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Optimal Elimination Contest

Knyazev Dmitriy�

October 15, 2013

Abstract

We consider multi-stage elimination contests, where agents� e¤orts at di¤erent

stages generate some output for the organizers. Depending on the output function

we characterize the optimal prize structure of the tournament and show that it is al-

most e¢cient. We have found that in some cases quite a strange structure turns out

to be optimal, under which prizes for agents are smaller at the later stages than at

the earlier ones. Su¢cient conditions for optimality of such structures are provided for

the case of a separable output function. Next we consider the modi�cation, when the

designer can specify a winning function. We provide su¢cient conditions for optimality

of a winning function and show that it can be found in the class of Tullock functions.

This function does not depend on the output function. There is always an e¢cient

equilibrium, under which the designer is able to extract the whole surplus from the

agents and the corresponding optimal prize structure is always non-decreasing.

Keywords: Tullock contests; multiple-stage tournament; optimal structure; negative

prizes.
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1 Introduction

Many real life interactions among di¤erent agents, such as elections, implementation of inno-

vations, promotion tournaments, or sports, can be very well described and analyzed by use of

a contest model. Most contests involve multiple stages where the number of agents compete

at successive stages until the winner is �nally determined. The most prominent among the

models which share this feature is the sequential elimination contest, which is commonly

known from playo¤ rounds in sport competitions. It is also a good description of many

corporate tournaments where employees from low hierarchy levels compete for promotions

to higher hierarchy levels. This contest structure can also be encountered in politics, where

candidates compete in localized contests and where the winners then often compete against

each other on higher levels. R&D could be also described by such tournaments, where the

�rm with the most e¢cient technology wins the market.

In this paper we look for the optimal prize structure of an elimination contest, which

maximizes the pro�t of the organizers. Our main assumption that di¤ers this paper from

the existing literature is that in the majority of papers the objective of the designer is to �nd

a structure of prizes in the contest, which maximizes agents� e¤orts during the tournament

(usually, either the average level, or the e¤ort in the �nal). The prize pool is usually assumed

to be a �xed amount of money, which can be distributed to the agents according to their

performance. In our framework the designer does not have initially any �xed objective, such

as, for example, maximization of the total e¤ort of agents. Instead, agents� e¤orts at di¤erent

stages produce the output according to some output function, which de�nes how exactly the

organizers value various combinations of e¤orts at di¤erent stages. The prize pool is not

�xed, rather the designers can pay to the contestants any amount of money they want. The

designer�s problem is to design the prize structure, which maximizes the organizers� pro�t,

that is the di¤erence between the value of the produced output and the value of the prizes,

distributed to the agents. Competitor�s performance incentives at any stage are set by the

continuation value. Each player is guaranteed at least the loser�s prize at each stage, but

a win gives him the opportunity to continue participation in the contest. We �nd that

depending on the output function several types of prize structures might be optimal. We

give an example in which the output function depends only on one parameter and for various

values of this parameter �ve types of prize structures might be optimal: 1) Increasing concave

prize structure, 2) Increasing linear prize structure, 3) Increasing convex prize structure, 4)

Winner-take-all structure, 5) Decreasing prize structure with the big prize to the winner.

The last case with the negative prize di¤erences at all stages, except the last one is the most

striking result. It turns out that if the designer values e¤orts at each later stage much more
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than at the previous stage, the di¤erence between the prizes could be negative. We refer to

this structure as a "trap structure". We are able to formulate su¢cient conditions for prize

structures to be increasing for a separable output function. We show that the optimal prize

structure is also almost socially optimal, namely it provides the �rst best level of e¤ort at

all the stages except the �rst one.

Then we assume that the designer can optimize not only with respect to the prize struc-

ture, but also may choose the probability of winning function. It means that it can specify

probability of winning depending on realized e¤orts in any way he wants. We provide su¢-

cient conditions for the probability of winning function to be optimal. The important result

here is that it is always possible to �nd such a function in the class of Tullock functions. It

always generates the e¢cient e¤orts and the "trap structure" is never optimal here.

The paper is structured in the following way. In the next section we discuss the existing

literature by this theme. Then, we describe our main model and �nd the optimal prize

structure. Finally, we allow the designer to choose a probability of winning function. The

last section concludes and summarizes the whole paper.

2 Related Literature

A number of literature exist on di¤erent tournaments, for example, on lottery contests, R&D,

patents, innovation implementation. This literature is surveyed by Konrad (2007) in detail.

Our attention is focused on the contributions, which are most relevant to our work.

The classic work which describes simple tournaments and their e¢ciency is Lazear and

Rosen (1981). They compare rank order wage schemes to wages based on individual output

and �nd that, for risk-neutral agents, both of them allocate resources in the e¢cient way.

