium could thus not possibly implement

S’s favoured decision rule.

Exhaustively characterizing the set of S-optimal equilibria of the game is both daunting and

unnecessary for our purposes. In what follows, we introduce a simple subclass of the class of

S-optimal equilibria, before subsequently establishing in Proposition 1 a sense in which we may

restrict ourselves to this subclass without loss of generality.

Definition 1 z-equilibrium

In a z-equilibrium, there are messages m1,m2,m3 in M s.t. S emits m1 if σ < t1
S(qS) and m2 if σ >

t2
S(qS). There is a z ∈

[
t1
S(qS), t2

S(qS)
]

s.t. if σ ∈ [t1
S(qS), z), S emits m1 with probability

qS−qR

1−qR
and m3

with probability
1−qS

1−qR
, while if σ ∈

[
z, t2

S(qS)
]

, S emits m1 with probability qS and m2 with probability

1− qS.

In a z-equilibrium, R chooses a after m1 and b after m2. After m3, R chooses a with probability qR.
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Z-equilibria are S-optimal equilibria that feature a simple communication strategy which is

entirely described by the three thresholds
{

t1
S(qS), z, t2

S(qS)
}

and a set of mixing probabilities. A

z-equilibrium in which z = t1
S(qS) implies the emission with positive probability of exactly two

messages, while any remaining z-equilibrium implies that three messages are emitted with posi-

tive probability.

The following proposition clarifies the exact relation between the set of S-optimal equilibria

and the set of z-equilibria. Proposition 1 shows that in studying the set of S-optimal equilibria, we

may without loss of generality limit ourselves to the set of z-equilibria.

Proposition 1 S-optimal equilibria and z-equilibria

a) Given qS, qR, if there exists an S-optimal equilibrium, then there exists a z-equilibrium.

b) There exists an S-optimal equilibrium in which only two messages are sent with positive probability

if and only if there exists a z-equilibrium in which only two messages are sent with positive probability, i.e.

if and only if the z-equilibrium given by z = t1
S(qS) exists.

Proof: See Appendix B for a proof of Point a). The proof of Point b) is trivial and therefore

omitted.

We wish to characterize the comparative statics of the set of S-optimal equilibria. Key ques-

tions are: 1) What are the lowest and highest levels of qR compatible with the existence of an

S-optimal equilibrium and how do these thresholds vary as a function of the ambiguity level e?

2) Are strictly more than two messages sometimes necessary to allow S to implement his optimal

decision rule? I.e., are there parameter values for which an S-optimal equilibrium exists if and

only if strictly more than two messages are available?

The above Proposition implies that, in seeking to characterize the key comparative statics prop-

erties of S-optimal equilibria, we may restrict ourselves to the subset of z-equilibria. Given Point

a) of Proposition 1, there is a close relation between the two sets. For a given qS, the set of values

of qR for which there exists some z-equilibrium coincides with the set of values of qR for which

there exists an S-optimal equilibrium. Point b) of Proposition 1 helps us to characterize the role

of the message space cardinality by establishing that if there exists no z-equilibrium using only

two messages (i.e. with z = t1
S(qS)), then there exists no S-optimal equilibrium using only two

messages. Thus, if we can find parameter values for which there exists no z-equilibrium with
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z = t1
S(qS) while there exists a z-equilibrium with z > t1

S(qS), we have shown that an S-optimal

equilibrium exists if and only if strictly more than two messages are available.

Our next proposition offers a first characterization of the comparative statics of the set of S-

optimal equilibria. Before stating our result, we introduce a useful condition on the distribution

of signals:
FB(σ)
FA(σ)

∂
(

FB(σ)
FA(σ)

)

∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)

∂σ

, ∀σ. (2)

From now one, we assume that (2) holds. We add a Lemma regarding condition (2), showing

that it is satisfied in the following two canonical cases.

Lemma 3 a) Suppose that fB and fA are two normal distributions with identical variance ξ2 and means

µA, µB, with µA < µB. Then (2) is satisfied.

b) Suppose that fB and fA are two linear distributions defined over the same bounded interval and that

fB increases in σ while fA decreases in σ. Then (2) is satisfied.

Proof: See in Appendix D.

Proposition 2 Message space cardinality and S-optimal equilibria.

Given qS, there are positive constants e1(qS), e2(qS), e3(qS) satisfying

1

2
> e3(qS) > e1(qS) > 0

s.t. the following is true:

i. Suppose that three messages are available. Given qS and e, there exists q
R
(qS, e, 3) < qS s.t. there

exists an S-optimal equilibrium iff qR ∈
[
q

R
(qS, e, 3), qS

]
.

ii. Suppose that only two messages are available.

ii.a) There is a positive constant e3(qS) s.t. if e > e3(qS), there exists no S-optimal equilibrium for any

qR while instead if e ≤ e3(qS), there exist strictly positive thresholds q
R
(qS, e, 2) & qR(qS, e, 2) satisfying

q
R
(qS, e, 2) < qR(qS, e, 2) ≤ qS s.t. there exists an S-optimal equilibrium iff qR ∈

[
q

R
(qS, e, 2), qR(qS, e, 2)

]
.

ii.b) Lower bound. There is a positive constant e1(qS) < e3(qS) s.t. q
R
(qS, e, 2) = q

R
(qS, e, 3) if

e ≤ e1(qS) while instead q
R
(qS, e, 2) > q

R
(qS, e, 3) if e ∈ (e1(qS), e3(qS)], .

ii.c) Upper bound. There is a positive constant e2(qS) ≤ e3(qS) s.t. qR(qS, e, 2) = qS if e ≤ e2(qS)

while instead qR(qS, e, 2) < qS for e ∈ (e2(qS), e3(qS)].
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Proof: see in Appendix C.

Figure 2.

Figure 2 above illustrates Proposition 2. It considers the case of fB(σ) = 2σ, fA(σ) = 2− 2σ and

qS = .66. The horizontally striped area indicates pairs (e, qR) for which there exists an S-optimal

equilibrium if only two messages are available. The diagonally striped area indicates pairs (e, qR)

for which there exists an S-optimal equilibrium if three messages are available.

Point i. shows that the behavior of the model is standard and simple, if three messages are

available to S. When it comes to implementing the optimal decision rule of S, if no restriction

is imposed on the cardinality of the message space, the conditions on qR are in line with intu-

ition concerning the negative impact of preference misalignment. There is a minimal receiver

type q
R
(qS, e, 3) below which the S-optimal decision cannot be implemented and above which

the S-optimal rule can be implemented. In the absence of any restriction on language, S can in

particular always implement his optimal decision rule when facing his preference twin, i.e. his

Doppelgänger.

Point ii. shows that the absence of a third message hurts S in terms of his ability to implement

his optimal decision rule, whenever ambiguity is sufficiently high. Point ii.a. shows that for a

given qS and e smaller than some constant e3(qS), there is a closed interval
[
q

R
(qS, e, 2), qR(qS, e, 2)

]

of values of qR s.t. an S-optimal equilibrium exists iff qR belongs to this interval. If instead e is

larger than the constant e3(qS), there exists no S-optimal equilibrium if only two messages are

available, whatever qR. Point ii.b. shows that the lower bound q
R
(qS, e, 2) is strictly higher than

q
R
(qS, e, 3) if e is larger than some constant e1(qS) < e3(qS). Thus, if ambiguity is high enough and

R has strongly misaligned preferences, the availability of a third messages is crucial in allowing S
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to perfectly "manipulate" R. Point ii.c. shows an equivalent (albeit less categorical) result for the

upper bound qR(qS, e, 2).

A salient aspect of our characterization is that for e larger than some constant e2(qS) ≤ e3(qS),

there may exist no S-optimal equilibrium for qS = qR. We call this phenomenon "Doppelgänger

Paradox".

In order to interpret our results, we now go back to the set of z-equilibria. We use the new

notation t1
S(qS, e), t2

S(qS, e) for the thresholds t1
S(qS) and t2

S(qS), thus explictly marking the depen-

dence of these objects on the ambiguity level e. In what follows, remember that the threshold z, in

a z-equilibrium, is a priori restricted to belong to the interval [t1
S(qS, e), t2

S(qS, e)].

Suppose that the level of ambiguity is high, so that that even if qR is rather low, there is a

common hedging interval
[
t1
S(qS, e), t2

R(qR, e)
]

where both S and R find it optimal to randomize

(though with different probabilities), i.e.

t1
R(qR, e) < t1

S(qS, e) < t2
R(qR, e) < t2

S(qS, e)

Recall that the only putative z-equilibrium profile that necessitates only two messages is de-

fined by z = t1
S(qS, e). It is intuitive that such an equilibrium will fail to exist if qR is sufficiently

low. Indeed, in such a putative equilibrium, R will not choose action a with probability one after

message m1 if qR is sufficiently low.

In the above situation where the z = t1
S(qS, e) equilibrium fails to exist, let us consider instead

z-equilibria in which S makes use of 3 messages, i.e. z-equilibria with z > t1
S(qS, e). Let us choose

a z sufficiently small that S now sends m3 only when his signal belongs to the common hedging

interval
[
t1
S(qS, e), t2

R(qR, e)
]
, so that mixing is indeed optimal for R given m3. As compared to

the 2-messages equilibrium considered above (defined by z = t1
S(qS, e)), the advantage is that the

message m1 is now used with a smaller probability for an interval of rather high signal realzations.

In the previous equilibrium scenario given by z = t1
S(qS, e), m1 was used with probability qS in

the interval [t1
S(qS, e), z) while it is now used only with probability

qS−qR

1−qR
in that same interval. By

using m1 less often in this particular interval, m1 now becomes a stronger indication of low signal

realizations, so that it now may be optimal for R to choose a after m1. If this is so, then S now

succeeds in implementing his favorite decision rule by optimally setting z > t1
S(qS, e) rather than

z = t1
S(qS, e). This argument, in a nutshell, shows how the use of the third message m3 can be

helpful for S, when ambiguity is high and qR is sufficiently low.
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Suppose now instead that the level of ambiguity is low. Assume furthermore that qR is very

low, so that the regions where both players prefer mixing will not overlap. Here, whenever S

wants to randomize, R already wants to choose b with probability one. Hence, in a z-equilibrium

with z > t1
S(qS, e), R’s reaction to m3 must be identical to his reaction to m2 (choose b for sure), so

that using m3 cannot be helpful. In this case, a z-equilibrium using three messages can never im-

plement the S-optimal rule if the two-message z-equilibrium cannot. This argument, in a nutshell,

shows how the availability of a third message is of no use to S, when ambiguity is low and qR is

rather low.

A further property of the set of z-equilibrium is that for given qR, qS and e, there often exists a

continuum of such equilibria (see Proposition 8 in Appendix C). This feature originates in the fact

that there are two different ways to ensure the optimal hedging behavior by R for intermediate

signal realizations: either mix between m1 and m2, where each of these triggers a pure action (resp

a and b), or mix between m1 and m3, where m3 triggers randomization by R. Many different com-

binations of these two ways will ensure that R indeed acts as desired by S and thus implements

the latter’s optimal decision rule.

We add three remarks on the "Doppelgänger Paradox" that may arise in our model when S is

restricted to using only two messages.

If qR = qS, one would expect that there exists a simple z-equilibrium given by z = t1
S(qS, e),

thus making the message space restriction inconsequential. The intuition for this would run as

follows. In such a putative equilibrium, R chooses a for sure after message m1 and b for sure

after m2. S simply randomizes optimally between m1 and m2 whenever his signal belongs to

the hedging interval
[
t1
S(qS, e), t2

S(qS, e)
]

and otherwise chooses m1 or m2. R, recognizing that

his optimal decision rule coincides with that of S, should be willing to stick to the postulated

equilibrium behavior, recognizing that it leads to the implementation of his own best decision

rule. This intuition is however wrong, as we now explain. Under the updating rule assumed, R

considers the received message as a natural signal and simply applies his own optimal (ambiguity

averse) decision rule to this signal. The fact that in the z-equilibrium given by z = t1
S(qS, e), S has

already acted in a way that maximized his own (ambiguity averse) preferences is immaterial. R

recognizes that if he knew what S knows, he should act according to his putative equilibrium

strategy. But he does not know what S knows, but something much less precise. R does not

know whether a given recommendation for a pure action was emitted at an information set where
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S favours a pure action or at an information set where S favours randomization over actions.

Consequently, his best action given the message sent to him does not coincide with that favoured

by S. This insight indicates that beyond the misalignment of interests encoded in preference types,

there remains an intrinsic difference in interests between S and R that originates in the different

positions allocated to these within the game.

One might argue that a similar "Doppelgänger paradox" would arise in an expected utility

framework. In the canonical Crawford and Sobel environment, a limitation on language would

afterall also prohibit S from implementing his first best decision rule even in the absence of any

interest misalignment. This argument, though generally valid, does not apply to our very simple

environment. Assume our binary environment and simply eliminate the uncertainty about priors.

Suppose that the optimal decision rules of S and R would be identical to those given in our en-

vironment, i.e. take action a for low signal realizations, b for high realizations and randomize for

intermediate signals. In such a setting, the above mentioned deviation incentive of an unbiased R,

in a putative z-equilibrium given by z = t1
S(qS, e), would not arise anymore. R would be satisfied

to take action a after m1 and action b after m2, in the knowledge that each message might have

been emitted either when S favours a pure action or when he instead favours randomization. The

restriction to only two messages is thus not enough to generate the result. The presence of ambi-

guity as well as ambiguity aversion is crucial to the emergence of the Doppelgänger paradox. A

second difference w.r.t. the expected utility environment resides in the comparative statics of the

two models. In an expected utility environment, an increase in R’s bias would not be helpful, if

the restriction on the cardinality of the message space were maintained. This is in contrast the case

in the present environment. (see Figure 2.c)

The above counterintuitive result depends crucially on the updating rule assumed on the re-

ceiver side. Following Hanany and Klibanoff (2007), one might instead let the set of priors consid-

ered and updated by R be a function of the information set at which he is located. Consider again

the putative z-equilibrium given by z = t1
S(qS, e) and assume that qR = qS. The reason why R

deviates under the assumed updating rule is that for some of his priors, message m2 implies that

action a is ex post optimal (see subsection 3.1). Instead, one might assume an updating rule speci-

fying that after message m2, R selectively ignores or eliminates priors leading him to favor action

a, while the updating rule is otherwise identical to the one that we have assumed. Under such a

modified updating rule, R would not want to deviate after m2 and the putative equilibrium given

by z = t1
S(qS, e)would indeed exist. Such an updating rule is introduced in Hanany and Klibanoff
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(2007) with the aim of reestablishing dynamically consistent behavior and appears relevant here.

The idea is to let R update in a way that accounts for the fact that S has already randomized over

signals in order to hedge against uncertainty, so that additional randomization is counterproduc-

tive, conditional on the available signal (which only S observes). One might similarly consider

different updating rules for S with the same aim of alleviating the Doppelgänger problem, but we

leave this issue aside.

We now provide a characterization of the set of non S-optimal equilibria. Recall that this set

is empty in the absence of ambiguity. We introduce the decision rules D1 and D2. In D1, action a

is chosen with probability qR if σ < t2
S(qS) and with probability zero if σ ≥ t2

S(qS). In D2, action

a is chosen with probability 1 if σ < t1
S(qS), with probability qS if σ ∈

[
t1
S(qS), t2

S(qS)
]

and with

probability qR if σ > t2
S(qS).

Decision rules D1 and D2 differ as to where the deviation from the S-optimal decision rule

takes place. In D1, the deviation is starkest for σ < t1
S(qS) as R randomizes while S would want a

to be taken for sure. For σ ∈
[
t1
S(qS), t2

S(qS)
]

, R’s behavior also deviates from S’s favoured behav-

iour, although S would also favour randomizing over both actions, but with a smaller probability

attached to b. Finally, for σ > t2
S(qS), the implemented decision rule coincides with S’s optimal

decision rule. In D2, the deviation from S’s optimal decision rule only occurs for σ > t2
S(qS), in a

way that is somewhat paradoxical, because the deviation from S’s optimal decision rule for this

set of signals is wasteful for both players.

