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Abstract

We develop a model of assignment games with pairwise-identity-
dependent externalities. A concept of conjectural equilibrium is pro-
posed, and the universal conjecture is shown to be the necessary and
sufficient condition for the general existence of equilibrium. We then
apply the solution concept to a matching-based Cournot model in
which the unit production cost of a firm depends on both the tech-
nology of the firm and the human capital of the manager hired, and
show that if technology and human capital are complementary, the
positive assortative matching (PAM) is a stable matching under ra-
tional expectations, or even if firm technology and human capital are
substitutable yet the substitutive effect is dominated by the marginal
effects of technology and human capital, the PAM is still a rational
stable matching. However, if the substitutive effect on the unit pro-
duction cost is sufficiently strong or the market demand is sufficiently
high, the negative assortative matching is a rational stable matching.
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1 Introduction

In the standard model of two-sided matchings introduced by Gale and Shap-
ley (1962) and the standard model of assignment games (matchings with
transferable utilities) introduced by Shapley and Shubik (1972), the welfare
of each agent only depends on who he/she is going to pair up with, and thus
the agents do not care about how the other agents are going to match with
each other.1 However, in many situations people do care about the part-
ners of the others. In another word, externalities present. In the marriage
market, agents do not only care about their own marriages but also others’
(e.g., a brother’s marriage). In the labor market, a firm may not only care
about the quality of its own employees (CEO) but also about the quality
of the employees (CEOs) of the competitors. In the housing market, agents
care about the quality of houses they are going to buy as well as who the
neighbors will be. In the college admission problem, a student may not only
care about the quality of the school that he is going to attend but also who
else are going to attend this school and which are the schools some other
students are going to attend.

In this paper, we are particularly interested in the problem of one-to-
one assignment between managers and firms, competing in the same goods
market, on a labor market. When the firms produce the same goods and sell
to the same market, the output quantity of a firm has some influence on the
market price of the goods, and hence on the other firms’ surpluses as well,
which has some effect on the other firms’ hiring decisions. Hence, this is
an assignment game with externalities. To the best of my knowledge, there
has been no theoretical work incorporating any specific form of externalities
into the study of matchings, and this paper is the first attempt to link the
assignment problem in a labor market to imperfect competition in a goods
market.

To solve the above problem, we need to have proper concepts of equilib-
rium and stable matchings. Hence, we start by studying general one-to-one
assignment games with externalities. We adapt Sasaki and Toda’s (1996)
concept of conjectural equilibrium (Hahn, 1987) and assume that agents are
pessimistic (Aumann and Peleg, 1960). Then, an equilibrium we call is an
outcome such that: 1) it is consistent with agents’ conjectures (expectations
about the matchings to be formed), i.e., the underlying matching is in the
expectation of each agent; 2) no pair of agents either paired-up with each
other or not can block the outcome. The first main result found is that
an equilibrium is ensured to exist if and only if each agent considers all
matchings are possible.

Then we apply the solution concept to a matching-based Cournot com-
petition model in which each firm has to hire one manager to produce some

1See Roth and Sotomayor (1992) for a detailed discussion of literature.
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homogeneous goods and the per unit production cost of a firm depends on
the technology of the firm and the human capital of the manager hired. We
assume that the market demand function is linear, per unit cost is a constant
for each firm-manager pair, and this per unit cost is decreasing in both firm
type and manager type. Under these assumptions, it is shown that if the
per unit cost function is submodular (i.e., the cross derivative is nonpos-
itive), then a positive assortative matching (PAM) is a stable matching if
each agent believes that if he/she pairs up with some agent on the other side
of the market, the other agents will form a positive assortative matching.
That is, if firm technology and human capital are complementary, it will be
an equilibrium in which a good manager works for a good firm and a bad
manager works for a bad firm. Even if the the unit cost function is super-
modular (i.e., the cross derivative is positive), as long as the cross derivative
is sufficiently smaller than the product of the partial derivatives, a PAM
is still a stable matching. That is, if firm technology and human capital
are substitutable, yet the substitutive effect is dominated by the marginal
effects of technology and human capital, it would still be a stable matching
that good firms hire good managers. However, if the substitutive effect on
the cost is sufficiently strong or the market demand is sufficiently high, the
negative assortative matching is a stable matching. Further more, the same
sufficient conditions for the existence of these assortative stable matchings
also ensure them to be stable matchings under rational conjectures. How-
ever, when technology and human capital are complementary, a PAM, which
is a stable matching, may, surprisingly, not be the most efficient matching.