They consider the case of the simple simultaneous one stage tournament. In their setup the

e¢ciency result requires only risk neutrality. In our paper the e¢ciency is generally lost

because of the dynamic structure of the tournament.

The playo¤ or elimination tournaments considered in our paper were analyzed for the

�rst time in Lazear and Rosen (1986). The tournament structure considered in this paper is

similar to the those one. They have described double elimination tournament with multiple

stages with a �xed prize pool. They have found the optimal payo¤ structure under the

objective to maximize the same constant level of e¤ort of all agents through the tournament.

They have found that the optimal incentive scheme is such that the di¤erence between prizes

at all stages is the same. That is, the optimal prize growth is linear. It is true for all stages

except the last one. Since there will be no continuation after this the increase in the prize

between the �rst and the second places should have a signi�cant jump compared with the
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growth in prizes between semi�nal and �nal, quarter�nal and semi�nal, and so on. It is also

never optimal to pay losers in the �rst round. It just lowers their incentives to provide an

e¤ort. The results of this work are the one particular case of our study when the output

function is just a sum of all e¤orts.

There are also several papers that study the e¢ciency of contests. Chung (1996) discusses

a rent seeking model where productive e¤orts increase the single rent which agents compete

for. He considers a winner-take-all contests with linear costs. For this setup, he shows that

the equilibrium e¤orts are always greater than socially optimal. It is not the case of our

paper because in our model e¤ort levels do not increase prizes directly. Our results suggest

generally underprovision of e¤orts compared to the optimal level at the �rst stage.

There are several papers where simultaneous one-stage contests are considered. Moldovanu

and Sela (2001) characterize the optimal prize structures in simultaneous tournaments. They

analyze an exogenously given, �xed budget for prizes. They show that for convex cost func-

tions it is optimal to give positive prizes not only to the winner, although for concave and

linear cost functions winner-take-all structure is indeed optimal. In a similar framework,

Sha¤er (2006) compares payo¤s and e¤orts arising from exogenously given prizes with those

from e¤ort dependent prizes. Cohen, Kaplan and Sela (2004) characterize the optimal e¤ort

dependent prize structure in the one-stage all-pay auction setup. Depending on the de-

signer�s objective, they �nd that the optimal reward may decrease or increase in the players�

e¤orts.

Schweinzer and Segev (2012) analyze simultaneous Tullock contests. They give necessary

and su¢cient conditions under which there is an equilibrium under winner-take-all structure

and show that if it exists, then it is unique. If it does not exist, then they construct a

prize structure with several prizes, under which an equilibrium exists. In our paper an

equilibrium is not necessary unique. Namely it turns out to be unique in the main model

with the �xed Tullock function, but in the modi�cation with a free choice of winning function

there are two equilibria, with zero levels of e¤orts being applied in the second one. There

is no contradiction between di¤erent results of the papers since the analyzed models are

di¤erent. Schweinzer and Segev analyze prizes, awarded for di¤erent places in the one-stage

tournament and we analyze prizes awarded to the winners at di¤erent stages. Thus, the

optimization problems are substantially di¤erent. Essentially we optimize through a number

of winner-take-all prizes in a sequence of tournaments. The equilibrium at each stage exists

due to our assumptions (convex costs, a concave output function, the Tullock function of

the form P (xi; x�i) =
xi

xi+
P

j 6=i

xj
)

Fu and Lu (2012) consider the question of the optimal design of the tournament. For

a �xed prize pool, linear costs function they show that when the objective is to maximize
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the total e¤ort of all contestants the optimal structure is such that at each state only one

contestant is eliminated until the �nale and the single winner takes over the entire prize.

However, in our paper we show the "winner-take-all" structure is almost never optimal if

the cost function is not linear, but convex with the property C 0(0) = 0:

There are also several papers, in which more general setting with heterogeneous agents

is considered. See, for example, Gurtler and Krakel (2010), Parreiras and Rubinchik (2010),

Ryvkin (2007).

3 Main Model

The tournament begins with mN players and proceeds sequentially through N stages. At

each stage all participants, who survived up to this stage are randomly selected into groups.

In each group they compete and only the winner moves to the next stage. This situation is

well known for m = 2. According to these schemes the playo¤s of football cups are played

or all tennis tournaments are conducted. Winners move to the next round and losers are

eliminated from the subsequent play. In the next round other groups are randomly drawn,

and again half of the participants are excluded from the further competition. In a general

case there are mN+1�n agents at the stage n; who are distributed to mN+1�n=m = mN�n

groups. The top prize Ww is awarded to the winner of the �nal match, who has won N

matches overall. Other �nalists, who are losers at the �nal stage are awarded the second

place and get the prize WN for having won N � 1 stages and lost the last one. At earlier

stages all participants, eliminated at the particular stage, get equal prizes. We denote Wn

as the prize for the losers at the stage n:

In our main model equal players are considered. It is a mechanism design problem with

complete information. They can apply di¤erent levels of e¤ort. Probability of moving to the

next round P (xi; x�i) is the function of agent�s level of e¤ort xi and the vector of e¤ort levels

of his competitors x�i: It is assumed to be symmetric, increasing in xi and decreasing in x�i.