Proposition 3 Non S-optimal equilibria

a) Any influential NSOE implements decision rule D1 or D2.

b) If there exists any NSOE implementing D1, then the following NSOE exists. S emits m1 if σ <

t2
S(qS) and m2 if σ ≥ t2

S(qS). R chooses action a with probability qR after m1 and b with probability one

after m2.

c) If there exists any NSOE implementing D2, then the following NSOE exists. S emits m1 if σ <

t1
S(qS), m1 with probability

qS−qR

1−qR
and m2 with remaining probability if σ ∈

[
t1
S(qS), t2

S(qS)
]

and m2 for

sure if σ ≥ t2
S(qS). R chooses action a for sure after m1 and with probability qR after m2.

d) For given qS and e, there exist positive thresholds q1
R
(qS, e) & q1

R (qS, e) satisfying q1
R
(qS, e) <

q1
R (qS, e) ≤ qS s.t. an NSOE implementing D1 exists iff qR ∈

[
q1

R
(qS, e) , q1

R (qS, e)
]

. For e sufficiently

low, q1
R (qS, e) < qS.
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e) For given qS and e,if there exists an NSOE implementing D2 for a given qR ≤ qS, then there exists

such an equilibrium for all q′R ∈ (qR, qS]. For e sufficiently low, there exists no equilibrium implementing

D2.

Proof: See Appendix E.

When ambiguity is low, for an equilibrium implementing decision rule D1, existence condi-

tions are not summarized by a lower bound q1
R
(qS, e) on qR s.t. for any value of qR belonging

to the interval [q1
R
(qS, e) , qS), such an equilibrium exists. Indeed, there is also an upper bound

q1
R (qS, e) < qS s.t. an equilibrium implementing D1 exists only if qR ≤ q1

R (qS, e). Under low

ambiguity, for an NSOE implementing D1 to exist, the preference misalignment between R and S

should neither be too large nor too small.

Figures 3.a and 3.b.

Figures 3.a and 3.b above consider the same parameter values as Figure 2. I.e. we assume

fB(σ) = 2σ, fA(σ) = 2 − 2σ and qS = .66. Figure 3.a depicts, for every possible pair (e, qR),

the complete set of decision rules that can be implemented if three messages are available. The

vertically striped area indicates pairs (e, qR) for which there exists an equilibrium implementing

decision rule D1. The diagonally striped area indicates pairs (e, qR) for which there exists an S-

optimal equilibrium, if three messages are available. Note that for the chosen parameters, there

exists no pair (e, qR) for which there exists an equilibrium implementing decision rule D2. Figure

3.b simply adds the horizontally striped area, which indicates pairs (e, qR) for which there exists

an S-optimal equilibrium if only two messages are available.

Figure 3.b allows us to say more about the Doppelgänger problem that arises in our game.

Here, if S faces his preference twin, there is a small interval of intermediate values of e (approx-

imately [.18, .22]) s.t. the following is true: 1) If S is allowed to use only two messages, there
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exists no equilibrium with influential communication. 2) If S is instead allowed to use three mes-

sages, there exists an equilibrium with influential communication, more specifically an S-optimal

equilibrium. The above finding constitutes a clear departure from the classical expected utility en-

vironment. Consider the general class of models in which 1) the signals of S as well as the action

space are one dimensional and 2) both S and R’s optimal action is monotonically increasing in S’s

signal. In any such model, if the cardinality of the message space is at least two, we postulate that

there always exists an equilibrium featuring influential communication if S faces his alter ego. To

be sure, decreasing the cardinality of the message space of course decreases the maximal amount

of achievable information transmission, but it never entirely prohibits influential communication,

as long as at least two messages are available. The cardinality of the message space thus matters

only in a weak sense. The classical Crawford and Sobel setup would display this property. In

contrast, in Figure 4, going from a message space cardinality of three to only two renders any in-

fluential communication impossible, if ambiguity is intermediate and qR = qS. In our model, the

cardinality of the message space can thus matter in a strong sense.

2.3 Adding a little ambiguity

Proposition 2 falls short of characterizing the exact comparative statics of our model wr.t. e and the

next proposition provides more detail on this issue. A question that naturally arises is whether the

addition of a little ambiguity can be helpful for S or R. We first show that adding a little ambiguity

in the environment is not helpful, in so far as S’s ability to implement his optimal decision rule

is concerned, whether or not he is restricted to only two messages. We secondly show that on

the other hand, the addition of a little ambiguity may allow for the establishment of influential

communication through the emergence of an equilibrium implementing decision rule D1. Figure

4 illustrates our findings.

Proposition 4 Adding ambiguity (I)

i.a. S-optimal equilibria (2 or 3 messages). For any e ≤ e1(qS), q
R
(qS, e, 3) is weakly increasing in e.

i.b. S-optimal equilibria (2 messages). For any e ≤ e3(qS), q
R
(qS, e, 2) is weakly increasing in e and

qR(qS, e, 2) is weakly decreasing in e.

ii. Equilibria implementing decision rule D1. For any e, q1
R
(qS, e) is weakly decreasing in e and

q1
R (qS, e) is weakly increasing in e.

Proof: See in Appendix F.
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We furthermore compare babbling under no-ambiguity to the D1 equilibrium scenario arising

under small ambiguity. We do so by comparing the expected payoff obtained by agent i in the

babbling equilibrium under no-ambiguity to the expected payoff obtained by i in the D1 equilib-

rium under a given ambiguity level e, under his most adverse prior. In order to prove that agent i

unilaterally favours the second scenario, we thus simply need to establish that for each j ∈ {l, h}
and i ∈ {S, R} , given e

−(1− Pe
j (B))

[
FA(t

2
S(e)(1− qR) + (1− FA(t

2
S(e))

]
qi − Pe

j (B)FB(t
2
S(e))qR(1− qi)︸ ︷︷ ︸

payoff of i in equilibrium D1 under prior Pe
j (B)

> −1

2
min {qi, 1− qi}

︸ ︷︷ ︸
payoff of i if e=0 (babbling)

.

(3)

Proposition 5 Adding Ambiguity (II)

Assume that qS <
1
2 . There exists e∗ > 0 s.t. for any e ∈ (0, e∗) , there is some q1

R
(qS, e) < q

R
(qS, 0, 3)

s.t for qR ∈
[
q1

R
(qS, e) , q

R
(qS, 0, 3)

]
the two following statements are simultaneously true:

a) There exists no S-optimal equilibrium while there exists an equilibrium implementing D1.

b) In an equilibrium implementing D1, S obtains an expected utility that is strictly larger than his

expected utility in the babbling equilibrium for e = 0, for any prior Pj (B) ∈
[
Pe

l (B), Pe
h(B)

]
. In other

words, (3) holds for i = S, ∀j ∈ {l, h} .

Proof: See Appendix F.

Our proposition shows that for e small enough and qR sufficiently close to q
R
(qS, 0, 3) , the

addition of some ambiguity indeed not only generates the possibility of influential communication

but also delivers an unambiguous increase in utility for S. For R, this conclusion does not apply:

he may well loose, under both priors, from the transition to positive ambiguity and influential

communication. Figure 4 below illustrates the proposition. The diagonally striped area indicates

parameters for which there exists an equilibrium implementing the S-optimal decision rule. The

vertically striped area denotes parameter values for which decision rule D1 is implementable. The

plain grey area denotes parameters for which the addition of ambiguity generates the possibility

of influential communication which furthermore unambiguously improves the payoff of S.
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Figure 4: adding a little ambiguity.

2.4 Some remarks on z-equilibria

Given the centrality of z-equilibria to our analysis, we close our analysis of the Max-Min model

with some technical as well as more interpretative remarks concerning the set of z-equilibria.

We first comment on technical aspects of z-equilibria, relating these to existing results in the

cheap talk literature. A main feature of z-equilibria is the randomization undertaken by S be-

tween messages that trigger strictly different beliefs and different (mixed or pure) actions by R.

This feature originates in S’s desire to hedge for intermediate signal realizations. Though in the

classical Crawford and Sobel model, any equilibrium can in fact be reinterpreted as an equilibrium

in which S mixes between messages, such mixing only involves messages that cause identical be-

liefs and identical actions. The mixing that appears in the Crawford and Sobel model is thus in

a sense immaterial, while this is not the case in a z-equilibrium. Note that S’s communication

strategy in a z-equilibrium can be reinterpreted as mixing by S over a set of classical partitional

communication strategies, after he has received his signal. Let

{l0 = 0, (m1) , l1, (m2) , l2, ..., ln−1, (mn) , ln = 1}

denote a partitional communication strategy defined by a set of thresholds {l1 = 0, .., ln = 1}
such that S sends message mi for sure between thresholds li−1 and li. Define the following four
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partitional strategies.

α1 : {0, (m1) , z, (m2,) 1},

α2 : {0, (m1) , t2
S(qS), (m2) , 1},

α3 : {0, (m1) , t1
S(qS), (m3) , z, (m2) , 1},

α4 : {0, (m1) , t1
S(qS), (m3) , z, (m1) , t2

S(qS), (m2) , 1}.

Consider for example a z-equilibrium in which z ∈ (t1
S(qS), t2

S(qS)). The strategy of S is equiv-

alent to S randomizing, after receiving his signal, over the partitional communication strategies

α1, α2, α3 and α4 with respective probabilities
(

qS−qR

1−qR

)
(1 − qS),

(
qS−qR

1−qR

)
qS,
(

1−qS

1−qR

)
(1 − qS) and

(
1−qS

1−qR

)
qS.

As a final remark on the randomization performed by S, note that in contrast to the "noisy

talk" model of Blume, Board and Kawamura (2007), randomization is desired by S here, while

in the latter a sender would avoid it if he could. We close our discussion of randomization with

a comment on the randomization performed by R. While this is also a new feature wr.t. to the

classical Crawford and Sobel model, it follows immediately from the desire to hedge that comes

with ambiguity aversion.

Another interesting feature of z-equilibria is that these typically feature three equilibrium mes-

sages although the action space only contains two pure actions. This originates in two features of

the game. First, given ambiguity aversion, agents’ optimal decision rules involve three types of

behavior, either a or b or mixing. Secondy, this is a common value model. S and R’s optimal ac-

tions are similar for many signal realizations. They both favour a when the signal is very low, b

when it is very high, and hedging when the signal is intermediate. Being able to convey whether

the signal is low, high, or instead intermediate, can thus naturally be helpful.

We now relate z-equilibria to common notions of ambiguous language. We first introduce the

concept of Necker messages.

Definition 2 Necker messages

Let M̃ be a set of messages in which, for every distribution p = (p1, ..., pn) defined over M and every

p0 ∈ [0, 1], there exists a message m̃ (p0, p) s.t. if m̃ (p0, p) is sent, R observes mi with probability (1−
p0)pi, ∀i ∈ {1, .., n} , while he observes m̃ (p0, p) with probability p0. Any element of M̃ is a Necker

message and we call M̃ the Necker set.
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A Necker message is thus undetectable by R if p0 = 0, in the sense that it always appears to

R in the form of some standard message belonging to the standard message set M. In contrast, if

p0 > 0, the Necker message is detected, i.e. recognized as such, with a strictly positive probability.

Two different aspects of z-equilibria relate to our definition of ambiguity. The first form of

ambiguity featured in a z-equilibrium is of a semantic nature. In a given z-equilibrium where

z > t1
S(qS), m3 may be interpreted as "whether a or b is optimal for you depends on which prior

beliefs you apply". The meaning of message m3 is thus ambiguous or agnostic to the extent that

the different priors that R may make use of correspond to different interpretations or implica-

tions of m3. The second form of ambiguity featured in a z-equilibrium is of a perceptual nature.

The randomization over messages appearing in z-equilibria can be interpreted as the emission of

versatile statements, i.e. statements that may be perceived differently by different persons.

We now bring this abstract description to a concrete trial jury setting featuring messages or

sentences whose literal meaning matches the Bayesian meaning that they come to endorse in an

equilibrium of the game. A defendant may be innocent (A) or guilty (B) and may be acquitted (a)

or convicted (b). Now, suppose that three standard messages or sentences τ1, τ2, τ3 are available

to S:

τ1 : "I think that she is not guilty"

τ2 : "I think that she is guilty."

τ3 : "I do not have enough information to recommend the one or the other decision"

Suppose furthermore that the Necker message or sentence τ4 is available to S:

τ4 : "I do not think that she is guilty".

When received by R, τ4 is mistaken for τ1 with probability qS and mistaken for τ3 with probability

1− qS. Note that τ4 is an undetectable Necker message. Many people would consider τ1 ("I think

she is not guilty") and τ4 ("I do not think she is guilty") as literally synonymous. However, some

people would rather consider τ3 ("I do not have enough information to recommend the one or the

other decision") and τ4 as literally synonymous. In this latter literal intepretation of τ4, S simply

denies being fully convinced that conviction is the right course of action.

Now, a z-equilibrium in which z = t2
s would correspond to the following equilibrium in our

trial jury game. S sends τ1 (i.e. says "I think she is not guilty") if σ < t1
S(qS) and sends τ2 (i.e.
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says "I think she is guilty") if σ > t2
S(qS). Finally, if σ ∈ [t1

S(qS), t2
S(qS)], S sends τ4 (i.e. says "I

do not think she is guilty") which is heard/perceived by R as τ1 ("I think she is not guilty") with

probability qS and heard as τ3 ("I do not have enough information to recommend the one or the

other decision") with probability 1− qS. After hearing τ1 (τ2), R chooses a (b) with probability 1

while after hearing τ3, R chooses a with probability qR.

For the skeptical reader who believes that Necker messages should always have a positive

probability of being detected, note that we can accomodate this within the framework of this

example. Suppose thus that the Necker sentence τ4 is actually detected with a small probability

ε > 0, while if undetected it is mistaken for τ1 with probability
(

qS−qR

(1−ε)(1−qR)

)
and mistaken for τ3

with probability
(

1− qS−qR

(1−qR)(1−ε)

)
. Now, a z-equilibrium in which z = t2

s would involve the same

communication strategy as described in the previous paragraph. In such a scenario, if R hears

either τ3 or τ4, he reacts identically: Since τ3 can be heard if and only if the Necker message τ4

has been sent, τ3 necessarily triggers the same beliefs as τ4. After hearing τ1 (τ2), R chooses a (b)

with probability 1 while after hearing τ3 or τ4, R chooses a with probability qR.

It is immediate that one could provide the same sort of interpretation for other z-equilibria

with z < t2
s . When the degenerate z-equilibrium with z = t1

s exists, for example, it is immediate

that there exists an equilibrium where S uses an undetectable Necker message whenever σ ∈
[t1

S(qS), t2
S(qS)].

3 The Smooth Ambiguity model

3.1 The model

We now analyze the Smooth Ambiguity version of the statistical decision model.

Prior beliefs The state of the world ω ∈ Ω = {A, B} has an ambiguous prior distribution
{

1− Pj(B), Pj(B)
}

, for j ∈ {h, l}. Two prior distributions Ph(B) and Pl(B) are considered possible,

where Ph(B) > Pl(B). The two priors Ph(B) and Pl(B) constitute the first order beliefs of agents.

Agents share second order beliefs µh and µl , where µj denotes the probability attached to prior

Pj(B).

Belief updating Given information I, agent i simultaneously updates his first and second or-

der beliefs. He updates first order beliefs by generating a posterior distribution for each prior



25

distribution (so-called prior by prior updating). He updates his second order beliefs by updating

his distribution over priors. Let Pj(B |I ) denote the updated prior Pj(B) given information I. Let

µ̂j(I) denote the updated weight µj attached to prior Pj(B) given I. Now, given information I, the

following holds:
Pj(B |I )

1− Pj(B |I )
=

Pj(B)

1− Pj(B)

P(I |B )
P(I |A )

and

µ̂j(I)

1− µ̂j(I)
=

µj

1− µj

Pl(B)
(

P(I|B )
P(I|A )

)
+ (1− Pl(B))

Ph(B)
(

P(I|B )
P(I|A )

)
+ (1− Ph(B))

It follows that only four statistics, namely the likelihood ratio
P(I|B )
P(I|A ) , Ph(B), Pl(B) and µh, are

sufficient to compute Ph(B |I ), Pl(B |I ) and µ̂h(I), given prior I.

Preferences given ambiguous beliefs Payoffs given state and action are defined as in our pre-

vious section on the Max-Min model. Suppose beliefs are given by Ph(B), Pl(B) and µh. Suppose

that the agent plays a mixed strategy according to which he chooses action b with probability β

and action a with remaining probability. Then, his corresponding loss is given by the following

expression:

∑
j∈{l,h}

µjφ
(
E
(
πi | β, Pj(B)

))

= ∑
j∈{l,h}

µjφ
(
−(1− Pj(B))βqi − Pj(B)(1− β) (1− qi)

)
,

where φ (u) is a concave function of u defined on the interval [−1, 0].