The construction of the paper is as follows: After the discussion of lit-
erature in Section 1.1, we introduce notation in Section 2. In Section 3, the
solution concept of equilibrium will be defined, and the main existence the-
orem will be proved. We apply the solution concept to the matching-based
Cournot game in Section 4. The sufficient conditions for the existence of
assortative (rational) stable matchings will be provided, and the efficiency of
the matchings will be discussed. Section 5 concludes. Two simple examples
and the proofs are collected in the appendix.

1.1 Literature

There are three papers closely related to this one. Firstly, the model in this
paper differs from the one of Shapley and Shubik (1996) in the way that
this model involves identity dependent external effects. Whilst, the Linear
Programming method is borrowed from that paper to show the existence of
equilibrium.

Secondly, the model in this paper is, in some sense, an extension to
the one of Jehiel and Moldovanu (1996). In their model, there is only one
seller with one indivisible good and several buyers, while in this model there
are multiple sellers, each with one indivisible good. They emphasized on

3



strategic play and showed that there are situations in which agents might
be better off not participate in a game and that the core is most probably
empty. However, we do not emphasize on strategic play (on the matching
market).

Thirdly, the most closely related paper is by Sasaki and Toda (1996). In
their model of one-to-one matching (with ordinal preferences), externalities
are captured by preferences over the set of complete matchings rather than
the set of agents on the other side of the market. Each agent, when consid-
ering about pairing up with an agent at the other side of the market, has
a conjecture, called an estimation function2, about the possible matching
that would be formed among the other agents. An outcome is a conjectural
equilibrium if no agent has an incentive to deviate under a given conjecture
about the reactive behaviors of the others and if the conjecture is consistent
with the current outcome. The formulation is non-Bayesian−that is, play-
ers do not assign probabilities to the different matchings, but rather deviate
only if the deviation is profitable for worst case that he/she considers pos-
sible. However, they show that a stable matching is guaranteed to exist if
and only if each agent considers all matchings to be possible.3

In addition, we are also aware that there is a very recent working paper
by Gudmundsson and Habis (2013). Their model and our model for general
assignment games are very similar, while the major difference in the settings
is about specifying the values to the characteristic functions (i.e., minimum
payoffs required by a pair of agents to block a matching). In our model
each agent, when considering about pairing to some agent, has a conjecture
(expectation) about how the other agents will pair up, and a characteristic
value is based on a pair of conjectures. A stable matching must be consis-
tent with the conjectures as well. Whilst, in their model, instead of deriving
characteristic values from conjectures, they directly assume for each pair of
agents a threshold value for deviation, i.e., a value in between the lowest
possible surplus and the highest possible surplus for a pair if they pair up
with each other, and thus there is no consistency required on matchings
with conjectures. Their paper complements our paper by showing prop-
erties of equilibria of general two-sided one-to-one assignment games with
externalities.4 Our paper emphasizes on applying the solution concepts to

2Sasaki and Toda (1996) awared that the shortcoming of their own approach is that
the conjectures are exogenously given. Hafalir (2008) perfects Sasaki and Todas model
by endogenizing the set of matchings that a deviating pair considers possible on the
preferences of the other agents.

3The proof is for the case of two-sided externalities. By modifying their proof, it can
be shown that the same negative result holds even under one-sided externalities. By
modifying example 1 in Hafalir (2008) a little bit, we can show that rational conjectures
do not guarantee the existence of stable matchings as well.

4These two papers’ first main results are the same. But we derived a result which
was different from the Proposition 3.4 in their paper. In their proof, the tricky case that
when a pair of agents want to increase their payoffs they must take (back) some money
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concrete games (the Cournot game in this paper) and analyzing equilibria
of the games.

Besides the papers mentioned above, the problem of two-sided one-to-one
matching under externalities in the marriage markets were studied by Hafalir
(2008), Mumcu and Saglam (2008) , Roy Chowdhury (2004).5 The college
admission problem with externalities was explored by Echenique and Yen-
mez (2007), Dutta and Masso (1997), and Alcalde and Revilla (2004). Hous-
ing market with externalities was studied by Mumcu and Saglam (2007).
Recently, there has also been some work emphasizing on applications and
methodologies for quantifying externality effects in two-sided matching prob-
lems. Baccara , Imrohoroglu, Wilson and Yariv (2012) studied a problem of
matching faculty to offices. They developed some method to quantifying the
effects of network externalities. Uetake and Watanabe (2012) developed a
two-sided matching model to study the problem in which some firms would
like to enter a market by mergering with an incumbent firm.

Apart from the study of matchings, we would also like to mention a
study by Brander and Spencer (1985). The Stackelberg-Cournot version of
their model is, in some sense, a two stage game. Before the start of Cournot
competition, there is a stage at which a government can choose to subsidize
the production of the domestic firm. Under some conditions, this subsidy
may increase the domestic social welfare. In our matching-based Cournot
model, there are also two stages – a matching stage before the Cournot com-
petition stage. Comparing to a bad manager, a good manager can relatively
reduce the unit production cost of a firm. Thus, it can be regarded as a
model in which the good managers choose the firms to subsidize before the
start of Cournot competition among the firms.