For this section the probability of winning a match at some particular stage is assumed to

be the following Tullock function:

P (xi; x�i) =
xi

xi +
P

j 6=i

xj

In real life it means that there are some observable characteristics which are connected with

levels of e¤orts and show whose e¤ort is higher, but not perfectly.

Here we come to the crucial part of our model, namely, the output function. Let

�(x1; :::; xN) be some concave, increasing in each component output function of e¤orts.
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We especially emphasize that it is not necessary separable with respect to e¤ort levels at

di¤erent stages. In existing literature only speci�c examples are considered. For example,

the designer wants to maximize the level of e¤ort at the �nal or the average level of e¤ort

through the whole tournament. In this paper we characterize optimal prize structure for

general form of output function. So, our results are generalization of the existing literature

in this sense.

When the prize structure is announced agents make their decision about e¤orts, which

obviously depends on announced prize structure. The pro�t of the designer if he has an-

nounced prize structure 
 = fW1; :::;WN ;Wwg is the di¤erence between output produced

by the agents and the total sum of prizes.

�(x1(
); :::; xN(
))� (
X

n

(mN+1�n �mN�n)Wn +Ww)

This expression can be written through di¤erences between prizes as

�(x1(
); :::; xN(
))� (m
N �mN�1)W1 � (

X

n

mN�n�Wn)

where �Wn = Wn+1 �Wn:

At each stage every player who survived up to this moment decides which level of e¤ort

to apply. However, e¤ort is not free. Applying the level of e¤ort x is accompanied with the

costs equal to C(x) = x
, 
 > 1. A player�s decision of how much e¤ort to spend in any

match depends on a cost�bene�t analysis. Bigger e¤orts increase the probability of winning

this match and moving to the next stage, but involves higher costs.

Suppose some prize structure 
 is announced. Let denote Vn to be the value of partici-

pation in the tournament for every player at the stage n. Since all players are assumed to be

equal this would be the same amount for all players. This value consists of two components.

The �rst is the prize earned if the match is lost and the player is eliminated. This event

occurs with the probability 1�P (xi; x�i). The other is the value of moving to the next stage

if the match is won. The probability of this is P (xi; x�i). Anyway, he also incurs costs of

e¤ort C(xi): So, we can write the agent�s problem recursively as the following:

Vn = max
xi
(1�

xi
xi +

P

j 6=i

xj
)Wn +

xi
xi +

P

j 6=i

xj
Vn+1 � C(xi)

This �nishes description of the model and we continue with the solution.
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4 Solution and Main Results

4.1 Solution to agents� problem

As we have already said, agents take their levels of e¤orts after observing the proposed prize

structure.

We start with the solution to the agents� problem:

Vn = max
xi
(1�

xi
xi +

P

j 6=i

xj
)Wn +

xi
xi +

P

j 6=i

xj
Vn+1 � C(xi)

Here we will give only a sketch of how we get our results. Complete proofs are delegated

to the Appendix.

In the unique symmetric equilibrium we can �nd the equilibrium level of e¤ort en at the

stage n from the following equation:

en :
m2

m� 1

C(en) = Vn+1 �Wn

Then the value function can be rewritten as the following:

Vn = Wn + {�Wn + {
2�Wn+1 + :::+ {

N�n+1�WN

where { = (
�1)m+1

m2

Then we can formulate the following Lemma:

Lemma 1 The equilibrium level of e¤ort at the stage n given the prize structure 
 :

1. Does not depend on the prize at that stage and at all earlier stages

2. Increases with an increase in the prize di¤erence at that stage and at all later stages

with decreasing weights:

m2

m�1

C(en) = �Wn + {�Wn+1 + {

2�Wn+2 + :::+ {
N�n�WN

where { = (
�1)m+1

m2

Proof. see Appendix

We can see from Lemma 1 that the larger the di¤erence between prizes is, the larger is

the level of e¤ort, which agents want to apply. At the same time the di¤erences between

prizes at the close stages weight more than those at the later stages.