For every agent i, given event η and beliefs given by Ph(B), Pl(B) and µh, let βi

(
P(η|B)
P(η|A) , qi

)

denote the probability with which i chooses action b when applying his optimal decision rule.

For notational simplicity, we sometimes abusively write βi (η, qi) . We focus on environments, as

given by a choice of φ, a signal structure and a value of qS, that satisfy the following: For every

i ∈ {S, R} , there are thresholds Q1(qi) > 0 and Q2(qi) > 0 s.t.

βi

(
P(η |B)
P(η |A) , qi

)
= 0 if

P(η |B)
P(η |A) < Q1(qi),

βi

(
P(η |B)
P(η |A) , qi

)
∈ (0, 1)

∂βi

(
P(η|B)
P(η|A) , qi

)

∂
(

P(η|B)
P(η|A)

) > 0 if
P(η |B)
P(η |A) ∈ [Q1(qi), Q2(qi)] ,

βi

(
P(η |B)
P(η |A) , qi

)
= 1 if

P(η |B)
P(η |A) > Q2(qi).
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In what follows, we assume that the conditional distributions FA and FB are defined over the

interval [0, 1] and that the information structure is s.t. βi

(
P(σ=0|B)
P(σ=0|A) , qi

)
= 0 and βi

(
P(σ=1|B)
P(σ=1|A) , qi

)
=

1, for i ∈ {S, R} .

Figure 5: the optimal decision rule in the smooth ambiguity model.

Figure 5 shows a typical example of the optimal decision rule of an agent with preference

parameter q as a function of the received signal σ. Notice the smooth change in the optimal ran-

domization policy as a function of the signal, as opposed to the Max-Min case.

Note that as ambiguity aversion tends to infinity, the model converges to the Max-Min model

while if ambiguity aversion tends to zero, the model tends to the expected utility model.

Communication protocol and equilibrium S can communicate costlessly with R by emitting

a message m ∈ M, where M = {m1, .., mN} , for some finite N ≥ 3. The timing of the game G is

given as in the previous section on the Max-Min model. Sequential rationality of δR implies that

R simply follows the optimal policy βR

(
P(m|B)
P(m|A) , qR

)
given a likelihood ratio attached to message

m, given beliefs derived by Bayesian prior by prior updating. Clearly, if an equilibrium is s.t. S

induces his optimal randomization at every information set, then S has no incentive to deviate

from his equilibrium strategy. Beliefs of R in a putative equilibrium, are formed by the application

of prior by prior updating, assuming that S uses his equilibrium communication strategy.

3.2 Analysis

In what follows, we focus on a class of equilibria that implements S’s optimal decision rule. A

monotone partitional communication strategy of S is described by a set of N thresholds as well



27

as a set of mixing functions of S, one mixing function for each interval of thresholds. Formally, a

monotone N-partitions equilibrium is described by the following sender and receiver strategies.

Definition 3 Monotone N-Partitions equilibrium

Sender Communication Strategy There are N thresholds 0 = tN
0 < tN

1 < ... < tN
N−1 < tN

N = 1.

Thresholds tN
1 and tN

N−1 satisfy:

tN
1 = max σ

σ∈[0,1], βS(σ,qS)=0
,

tN
N−1 = min σ

σ∈[0,1], βS(σ,qS)=1
.

Let the mixing function ρN
i,i+1(mj, σ) denote the probability with which S sends message mj given that

σ ∈
[
tN
i , tN

i+1

]
. We have

ρN
0,1(m1, σ) = 1 if σ ∈

[
0, tN

1

]
,

ρN
N−1,N(mN−1, σ) = 1 if σ ∈

[
tN

N−1, tN
1

]
,

ρN
i,i+1(mi, σ) + ρN

i,i+1(mi+1, σ) = 1, ∀i ∈ {1, .., N − 2} .

For every i ∈ {1, .., N − 1} and every σ ∈
[
tN
i , tN

i+1

]
,

βS

(
tN
i , qS

)
= βR (mi, qR)

and

ρN
i,i+1(mi, σ)βR(mi, qR) + ρN

i,i+1(mi+1, σ)βR(mi+1, qR) = βS(σ, qS).

Receiver Strategy For every message mi, R best responds by choosing his optimal mix over actions,

given updated beliefs. For any message mi ∈ {m2, .., mN−2} ,

βR

(
P(mi |B)
P(mi |A)

, qR

)
∈ (0, 1) .

Also,

βR

(
P(m1 |B)
P(m1 |A)

, qR

)
= 0 and βR

(
P(mN−1 |B)
P(mN−1 |A)

, qR

)
= 1.

We add a few comments on our definition. Note that for σ ∈
[
tN
i , tN

i+1

]
, only messages mi and

mi+1 are sent by S with positive probability. Note also that the definition of the communication

strategy of S implies that for every i ∈ {1, .., N − 2}:

ρN
i,i+1(mi, σ) =

βS(t
N
i+1, qS)− βS(σ, qS)

βS(t
N
i+1, qS)− βS(t

N
i , qS)

(4)
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and

P(mi |B)
P(mi |A)

=

∫ tN
i

tN
i−1

ρN
i,i+1(mi, σ) fB(σ)dσ+

∫ tN
i+1

tN
i

ρN
i,i+1(mi+1, σ) fB(σ)dσ

∫ tN
i

tN
i−1

ρN
i,i+1(mi, σ) fA(σ)dσ+

∫ tN
i+1

tN
i

ρN
i,i+1(mi+1, σ) fA(σ)dσ

.

Note by the way that (4), given our assumptions on S’s communication strategy, is equivalent

to

ρN
i,i+1(mi+1, σ) =

βS(σ, qS)− βS(t
N
i , qS)

βS(t
N
i+1, qS)− βS(t

N
i , qS)

.

Figure 6: a 4-partitional equilibrium.

Figure 6 above assumes constant relative ambiguity aversion with ambiguity aversion para-

meter α = 15 and considers the information structure given by fB(σ) = 2σ, fA(σ) = 2 − 2σ.

Furthermore, qS = .55, µh =
1
2 , e = 1

4 . The figure represents a putative monotone 4-partional equi-

librium. S sends m1 for sure in the first partition interval of signal values, starting from the left. In

the second interval, S sends m1 with the probability indicated by the drawn probability function,

and otherwise sends m2. In the third interval, S emits m3 with the probability indicated by the

drawn probability function and otherwise sends m2. In the fourth interval, S emits m3 for sure.

In what follows, we focus on two special cases of monotone partitional equilibria given by

respectively 3- and 4-partitions equilibria. Note that only a unique set of thresholds given by
{

t3
0 = 0, t3

1 = max σ
σ∈[0,1], βS(σ,qS)=0

, t3
2 = min σ

σ∈[0,1], βS(σ,qS)=1
, t3

3 = 1

}
(5)

may constitute a monotone 3-partitions equilibrium. On the other hand, in a monotone 4-

partitions equilibrium, only the values of thresholds t4
0, t4

1, t4
3, t4

4 are fixed a piori.

We start with a preliminary result (Lemma 4) showing that there exists an S-optimal equilib-

rium in which only two messages are used if and only if the monotone 3-partitions equilibrium
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exists. Proposition 6 provides a complete characterization of pairs (qS, qR) for which the monotone

3-partitions equilibrium exists. Proposition 7 shows that that the set of pairs (qS, qR) for which

there exists a monotone 4-partitions equilibrium is a weak superset of the set of pairs for which

there exists a monotone 3-partitions equilibrium. The proposition identifies conditions such that

the former set is indeed a strict superset of the latter. When this is the case, an implication is that

more complex language, i.e. the use of more messages, is helpful in allowing S to implement

his optimal decision rule. Denote, in what follows, by
P(mi |B,E3)
P(mi |A,E3)

the likelihood ratio implied by

message mi in the unique monotone 3-partitions equilibrium E3.

Lemma 4 There exists an S-optimal equilibrium in which only two messages are used if and only if the

monotone 3-partitions equilibrium exists.

Proof: Trivial and therefore omitted.

Proposition 6 Monotone 3-Partitions equilibria.

a. If qS is s.t.
P(m1 |B, E3)

P(m1 |A, E3)
< Q1(qS), (6)

then there exist q3
R
(qS) < qS and q3

R (qS) ≤ qS, with q3
R
(qS) < q3

R (qS) , s.t. the monotone 3-partitions

equilibrium exists iff qR ∈
[
q3

R
(qS) , q3

R (qS)
]

. If (6) is not satisfied, there exists no qR s.t. the monotone

3-partitions equilibrium exists. Furthermore, q3
R
(qS) is s.t.

P(m1 |B, E3)

P(m1 |A, E3)
= Q1(q

3

R
(qS))

b. If qS is s.t.

Q2(qS) ≤
P(m2 |B, E3)

P(m2 |A, E3)
, (7)

then q3
R (qS) = qS while otherwise q3

R (qS) < qS.

Proof: See Appendix G.

Part a. provides conditions on qS such that there exists a non empty interval of values of qR

for which the monotone 3-partitions equilibrium exists. Part b., on the other hand, provides a

further condition on qS such that for any value of qR above a given lower bound and below qS, the

monotone 3-partitions equilibrium exists. In other words, if S is forced to use only two messages,
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it may be the case (if 7 does not hold) that S favours facing a misaligned receiver rather than his

alter ego. This replicates the result obtained in the Max-Min model.

Our next proposition considers values of qS for which, for a given corresponding interval of

values of qR, the monotone 3-partitions equilibrium exists. This appears in condition (8) below,

which simply repeats condition (6). Note that condition (8) exclusively depends on the value of

qS. Denote, in what follows, by
P(mi|B,E4 ,̃t4

2)

P(mi|A,E4 ,̃t4
2)

the likelihood ratio implied by message mi in a given

monotone 4-partitions equilibrium E4, when t4
2 takes the value t̃4

2.

Proposition 7 Monotone 4-Partitions equilibria.

a. If qS is s.t.
P(m1 |B, E3)

P(m1 |A, E3)
< Q1(qS), (8)

there exist q4
R
(qS) ≤ q3

R
(qS) and q4

R (qS) ≥ q3
R (qS) s.t. a monotone 4-partitions equilibrium exists iff

qR ∈
[
q4

R
(qS) , q4

R (qS)
]

.

b. If qS is s.t.
P(m2 |B, E3)

P(m2 |A, E3)
< Q2(qS), (9)

so that q3
R (qS) < qS, then q4

R (qS) > q3
R (qS). Otherwise q4

R (qS) = q3
R (qS) = qS.

c. If there exists t4
2 ∈ [t4

1, t4
3) s.t.

βR

(
P(m2

∣∣B, E4, t4
2)

P(m2

∣∣A, E4, t4
2)

, q3

R
(qS)

)
= βS

(
fB(t

4
2)

fA(t4
2)

, qS

)
, (10)

then q4
R
(qS) < q3

R
(qS) . Otherwise q4

R
(qS) = q3

R
(qS) .

Proof: See Appendix H.

Point a. shows that if, for a given value of qS, there exists an interval of values of qR for which

the monotone 3-partitions equilibrium exists, then there also exists an interval of values of qR for

which a monotone 4-partitions equilibrium exists. Furthermore, this interval is a weak superset of

the interval of values of qR for which the monotone 3-partitions equilibrium exists. Now, points b.

and c. establish circumstances under which, for the considered values of qS, the interval of values

of qR compatible with the existence of a monotone 4-partitions equilibrium is a strict superset

of the interval of values compatible with the existence of the monotone 3-partitions equilibrium.

Point b. compares the upper bound q4
R (qS) with the upper bound q3

R (qS) . It has the following
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interpretation: If S, conditional on being forced to use a monotone 3-partitional communication

strategy, favours facing a misaligned receiver rather than his alter ego, then q4
R (qS) > q3

R (qS).

Point c. compares the lower bound q4
R
(qS) with the lower bound q3

R
(qS) . Here, the idea is that

by using 3 rather than 2 messages, S manages to restrict his use of the message m1 to low signal

realizations and thus improves the capacity of message m1 to persuade R to take action a.

Figure 7: 3- and 4-partitions equilibria.

Figure 7 above assumes constant relative ambiguity aversion with ambiguity aversion para-

meter α = 15 and considers the information structure given by fB(σ) = 2σ, fA(σ) = 2 − 2σ.

Also, µh =
1
2 , e = 1

4 . The black region identifies all possible pairs (qS, qR) for which there exists

a monotone 3-partitions equilibrium. The union of the black and the shaded regions identifies

all possible pairs (qS, qR) for which there exists a monotone 4-partitions equilibrium. Values of qS

may be divided into three different subsets. For values belonging to the first subset, which corre-

sponds to extreme values of qS, q4
R
(qS) = q3

R
(qS) and q4

R (qS) = q3
R (qS) . In other words, allowing

for four partitions instead of three does not help implementing S’s optimal decision rule. For val-

ues belonging to the second set, either q4
R
(qS) < q3

R
(qS) or q4

R (qS) > q3
R (qS) or both. In this case,

allowing for four partitions instead of three may help implementing S’s optimal decision rule.

This corresponds to the characterization given in Proposition 7. Finally, for values belonging to

the third set, which corresponds to central values of qS, there never exists a monotone 3-partitions

equilibrium while there exists a monotone 4-partitions equilibrium if qR belongs to the right in-

terval
[
q4

R
(qS) , q4

R (qS)
]

, with q4
R
(qS) < q4

R (qS) . Note that this final set of values of qS is not

considered in Proposition 7, i.e. this feature does not correspond to any of our theoretical results.
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Note that we do not know whether there may exist monotone N-partitions equilibria featuring

N > 4 whenever there exists no monotone 4-partitions equilibria. We conjecture that this may be

the case, and that increasing the number of partitions generally helps S implement his optimal

decision rule, up to some upper bound N.

We add a note on a different result that can be shown. If S faces his preference twin, there

exists a communication strategy making use of a finite number of messages that implements the

optimal decision rule of S.

4 Conclusion

Our analysis shows that ambiguous modes of communication arise naturally when communica-

tion takes place among agents facing subjective uncertainty. We identify two modes of ambigu-

ous communication, respectively versatile and agnostic communication. For intermediate signal

values that generate a desire to hedge, these two modes of communication correspond to two dif-

ferent ways of allocating the randomization task among agents. From a formal perspective, the

key new feature of equilibria, in both models that we examine, is that S often randomizes between

messages that trigger different actions by R. Besides this key insight, we have established a set

of properties of the simple binary cheap talk model within an ambiguous environment. These

properties relate to the comparative statics effect of interest misalignment, language complexity

as well ambiguity itself.

5 Appendix A: Proof of Lemma 1

Step 1 In a given influential equilibrium E, equilibrium messages can be gathered in three cate-

gories. Those that lead to action a being taken by R, those that lead to hedging with probabilities

(q, 1− q) and those that lead to action b being chosen by R. Call these sets Ca, Ch and Cb.

Step 2 Construct an equilibrium Ẽ, in which S now sends a unique message ma when he

would have sent a message belonging to Ca in equilibrium E, sends a unique message mh when

he would have sent a message belonging to Ch in equilibrium E, and sends unique message mb

when he would have sent a message belonging to Cb in equilibrium E. Given that the equilibrium

E exists, it is clear that R, in Ẽ, will weakly prefer a after ma, hedging after mh and b after mb. Now,

it is clear that if R follows this decision rule, S has no incentive to deviate in the equilibrium Ẽ.
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Step 3 It follows that any influential equilibrium where strictly more than three messages are

sent with positive probability, there exists an outcome equivalent influential equilibrium in which

no more than three messages are used. �

6 Appendix B: Proof of Proposition 1

6.1 Point a)

Step 1 A given z-equilibrium determines the Bayesian probabilities Pj(B |m1, z ) and Pj(B |m3, z ),

where the subscript j indicates that we apply the prior Pj(B).