2 The Model and Notation

Let I be the set of agents on one side (man) of the market and J be the
set of agents on the other (woman). I and J are finite and disjoint. The
market is denoted by M = I ∪ J . To simplify the exposition, we assume (i)
that I and J have the same cardinality (i.e., n = |I| = |J | ≥ 2) and (ii) that
each of the agents must be matched to one agent on the other side of the
market. (These two assumptions are basically without loss of generality for
the existence of equilibrium.) Let i and j denote a generic man and woman,
respectively.

from the other agents was overlooked, and hence the third sentence of the proof may not
always hold. Example A.1 in Appendix A of this paper could also be regarded as a counter
example.

5Sasaki and Toda (1996) were said to be the first to consider matching problems with
externalities. And Sasaki and Toda (1996) and Hafalir (2008) were said to be the only two
papers that investigate a general model of two-sided matching model with externalities.
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A matching is a bijection function µ : I ∪ J → I ∪ J such that (i)
for each m ∈ I ∪ J we have µ ◦ µ(m) = m and (ii) µ(i) ∈ J , µ(j) ∈ I
for all i ∈ I and for all j ∈ J . µ(i) = j (or equivalently, µ(j) = i) is
written as (i, j) ∈ µ. Let A(I, J) be the set of all matchings. For each
(i, j) ∈ I × J, A(i, j) = {µ ∈ A(I, J)|(i, j) ∈ µ}.

Let π : A(I, J) × I × J → R+ denote a valuation function. π(µ, i, j)
is interpreted as the value agent i and j create in matching µ. Sometimes,
we denote π(µ) as the total valuation of the agents on a matching µ, i.e.,

π(µ) :=
∑

(i,j)∈µ

π(µ, i, j).

(u, v) ∈ R|I|+ × R
|J |
+ is a payoff profile.6 For simplicity, we assume both the

range of π and the payoffs to be nonnegative.7

Definition 2.1. A triplet (µ, u, v), µ ∈ A(I, J) and (u, v) ∈ R|I|+ × R
|J |
+ , is

called a feasible outcome for (I, J, π) if∑
i∈I

ui +
∑
j∈J

vj ≤
∑

(i,j)∈µ

π(µ, i, j).

In this case we say (u, v) and µ are compatible with each other, and we
call (µ, u, v) a feasible outcome. Note that, as the usual case, a feasible
payoff vector may involve monetary transfers between agents who are not
matched to one another. The triplet (I, J, π) is called an assignment game
(matching problem with transferable utilities) with externalities.

3 Assignment Games with Externalities

In this setting, there are different ways to define stability of matching. The
aims in this section are forming a concept of equilibrium and showing a nec-
essary and sufficient condition that ensures the general existence of equilib-
rium. When side payments are allowed in a matching, two types of pairwise
deviations need to be considered, namely, deviation by paired-up agents and
deviation by unpaired agents. The first type of deviations is clear. A pair
of agents matched would not like to transfer (too much) money to other
agents.8 But it is not necessary to consider this case, and thus we ignore it
in this section.

6We normalize the lower bound of the payoffs to be 0. In the general set up, an agent
can be single. Although an agent’s valuation of being single still depends on how the
remaining agents are matched, we can normalize the lowest possible valuation among all
the agents to be 0, then the payoff to each agent must be nonnegative. Typically, in some
market games, if an agent quits from the market, this agent gets 0 profit and the matching
among the remaining agents do not generate externality on this agent.

7So that we can directly apply the linear programming method without modification.
8This was not taken into account in the definition of stability proposed by Sasaki and

Toda (1996).
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For the second type of deviations, when a pair of man and woman are
trying to divorce their current spouses and marry each other, they need
to take into account about how the other agents other than them two will
behave. We here adapt the non-Bayesian set up proposed by Sasaki and
Toda (1996). Let ϕi(j) ⊂ A(i, j) be the set of matchings that agent i
considers possible when j is paired with him. Similarly, let ϕj(i) ⊂ A(i, j)
be the set of matchings that j considers possible when i is paired with her.
ϕi and ϕj are called estimation functions by Sasaki and Toda (1996).
The estimation profile is denoted by ϕ = {ϕm : m ∈ M}. Agents are
assumed to be “pessimistic”. That is, a pair of agents not matched would
like to pair up if both of them think that they can gain by pairing to each
other. Let us denote the value of deviation by

V (ij|ϕ) := min{ min
µ∈ϕi(j)

[π(µ, i, j)], min
µ∈ϕj(i)

[π(µ, i, j)]}.