Now this information can be used to �nd the optimal prize scheme.
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4.2 Designer�s problem

The organizers know how agents will choose their levels of e¤orts (from Lemma 1). So,

organizers solve their pro�t maximization problem:

�(x1(
); :::; xN(
))� (m
N �mN�1)W1 � (

X

n

mN�n�Wn) =) max



Solving this problem, we can formulate the following Proposition:

Proposition 1 The optimal prize structure implements the e¢cient level of e¤ort in the

equilibrium at all the stages except the �rst one1:

@�(:)

@en
= C 0(en)

At the �rst stage:
@�(:)

@e1
=

m

m� 1

C 0(e1)

Proof. see Appendix

This result states that the optimal prize structure would be the one, which implements

the e¢cient level of e¤orts at all the stages, except the �rst one (if m
m�1


 6= 1). The intuition

is that the prize di¤erence at the particular stage a¤ects the level of e¤ort not only at that

stage, but also at all earlier stages. Since there are no stages in the tournament before the

�rst stage, all ine¢ciency is concentrated there. We can also see that if the designer does

not value e¤orts at some stage at all, then the equilibrium level of e¤ort would be equal to

zero at that stage.

Equations from Lemma 1 could also be rewritten as

�Wn =

m2

m� 1
(C(e�n)� {C(e

�
n+1)); n 6= N

�WN =

m2

m� 1
C(e�N);

From Proposition 1 we know the levels of e¤orts, which would be implemented. So, we

can formulate the following Proposition:

1Here we use for simplicity the notation @�(:)
@en

to denote the derivative of the output function with respect

to the e¤ort of any agent i at the stage n; estimated in the equilibrium, that is @�(e1:::e1;e2:::e2;:::;eN :::eN )
@xi;n

:

The fact that the e¤orts of all the agents at the particular stage are the same in the equilibrium allows us
to do that.
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Proposition 2 The optimal prize structure satis�es the following:

�Wn =

m2

m� 1
(C(e�n)� {C(e

�
n+1)); n 6= N

�WN =

m2

m� 1
C(e�N);

where fe�ng satis�es:

@�(:)

@e�n
= C 0(e�n); n 6= 1

@�(:)

@e�1
=

m

m� 1

C 0(e�1)

Proof. see Appendix

We can make some important observations, based on this result.

First of all we can see that if the di¤erence between equilibrium levels of e¤orts is not

too large, then the prize structure is increasing because { < 1: Next, we can see that the

di¤erence between the prizes for the winner and for the other �nalists is always nonnegative.

However, and this is the most striking result, prize di¤erence between other stages could be

negative. At �rst view, this contradicts the normal sense. We could say that if an agent

moves further in the tournament and his prize becomes smaller it seems a bit strange. But

this is not completely true. The last prize di¤erence would be necessary positive and the

prize for the winner would be so high that an agent would bene�t from going further and

being closer to it. We can check this. The prize for the winner of the tournament can be

rewritten as a sum of all increases in prizes:

X

n

�Wn =

m2

m� 1

"

C(e�N) +

N�1
X

n=1

(C(e�n)� {C(e
�
n+1))

#

=

=

m2

m� 1

"

N
X

n=2

(1� {)C(e�n) + C(e
�
1)

#

> 0

So, the winner of the tournament always gets the positive prize.

Moreover, we can calculate the sum of all prizes which is also positive:
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X

n

mN�n�Wn =

m2

m� 1
[C(e�N) +

N�1
X

n=1

mN�n(C(e�n)� {C(e
�
n+1))] =

=

m2

m� 1

"

N
X

n=2

mN�n(1�m{)C(e�N) +m
N�1C(e�1)

#

> 0

since { = (
�1)m+1

m2 < 
m


m2 =
1
m

Let�s �nally verify that each agent indeed wants to participate in the tournament.

His value of participation is the following:

V1 = W1 +
X

n

{
n�Wn = W1 +


m2

m� 1
[
N�1
X

n=1

{
n(C(e�n)� {C(e

�
n+1)) + {

NC(e�N)] =

= W1 +

m2

m� 1
{C(e�1)

Suppose W1 = 0. Since costs are always nonnegative, value of participation is always

nonnegative. Choosing W1 = �

m2

m�1
{C(e�1) will enable the designer to put agents on their

participation constraint.

4.3 An Example

In this section we will provide a simple, but rich enough example to illustrate di¤erent

optimal structures.

Suppose that the output function has the following form:

�(:) =
X

n

(an
X

i

xi;n=m
N+1�n); a > 0:

Costs are quadratic:

C(x) = x2

Thus, the designer cares about the average level of e¤ort at di¤erent stages. The para-

meter a determines the weights the designer attaches to di¤erent stages.

Then we can apply Proposition 2 and get the following optimal prize structure:

�Wn =
m2

m� 1

a2n

4
(1� {a2); n 6= 1; N
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Now we consider several cases for the parameter a :

1. a < 1: In this case the designer values the later stages less than the earlier stages. The

optimal prize structure is increasing (1 � {a2 > 0) and concave (a2n decreases with

larger values on n, hence �Wn falls down).

2. a = 1: All stages are equally important. The optimal prize structure is linearly increas-

ing (�Wn = const > 0). This result is the case of (Rosen, 1986), where the designer

maximizes the same average level of e¤ort through the tournament.