Step 2 In what follows, we abusively abandon the reference to qS and denote t1
S(qS), t2

S(qS) as

t1
S, t2

S. Now, consider a putative S-optimal equilibrium featuring a communication strategy δS that

is not a z-communication strategy. According to such a strategy, S partitions the interval
(
t1
S, t2

S

)

differently than in a z-equilibrium, each partition defining whether S randomizes over m1 or m3

or over m1 or m2, however with the same mixing probabilities as above. For a given j ∈ {h, l} ,

the communication strategy δS determines Pj(B |m1, δS ) and Pj(B |m3, δS ). For a given z ∈
(
t1
S, t2

S

)
,

assume that δS is s.t. Pj(B |m1, δS ) = Pj(B |m1, z ). In steps 3-5, we show that this implies that in

turn Pj(B |m3, δS ) ≥ Pj(B |m3, z ).

Step 3 For a given z-strategy:

Pj(B, m1, z)

Pj(A, m1, z)
=

Pj(B)

1− Pj(B)

FB(t
1
S) +

(
qS−qR

1−qR

) (
FB(z)− FB(t

1
S)
)
+ qS

(
FB(t

2
S)− FB(z)

)

FA(t1
S) +

(
qS−qR

1−qR

) (
FA(z)− FA(t1

S)
)
+ qS

(
FA(t2

S)− FA(z)
) ,

Pj(B, m3, z)

Pj(A, m3, z)
=

Pj(B)

1− Pj(B)

(
FB(z)− FB(t

1
S)
)

(
FA(z)− FA(t1

S)
) .

Step 4 For a given z-strategy and a given δS, denote by x1, x1, x2, x2..., xn, xn the upper and

lower bounds of the subintervals to the left of z where S’s behavior changes when transiting from

the z-strategy to δS. Similarly, denote by y1, y1, y2, y2..., ym, ym the upper and lower bounds of the

subintervals to the right of z where S’s behavior changes when transiting from the z-strategy to

δS. Assume that there are n intervals in which S’ behavior changes to the left of z and m intervals

in which it changes to the right of z.
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Define

I = : FB(t
1
S) +

(
qS − qR

1− qR

)(
FB(z)− FB(t

1
S)
)
+ qS

(
FB(t

2
S)− FB(z)

)
,

J = : FA(t
1
S) +

(
qS − qR

1− qR

)(
FA(z)− FA(t

1
S)
)
+ qS

(
FA(t

2
S)− FA(z)

)
,

C = : FB(z)− FB(t
1
S),

D = : FA(z)− FA(t
1
S).

Note that:

Pj(B, m1, δS)

Pj(A, m1, δS)

=
Pj(B)

1− Pj(B)

I +
(

qR(1−qS)
1−qR

)
∑

n
i=1

(
FB(x

i)− FB(x
i)
)
−
(

qR(1−qS)
1−qR

)
∑

m
i=1

(
FB(y

i)− FB(y
i)
)

J +
(

qR(1−qS)
1−qR

)
∑

n
i=1

(
FB(x

i)− FB(xi)
)
−
(

qR(1−qS)
1−qR

)
∑

m
i=1

(
FB(y

i)− FB(yi)
) ,

Pj(B, m3, δS)

Pj(A, m3, δS)

=
Pj(B)

1− Pj(B)

C−
(
(1−qS)
1−qR

)
∑

n
i=1

(
FB(x

i)− FB(x
i)
)
+
(
(1−qS)
1−qR

)
∑

m
i=1

(
FB(y

i)− FB(y
i)
)

D−
(
(1−qS)
1−qR

)
∑

n
i=1

(
FB(x

i)− FB(xi)
)
+
(
(1−qS)
1−qR

)
∑

m
i=1

(
FB(y

i)− FB(yi)
) .

Define

Q1 = :

(
qR(1− qS)

1− qR

) n

∑
i=1

(
FB(x

i)− FB(x
i)
)
−
(

qR(1− qS)

1− qR

) m

∑
i=1

(
FB(y

i)− FB(y
i)
)

,

Q2 = :

(
qR(1− qS)

1− qR

) n

∑
i=1

(
FB(x

i)− FB(x
i)
)
−
(

qR(1− qS)

1− qR

) m

∑
i=1

(
FB(y

i)− FB(y
i)
)

.

Using the above introduced notation, one may thus rewrite:

Pj(B, m1, δS)

Pj(A, m1, δS)
=

Pj(B)

1− Pj(B)

I +Q1

J +Q2

and
Pj(B, m3, δS)

Pj(A, m3, δS)
=

Pj(B)

1− Pj(B)

I − 1
qR

Q1

J − 1
qR

Q2

.

Step 5 Assuming that
Pj(B,m1,z)

Pj(B,m1,z)
=

Pj(B,m1,δS)

Pj(B,m1,δS)
now implies two possibilities. Either,

(Q1 = 0) ∩ (Q2 = 0) (11)



35

or
Q1

Q2
=

Pj(B, m1, z)

Pj(A, m1, z)
. (12)

Call (11) and (12) respectively Cases 1 and 2. In Case 1, it follows trivially that
Pj(B,m3,δS)

Pj(A,m3,δS)
=

Pj(B,m3)

Pj(A,m3)
given that

Pj(B, m3, δS)

Pj(A, m3, δS)
=

Pj(B)

1− Pj(B)

I − 1
qR

Q1

J − 1
qR

Q2

=
Pj(B)

1− Pj(B)

I − 0

J − 0
.

In Case 2, on the other hand, it follows that
Pj(B,m3,δS)

Pj(A,m3,δS)
>

Pj(B,m3,z)

Pj(A,m3,z)
. The reason follows. Note

that for any five positive constants B, C, D, E and α :

B− αD

C− αE
>

B

C
⇔ D

E
<

B

C
.

Relating this to Case 2, the crucial fact is that we know that by definition, in any z-equilibrium

Q1

Q2
=

Pj(B, m1, z)

Pj(A, m1, z)
<

Pj(B, m3, z)

Pj(A, m3, z)
=

I

J
,

This in turn implies that

I − 1
qR

Q1

J − 1
qR

Q2

<
I

J
(13)

Now, note that (13) is equivalent to

Pj(B)

1− Pj(B)

I − 1
qR

Q1

J − 1
qR

Q2

<
Pj(B)

1− Pj(B)

I

J
⇔

Pj(B, m3, z)

Pj(A, m3, z)
<

Pj(B, m3, δS)

Pj(A, m3, δS)
.

Step 6 Note that for any value Pj(B |m1, δS ) that can be generated in an S-optimal equilibrium

featuring an arbitrary strategy δS, there exists some z-strategy s.t. Pj(B |m1, z ) = Pj(B |m1, δS ).

Indeed, note that, denoting by Pj(B |m1, z ) the posterior generated by m1 in the z-equilibrium,

the function Pj(B |m1, z ) is continuous in z on the interval
[
t1
S, t2

S

]
. Furthermore, Pj(B

∣∣m1, t1
S ) is

trivially weakly larger than any value that may be taken by Pj(B |m1 ) in any equilibrium imple-

menting the optimal decision rule of S. Similarly, Pj(B
∣∣m1, t2

S ) is trivially weakly smaller than

any value that may be taken by Pj(B |m1 ) in any equilibrium implementing the optimal decision
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rule of S. It follows that any value on the interval
[
Pj(B

∣∣m1, t2
S ), Pj(B

∣∣m1, t1
S )
]

may be achieved

through some z ∈
[
t1
S, t2

S

]
.

Step 7 Suppose a given arbitrary S-optimal equilibrium featuring the communication strategy

δS. It follows that the following constraints hold:

Ph(B |m1, δS ) < qR,

Pl(B |m3, δS ) < qR ≤ Ph(B |m3, δS ),

qR ≤ Pl(B |m2, δS ).

Now, first, from step 6, we know that there exists some z∗ s.t that Ph(B |m1, z∗ ) = Ph(B |m1, δS ).

Secondly, we know from steps 1-5 that for such a z∗, Pl(B |m3, z∗ ) < Pl(B |m3, δS ). Finally, it is

trivially true that for such a z∗, qR ≤ Ph(B |m3, z∗ ) and qR ≤ Pl(B |m2, z∗ ). It follows that if there

exists some arbitrary equilibrium implementing the optimal decision rule of S, then there exists a

z-equilibrium. �

7 Appendix C: Proof of Proposition 2

Our proof of Proposition 2 is articulated into three main parts. We start by stating Proposition 8

below. In the first subsection of our proof, we characterize constraints ensuring the existence of

a given z-equilibrium for a fixed level of ambiguity. In the second part of our proof of Proposi-

tion 2, corresponding to the second subsection of our proof, we vary the level of ambiguity and

summarize existence conditions in two main cases corresponding to respectively low and high

ambiguity. In the third part of our proof, corresponding to the third subsection, we directly relate

our findings to Proposition 2.

Proposition 8 A characterization of the set of z-equilibria

Assume that (2) is satisfied. Given qS, there exists a threshold e1(qS) > 0 s.t.:

a) If e < e1(qS), then for any z ≥ t1
S(qS, e), there exist thresholds

{
q

R
(z), qR(z)

}
satisfying q

R
(z) <

qR(z) ≤ qS s.t. the z-equilibrium exists iff qR ∈
[
q

R
(z), qR(z)

]
. For any z ≥ t1

S(qS, e), the lower bound

q
R
(z) is continuous in z (except at z = t1

S(qS, e) ) and strictly increasing in z. For any z ≥ t1
S(qS, e), the

upper bound qR(z) is continuous in z and weakly increasing in z and qR(t
2
S(qS, e)) = qS.

b) If e ≥ e1(qS), then there exists z̃ ∈
[
t1
S(qS, e), t2

S(qS, e)
]

such that the following is true: 1) If

z < z̃, there the z-equilibrium does not exist, ∀qR. 2) If z ≥ z̃, there exist thresholds
{

q
R
(z), qR(z)

}
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satisfying q
R
(z) < qR(z) s.t. the z-equilibrium exists iff qR ∈

[
q

R
(z), qR(z)

]
. Furthermore, there is a

z∗ ∈ (z̃, t2
S(qS, e)] s.t. for any z ∈ [z̃, z∗] the lower bound q

R
(z) is continuous in z and strictly decreasing

in z, while for z ∈ (z∗, t2
S(qS, e)], the lower bound q

R
(z) is continuous in z and strictly increasing in z. For

any z ≥ z̃, the upper bound qR(z) is continuous in z and weakly increasing in z and qR(t
2
S(qS, e)) = qS.

7.1 A preliminary analysis of constraints

Step 1 In a z-equilibrium, we denote the Bayesian conditional probability determined by message

mi, under prior Pe
j , by Pj(B |m1, z, qR, qS, e ). Note that the z-equilibrium exists iff

Ph(B |m1, z, qR, qS, e ) ≤ qR, (14)

Pl(B |m3, z, qR, qS, e ) ≤ qR (15)

qR ≤ Ph(B |m3, z, qR, qS, e ). (16)

qR ≤ Pl(B |m2, z, qR, qS, e ). (17)

Note that (16) is trivially always true because by definition, qS ≤ Ph(B |m3, z, qR, qS, e ). We thus

focus on the remaining three inequalities.

Step 2 In steps 2 to 7, we shall focus on the inequality (14) and study the function

g (qR) := Ph(B |m1, z, qR, qS, e )− qR, (18)

for qR ∈ [0, qS), for any fixed z ∈
[
t1
S, t2

S

]
, and analyze the implicit function of z that it defines. Note

that condition (14) holds if and only if g (qR) ≤ 0. In remaining steps, we provide a treatment of

inequalities (15) and (17).

Step 3 Note that

Ph(B, m1, z, qR, qS, e)

Ph(A, m1, z, qR, qS, e)
=

Ph(B)

1− Ph(B)

FB(t
1
S) +

(
qS−qR

1−qR

) (
FB(z)− FB(t

1
S)
)
+ qS

(
FB(t

2
S)− FB(z)

)

FA(t1
S) +

(
qS−qR

1−qR

) (
FA(z)− FA(t1

S)
)
+ qS

(
FA(t2

S)− FA(z)
) .

Step 4 For any given z ∈
[
t1
S, t2

S

]
, note that

Ph(B, m1, z, 0, qS, e)

Ph(A, m1, z, 0, qS, e)
> 0 ⇔ g(0) > 0.

On the other hand, it may or may not be the case that

Ph(B, m1, z, qS, qS, e)

Ph(A, m1, z, qS, qS, e)
<

qS

1− qS
⇔ g(qS) < 0.



38

Step 5 For given qR and q̃R ∈ (qR, qS],

Ph(B, m1, z, qR, qS, e)

Ph(A, m1, z, qR, qS, e)
<

qR

1− qR
⇒ Ph(B, m1, z, qR, qS, e)

Ph(A, m1, z, qR, qS, e)
<

q̃R

1− q̃R
.

We now prove the above statement. Note first that qR < qS implies that t1
R < t1

S, which in turn

implies that

Ph(B)

1− Ph(B)

FB(z)− FB(t
1
S)

FA(z)− FA(t1
S)
>

qR

1− qR
. (19)

Note secondly that

∂
(

qS−qR

1−qR

)

∂qR
< 0, ∀qR ∈ (0, qS) (20)

It follows from (19) and (20) that if

Ph(B)

1− Ph(B)

FB(t
1
S) +

(
qS−qR

1−qR

) (
FB(z)− FB(t

1
S)
)
+ qS

(
FB(t

2
S)− FB(z)

)

FA(t1
S) +

(
qS−qR

1−qR

) (
FA(z)− FA(t1

S)
)
+ qS

(
FA(t2

S)− FA(z)
) <

qR

1− qR
,

then a fortiori for q̃R ∈ (qR, qS]

Ph(B)

1− Ph(B)

FB(t
1
S) +

(
qS−q̃R

1−q̃R

) (
FB(z)− FB(t

1
S)
)
+ qS

(
FB(t

2
S)− FB(z)

)

FA(t1
S) +

(
qS−q̃R

1−q̃R

) (
FA(z)− FA(t1

S)
)
+ qS

(
FA(t2

S)− FA(z)
) <

qR

1− qR
<

q̃R

1− q̃R
.

Step 6 We now know four facts about the function g (qR) = Ph(B |m1, z, qR, qS, e )− qR. First,

g (0) > 0. Second either g (qS) < 0 or g (qS) ≥ 0 Third, for qR < qS, if g (qR) < 0, then g (qR) < 0

for qR ∈ (qR, qS]. Fourth, g (qR) is trivially continuous in qR, for any qR ∈ (0, 1) . It follows that

we can distringuish two cases. If g (qS) < 0 (Case 1), a single crossing condition holds and that

there exists a unique q1
R
(z) ∈ (0, qS) s.t g (qR) ≤ 0 iff qR ∈

[
q1

R
(z), qS

]
, i.e. s.t. (14) holds iff

qR ∈
[
q1

R
(z), qS

]
. If on the other hand, g (qS) ≥ 0 (Case 2), then g (qR) ≥ 0, ∀ qR ∈ (0, qS) . It

follows that (14) holds iff qR ≥ qS.

Step 7 It follows from the above steps that the equality

Ph(B, m1, z, qR, qS, e)

Ph(A, m1, z, qR, qS, e)
=

qR

1− qR

defines an implicit function Ψ(z, qS, e), continuous in z and qS, which indicates, for every pair

(z, qS), the unique value of qR s.t. the above equality holds. We now wish to establish whether
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Ψ(z, qS, e) is decreasing or increasing in z. To answer this question, note the following two facts.

First:

∂
(

Ph(B,m1,z,qR,qS,e)
Ph(A,m1,z,qR,qS,e)

)

∂z
=

Ph(B)

1− Ph(B)

− fB(z)
[
FB(t

2
S)− FB(z)

]
+ fA(z)

[
FB(t

2
S)− FB(z)

]

(Ph(A, m1, z, qR, qS))
2

< 0.

This is true, because the above inequality is equivalent to the condition that

fB(z)

fA(z)
<

FB(t
2
S)− FB(z)

FA(t2
S)− FA(z)

,

which is always true. Second, it follows from the fact that
∂
(

qS−qR
1−qR

)

∂qR
< 0, ∀qS, ∀qR < qS that

∂
(

Ph(B,m1,z,qR,qS,e)
Ph(A,m1,z,qR,qS,e)

)

∂qR
> 0.

It follows from the above that the implicit function Ψ(z, qS, Υ) is strictly decreasing in z.

Step 8 This step focuses on the inequality (15). Note that

Pl(B, m3, z, qR, qS, e)

Pl(A, m3, z, qR, qS, e)
=

Pl(B)

1− Pl(B)

FB(z)− FB(t
1
S)

FA(z)− FA(t1
S)
<

qS

1− qS
.