Then, the minimum requirement for an equilibrium is described as follows.

Definition 3.1. Given an estimation profile ϕ, a feasible outcome (µ, u, v)
is a ϕ-pseudo-equilibrium if

1. ϕ-admissibility: for any pair (i, j) ∈ µ,

µ ∈ ϕi(j) ∩ ϕj(i);

2. (partial) ϕ-stability: there is no pair of agents (i, j) for whom

V (ij|ϕ) > ui + uj .

And this matching µ is called a ϕ-pseudo-equilibrium matching

ϕ-admissibility requires a matching to be consistent with agents conjec-
tures, i.e., if a matching is going to be an equilibrium matching, it must
be in the expectations of the agents. (Partial) ϕ-stability requires that the
outcome cannot be blocked by any pair of agents. A pseudo-equilibrium
payoff profile was called a “stable payoff profile” by Sasaki and Toda (1996).
However, we know that such a profile may not indeed be stable since in a
pseudo-equilibrium the total payoff to the agents could be less then the total
valuation, which does not make sense. We here define a concept of (strict)
equilibrium.

Definition 3.2. A ϕ-pseudo equilibrium (µ, u, v) is a (strict) ϕ-equilibrium
if

ui + vj = π(µ, i, j), for all (i, j) ∈ µ.

And this matching µ is called a ϕ-equilibrium matching or a ϕ-stable match-
ing.
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In such an equilibrium, there is no monetary transfer from one pair of
matched agents to another pair, and no agent can gain for sure by pairwise
deviation. In general, of course, we can construct a weaker concept of equi-
librium in which some pair of matched agents transfer money to another
pair yet no pair of agents can gain by pairwise deviation. But the solution
concept of (strict) equilibrium is sufficient for our analysis.9

Let PEϕ(I, J, π) denote the set of all ϕ-pseudo-equilibria and Eϕ(I, J, π)
denote the set of all ϕ-equilibria .

3.1 The LP Problem and Equilibria

We now study the existence of ϕ-equilibrium. Like what Shapley and Shubik
(1972) did, we recast the problem into linear programming (LP) terminology.
The primal problem directly deals with matchings, and we can construct
some matchings from the solutions; the dual problem directly deals with
payoffs.

Consider the primal problem (PP):

max
x

z =
∑
i∈I

∑
j∈J

V (ij|ϕ)xij (1)

s.t.
∑
i∈I

xij ≤ 1 ∀j ∈ J,∑
j∈J

xij ≤ 1 ∀i ∈ I,

xij ≥ 0 ∀i ∈ I and j ∈ J.

The maximum value zmax is attained with all xij = 0 or 1 (see Danzig, p.
318). Thus the each extreme solution corresponds to a matching. Given an
extreme solution {x∗ij}, We construct a matching µ∗ such that it satisfies
that

(i, j) ∈ µ∗ if and only if x∗ij = 1.

Consider the dual problem (DP):

min
u,v

w =
∑
i∈I

ui +
∑
j∈J

vj (2)

st. ui + vj ≥ V (ij|ϕ) ∀i ∈ I and ∀j ∈ J, (3)

ui ≥ 0 and vj ≥ 0 ∀i ∈ I and ∀j ∈ J.

Let us denote (u∗, v∗) as one solution to the dual problem. The fundamental
duality theorem tells us that wmin = zmax.

9Cross-pair monetary transfers have only some effects on the extreme equilibrium pay-
offs to the agents, but have nothing to do with the existence of equilibrium. A small part
about a weak concept of equilibrium is available upon request.
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Remark.

1. A matching µ is a ϕ-pseudo-equilibrium matching only if10

i. µ is ϕ-admissible and

ii. zmax ≤ π(µ).

2. For any extreme solution x∗ to the primal problem and any solution
(u∗, v∗) to the dual problem,

x∗ij = 1⇒ u∗i + v∗j = V (ij|ϕ).

It is then easy to see the following intermediate results as well.

Lemma 3.1. (a). If a µ∗ is admissible, then the feasible outcome (µ∗, u∗, v∗)
is a ϕ-pseudo-equilibrium.

(b). There is a ϕ-pseudo-equilibrium if and only if there is a ϕ-equilibrium.

(c). A matching µ is a ϕ-pseudo-equilibrium matching if and only if it is a
ϕ-stable matching.

Proof. See Appendix B.

However, problems arise if there is no admissible matching with a total
valuation of the agents being larger than or equal to zmax. The estimation
profile ϕ plays the key role in this problem. In the following we present
the first main result – a negative result that is parallel to the one found by
Sasaki and Toda (1996) in the cases with ordinal preferences.

Theorem 3.1. The set Eϕ(I, J, π) of ϕ-equilibria is non-empty for any
valuation function π if and only if ϕi(j) = ϕj(i) = A(i, j) for all i and j.