3. 1 < a <
q

1
{
: The designer values the later stages more, but not drastically. The

optimal prize structure is increasing (1 � {a2 > 0) and convex (a2n increases with

larger values on n, hence �Wn increases).

4. a =
q

1
{
: The optimal prize structure is winner-take-all (all �Wn = 0 except the �rst

and the last stages) . There are also several papers, where winner-take-all structure

turns out to be optimal in other settings (Krishna, Morgan (1998), Moldovanu, Sela

(2001)).

5. a >
q

1
{
: The designer values the later stages drastically more than the earlier ones.

1 � {a2 < 0; hence �Wn < 0 for all intermediate stages of the tournament. So,

the optimal prize structure is decreasing, with large �nal prize being awarded for the

winner. This is an example of a "trap structure". We do not know other papers,

where such kinds of structures turn out to be optimal. Let us speak a bit more about

this case because it seems to be the most interesting. When the organizer values each

subsequent stage much more than the previous one, his valuation of the �nal is so high

that he tries to make the gap between the prize for the winner and prizes for the other

�nalists as high, as possible. So, using negative prize di¤erences and, hence, negative

prizes he puts the agents in the situation where they are punished more if they go

closer to the �nal and lose there. At the later stages stakes become extremely large,

which enforces very high levels of e¤orts, as needed by the principal.

4.4 Su¢cient conditions for nonnegativity of prizes

In the previous discussion we have shown that sometimes the optimal prize structure induces

negative prize di¤erences at some stages. Here we consider the case of separable output

function and provide su¢cient conditions, which guarantee that the prize di¤erences at all

stages are nonnegative.
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We assume here that the output function is separable with respect to di¤erent stages,

i.e. �(x1(
); :::; xN(
)) =
P

n

�n(xn(
)):
2 If @�n(xn(
))

@en
� @�n+1(xn+1(
))

@en+1
then the equilibrium

level of e¤ort falls3 during the contest and obviously 
m2

m�1
(C(e�n) � {C(e

�
n+1)) � 0 and all

the prize di¤erences are nonnegative. Thus, we need to consider the case, when @�n(xn(
))
@en

<
@�n+1(xn+1(
))

@en+1
(that is the organizers value the e¤ort at later stages more than at earlier ones)

and the equilibrium level of e¤ort increases.

The main result here is that if the valuations of e¤orts do not increase too much from

each stage to the next stage and at the same time the output function is concave enough,

then the optimal prize structure is always nondecreasing. The inverted conditions together

serve as su¢cient conditions for "trap" structures. The exact statement is the following4:

Proposition 3 1. If
@�n+1(xn+1(
))

@en+1
jxn+1(
)=(e;:::;e)�

1
{

@�n(xn(
))
@en

jxn(
)=(e;:::;e) for all n > 1

and e@�n(xn(
))
@en

jxn(
)=(e;:::;e) is nonincreasing for all e and n > 1; then the optimal

prize structure is nondecreasing at all stages after the �rst one. If the inequality is

strict and e@�n(xn(
))
@en

jxn(
)=(e;:::;e) is strictly increasing then the optimal prize structure

is also strictly increasing.

2. If
@�n+1(xn+1(
))

@en+1
jxn+1(
)=(e;:::;e)�

1
{

@�n(xn(
))
@en

jxn(
)=(e;:::;e) for all n > 1 and

e@�n(xn(
))
@en

jxn(
)=(e;:::;e) is nondecreasing for all e and n > 1; then the optimal prize

structure is nonincreasing at all stages, except the �nal. If the inequality is strict and

e@�n(xn(
))
@en

jxn(
)=(e;:::;e) is strictly decreasing then the optimal prize structure is also

strictly decreasing.

However, these conditions are only su¢cient, not necessary conditions.5

5 The optimal probability of winning function

5.1 Su¢cient conditions for optimality of the winning function

Now we assume that the designer of the tournament is free to choose not only a prize

structure, but also can implement any probability of winning at each stage that he wants.

2In many real life applications it is a reasonable assumption. For example, it is natural to assume that
for sports events the revenues from selling tickets on semi�nal matches do not depend on teams e¤orts in
quarter�nals.

3As @�n(xn(
))
@e�n

= C 0(e�n); a decrease of the output function derivative will lead to a decrease of the

equilibrium level of e¤ort.
4Notations for derivatives are the same as earlier.
5See our previous example
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In the previous part of the paper probability of winning function was assumed to be the

following Tullock function: P (xi; x�i) =
xi

xi+
P

j 6=i

xj
: So, in this section we drop this assumption

and ask the question, if the designer could choose any P (xi; x�i); which one is better for him

again in the sense of maximizing the pro�t. We also drop our previous assumption about

the particular from of the cost function. Moreover, we even allow here the cost function to

be concave.