It follows immediately that there is a q2
R
(z) ∈ (0, qS) s.t (15) holds iff qR ∈

[
q2

R
(z), qS

]
. Note

furthermore, for further notice, that it is trivially true that ∀z

∂
(

Pl(B,m3,z,qR,qS,e)
Pl(A,m3,z,qR,qS,e)

)

∂z
> 0.

Step 9 Given the results provided in steps 2 to 7, it follows that for any z, there exists a q
R
(z) =

max
{

q1
R
(z), q2

R
(z)
}
∈ (0, qS] s.t. (14) and (15) hold simultaneously if and only if qR > q

R
(z). Recall

indeed that condition (14) holds if and only if, for given z, qR ≥ Ψ(z, qS, Υ) while (15) holds if and

only if qR ≥ Pl(B |m3, z, qR, qS, e ).

Step 10 We now focus on conditions ensuring that (17) is true, i.e. ensuring that qR ≤ Pl(B |m2, z, qR, qS, e ).

Note that for any z, Pl(B |m2, z, qR, qS, e ) is independent of qR. It follows that there is some up-

per bound qR(z) s.t. (17) holds if and only if qR < qR(z). We summarize the four following

facts about the function Pl(B |m2, z, qR, qS, e ): it is continuous in z and monotonously increas-

ing in z (Fact A), it is independent of qR (Fact B), Pl(B
∣∣m2, t2

S, qR, qS, e ) > qS (Fact C) and finally

Pl(B |m2, z, qR, qS, e ) > Pl(B |m3, z, qR, qS, e ), ∀z (Fact D). �
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7.2 Low vs high ambiguity

Step 1 We make use of the following measure of ambiguity in what follows

Υ (e) =

Pe
h(B)

1−Pe
h(B)

Pe
l (B)

1−Pe
l (B)

=

(
1
2 + e
1
2 − e

)2

If ambiguity is entirely absent, then Υ (e) = 1. On the other hand, as ambiguity increases,

Υ (e) tends to infinity. Note that for each e, there is a unique corresponding value of Υ (e) . In

what follows, we abusively ignore the dependence of t1
S and t2

S on the values of qS and instead

explicitly indicate the dependence of t1
S and t2

S on the ambiguity level e by denoting them as t1
S(Υ)

and t2
S(Υ). Note that we slightly abuse notation and generally use Υ instead of e in what follows,

which is unproblematic to the extent that for each e, there is a unique corresponding value of

Υ (e) . We shall prove comparative statics properties of the four constraints stated in step 1 of the

preceding subsection by analyzing how changes in e affect the relationship between the functions

Pl(B |m3, z, qR, qS, Υ ), Pl(B |m2, z, qR, qS, Υ ) and Ψ(z, qS, Υ). We will mostly focus on the relative

value of these functions at z = t1
S(Υ), which plays a crucial role.

Step 2 Note that:

Pl(B, m3, t1
S(Υ), qR, qS, Υ)

Pl(A, m3, t1
S(Υ), qR, qS, Υ)

=
PΥ

l (B)

1− PΥ
l (B)

fB(t
1
S(Υ))

fA(t1
S(Υ))

,

Ψ(t1
S(Υ), qS, , Υ)

1−Ψ(t1
S(Υ), qS, Υ)

=
PΥ

h (B)

1− PΥ
h (B)

FB(t
1
S(Υ)) + qS

(
FB(t

2
S(Υ))− FB(t

1
S(Υ))

)

FA(t1
S(Υ)) + qS

(
FA(t2

S(Υ))− FB(t1
S(Υ))

)

=
Ph(B, m1, t1

S(Υ), qR, qS, Υ)

Ph(A, m1, t1
S(Υ), qR, qS, Υ)

.

The salient fact here is that the function Ψ(t1
S(Υ), qS, Υ) has a very simple form for z = t1

S(Υ).

Step 3 In this step, we prove that there is an Υ0 > 1 s.t. for Υ < Υ0

fB(t
1
S(Υ)

fA(t1
S(Υ))

>
FB(t

1
S(Υ)) + qS

(
FB(t

2
S(Υ))− FB(t

1
S(Υ))

)

FA(t1
S(Υ)) + qS

(
FA(t2

S(Υ))− FA(t1
S(Υ))

)

while the inequality holds with the sign < if Υ > Υ0 and holds as an equality for Υ = Υ0.

Note first the following facts. Fact 1 is given as follows:

fB(t
1
S(1))

fA(t1
S(1))

>
FB(t

1
S(1)) + qS

(
FB(t

2
S(1))− FB(t

1
S(1))

)

FA(t1
S(1)) + qS

(
FA(t2

S(1))− FA(t1
S(1))

) = FB(t
1
S(1))

FB(t1
S(1))
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Note furthermore that (call this Fact 2) lim
Υ→∞

t1
S(Υ) = l so that

lim
Υ→∞

fB(t
1
S(Υ))

fA(t1
S(Υ))

< lim
Υ→∞

FB(t
1
S(Υ)) + qS

(
FB(t

2
S(Υ))− FB(t

1
S(Υ))

)

FA(t1
S(Υ)) + qS

(
FA(t2

S(Υ))− FA(t1
S(Υ))

) = FB(t
2
S(Υ))− FB(t

1
S(Υ))

FA(t2
S(Υ))− FA(t1

S(Υ))

Note also that (call this Fact 3) if for a given Υ

FB(t
1
S(Υ)) + qS

(
FB(t

2
S(Υ))− FB(t

1
S(Υ))

)

FA(t1
S(Υ)) + qS

(
FA(t2

S(Υ))− FA(t1
S(Υ))

) > fB(t
1
S(Υ))

fA(t1
S(Υ))

, (21)

then for any Υ′ > Υ

FB(t
1
S(Υ)) + qS

(
FB(t

2
S(Υ

′))− FB(t
1
S(Υ

′))
)

FA(t1
S(Υ

′)) + qS

(
FA(t2

S(Υ
′))− FA(t1

S(Υ
′))
) > fB(t

1
S(Υ))

fA(t1
S(Υ))

>
fB(t

1
S(Υ

′))

fA(t1
S(Υ

′))

To see that Fact 3 is true, note the following three points. First,

FB(t
1
S(Υ)) + qS

(
FB(t

2
S(Υ))− FB(t

1
S(Υ))

)

FA(t1
S(Υ)) + qS

(
FA(t2

S(Υ))− FA(t1
S(Υ))

) = (1− qS) FB(t
1
S(Υ)) + qSFB(t

2
S(Υ))

(1− qS) FA(t1
S(Υ)) + qSFA(t2

S(Υ))

Second, given that t1
S(Υ

′) < t1
S(Υ) and

fB(t
1
S(Υ))

fA(t
1
S(Υ))

is decreasing in Υ over [1,+∞), if (21) is true,

then it is true that
(

FB(t
1
S(Υ)− FB(t

1
S(Υ

′)
)

(
FA(t1

S(Υ)− FA(t1
S(Υ

′)
) < (1− qS) FB(t

1
S(Υ)) + qSFB(t

2
S(Υ))

(1− qS) FA(t1
S(Υ)) + qSFA(t2

S(Υ))
,

which in turn implies

(1− qS) FB(t
1
S(Υ

′)) + qSFB(t
2
S(Υ))

(1− qS) FA(t1
S(Υ

′)) + qSFA(t2
S(Υ))

=
(1− qS) FB(t

1
S(Υ))− (1− qS)

(
FB(t

1
S(Υ)− FB(t

1
S(Υ

′)
)
+ qSFB(t

2
S(Υ))

(1− qS) FA(t1
S(Υ))− (1− qS)

(
FA(t1

S(Υ)− FA(t1
S(Υ

′)
)
+ qSFA(t2

S(Υ))

>
(1− qS) FB(t

1
S(Υ)) + qSFB(t

2
S(Υ))

(1− qS) FA(t1
S(Υ)) + qSFA(t2

S(Υ))

Third, note that given that t2
S(Υ

′) > t2
S(Υ) and that

fB(t
1
S(Υ))

fA(t
1
S(Υ))

is monotonously decreasing in Υ

over [1,+∞), if (21) is true, then it is true that

FB(t
2
S(Υ

′))− FB(t
2
S(Υ))

FB(t2
S(Υ

′))− FB(t2
S(Υ))

>
(1− qS) FB(t

1
S(Υ)) + qSFB(t

2
S(Υ))

(1− qS) FB(t1
S(Υ)) + qSFB(t2

S(Υ))
,
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which in turn implies

(1− qS) FB(t
1
S(Υ

′)) + qSFB(t
2
S(Υ

′))

(1− qS) FA(t1
S(Υ

′)) + qSFA(t2
S(Υ

′))

=
(1− qS) FB(t

1
S(Υ

′)) + qSFB(t
2
S(Υ)) + qS

(
FB(t

2
S(Υ

′))− FB(t
2
S(Υ))

)

(1− qS) FA(t1
S(Υ

′)) + qSFA(t2
S(Υ)) + qS

(
FA(t2

S(Υ
′))− FA(t2

S(Υ))
)

>
(1− qS) FB(t

1
S(Υ

′)) + qSFB(t
2
S(Υ))

(1− qS) FA(t1
S(Υ

′)) + qSFA(t2
S(Υ))

It follows from the above three points that if (21) is true, then it is true that

(1− qS) FB(t
1
S(Υ

′)) + qSFB(t
2
S(Υ

′))

(1− qS) FA(t1
S(Υ

′)) + qSFA(t2
S(Υ

′))
>
(1− qS) FB(t

1
S(Υ)) + qSFB(t

2
S(Υ))

(1− qS) FA(t1
S(Υ)) + qSFA(t2

S(Υ))
>

fB(t
1
S(Υ))

fA(t1
S(Υ))

>
fB(t

1
S(Υ

′))

fA(t1
S(Υ

′))
,

which concludes the proof of Fact 3 given above.

Finally, note that both
FB(t

1
S(Υ))+qS(FB(t

2
S(Υ))−FB(t

1
S(Υ)))

FA(t
1
S(Υ))+qS(FA(t

2
S(Υ))−FA(t

1
S(Υ)))

and
fB(t

1
S(Υ))

fA(t
1
S(Υ))

are continuous functions of Υ

on the interval [1,+∞) (call this Fact 4). It follows from facts 1, 2, 3 and 4 that a single crossing

condition holds and that there exists a constant

Υ0 =

fB(t
1
S(Υ))

fA(t
1
S(Υ))

FB(t
1
S(Υ))+qS(FB(t

2
S(Υ))−FB(t

1
S(Υ)))

FA(t
1
S(Υ))+qS(FA(t

2
S(Υ))−FA(t

1
S(Υ)))

> 1

s.t. the function
fB(t

1
S(Υ))

fA(t
1
S(Υ))

crosses
FB(t

1
S(Υ))+qS(FB(t

2
S(Υ))−FB(t

1
S(Υ)))

FA(t
1
S(Υ))+qS(FA(t

2
S(Υ))−FA(t

1
S(Υ)))

from above at Υ = Υ0.

Step 4 It is shown in Appendix D that if (2) is true, then

∂
(

FB(t
1
S(e))

FA(t
1
S(e))

( 1
2+e
1
2−e

))

∂e
≥ 0. (Fact F.1) (22)

Step 5 We now show that the ratio

fB(t
1
S(Υ))

fA(t
1
S(Υ))

PΥ
l (B)

1−PΥ
l (B)

FB(t
1
S(Υ))+qS(FB(t

2
S(Υ))−FB(t

1
S(Υ)))

FA(t
1
S(Υ))+qS(FA(t

2
S(Υ))−FA(t

1
S(Υ)))

PΥ
h (B)

1−PΥ
h (B)

is increasing in Υ if condition (2) is respected. We know that the numerator is decreasing in e

(equivalently, Υ), so we simply show that the denominator is decreasing in e. This corresponds to

Fact F.2 which is proved in Appendix D.

Step 6 Given Steps 3, 4 and 5, it is clear that there is a constant Υ1 > 0, with Υ1 < Υ0 s.t. if Υ

< Υ1

Pl(B, m3, t1
S(Υ), qR, qS, Υ)

Pl(A, m3, t1
S(Υ), qR, qS, Υ)

>
Ψ(t1

S(Υ), qS, Υ)

1−Ψ(t1
S(Υ), qS, Υ)

,
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while the inequality is reversed if Υ > Υ1 and holds as an equality for Υ = Υ1.

Step 7 This corresponds to point a) in Proposition 8. For Υ < Υ1, it follows that Pl(B |m3, z, qR, qS, Υ ) >

Ψ(z, qS, Υ), ∀z ∈
[
t1
S(Υ), t2

S(Υ)
]

. Now, recall facts A,B,C and D stated about the function Pl(B |m2, z, qR, qS, Υ ).

It follows that for any z ≥ t1
S(Υ), inequality (25) holds. It follows that for any Υ < Υ1,

∂q
R
(z)

∂z > 0,

∀z > t1
S(Υ). Note that there is a discontinuity in the function q

R
(z) at z = t1

S(Υ). Indeed,

q
R
(t1

S(Υ)) = Ψ(t1
S(Υ), qS, Υ) < Pl(B

∣∣∣m3, t1
S(Υ), qR, qS, Υ )

while for z > t1
S(Υ), q

R
(z) = Pl(B |m3, z, qR, qS, Υ ). Also, it follows that for any z ≥ t1

S(Υ), qR(z) is

weakly increasing in z.

Step 8 This corresponds to point b) in Proposition 8. Assume Υ > Υ1. Two cases must here be

considered, which we call respectively case I and II. In case I:

Pl(B, m3, t1
S(Υ), qR, qS, Υ)

Pl(A, m3, t1
S(Υ), qR, qS, Υ)

<
Ψ(t1

S(Υ), qS, Υ)

1−Ψ(t1
S(Υ), qS, Υ)

(23)

and
Pl(B, m3, t2

S(Υ), qR, qS, Υ)

Pl(A, m3, t2
S(Υ), qR, qS, Υ)

>
Ψ(t2

S(Υ), qS, Υ)

1−Ψ(t2
S(Υ), qS, Υ)

. (24)

In case II, (23) holds as well while (24) is reversed. We consider Case I in what follows. Recall

that
∂(Ψ(z,qS,Υ))

∂z < 0 while
∂
(

Pl (B,m3,z,qR ,qS ,Υ)

Pl (A,m3,z,qR ,qS ,Υ)

)

∂z > 0, for any z. It follows that there is a z* ∈
[
t1
S(Υ), t2

S(Υ)
]

s.t. Pl(B |m3, z, qR, qS, Υ ) < Ψ(z, qS, Υ), ∀z ∈ [t1
S(Υ), z*) while Pl(B |m3, z, qR, qS, Υ ) > Ψ(z, qS, Υ),

∀z ∈ (z*, t2
S(Υ)].

Now, recall the four following facts about the function Pl(B |m2, z, qR, qS, Υ ): it is continuous in

z and monotonously increasing in z (Fact A), it is independent of qR (Fact B), Pl(B
∣∣m2, t2

S(Υ), qR, qS, Υ ) >

qS (Fact C) and finally Pl(B |m2, z, qR, qS, Υ ) > Pl(B |m3, z, qR, qS, Υ ), ∀z (Fact D). It follows that

there is some z̃ ≥ t1
S(Υ) s.t. for any z ≥ z̃,

Pl(B |m2, z, qR, qS, Υ ) > max {Ph(B |m1, z, qR, qS, Υ ), Pl(B |m3, z, qR, qS, Υ )} . (25)

We may conclude that for Υ > Υ1, there is a z*> z̃ s.t.
∂q

R
(z)

∂z < 0 for z̃ ≤ z < z* and
∂q

R
(z)

∂z > 0 for

z > z*. Also, it follows that for any z ≥ z̃, qR(z) is weakly increasing in z.

We consider Case II in what follows. Here, it follows that Pl(B |m3, z, qR, qS, Υ ) < Ψ(z, qS, Υ),

∀z ∈
[
t1
S(Υ), t2

S(Υ)
]

. Now, recall facts A,B,C and D stated about the function Pl(B |m2, z, qR, qS, Υ ).