Proof. See Appendix B.

4 Application: The Matching-based Cournot Model

In this section we apply the solution concept to a two-stage game in the
framework of a Cournot competition model. The multi-dimensionality brought
by externalities may cause this simple model to be too complicated to be
solved. However, I will show that under some mild assumptions, some nice
results can be derived.

10However, unlike in assignment games with no externalities, these two conditions are
not sufficient for the existence of pseudo equilibrium. Moreover, it is also possible that
for two admissible matchings, the less efficient (with lower total valuation) matching is a
stable matching while the more efficient matching is not. It is illustrated by Example A.1
in Appendix A.
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Suppose there is a market for a homogeneous consumer good which could
be produced by n firms. The n firms differ in production technology charac-
teristics (e.g., per unit cost type). There is a labor market in which there are
n potential managers who differ in quality (i.e., human capital), and each
firm must employ one manager so that it could produce the consumer goods
(and the per unit production cost of a firm depends on both the production
technology of the firm and the human capital of the manager hired by the
firm). Firms want to maximize profits, and each manager goes to the firm
that would pay her the highest salary. The time line is as in the following
graph.

Firms match managers Cournot competition

It is a two-stage game. At the first stage, firms and managers form
matches, and at the second stage firms simultaneously decide the output
quantity after observing the matching formed at the first stage. Since each
firm’s output quantity has some influence on the market price the of goods,
the surplus of a firm-manager pair depends on the full matching realized.

The question is would high-type (with good production technology) firms
hire high-type managers (with high human capital) in this game. It seems
ambiguous because there are two effects. On the one hand, if high-type
managers work for high-type firms, the total output would be high, which
results in a low market price, and in low profits, thus a high-type firm may
not be willing to pay an amount of salary a high-type manager desires. On
the other hand, a high-type manager with a high-type firm could lower the
production cost and have the advantage to produce more goods and thus
take a larger share of the market.

Formally, let I and J be the set of firms and managers respectively. Firms
and managers are assigned to types via maps f : I → F and s : J → S,where
F and S are compact subsets of R. To simplify the exposition, we again
assume that |I| = |J | = n (This is basically without loss of generality as
well) and that no two agents are of the same type. We permute the indices
so that

fi > fi+1 > 0 for i = 1, 2, ..., n− 1 and

sj > sj+1 > 0 for j = 1, 2, ..., n− 1,

where fi is firm i’s (technology) type and sj is manager j’s (human capital)
type. Then we make the following assumptions.

Assumption 4.1. The inverse demand function is linear, i.e.,

p(µ) := max{ H − α
∑

(i,j)∈µ

qij , 0}

10



in which H is a constant, µ is the matching on the labor market, and qij ≥ 0
is the amount of the goods firm i who employed manager j produced and sells
in the goods market.

Assumption 4.2. The unit production cost of each firm-manager pair is
constant.

That is the unit production cost function depends only on firm type and
manager type. Let us denote the unit output cost function by

c(·, ·) : F × S → R++,

where c(f, s) is the unit production cost of a type-f firm who hired a type-s
manager.

Assumption 4.3. The unit production cost function c(·, ·) is twice contin-
uously differentiable and decreasing in both type indices (i.e., c′1 < 0 and
c′2 < 0).11

Assumption 4.4. The value of c is bounded from above by H
nα , i.e.,

c(f, s) <
H

nα
,

where f is the lowest firm type (with the highest cost) and s is the lowest
manager type.

By imposing Assumption 4.4, we restrict our attention to the cases in
which no manager or firm will leave the market or produce 0 output. While
this saves us some tedious computational work, this is basically without loss
of generality for our analysis.12 Further more, we say firm technology and
human capital are substitutable if c′′12 > 0; complementary if c′′12 ≤ 0.13

Hence, the surplus14 created by firm i and manager j in matching µ is

π(µ, i, j) = max
qij≥0

qij · [p(µ)− cij ] = max
qij≥0

qij · [H − α
∑

(i′,j′)∈µ

qi′j′ − cij ].

Before solving the above problem, we need to review the following defi-
nition.

11We assume the unit cost to be decreasing because high-type means low cost.
12If we don’t impose the upper bound on the c value, it may be, in some cases, that

some low-type firms and managers will produce 0 output since the other firm-manager
pairs will produce a large amount of output to make the market price to be low. For these
cases, we can simply exclude these agents (not at once) and do the analysis on the reduced
market, and the following results still hold.