The agent�s problem is the following:

Vn = max
xi
(1� P (xi; x�i))Wn + P (xi; x�i)Vn+1 � C(xi)

We can write F.O.C. assuming that maximum is interior. We will show later that the

optimal winning function satis�es this.

P 0xi(xi; x�i)(Vn+1 �Wn) = C
0(xi)

Now we choose any probability function that satis�es the following condition:

P 0xi(xi; e) jxi=e

P (e; e)
= k

C 0(e)

C(e)
; k � 1

Then in symmetric equilibrium we can write:

kP (e; e)(Vn+1 �Wn) = C(e)

In our model from the previous chapter:

P (xi; e) =
xi

xi + (m� 1)e
;
C 0(e)

C(e)
=



e
:

Hence,

P 0xi(xi; e) jxi=e

P (e; e)
=

(m� 1)e

(xi + (m� 1)e)xi
jxi=e=

m� 1

me
=
m� 1

m





e
= k

C 0(e)

C(e)

In our basic model k = m�1
m

:

Then, using the similar arguments a in the previous section we can write the following

system, which de�nes our optimal prize structure and equilibrium after choosing a winning

function with the property
P 0xi

(xi;e)jxi=e

P (e;e)
= kC

0(e)
C(e)

; k � 1 :

@�(:)

@e�n
= C 0(e�n); n 6= 1

13



@�(:)

@e�1
=
1

k
C 0(e�1)

�Wn =
m

k
[C(e�n)�

k � 1

km
C(e�n+1)]; n 6= 1

�WN =
m

k
C(e�N)

Now let�s put k = 1: Then this system has the following form:

@�(:)

@e�n
= C 0(e�n)

�Wn = mC(e
�
n)

We can see that now all levels at all stages are e¢cient. The designer is still able to

extract the whole surplus from the agents and, thus, obtains the maximal possible pro�t.

Hence, any probability function that satis�es
P 0xi

(xi;e)jxi=e

P (e;e)
= kC

0(e)
C(e)

with k = 1 would be

the optimal winning function. Notice that if k 6= 1; then all the e¤orts except the e¤ort

at the �rst stage are e¢cient and, hence, "quasi-optimality" is achieved (see the previous

section).

We can also notice that the optimal probability of winning function does not depend on

the output function �(:): So, no matter how the designer values e¤orts of agents, he should

choose the same winning function at all stages.

5.2 The optimal Tullock function

In the previous subsection we have characterized su¢cient conditions for the winning function

to be optimal. But the existence of such probabilistic functions is not stated yet. In this

subsection we will prove that the answer is a¢rmative. Namely, for any cost function C(x)

we can �nd a winning function from the class of Tullock functions P (xi; x�i) =
f(xi)

f(xi)+
P

j 6=i

f(xj)
,

which satis�es su¢cient conditions for optimality. Hence, it must be optimal.

Lemma 2 For any function C(x) take f(x) = C
m

m�1 (x): Then P (xi; x�i) =
f(xi)

f(xi)+
P

j 6=i

f(xj)

satis�es the following condition:
P 0xi

(xi;e)jxi=e

P (e;e)
= C0(e)

C(e)

Proof. see Appendix�

This Lemma basically shows how the optimal winning function is constructed. Thus, the

following must be true:

14



Proposition 4 The following structure of the elimination tournament is optimal:

1. P (xi; x�i) =
f(xi)

f(xi)+
P

j 6=i

f(xj)
; where f(x) = C

m
m�1 (x)

2. W1 = 0; �Wn = mC(e
�
n);

where e�n :
@�(:)
@e�n

= C 0(e�n):

Proof. see Appendix

This is our main result of this part of the paper. We can compare it to Proposition 2 in

the previous section. We can see that if the designer is able to choose the winning function,

then the optimal prize structure is always non-decreasing. Thus, a "trap structure" would

never be optimal in this case. The intuition behind this fact is that the optimal winning

function actually makes agents indi¤erent between participation at each stage and choosing

zero level of e¤ort. Hence, at each stage Vn = Wn (compare to the previous section).

The whole dynamic structure of the tournament is in fact destroyed because the value of

participation at each stage equals exactly to the prize at that stage. Therefore, for the

agents this tournament is equivalent to participation in a sequence of independent one-stage

tournaments. Then there is no surprise that the prize di¤erence must be nonnegative at

each stage because this prize di¤erence is equivalent to the prize in that particular one-stage

tournament.