It follows immediately that there is some z̃ ≥ t1
S(Υ) s.t. for any z ≥ z̃,inequality (25) holds. It

follows that,
∂q

R
(z)

∂z < 0 for any z > z̃. Also, it follows that for any z ≥ z̃, qR(z) is weakly increasing

in z. �
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7.3 Relating Proposition 8 to Proposition 2

Step 1 This proves Point i of Proposition 2 on the basis of Proposition 8. Suppose Υ < Υ1 =

Υ(e1(qS)). Then for any qR < q
R
(t1

S(Υ)), there is no z-equilibrium. For qR ∈
[
q

R
(t1

S(Υ)), q
R
(t1

S(Υ))
]

,

the z-equilbrium given by z = t1
S(Υ) exists. For qR < q

R
(t1

S(Υ)), the z-equilibrium given by z =

t2
S(Υ) exists. Suppose Υ ≥ Υ1(e1(qS)). Then for any qR < q

R
(z∗), there is no z-equilibrium. For any

qR ∈
[
q

R
(z∗), q

R
(t2

S(Υ)),
]

, the z-equilibrium given by z = z∗ exists. For any qR ∈
[
q

R
(t2

S(Υ)), qS

]
,

the z-equilibrium given by z = t2
S(Υ) exists.

Step 2 This proves Points ii.a) of Proposition 2 on the basis of Proposition 8. We here exclu-

sively consider z-equilibrium for which z = t1
S(e). Recall the three constraints stated in the begin-

ning of the first subsection of this Appendix. The constraint that qR < Pl(B
∣∣m2, z = t1

S(e), qR, qS, e )

corresponds to the inequality (17). Constraint (14) determines the requirement that

qR > Ψ(t1
S(e), qS, e) = Ph(B

∣∣∣m1, t1
S(e), qR, qS, e )

Constraint (15) is clearly irrelevant for the case of z = t1
S(e) and only relevant for the case of

z > t1
S(e). It requires that

qR > Pl(B
∣∣∣m3, t1

S(e), qR, qS, e )

So, for any e, an S-optimal equilibrium using only two messages exists for some values of qR

iff
Ph(B, m1, t1

S(e), qR, qS, e)

Ph(A, m1, t1
S(e), qR, qS, e)

< min

{
qS,

Pl(B, m2, z = t1
S(e), qR, qS, e)

Pl(A, m2, z = t1
S(, e), qR, qS, e)

}
.

We also know that for e = 0,

Ph(B, m1, t1
S(e), qR, qS, e)

Ph(A, m1, t1
S(e), qR, qS, e)

< qS <
Pl(B, m2, z = t1

S(e), qR, qS, e)

Pl(A, m2, z = t1
S(e), qR, qS, e)

.

Secondly, we know that under our assumptions:

∂
(

Ph(B,m1,t1
S(e),qR,qS,e)

Ph(A,m1,t1
S(e),qR,qS,e)

)

∂e
> 0, ∀e.

Third, we could similarly prove that under our assumptions

∂
(

Pl(B,m2,z=t1
S(e),qR,qS,e)

Pl(A,m2,z=t1
S(,e),qR,qS,e)

)

∂e
< 0, ∀e.
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It follows that there exists an e3(qS) > 0 such that

Ph(B, m1, t1
S(e), qR, qS, e)

Ph(A, m1, t1
S(e), qR, qS, e)

> min

{
Pl(B, m2, z = t1

S(e), qR, qS, e)

Pl(A, m2, z = t1
S(e), qR, qS, e)

, qS

}
,

while the inequality holds in the opposite direction for e < e3(qS). It follows that there exists an

e3(qS) > 0 s.t. for e ∈ (0, e3(qS)) , there exists a non empty interval of values of qR for which there

exists an S-optimal equilibrium with two messages while for e > e3(qS), there exists no value of

qR for which there exists an S-optimal equlibrium with two messages.

Step 3 This step proves Points ii.b) and ii.c) of Proposition 2 on the basis of Proposition 8. We

know the following three facts. First, there is some e1(qS) s.t.

Ph(B, m1, t1
S(e), qR, qS, e)

Ph(A, m1, t1
S(e), qR, qS, e)

=
Pl(B, m3, t1

S(e), qR, qS, e)

Pl(A, m3, t1
S(e), qR, qS, e)

.

Second,
Pl(B, m3, t1

S(e), qR, qS, e)

Pl(A, m3, t1
S(e), qR, qS, e)

<
Pl(B, m2, z = t1

S(e), qR, qS, e)

Pl(A, m2, z = t1
S(e), qR, qS, e)

.

Third,

∂
(

Pl(B,m2,z=t1
S(e),qR,qS,e)

Pl(A,m2,z=t1
S(e),qR,qS,e)

)

∂e
< 0, ∀e.

It follows immediately that e1(qS) < e3(qS). This shows that the lower bound on the interval

of values compatible with the existence of an S-optimal equilibrium using only two messages is

equal to the lower bound under three messages as long as e < e1(qS), while it is strictly larger if

e ∈ [e1(qS), e3(qS)] . Finally, as to the upper bound on the interval of values of qR compatible with

the existence of an S-optimal equilibrium using two messages, note simply that it is trivially true

that there is some e2(qS) s.t. for e > e2(qS)

Pl(B, m2, z = t1
S(e), qR, qS, e)

Pl(A, m2, z = t1
S(e), qR, qS, e)

< qS.

while the inequality is reversed if e < e2(qS). Note however that e2 could be situated anywhere

w.r.t.e1(qS) and e3(qS). �
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8 Appendix D: Lemmas and Facts

8.1 Proof of Lemma 3

Step 1 We prove only Point a). The proof of Point b) follows the same steps, but is substantially

simpler. Note that

FB(σ)
FA(σ)

∂
(

FB(σ)
FA(σ)

)

∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)

∂σ

, ∀σ ⇔
∂
(

FB(σ)
FA(σ)

)

∂σ
FB(σ)
FA(σ)

<

∂
(

fB(σ)
fA(σ)

)

∂σ
fB(σ)
fA(σ)

, ∀σ ⇔ (26)

∂
(

log
(

FB(σ)
FA(σ)

))

∂σ
<

∂
(

log
(

fB(σ)
fA(σ)

))

∂σ
, ∀σ ⇔ (27)

∂
(

log
(

fA(σ)
FA(σ)

))

∂σ
<

∂
(

log
(

fB(σ)
FB(σ)

))

∂σ
, ∀σ. (28)

Let fµ,ξ(σ) and Fµ,ξ(σ) denote respectively the pd.f. and the c.d.f. of a normal distribution with

mean µ and variance ξ2. Now, it is clear that condition (28) is satisfied if

∂2
(

log
(

fµ,ξ (σ)

Fµ,ξ (σ)

))

∂µ∂σ
< 0, ∀σ, µ, ξ.

Step 2 Let φ and Φ stand for respectively the p.d.f and the c.d.f of the standard normal distri-

bution. Note that

fµ,σ =
1

σ
√

2π
e−(x−µ)2/(2ξ2) =

1

ξ
φ

(
x− µ

ξ

)
; Fµ,σ = Φ

(
x− µ

ξ

)
.

Now,

∂2

(
log

(
f
µ,ξ
(σ)

F
µ,ξ
(σ)

))

∂µ∂σ
=

∂2

(
log

(
1
ξ φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x

=
∂2
(

log
(

1
ξ

))

∂µ∂x
+

∂2

(
log

(
φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x

=

∂2

(
log

(
φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x
.
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Now, define a new random variable given by X = x−µ
ξ . Then

∂2

(
log

(
φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x
=

∂

(
∂
(

log
(

φ(X)
Φ(X)

))

∂X
∂X
∂x

)

∂µ

=

∂

(
∂
(

log
(

φ(X)
Φ(X)

))

∂X
1
ξ

)

∂µ

=
∂2
(

log
(

φ(X)
Φ(X)

))

∂2X

1

ξ

∂X

∂µ

= −
∂2
(

log
(

φ(X)
Φ(X)

))

∂2X

1

ξ2
.

It follows that the sign of
∂2

(
log

(
φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x depends on the sign of

∂2
(

log
(

φ(X)
Φ(X)

))

∂2X
. (29)

Step 3 We now study the sign of the expression (29). Note that

∂2
(

log
(

φ(X)
Φ(X)

))

∂2X
=

∂2 (log φ (X))

∂2X
− ∂2 (log Φ (X))

∂2X
.

Recall that

∂2 (log φ (X))

∂2X
=

∂2
(

log
(

1√
2π

e−X2/(2)
))

∂2X
= −1.

It follows that

∂2
(

log
(

φ(X)
Φ(X)

))

∂2X
= −1− ∂2 (log Φ (X))

∂2X

= −1−
∂
(

φ(X)
Φ(X)

)

∂X
.

Now, we know two facts about
∂
(

φ(X)
Φ(X)

)

∂X from the Hayashi (2010) Addendum to Hayashi (2000).

First
∂2
(

φ(X)
Φ(X)

)

∂2X
> 0,
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i.e.
∂(log Φ(X))

∂X is increasing in X, given that the ratio
φ(X)
Φ(X)

is convex. Furthermore,
φ(X)
Φ(X)

asymptotes

to −X, which means that

lim
X→−∞

∂
(

φ(X)
Φ(X)

)

∂X
= −1.

It follows that
∂2
(

log
(

φ(X)
Φ(X)

))

∂2X
> 0, ∀X

and that

∂2

(
log

(
φ( x−µ

ξ )
Φ( x−µ

ξ )

))

∂µ∂x
< 0, ∀x, µ, ξ.

This concludes the proof of our Lemma. �

8.2 Statement and Proof of Lemma 5

1−FB(σ)
1−FA(σ)

∂
(

1−FB(σ)
1−FA(σ)

)

∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)

∂σ

, ∀σ, ∀σ. (30)

The condition is satisfied in the following canonical cases.

Lemma 5 a) Suppose that fB and fA are two normal distributions with identical variance ξ2 and means

µA, µB, with µA < µB. Then (30) is satisfied.

b) Suppose that fB and fA are two linear distributions defined over the same bounded interval and that

fB increases in σ while fA decreases in σ. Then (30) is satisfied.

We here prove Point a) of the Lemma. Point b) follows similar steps.

1−FB(σ)
1−FA(σ)

∂
(

1−FB(σ)
1−FA(σ)

)

∂σ

>

fB(σ)
fA(σ)

∂
(

fB(σ)
fA(σ)

)

∂σ

, ∀σ ⇔
∂
(

FB(σ)
FA(σ)

)

∂σ
FB(σ)
FA(σ)

<

∂
(

fB(σ)
fA(σ)

)

∂σ
fB(σ)
fA(σ)

, ∀σ ⇔ (31)

∂
(

log
(

1−FB(σ)
1−FA(σ)

))

∂σ
<

∂
(

log
(

fB(σ)
fA(σ)

))

∂σ
, ∀σ ⇔ (32)

∂
(

log
(

fA(σ)
1−FA(σ)

))

∂σ
<

∂
(

log
(

fB(σ)
1−FB(σ)

))

∂σ
, ∀σ. (33)
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The proof follows the same step as the proof of Lemma 3. A change appears in the following

step:

∂2
(

log
(

φ(X)
1−Φ(X)

))

∂2X
= −1− ∂2 (log(1−Φ (X)))

∂2X

= −1−
∂
(
− φ(X)

1−Φ(X)

)

∂X
.

Using the Hayashi (2010) Addendum to Hayashi (2000), it is then easily shown that it is always

true, under our assumptions, that

∂
(
− φ(X)

1−Φ(X)

)

∂X
> −1.

Indeed, the function
φ(X)

1−Φ(X)
, which is commonly caled the inverse Mills ratio, is monotonically

increasing in X, convex and asymptotes to X. �

8.3 Statement and proof of Fact F.1

We here show that if (2) is true, then

∂
(

FB(t
1
S(e))

FA(t
1
S(e))

( 1
2+e
1
2−e

))

∂e
≥ 0. (34)

This constitutes Fact F.1.

We revert to the notation ti
S(e) rather than ti

S(Υ), the two being equivalent, given that any level

of e corresponds to a unique value of Υ. The above inequality plays a key role in the derivations

executed in the next step. Note that

∂
(( 1

2+e
1
2−e

)
FB(t

2
S(e))

FA(t
2
S(e))

)

∂e
=

∂
( 1

2+e
1
2−e

)

∂e

FB(t
1
S(e))

FA(t1
S(e))

+

(
1
2 + e
1
2 − e

)
∂
(

FB(t
1
S(e))

FA(t
1
S(e))

)

∂e
.

Also

(
1
2 + e
1
2 − e

)
fB(t

1
S(e))

fA(t1
S(e))

=
qS

1− qS
⇔ ∂t1

S(e)

∂e
= −

∂

(
1
2+e

1
2−e

)

∂e
fB(t

1
S(e))

fA(t
1
S(e))

( 1
2+e
1
2−e

) ∂

(
fB(t

1
S
(e))

fA(t
1
S
(e))

)

∂t1
S(e)

.
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Now, it follows that:

∂
(( 1

2+e
1
2−e

)
FB(t

1
S(e))

FA(t
1
S(e))

)

∂e
=

∂
( 1

2+e
1
2−e

)

∂e

FB(t
1
S(e))

FA(t1
S(e))

+

(
1
2 + e
1
2 − e

)
∂
(

FB(t
1
S(e))

FA(t
1
S(e))

)

∂t1
S(e)

∂t1
S(e)

∂e

=
∂
( 1

2+e
1
2−e

)

∂e

FB(t
1
S(e))

FA(t1
S(e))

+

(
1
2 + e
1
2 − e

)
∂
(

FB(t
1
S(e))

FA(t
1
S(e))

)

∂t1
S(e)



−

∂

(
1
2+e

1
2−e

)

∂e
fB(t

1
S(e))

fA(t
1
S(e))

( 1
2+e
1
2−e

) ∂

(
fB(t

1
S
(e))

fA(t
1
S
(e))

)

∂t1
S(e)




=
∂
( 1

2+e
1
2−e

)

∂e




FB(t
1
S(e))

FA(t1
S(e))

−
∂
(

FB(t
1
S(e))

FA(t
1
S(e))

)

∂t1
S(e)

fB(t
1
S(e))

fA(t
1
S(e))

∂

(
fB(t

1
S
(e))

fA(t
1
S
(e))

)

∂t1
S(e)




.

Note that
∂

(
1
2+e

1
2−e

)

∂e > 0, ∀e ∈
(
0, 1

2

)
. �

8.4 Statement and proof of Fact F.2

We here show that
FB(t

1
S(e)) + qS

(
FB(t

2
S(e))− FB(t

1
S(e))

)

FA(t1
S(e)) + qS

(
FA(t2

S(e))− FA(t1
S(e))

)
(

1
2 + e
1
2 − e

)

is increasing in e. This constitutes Fact F.2.
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If we ignore the dependence of t2
S(e) on e and instead keep it fixed as we change e, we have:

∂
(
(1−qS)FB(t

1
S(e))+qSFB(t

2
S(e))

(1−qS)FA(t
1
S(e))+qSFA(t

2
S(e))

( 1
2+e
1
2−e

))

∂e

=





(1− qS)

∂

(
FB(t

1
S(e))

(
1
2+e

1
2−e

))

∂e


((1− qS)FA(t

1
S(e)) + qSFA(t

2
S(e))

)

−
( 1

2+e
1
2−e

) (
(1− qS)FB(t

1
S(e)) + qSFB(t

2
S(e))

) (
(1− qS)

∂(FA(t
1
S(e)))

∂e

)




(
(1− qS)FA(t1

S(e)) + qSFA(t2
S(e))

)2

=




(1− qS)
2




∂

(
FB(t

1
S(e))

(
1
2+e

1
2−e

))

∂e FA(t
1
S(e))−

∂(FA(t
1
S(e)))

∂e

( 1
2+e
1
2−e

)
FB(t

1
S(e))




+(1− qS)qS




∂

(
FB(t

1
S(e))

(
1
2+e

1
2−e

))

∂e FA(t
2
S(e))−

∂(FA(t
1
S(e)))

∂e

( 1
2+e
1
2−e

)
FB(t

2
S(e))







(
(1− qS)FA(t1

S(e)) + qSFA(t2
S(e))

)2
.