13c′′12 means the cross derivative of c(·, ·).
14Here we need to notice that although other firms’ output quantities are also involved

in the surplus function of a pair of agents (i, j), this does not mean that there are indeed
externalities. A simple example is that if c(f, s) = f + s, then the output and the surplus
of a pair of agents (i, j) do not depend on how the other agents are going to pair up with
each other since

∑
(i,j)∈µ fi + sj does not depend on what µ is.
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Definition 4.1. A matching µ on market M is a positive assortative match-
ing (PAM) if for any two pairs (i, j), (i′, j′) ∈ µ,

fi > f ′i ⇒ sj ≥ s′j and sj > s′j ⇒ fi ≥ f ′i .

A negative assortative matching (NAM) is defined similarly.15

Let us denote µM+ as a PAM on M and µ
M(ij)
+ = (i, j) ∪ µM\{i,j}+ as a

matching in which the submatching µM\{i,j} is a PAM on M\{i, j}. Simi-

larly denote µM− as a NAM on M and µ
M(ij)
− = (i, j) ∪ µM\{i,j}− as a match-

ing in which the submatching µM\{i,j} is a NAM on M\{i, j}. Since any
two PAM’s (NAM’s) are equivalent in terms of type pairs, we just denote
{µM+ } ({µM− }) as the set of PAM’s (NAM’s). In particular, if there are no
two agents that are of the same type, then there is only one unique PAM

(NAM). Similarly, we denote {µM(ij)
+ } and {µM(ij)

− } as the sets for condi-
tional PAM set and conditional NAM set, respectively. Let us further specify
the solution concept for this model.

Definition 4.2. Given an assignment game with externalities < I, J, π >
in which each agent is of some type, if each agent’s conjectures are the sets
of PAM’s on the reduced market, i.e.,

ϕj(i) = ϕi(j) = {µM(ij)
+ } for all i, j ∈M = I ∪ J,

and µM+ is a stable matching under these conjectures, then we call µM+ an
positive assortative (conjectural) stable matching (PASM); a negative assor-
tative (conjectural) stable matching (NASM) is defined similarly.

Then, the following theorem states when a PASM or NASM is ensured
to or not to exist in our model.

Theorem 4.1. In the above matching-based Cournot model with Assump-
tion 4.1-4.4,

1. if the cross derivative c′′12 ≤ 0, or

2. if c′′12 > 0 and c′1c
′
2 ≥ c′′12( Hnα − c+ n−1

n cmax),

then the PAM µM+ is a PASM, while the NAM µM− is not a NASM;

3. if c′′12 > 0 and

(c′1)min · (c′2)min
(c′′12)min[ Hnα − cmax + n−1

n cmin]
≤ n2

(2n− 1)(n+ 1)
,

15For more about assortative matchings, we refer readers to Legros and Newman (2007).
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then the NAM µM− is a NASM, while the PAM µM+ is not a PASM.16

These are the sufficient conditions and necessary conditions for the gen-
eral existence of PASM and NASM for this matching-based Cournot game.
In the first scenario in which the two production factors – firm technology
and human capital–are complementary, a PASM is ensured to exist.17 The
proof for this scenario is not trivial, but the intuition is simple. Let us take
Scenario 1 as an example for analysis. Firstly, a good firm has always some
incentive to hire a good manager, and a good worker has incentive to work
for a good firm. Suppose, keep the other variables constant, the human cap-
ital of the manager hired by the best firm (i.e., Firm 1) increases by ∆ > 0.
Then, firm 1’s best response to this is to produce more goods, and the other
firm’s best response to firm 1’s action is to produce fewer goods. In the
matching framework, if the human capital of the manager hired by the best
firm increases, there must be some other manager (hired by some other firm
i) whose human capital now decreases by ∆. Firm i would produce even
fewer goods, and the other firms will response to this by producing more
goods. However, when firm technology and human capital are complemen-
tary, for firms other than firm 1 and firm i, firm 1’s effect dominates, hence
by hiring the best manager (i.e., manager 1) firm 1 is the only firm that
gains and all the other firms suffer. With the same logic, the manager 1 is
willing to work for the best firm. Then repeat this logic recursively on firm
2 and manger 2, firm 3 and manager 3, and so on. As a consequence, the
game ends up with a positive assortative matching in this scenario.

The second and the third scenarios are more complicated, since there are
counter effects – the marginal effects (i.e., c′1 and c′2) and the substitutive
effect (i.e., c′′12) – on the unit production costs. To give the intuition, let us
first look at another version of the game. Suppose each firm can only produce
one unit and the market price of the goods is fixed, but the production
cost still depends on firm type and manager type. Then, this is a usual
assignment game with no externalities. In this game, the separation point
is c′′12 = 0: when c′′12 < 0, then the PAM is a stable matching; when c′′12 > 0,
the NAM is a stable matching. Now, let us take into account the effects of
c′1, c

′
2 < 0. c′2 < 0 is effectively equivalent to that by hiring a (marginally)

better manager, a firm can produce (marginally) more goods, and thus earn
more profit. Hence, even when c′′12 > 0, as long as c′′12 is not too large,
a good firm is still willing to spend a little more money to hire a better
manager, and the higher the |c′2| value is the more the firm is willing to pay.
Similar logic applies to c′1. Therefore, the separation point, in terms of the

16cmin, (c′1)min, (c′2)min, and (c′′12)min are the minimum values of c, c′1, c′2 and c′′12,
respectively; cmax is the maximum value of c.