6 Conclusion

In this paper in consider elimination contests, in which the purpose of the organizers is

to maximize their pro�ts. E¤orts of agents at di¤erent stages of a tournament generate

some output for the organizers according to some output function. Depending on the output

function we characterize the optimal prize structure in the tournament that gives the highest

pro�t for the designer. We show that the optimal prize structure is also "quasi-e¢cient". It

means that it generates the socially optimal level of e¤orts at all the stages of the tournament,

except the �rst one. We provide a simple example where di¤erent prize structures can be

optimal. Some of these structures are characterized as optimal in the existing literature, but

we have found that under some conditions quite strange structures can be optimal, which

we have called "trap structures". Under this prize structure prizes for agents are smaller at

the later stages than at the earlier ones. If the prize at the �rst stage is negative, it means

that all prizes at all the later stages would also be negative, except the prize for the winner

of the tournament. We have provided su¢cient conditions for optimality of such structures.
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Then we add one more opportunity for the designer to change the tournament structure.

Namely, we have found the optimal probability of winning function, which de�nes probability

of moving to the next stage given levels of e¤ort of this agent and his opponents. We have

proved that the optimal winning function can be found in the class of Tullock functions. This

function does not depend on the output function. So, no matter how the designer values

levels of e¤orts at di¤erent stages, it is optimal to choose the same winning function. The

optimal winning function and the optimal prize structure will generate the socially e¢cient

equilibrium, in which the designer is able to extract the whole surplus from the agents. If

probability of winning is chosen in the optimal way, then the corresponding optimal prize

structure is always non-decreasing. It means that the "trap structure" would never be

optimal in this case.
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8 Appendix

Proof of Lemma 1

The value function of each participant at the stage n is the following:

Vn = max
xi
(1�

xi
xi +

P

j 6=i

xj
)Wn +

xi
xi +

P

j 6=i

xj
Vn+1 � C(xi)

Di¤erentiating with respect to xi we get the �rst-order condition:

F.O.C.:
P

j 6=i

xj

 

xi +
P

j 6=i

xj

!2 (Vn+1 �Wn) = C
0(xi)

This would be indeed solution to the problem because the problem is concave.

The solution to this system is unique and symmetric. We denote it by en: Pugging it

into the system we get:

Vn+1 �Wn =
m2

m� 1
enC

0 (en) =
m2

m� 1

C (en)

Taking C(en) from the previous equation and plugging it into the value function we get

the following di¤erence equation for Vn:
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Vn =
m� 1

m
Wn +

1

m
Vn+1 �

m� 1

m2

Vn+1 �Wn




Writing it recursively we get:

Vn+1 �Wn = �Wn +
(
 � 1)m+ 1


m2
�Wn+1 +

�

(
 � 1)m+ 1


m2

�2

�Wn+2 +

:::+

�

(
 � 1)m+ 1


m2

�N�n+1

�WN

Then,

m2

m� 1

C (en) = Vn+1 �Wn = �Wn +

(
 � 1)m+ 1


m2
�Wn+1 +

+

�

(
 � 1)m+ 1


m2

�2

�Wn+2 + :::+

�

(
 � 1)m+ 1


m2

�N�n+1

�WN

Obviously, the level of e¤ort does not depend on prizes at the previous stages.

Proof of Proposition 1

From Lemma 1 the designer knows, how agents will react to the proposed prize structure.

His problem is to maximize his pro�t, which is given by the following:

�(x1(
); :::; xN(
))� (m
N �mN�1)W1 � (

X

n

mN�n�Wn) =) max



Firstly we note that from Lemma 1:

@en
@�Wn

=
m� 1

m2
C 0(en)

Since C 0(0) = 1 then @�(x1(
);:::;xN (
))
@en

@en
�Wn

would be in�nitely large at �Wn = 0 if
@�(x1(
);:::;xN (
))

@en
is nonzero. Hence, the solution would be interior and we can use the �rst-

order conditions to �nd it.

@

@�Wn

: mN+1�n@�(x1(
); :::; xN(
))

@en

@en
@�Wn

+mN+1�(n�1)@�(x1(
); :::; xN(
))

@en�1

@en�1
@�Wn

+

18



+:::+mN @�(x1(
); :::; xN(
))

@e1

@e1
@�Wn

= mN�n

@

@�Wn�1

: mN+1�(n�1)@�(x1(
); :::; xN(
))

@en�1

@en�1
@�Wn�1

+

:::+mN @�(x1(
); :::; xN(
))

@e1

@e1
@�Wn�1

= mN�(n�1)

As we have already noticed

@en�1
@�Wn�1

=
m� 1

m2
C 0(en�1)

Using Lemma 1 we can get the following:

@en�1
@�Wn

=
(
 � 1)m+ 1


m2

m� 1

m2
C 0(en�1)
=
(
 � 1)m+ 1


m2

@en�1
@�Wn�1

Substituting the last expression into the F.O.C. we get:

mN+1�n@�(x1(
); :::; xN(
))

@en

m� 1

m2
C 0(en)
+
(
 � 1)m+ 1


m2
mN�(n�1) = mN�n

Hence:

@�(x1(
); :::; xN(
))

@en
= C 0(en)

This holds for every n 6= 1:

For n = 1 the following holds:

mN @�(x1(
); :::; xN(
))

@e1

@e1
@�W1

= mN�1

Hence,

@�(x1(
); :::; xN(
))

@e1
=

m

m� 1

C 0(e1)

Proof of Proposition 2

The expressions for the equilibrium levels of e¤orts follow from Proposition 1.