Note now that for T ∈
{

t1
S(e), t2

S(e)
}

:

∂
(

FB(t
1
S(e))

( 1
2+e
1
2−e

))

∂e
FA(T)−

∂
(

FA(t
1
S(e))

)

∂e

(
1
2 + e
1
2 − e

)
FB(T) > 0 ⇔ (35)

FB(T)

FA(T)
>

−
∂

(
FB(t

1
S(e))

(
1
2+e

1
2−e

))

∂e

− ∂(FA(t
1
S(e)))

∂e

( 1
2+e
1
2−e

) .

Now, note that

∂
(

FB(t
1
S(e))

( 1
2+e
1
2−e

))

∂e
FA(t

1
S(e))−

∂
(

FA(t
1
S(e))

)

∂e

(
1
2 + e
1
2 − e

)
FB(t

1
S(e))

=
∂
(

FB(t
1
S(Υ))

FA(t
1
S(Υ))

1
2+e
1
2−e

)

∂e
. (36)

We know that under condition (2), expression (36) is positive. It follows, given that
FB(t

2
S(e))

FA(t
2
S(e))

>

FB(t
1
S(e))

FA(t
1
S(e))

, that if (36) is positive, then (35) is positive as well when setting T = t2
S(e). In other words,

if (2) is satisfied, then if ẽ > e, we have now shown that

FB(t
1
S(e)) + qS

(
FB(t

2
S(e))− FB(t

1
S(e))

)

FA(t1
S(e)) + qS

(
FA(t2

S(e))− FA(t1
S(e))

)
(

1
2 + e
1
2 − e

)
<

FB(t
1
S(ẽ)) + qS

(
FB(t

2
S(e))− FB(t

1
S(ẽ))

)

FA(t1
S(ẽ)) + qS

(
FA(t2

S(e))− FA(t1
S(ẽ))

)
(

1
2 + ẽ
1
2 − ẽ

)
.
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It is furthermore clear that

FB(t
1
S(ẽ)) + qS

(
FB(t

2
S(e))− FB(t

1
S(ẽ))

)

FA(t1
S(ẽ)) + qS

(
FA(t2

S(e))− FA(t1
S(ẽ))

)
(

1
2 + ẽ
1
2 − ẽ

)
<

FB(t
1
S(ẽ)) + qS

(
FB(t

2
S(ẽ))− FB(t

1
S(ẽ))

)

FA(t1
S(ẽ)) + qS

(
FA(t2

S(ẽ))− FA(t1
S(ẽ))

)
(

1
2 + ẽ
1
2 − ẽ

)
.

We may thus conclude that

FB(t
1
S(e)) + qS

(
FB(t

2
S(e))− FB(t

1
S(e))

)

FA(t1
S(e)) + qS

(
FA(t2

S(e))− FA(t1
S(e))

)
(

1
2 + e
1
2 − e

)

is increasing in e. �

8.5 Statement an proof of Fact F.3

We here show that

∂
(

rl (e)
FB(t

2
S(e))

FA(t
2
S(e))

)

∂e
< 0.

This constitutes Fact F.3.

Note that

∂
(

rl (e)
FB(t

2
S(e))

FA(t
2
S(e))

)

∂e
=

∂rl (e)

∂e

FB(t
2
S(e))

FA(t2
S(e))

+ rl (e)
∂
(

FB(t
2
S(e))

FA(t
2
S(e))

)

∂e
.

Note that

rl (e)
fB(t

2
S(e))

fA(t2
S(e))

=
qS

1− qS
⇔ ∂t2

S(e)

∂e
= −

∂rl(e)
∂e

fB(t
2
S(e))

fA(t
2
S(e))

rl (e)
∂

(
fB(t

2
S
(e))

fA(t
2
S
(e))

)

∂t2
S(e)

Now, it follows that:

∂
(

rl (e)
FB(t

2
S(e))

FA(t
2
S(e))

)

∂e
=

∂rl (e)

∂e

FB(t
2
S(e))

FA(t2
S(e))

+ rl (e)
∂
(

FB(t
2
S(e))

FA(t
2
S(e))

)

∂t2
S(e)

∂t2
S(e)

∂e

=
∂rl (e)

∂e

FB(t
2
S(e))

FA(t2
S(e))

+ rl (e)
∂
(

FB(t
2
S(e))

FA(t
2
S(e))

)

∂t2
S(e)



−

∂rl(e)
∂e

fB(t
2
S(e))

fA(t
2
S(e))

rl (e)
∂

(
fB(t

2
S
(e))

fA(t
2
S
(e))

)

∂t2
S(e)




=
∂rl (e)

∂e︸ ︷︷ ︸
<0




FB(t
2
S(e))

FA(t2
S(e))

−
∂
(

FB(t
2
S(e))

FA(t
2
S(e))

)

∂t2
S(e)

fB(t
2
S(e))

fA(t
2
S(e))

∂

(
fB(t

2
S
(e))

fA(t
2
S
(e))

)

∂t2
S(e)




︸ ︷︷ ︸
>0 by Lemma 5
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Note that
∂rl(e)

∂e < 0, ∀e ∈
(
0, 1

2

)
.�

8.6 Statement and proof of Fact F.4

We here show that

∂
(

rl (e)
1−FB(t

2
S(e))

1−FA(t
2
S(e))

)

∂e
< 0

This constitutes Fact F.4.

∂
(

rl (e)
1−FB(t

2
S(e))

1−FA(t
2
S(e))

)

∂e
=

∂rl (e)

∂e

1− FB(t
2
S(e))

1− FA(t2
S(e))

+ rl (e)
∂
(

1−FB(t
2
S(e))

1−FA(t
2
S(e))

)

∂t2
S(e)

∂t2
S(e)

∂e

=
∂rl (e)

∂e

1− FB(t
2
S(e))

1− FA(t2
S(e))

+ rl (e)
∂
(

1−FB(t
2
S(e))

1−FA(t
2
S(e))

)

∂t2
S(e)



−

∂rl(e)
∂e

fB(t
2
S(e))

fA(t
2
S(e))

rl (e)
∂

(
fB(t

2
S
(e))

fA(t
2
S
(e))

)

∂t2
S(e)




=
∂rl (e)

∂e︸ ︷︷ ︸
<0




1− FB(t
2
S(e))

1− FA(t2
S(e))

−
∂
(

1−FB(t
2
S(e))

1−FA(t
2
S(e))

)

∂t2
S(e)

fB(t
2
S(e))

fA(t
2
S(e))

∂

(
fB(t

2
S
(e))

fA(t
2
S
(e))

)

∂t2
S(e)




︸ ︷︷ ︸
<0 by Lemma 5

�

9 Appendix E: Proof of Proposition 3

Point a) Suppose an influential equilibrium that is not S-optimal. In a given influential equilibrium

E, let CE
j denote the set of equilibrium messages that give rise to action j ∈ {a, b, h} by R, where

h refers to the optimal hedging strategy in which R plays action a with probability qR. In what

follows, we slightly abuse notation by dropping the explicit reference to the equilibrium under

consideration and simply writing Cj. Influential equilibria can be gathered into four types. Either,

in a given equilibrium, Ca, Cb and Ch are non-empty (call this Case 1). Or Ca, Cb are non-empty

and Ch is empty (Case 2). Or Ca and Ch are non-empty while Cb is empty (Case 3). Or Cb and Ch

are non-empty while Ca is empty (Case 4).
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In Cases 1 and 2, the equilibrium must implement S’optimal decision rule, as S otherwise

trivially has a strict incentive to deviate at some information set.

Case 3 may correspond to an equilibrium scenario. In such a case, S must behave as follows in

order to have no strict incentive to deviate. If s < t1
S, he emits for sure a message belonging to Ca.

If s ∈
[
t1
S, t2

S

]
, he emits a message belonging to Ca with probability

1−qS

1−qR
and a message belonging

to Ch with the remaining probability. If s > t2
S, he emits a message belonging to Ch for sure.

Case 4 may also correspond to an equilibrium scenario. In order for S not to have a strict

incentive to deviate, it must be that S issues a message belonging to Ch whenever s < t2
S and

issues a message belonging to Cb when s > t2
S.

Point b) Suppose there exists an equilibrium E implementing the decision rule.D1. This equi-

librium defines two non-empty sets Cb and Ch, where the latter are defined as in Point a) above.

Suppose now a putative equilibrium Ê in which the communication strategy is given as follows.

At every information at which S sends a message belonging to Ch in E, S now sends m1. Further-

more, at every information set at which S sends a message belonging to Cb in E, S now sends

message m2. It is trivially true that if E is an equilibrium, then Ê is also an equilibrium.

Point c) Suppose there exists an equilibrium E implementing the decision rule D2. This equilib-

rium defines two and only two non-empty sets Ca and Ch, where the latter are defined as in Point

a) above. Suppose now a putative equilibrium Ê in which the communication strategy is given as

follows. At every information at which S sends a message belonging to Ca in E, S now sends m1.

Furthermore, at every information set at which S sends a message belonging to Ch in E, S now

sends message m2. It is trivially true that if E is an equilibrium, then Ê is also an equilibrium.

Point d) Step 1 An equilibrium implementing decision rule D1 exists iff:

Pl(B)

1− Pl(B)

FB(t
2
S)

FA(t2
S)
< qR ≤

Ph(B)

1− Ph(B)

FB(t
2
S)

FA(t2
S)

and

qR ≤
Pl(B)

1− Pl(B)

1− FB(t
2
S)

1− FA(t2
S)

.

Clearly, note that

Pl(B)

1− Pl(B)

FB(t
2
S)

FA(t2
S)
< qS <

Pl(B)

1− Pl(B)

1− FB(t
2
S)

1− FA(t2
S)

.
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Furthermore, note that if e is sufficiently small,

qS >
Ph(B)

1− Ph(B)

FB(t
2
S)

FA(t2
S)

.

Step 2 Define

G (qS, qR) =

(
FB(1)− FB(t

2
S)
)
+
(

1−qS

1−qR

) (
FB(t

2
S)− FB(t

1
S)
)

(
FA(1)− FA(t2

S)
)
+
(

1−qS

1−qR

) (
FA(t2

S)− FA(t1
S)
) .

An equilibrium implementing decision rule D2 exists iff:

Ph(B)

1− Ph(B)

FB(t
1
S) +

(
qS−qR

1−qR

) (
FB(t

2
S)− FB(t

1
S)
)

FA(t1
S) +

(
qS−qR

1−qR

) (
FA(t2

S)− FA(t1
S)
) < qR,

and
Pl(B)

1− Pl(B)
G (qS, qR) < qR <

Ph(B)

1− Ph(B)
G (qS, qR) .

Note that
Ph(B)

1− Ph(B)
G (qS, qR) > qS.

Now, note that for e sufficiently small, clearly

Pl(B)

1− Pl(B)
G (qS, qS) > qS.

�

10 Appendix F: Proof of Propositions 4 and 5

10.1 Proof of Proposition 4

Step 1 As to Point i.a, note that for e ≤ e1(qS), it is always true that

q
R
(qS, e, 3) = Ψ

(
t1
S(e), qS, e

)
.

and recall that Ψ
(
t1
S(e), qS, e

)
is increasing in e.

Step 2 As to Point i.b, note that for e ≤ e3(qS), it is always true that

q
R
(qS, e, 2) = Ψ

(
t1
S(e), qS, e

)
.
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Note also that if e2(qS) < e3(qS), then for e ≤ e2(qS)

qR(qS, e, 2) = qS,

while for e ∈ (e2(qS), e3(qS)]

qR(qS, e, 2) = Pl(B
∣∣∣m2, t1

S(e), qR, qS, e ).

Furthermore, Pl(B
∣∣m2, t1

S(e), qR, qS, e ) is decreasing in e.

Step 3 This proves Point ii. Recall that an equilibrium implementing decision rule D1 exists iff:

Pl(B)

1− Pl(B)

FB(t
2
S)

FA(t2
S)
< qR ≤

Ph(B)

1− Ph(B)

FB(t
2
S)

FA(t2
S)

and

qR ≤
Pl(B)

1− Pl(B)

1− FB(t
2
S)

1− FA(t2
S)

.

Now, note the following three facts. First, it is immediate that

∂
(

Ph(B)
1−Ph(B)

FB(t
2
S)

FA(t
2
S)

)

∂e
> 0.

Second, Fact. F.3. states that

∂
(

Pl(B)
1−Pl(B)

FB(t
2
S)

FA(t
2
S)

)

∂e
< 0.

Third, Fact F.4. states that

∂
(

Pl(B)
1−Pl(B)

1−FB(t
2
S(e))

1−FA(t
2
S(e))

)

∂e
> 0.

�

10.2 Proof of Proposition 5

Step 1 The proof of point a) follows trivially from proposition 4 and is therefore omitted.

Step 2 The next steps prove Point b). Define

Π0(e, qi, j) = −Pe
j (B)qi.

Π1(e, qi, qR, j) = −(1− Pe
j (B))

[
FA(t

2
S(e)(1− qR) + (1− FA(t

2
S(e))

]
qi − Pe

j (B)FB(t
2
S(e))qR(1− qi).
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In order to prove that agent i unilaterally favours the equilibrium implementing decision rule

D1 under positive ambiguity e to the babbling equilibrium under no-ambiguity, we simply need

to establish that for each j ∈ {l, h} , given e,

Π0(0, qi, h) = Π0(0, qi, l) < Π1(e, qi, qR, j).

Step 3 First, clearly, for any qR < qS,

Π1(0, qS, qR, l)−Π0(0, qS, l) =: ∆(0, qS, qR, l) > 0.

Now, clearly, the expression

|Π1(0, qS, qR, l)−Π1(e, qS, qR, l)|

is continuous in e and tends to 0 as e tends to 0. It follows for every qR < qS, there is an

e∗(qR) > 0 s.t. for any e < e∗(qR)

Π0(0, qS, l) < Π1(e, qS, qR, l).

We furthermore know that Π1(e, qS, qR, l) is continuous in qR, for any e, qS. It follows that we

may find some el > 0 s.t. for any e ∈ (0, el) , there is some ql
R(e, qS) < q

R
(qS, e, 3) s.t. for qR ∈[

ql
R(e, qS), q

R
(qS, e, 3)

]
,

Π1(e, qS, qR, l) > Π0(0, qS, l).

Step 4 We focus in the next steps on identifying conditions under which Π0(0, qS, h) < Π1(e, qS, qR, h).

We now establish two facts. The first fact is that for e ∈
(
0, 1

2

)
,

Π0(0, qS, h) < Π0(e, qS, h).

The second fact follows. By definition, given that lim
e→0

t1
S(e) = lim

e→0
t2
S(e), there exists eh > 0 s.t.

for e ∈ (0, eh) ,

Π1(e, qS, q
R
(qS, e, 3) , h) > Π0(e, qS, h).

We furthermore know that Π1(e, qS, qR, h) is continuous in qR, for any e, qS. This immediately im-

plies that for every e ∈ (0, eh) , there is some qh
R(e, qS) < q

R
(qS, e, 3) s.t. for qR ∈

[
qh

R(e, qS), q
R
(qS, e, 3)

]

Π1(e, qS, qR, l) > Π0(e, qS, h) > Π0(0, qS, h).

Step 5 We know from Proposition 4 that for any e, there exists q1
R
(e, qS) < q

R
(qS, e, 3) s.t for

qR ∈
[
q1

R
(e, qS), q

R
(qS, e, 3)

]
, there exists an equilibrium implementing decision rule D1.
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Step 6 It follows from preceding steps that for e ∈ (0, min {el , eh}) , there is some

q̂R(e, qS) = max
{

q1

R
(e, qS), ql

R(e, qS), qh
R(e, qS)

}
< q

R
(qS, e, 3)

s.t for qR ∈
[
q̂R(e, qS), q

R
(qS, e, 3)

]
, there exists an equilibrium implementing decision rule D1 and

furthermore

min {Π1(e, qS, qR, l), Π1(e, qS, qR, h)} > Π0(0, qS, h).