17One thing needs to be noticed is that although µM+ (ij) is the worse case for agent i
and agent j when they are paired up, we can not directly apply Theorem 3.1 to prove the
result for this case.
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c′′12 value, for the cases in which the PAM a stable and the cases in which
NAM s stable moves upward. As a consequence, the ratio of the products
of the partial derivatives and the cross derivative determines which stable
matching it will be or not be. That is, when the marginal effects dominate
the substitutive effect, good firms should still hire good managers; when the
substitutive effect dominates the marginal effects, good firms should hire
bad managers and bad firms should hire good managers.

It also shows that a NASM cannot exists when the two production factors
are complementary and that PASM can not survive when the substitutive
effect dominates the marginal effect. In addition, market demand (indicated
by H

α ) also plays an role here. If the market demand is sufficiently large while
the two production factors are substitutive, a NASM can also exist.

4.1 Rational Equilibrium

In this part we show the motivation for us to choose the assortative conjec-
tural stable matching as our solution concept for this model. It is because
in many cases, the conjectures consisting of assortative matchings on the
reduced market are rational.

We say a ϕ-stable matching is rational if the conjectures in ϕ are all
rational; a conjecture, w.l.o.g, assume it to be ϕi(j), is rational, if for any
matching µ ∈ ϕi(j), µ\{(i, j)} is an ϕM(ij)-stable matching on the reduced
market M(ij) = {M\{i, j} | (i, j)} conditional on (i, j) are paired up, in
which ϕM(ij) is the profile of rational conjectures on the reduced market.18,19

We illustrate this concept by the following example.

Example 4.1. Consider a matching market with 5 agents at each side of
the market. We show an example to form rational conjectures by backward
deduction as follows.

Firstly, suppose conditional on that (i1, j1), (i2, j2), and (i3, j3) are paired
up respectively, it is an equilibrium20 that i4 pairing up to j4 and i5 pairing
up to j5 on the reduced market {i3, i4, j3, j4} . Then, consider the reduced
market {i3, i4, i5, j3, j4, j5} conditional on (i1, j1) and (i2, j2) are paired up
respectively. With a little abuse of notation, we denote this conditional
reduced market by

M ′′ = {i3, i4, i5, j3, j4, j5 | (i1, j1), (i2, j2)}.

If the conjectures are rational, it must be the case that ϕM
′′

i3
(j3) = ϕM

′′
j3

(i3) =
{{(i3, j3), (i4, j4), (i5, j5)}}.

18Notice that we can not directly kick i and j out, since they still have an role in the
Cournot competition at the second stage of the game.

19Li (1993) applied the idea of rational expectations to his model of a one-to-one match-
ing with externalities and showed that the existence of the equilibrium is ensured when
externalities are very weak.

20Since there are only 4 agents, a stable matching must exist.
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Next, suppose {(i3, j3), (i4, j4), (i5, j5)} is indeed a ϕM
′′
-stable matching

on market M ′′ conditional on (i1, j1) and (i2, j2) are paired up respectively.21

Consider the conditional reduced market

M ′ = {i2, i3, i4, i5, j2, j3, j4, j5 | (i1, j1)}

in which (i1, j1) are paired up. if the conjectures are rational, it must be the
case that ϕM

′
i2

(j2) = ϕM
′

j2
(i2) = {{(i2, j2), (i3, j3), (i4, j4), (i5, j5)}}.

Finally, suppose {(i2, j2), (i3, j3), (i4, j4), (i5, j5)} is indeed a ϕM
′
-stable

matching on market M ′ conditional on (i1, j1) are paired up. Consider the
full market

M = {i1, i2, i3, i4, i5, j1, j2, j3, j4, j5}.

If the conjectures are rational, it must be the case that ϕi1(j1) = ϕj1(i1) =
{{(i1, j1), (i2, j2)), (i3, j3), (i4, j4), (i5, j5)}}. That is, when i1 is considering
pairing up with j1, i1 believe that this matching will be the resulting matching,
and same for j1.