Then we can express �Wn using the expression for two consequent levels of e¤orts from

Lemma 1:
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�Wn =

m2

m� 1
(C(e�n)� {C(e

�
n+1)); n 6= N

�WN =

m2

m� 1
C(e�N)

Proof of Proposition 3

From Proposition 2 for n 6= 1; N and a separeble output function:

�Wn =

m2

m� 1
(C(e�n)� {C(e

�
n+1)); n 6= N

@�n(:)

@e�n
= C 0(e�n)

The second equality can be equivalently rewritten as

e�n
@�n(:)

@e�n
= 
C(e�n)

Assume that properties in 1) hold in nonstrict sense. Then we have:

C(e�n) = e�n
@�n(e

�
n; :::; e

�
n)

@e�n
=
 � {e�n

@�n+1(e
�
n; :::; e

�
n)

@e�n+1
=
 �

� {e�n+1
@�n+1(e

�
n+1; :::; e

�
n+1)

@e�n+1
=
 = {C(e�n+1):

Thus, �Wn � 0 for n 6= 1; N:

In the �nal �WN =

m2

m�1
C(e�N); which is always nonzero.

The proof for the case with strict inequalities in the part 1) and the whole part 2) is

similar.

Proof of Lemma 2
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P 0xi(xi; e) jxi=e

P (e; e)
=

f 0(e)
P

j 6=i

f(e)

(f(e) +
P

j 6=i

f(e))2
=

0

B

@

f(e)

f(e) +
P

j 6=i

f(e)

1

C

A
=

=
m� 1

m

f 0(e)

f(e)
=
m� 1

m

m

m� 1

C
m

m�1
�1(e)

C
m

m�1 (e)
C 0(e) =

C 0(e)

C(e)

Proof of Proposition 4

The agent�s problem is

Vn = max
xi
(1� P (xi; x�i))Wn + P (xi; x�i)Vn+1 � C(xi)

Let�s assume that the solution is interior and show later that this is indeed the case.

Then:

P 0xi(xi; x�i)(Vn+1 �Wn) = C
0(xi)

Suppose that there is the equilibrium level of e¤ort en:Then it satis�es the following:

P 0xi(e; e)(Vn+1 �Wn) = C
0(e)

From Lemma 1 if P (xi; x�i) =
f(xi)

f(xi)+
P

j 6=i

f(xj)
; where f(x) = C

m
m�1 (x); then

P 0xi
(xi;e)jxi=e

P (e;e)
=

C0(e)
C(e)

Thus,

P (en; en)(Vn+1 �Wn) = C(en)

Then due to symmetry of the winning function,

C(en) =
1

m
(Vn+1 �Wn)

Then plugging this in the value function we obtain:

Vn = (1�
1

m
)Wn +

1

m
Vn+1 �

1

m
(Vn+1 �Wn) = Wn

Thus, agents� valuations of the participation in each stage will be exactly equal to the

prize at that stage. Applying this equilibrium nonzero level e¤ort gives the same utility as
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applying the zero level of e¤ort. All other levels of e¤orts will give lower utility levels. Thus,

this interior solution is indeed an equilibrium.

Then,

C(en) =
1

m
(Wn+1 �Wn) =

1

m
�Wn

Compare it with the result from Lemma 1. The level of e¤ort at the particular stage

depends only on the prize increase at that stage.

Now the designer can optimize with respect to the prize structure:

�(x1(
); :::; xN(
))� (m
N �mN�1)W1 � (

X

n

mN�n�Wn) =) max



The similar procedure to the one from Proposition 1 is even easier now:

F.O.C.:

mN+1�n@�(x1(
); :::; xN(
))

@en

@en
@�Wn

= mN�n

The response of the e¤ort to the change in prize is now:

@en
@�Wn

=
1

m

1

C 0(en)

We plug in the last equation into the F.O.C.

mN+1�n@�(x1(
); :::; xN(
))

@en

1

m

1

C 0(en)
= mN�n

Hence,

@�(x1(
); :::; xN(
))

@en
= C 0(en)

Thus, the equilibrium level of e¤ort is e¢cient. At the same time the designer obtains

the whole surplus from the agents by putting W1 = 0: In this case V1 = W1 = 0:

Hence, the proposed structure is indeed optimal.
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