�

11 Appendix G: Proof of Proposition 6

Step 1 By definition, the monotone 3-partitions E3 equilibrium exists iff

P(m1 |B, E3)

P(m1 |A, E3)
< Q1(qR) (37)

and
P(m2 |B, E3)

P(m2 |A, E3)
≥ Q2 (qR) . (38)

Step 2 Note that for a given qS

P(m1 |B, E3)

P(m1 |A, E3)
<

P(m2 |B, E3)

P(m2 |A, E3)

To see this, note first that by the MLRP property,

∫ t3
1

t3
0

fB(σ)dσ

∫ t3
1

t3
0

fA(σ)dσ
<

∫ t3
3

t3
2

fB(σ)dσ

∫ t3
3

t3
2

fA(σ)dσ

and note secondly that

∫ t3
2

t3
1

(
βS(σ)−βS(t

3
1)

βS(t
3
2)−βS(t

3
1)

)
fB(σ)dσ

∫ t3
2

t3
1

(
βS(σ)−βS(t

3
1)

βS(t
3
2)−βS(t

3
1)

)
fA(σ)dσ

<

∫ t3
2

t3
1

(
βS(t

3
2)−βS(σ)

βS(t
3
2)−βS(t

3
1)

)
fB(σ)dσ

∫ t3
2

t3
1

(
βS(t

3
2)−βS(σ)

βS(t
3
2)−βS(t

3
1)

)
fA(σ)dσ

The latter inequality follows directly from Theorem 1 in Wijsman (1985) given that the ratios
fB(σ)
fA(σ)

and
(

βS(σ)−βS(t
3
1)

βS(t
3
2)−βS(t

3
1)

)

(
βS(t

3
2)−βS(σ)

βS(t
3
2)−βS(t

3
1)

)
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are both monotonically increasing in σ, for σ ∈
[
t3
1, t3

2

]
. Note also that

∂Qj (qi)

∂qi
≥ 0, ∀i ∈ {S, R} , ∀j ∈ {1, 2} .

Step 3 It follows from the facts collected in step 2 that

P(m1 |B, E3)

P(m1 |A, E3)
≥ Q1(qS)⇒

P(m1 |B, E3)

P(m1 |A, E3)
> Q1(qR).

Step 4 Given that
P(m1 |B, E3)

P(m1 |A, E3)
≤ Q1(qS), (39)

it follows that there is some q3
R
(qS) < qS s.t.

P(m1|B,E3)
P(m1|A,E3)

= Q1(q
3
R
(qS)). This ends the proof of Point

a.

Step 5 This proves Point b. Note that
P(m2|B,E3)
P(m2|A,E3)

may be larger or smaller than Q2(qS). If
P(m2|B,E3)
P(m2|A,E3)

≥ Q2(qS), it follows that
P(m2|B,E3)
P(m2|A,E3)

> Q2(qR), ∀qR < qS, so that q3
R (qS) = qS. On the

other hand, if
P(m2|B,E3)
P(m2|A,E3)

< Q2(qS), it follows immediately that
P(m2|B,E3)
P(m2|A,E3)

= Q2(q
3
R (qS)) and that

q3
R (qS) < qS. �

12 Appendix H: proof of Proposition 7

Step 1 The monotone 4-partitions E4 equilibrium exists iff

P(m1

∣∣B, E4(t
4
2))

P(m1

∣∣A, E4(t4
2))

≤ Q1(qR) < Q1(qS) (40)

and
P(m3

∣∣B, E4(t
4
2))

P(m3

∣∣A, E4(t4
2)
≥ Q2(qR) (41)

and

βR

(
P(m2

∣∣B, E4, t4
2)

P(m2

∣∣A, E4, t4
2)

)
= βS

(
fB(t

4
2)

fA(t4
2)

)
. (42)

Note that the inequality Q1(qR) < Q1(qS) holds by definition.

Step 2 This step establishes simple comparative statics properties of key likelihood ratios. It

can be shown, using Theorem 1 in Wijsman (1985), that

∂

(
P(mi|B,E4(t

4
2))

P(mi|A,E4(t
4
2))

)

∂t4
2

> 0, ∀ t4
2 ∈ [t4

1, t4
3], ∀i ∈ {1, 2, 3} . (43)
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Note also that

P(m1

∣∣B, E4(t
4
3))

P(m1

∣∣A, E4(t4
3))

=
P(m1 |B, E3)

P(m1 |A, E3)
;

P(m3

∣∣B, E4(t
4
1))

P(m3

∣∣A, E4(t4
1))

=
P(m2 |B, E3)

P(m2 |A, E3)
.

Finally, for any t4
2 ∈ [t4

1, t4
3], by Theorem 1 in Wijsman (1985)

P(m1

∣∣B, E4(t
4
2))

P(m1

∣∣A, E4(t4
2))

<
P(m2

∣∣B, E4(t
4
2))

P(m2

∣∣A, E4(t4
2))

<
P(m3

∣∣B, E4(t
4
2))

P(m3

∣∣A, E4(t4
2))

.

Step 3 This step establishes key properties of the functions βR and βS. Given that βR (., qR) is

increasing in its first argument, it follows from (43) that

∂βR

(
P(m2|B,E4(t

4
2))

P(m2|A,E4(t
4
2))

, qR

)

∂t4
2

> 0, ∀t4
2 ∈ [t4

1, t4
3].

Recall that

∂βS

(
fB(t

4
2)

fA(t
4
2)

, qS

)

∂t4
2

> 0, ∀t4
2 ∈ [t4

1, t4
3]; βS

(
fB(t

4
1)

fA(t4
1)

, qS

)
= 0; βS

(
fB(t

4
3)

fA(t4
3)

, qS

)
= 1.

Recall also that ∀t4
2 ∈ [t4

1, t4
3], ∀qR ∈ (0, 1)

∂βR

(
P(m2|B,E4(t

4
2))

P(m2|A,E4(t
4
2))

, qR

)

∂qR
≤ 0.

It follows that there is a qR (qS) < qS s.t. for qR > qR (qS) ,

βR

(
P(m2

∣∣B, E4(t
4
3))

P(m2

∣∣A, E4(t4
3))

, qR

)
< 1.

while for qR ≤ qR (qS) , the inequality is replaced by an equality. It is trivially seen that q3
R
(qS) <

qR(qS) < q3
R (qS) . This follows from the fact that

P(m1 |B, E3)

P(m1 |A, E3)
<

P(m2

∣∣B, E4(t
4
3))

P(m2

∣∣A, E4(t4
3))

<
P(m2 |B, E3)

P(m2 |A, E3)
<

P(m3

∣∣B, E4(t
4
3))

P(m3

∣∣A, E4(t4
3))

.

We may now conclude that there always exists some t̃4
2 ∈

[
t4
1, t4

3

]
s.t.

βR

(
P(m2

∣∣B, E4(t̃
4
2))

P(m2

∣∣A, E4(t̃4
2))

, qR

)
= βS

(
fB(t̃

4
2)

fA(t̃4
2)

, qS

)
. (44)
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The latter statement may be refined as follows. There exists some qR (qS) < qS s.t. for qR >

qR (qS), there exists some t̃4
2 ∈ [t4

1, t4
3) s.t. the above (44) holds. For qR ≤ qR (qS) , (44) is guaranteed

to hold at t̃4
2 = t4

3.

Step 4 This step and the next step establish properties of q4
R (qS) . Suppose that qR > qR(qS). We

know by step 3 that there exists a t4
2 ∈ [t4

1, t4
3) s.t. βR

(
P(m2|B,E4(t

4
2))

P(m2|A,E4(t
4
2))

, qR

)
= βS

(
fB(t

4
2)

fA(t
4
2)

, qS

)
. Suppose

furthermore that qS is s.t.
P(m2 |B, E3)

P(m2 |A, E3)
≥ Q2(qS), (45)

so that q3
R (qS) = qS. In a putative monotone 4-partitions equilibrium given by t̃4

2 6= t4
3 s.t. (44)

holds, it is true by step 2 that:

(
P(m1

∣∣B, E4(t̃
4
2))

P(m1

∣∣A, E4(t̃4
2))

<
P(m1 |B, E3)

P(m1 |A, E3)

)
∩
(

P(m3

∣∣B, E4(t̃
4
2))

P(m3

∣∣A, E4(t̃4
2))

>
P(m2 |B, E3)

P(m2 |A, E3)

)
. (46)

It follows that for any qR s.t. qR(qS) ≤ qR ≤ q3
R (qS) = qS,

P(m1

∣∣B, E4(t̃
4
2))

P(m1

∣∣A, E4(t̃4
2))

≤ Q1(qR) < Q2(qR) ≤
P(m3

∣∣B, E4(t̃
4
2))

P(m3

∣∣A, E4(t̃4
2))

. (47)

We have now proven that if (45) holds, there exists a 4-partitions equilibrium for any qR s.t.

qR(qS) ≤ qR ≤ q3
R (qS) = qS.

Step 5 Suppose that qR > qR(qS). Suppose now that qS is s.t.

P(m2 |B, E3)

P(m2 |A, E3)
< Q2(qS),

so that q3
R (qS) < qS. For any qR s.t. qR(qS) ≤ qR ≤ q3

R (qS) , we know that there exists a t̃4
2 ∈ [t4

1, t4
3)

s.t. (44) holds. For such a t̃4
2, (47) holds as well. It follows that there exists a monotone 4-partitions

equilibrium for any qR s.t. qR(qS) ≤ qR ≤ q3
R (qS) .

We now focus on values of qR s.t. qR > q3
R (qS), in order to prove that q4

R (qS) > q3
R (qS) . We

know by step 3 that there exists t4
2 ∈ [t4

1, t4
3) s.t.

βR

(
P(m2

∣∣B, E4(t
4
2))

P(m2

∣∣A, E4(t4
2))

, q3
R (qS)

)
= βS

(
fB(t

4
2)

fA(t4
2)

, qS

)
.

This implies that there exists some ε∗ > 0 s.t for any ε ∈ (0, ε∗], there exists a t4
2 (ε) ∈ [t4

1, t4
3) s.t.

βR

(
P(m2

∣∣B, E4(t
4
2 (ε)))

P(m2

∣∣A, E4(t4
2 (ε)))

, q3
R (qS) + ε

)
= βS

(
fB(t

4
2 (ε))

fA(t4
2 (ε))

, qS

)
.
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For any ε ∈ (0, ε∗], clearly

P(m3

∣∣B, E4(t
4
2 (ε)))

P(m3

∣∣A, E4(t4
2 (ε)))

>
P(m2 |B, E3)

P(m2 |A, E3)
.

It also clear, given that
∂βR(.,qR)

∂qR
< 0, that

∂t4
2 (ε)

∂ε
< 0 ;

∂

(
P(m3|B,E4(t

4
2(ε)))

P(m3|A,E4(t
4
2(ε)))

)

∂ε
< 0.

We know furthermore from the proof of Proposition 6 that

Q2

(
q3

R (qS)
)
=

P(m2 |B, E3)

P(m2 |A, E3)
.

Using the fact that
∂Q2(qR)

∂qR
> 0, ∀qR, it follows that there is some ε∗∗ ∈ (0, ε∗) s.t.

Q2

(
q3

R (qS) + ε∗∗
)
=

P(m3

∣∣B, E4(t
4
2 (ε

∗)))

P(m3

∣∣A, E4(t4
2 (ε

∗)))
,

Q2

(
q3

R (qS) + ε
)
<

P(m3

∣∣B, E4(t
4
2 (ε

∗)))

P(m3

∣∣A, E4(t4
2 (ε

∗)))
, ∀ε ∈ (0, ε∗∗) .

It follows that for any ε ∈ (0, ε∗∗)

P(m3

∣∣B, E4(t
4
2 (ε)))

P(m3

∣∣A, E4(t4
2 (ε)))

>
P(m3

∣∣B, E4(t
4
2 (ε

∗)))

P(m3

∣∣A, E4(t4
2 (ε

∗)))
> Q2

(
q3

R (qS) + ε
)

.

Furthermore, recall that it is trivially true that for any ε ∈ (0, ε∗∗)

P(m1

∣∣B, E4(t
4
2 (ε)))

P(m1

∣∣A, E4(t4
2 (ε)))

<
P(m1 |B, E3)

P(m1 |A, E3)
≤ Q1

(
q3

R (qS)
)
< Q1

(
q3

R (qS) + ε
)

.

It follows that there is some threshold q4
R (qS) satisfying q4

R (qS) > q3
R (qS) s.t. for any qR s.t.

q3
R (qS) ≤ qR ≤ q4

R (qS) .

Step 6 This step establishes properties of q4
R
(qS) . For any qR s.t. q3

R
(qS) ≤ qR ≤ qR (qS) , we

know that βR

(
P(m2|B,E4(t

4
3))

P(m2|A,E4(t
4
3))

, qR

)
= βS

(
fB(t

4
3)

fA(t
4
3)

, qS

)
. Note that

P(m1

∣∣B, E4(t
4
3))

P(m1

∣∣A, E4(t4
3))

=
P(m1 |B, E3)

P(m1 |A, E3)
∩ P(m3

∣∣B, E4(t
4
3))

P(m3

∣∣A, E4(t4
3))

>
P(m2 |B, E3)

P(m2 |A, E3)
. (48)
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It follows that for any qR s.t. q3
R
(qS) ≤ qR ≤ qR (qS) , (47) trivially holds for t̃4

2 = t4
3 so that

there exists a monotone 4-partitions equilibrium. We now focus on values of qR s.t. qR < q3
R
(qS) .

Suppose that there exists no t4
2 ∈ [t4

1, t4
3) s.t.

βR

(
P(m2

∣∣B, E4(t
4
2))

P(m2

∣∣A, E4(t4
2))

, q3

R
(qS)

)
= βS

(
fB(t

4
2)

fA(t4
2)

, qS

)
. (49)

Then, it follows that for any qR < q3
R
(qS) , there exist no 4-partitions equilibrium. Suppose now

instead that there exists a t4
2 ∈ [t4

1, t4
3) s.t.(49) holds. It follows that there is some ε∗ > 0 s.t for any

ε ∈ (0, ε∗], there exists a t4
2 (ε) ∈ [t4

1, t4
3) s.t.

βR

(
P(m2

∣∣B, E4(t
4
2 (ε)))

P(m2

∣∣A, E4(t4
2 (ε)))

, q3

R
(qS)− ε

)
= βS

(
fB(t

4
2 (ε))

fA(t4
2 (ε))

, qS

)
.

Now, for any ε ∈ (0, ε∗) , we know from step 2 that

P(m1

∣∣B, E4(t
4
2 (ε)))

P(m1

∣∣A, E4(t4
2 (ε)))

<
P(m1 |B, E3)

P(m1 |A, E3)
.

It is furthermore clear, given that
∂βR(.,qR)

∂qR
< 0, that

∂t4
2 (ε)

∂ε
> 0 ;

∂

(
P(m1|B,E4(t

4
2(ε)))

P(m1|A,E4(t
4
2(ε)))

)

∂ε
> 0.

We also know from the proof of Proposition 6 that by definition

Q1

(
q3

R
(qS)

)
=

P(m1 |B, E3)

P(m1 |A, E3)
.

Using the fact that
∂Q1(qR)

∂qR
> 0, ∀qR, it follows that there is some ε∗∗ ∈ (0, ε∗) s.t.

Q1

(
q3

R
(qS)− ε∗∗

)
=

P(m3

∣∣B, E4(t
4
2 (ε

∗)))

P(m3

∣∣A, E4(t4
2 (ε

∗)))
,

Q1

(
q3

R
(qS)− ε

)
>

P(m3

∣∣B, E4(t
4
2 (ε

∗)))

P(m3

∣∣A, E4(t4
2 (ε

∗)))
, ∀ε ∈ (0, ε∗∗) .

It follows that for any ε ∈ (0, ε∗∗)

Q1

(
q3

R
(qS)− ε

)
>

P(m1

∣∣B, E4(t
4
2 (ε

∗)))

P(m1

∣∣A, E4(t4
2 (ε

∗)))
>

P(m1

∣∣B, E4(t
4
2 (ε)))

P(m1

∣∣A, E4(t4
2 (ε)))

.
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Furthermore, recall that it is trivially true that for any ε ∈ (0, ε∗∗)

Q2

(
q3

R (qS)− ε
)
< Q2

(
q3

R (qS)
)
≤ P(m2 |B, E3)

P(m2 |A, E3)
≤ P(m3

∣∣B, E4(t
4
2 (ε)))

P(m3

∣∣A, E4(t4
2 (ε)))

.

It follows that if and only if (49) holds, there exists a threshold q4
R
(qS) satisfying q4

R
(qS) <

q3
R
(qS) s.t. there exists a monotone 4-partitions equilibrium if qR ∈

[
q4

R
(qS) , q3

R
(qS)

]
and there

exists no monotone 4-partitions equilibrium if qR < q4
R
(qS) . �
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