In brief, a rational conjecture, e.g., ϕi1(j1), requires agent i1 to have a
correct belief about what i2, when considering about pairing to j2 conditional
on (i1, j1) are paired up, believes about what i3, when considering about
pairing to j3 conditional on (i1, j1) and (i2, j2) are paired up respectively,
believes about what matching will be formed among {i4, i5, j4, j5} conditional
on(i1, j1), (i2, j2), and (i3, j3) are paired up respectively.

Let M c := Ic ∪ Jc denote a submarket (in which there are the same
number of firms and managers), and M s := Is ∪ Js = M\M c be the com-
plementary set of M c.

Let µc denote a generic matching on M c, and µs a generic matching on
M s. For a given conditional reduced market

M r := {M s | µc},

denote

ϕM
r

+ := {ϕMr

i (j), ϕM
r

j (i) | ϕMr

i (j) = ϕM
r

j (i) = µ
Ms(ij)
+ , i, j ∈M s}

as the conjecture profile which consists of all the conjectures in each of which
it is a PAM on the corresponding further reduced market. Similarly, denote

ϕM
r

− := {ϕMr

i (j), ϕM
r

j (i) | ϕMr

i (j) = ϕM
r

j (i) = µ
Ms(ij)
− , i, j ∈M s}.

The following result shows that in our model the sufficient conditions for
the existence of PASM and NASM also ensure ϕM

r

+ and ϕM
r

− to be rational
in the corresponding scenarios.

21Such a stable matching may not exist as shown by Example A.2 in Appendix A.
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Theorem 4.2. In the above matching-based Cournot model with Assump-
tion 4.1-4.4,

1. if the cross derivative c′′12 ≤ 0, or

2. if c′′12 > 0 and c′1c
′
2 ≥ c′′12( Hnα − c+ n−1

n cmax),

then ϕM
r

+ is rational for any conditional reduced market M r, and hence the
PASM is rational;

3. if c′′12 > 0 and

(c′2)min · (c′1)min
(c′′12)min[ Hnα − cmax + n−1

n cmin]
≤ n2

(2n− 1)(n+ 1)
,

then ϕM
r

− is rational for any conditional reduced market M r, and hence the
NASM is rational.

Proof. See Appendix C.2.

4.2 Efficient Matchings

We end the application by doing some analysis about the efficiency of the
matchings. We say a matching µ is more socially efficient than a matching
µ′ if the social surplus (i.e., total consumer benefit minus total production
cost) generated in the Cournot game conditional on µ is formed is higher
than the social surplus induced by matching µ′, and µ is the socially effi-
cient matching if no other matching induces a higher social surplus than µ
does. The result is describes as follows.

Proposition 4.1. In the above matching-based Cournot model with As-
sumption 4.1-4.4,

1. when c′′12 < 0, µM+ is not ensured to be the socially efficient matching;

2. when c′′12 < 0, while
(c′2)max·(c′1)max

(c′′12)min
≤ − n

2(n+1)2
H, then µM+ is the so-

cially efficient matching;

3. when c′′12 > 0, while
(c′2)max·(c′1)max

(c′′12)max
≥ 3n+5

2(n+1)2
H, then µM+ is the socially

efficient matching, and thus µM− is not the most efficient matching;

4. when c′′12 > 0, while cmax > cmin ≥ n2+2n+2
2n2+3n

H
n and

(c′2)min·(c′1)min
(c′′12)min

is

sufficiently close to 0, then µM− is the socially efficient matching;

5. when c′′12 = 0, µM+ is the socially efficient matching.

Proof. See Appendix C.3.
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The result is quite surprising. What we expected was that when firm
technology and human capital are complementary, the positive assortative
matching µM+ should be the most efficient matching, since the total out-
put is the highest under the PAM and the low cost agents produces more
goods; when substitutable, the positive assortative matching should never
be the most efficient matching. However, Statement 1 and 3 say that
this guess is not right. In the proof for the Statement 1, we constructed
an example to show that when the gap between of the unit cost by the
worst two firm-manager pairs and that of the other pairs is too large while
the marginal effects are sufficiently smaller than the complementary effect

(
(c′2)min·(c′1)min

(c′′12)max
→ 0), there is some other matching which generates higher

social welfare than PAM does. Statement 3 says that when the marginal
effects are sufficiently higher than the substitutive effect, the PAM can still
be the most efficient matching. Statement 2 says that the PAM is ensured
to be the most efficient matching when the marginal effects are sufficiently
larger than the complementary effect; Statement 3 says that the NAM is en-
sured to be the most efficient matching when the lowest cost is sufficiently
high and the marginal effects are sufficiently smaller than the substitutive
effect. Statement 5 is boring since no externalities present in this case.

Comparing the above sufficient conditions for PAM and NAM to be
efficient and the sufficient conditions for the existence of PASM and NASM,
we notice that existence of assortative stable matching and efficiency do not
contradict each other. PASM and NASM can be efficient, although they
may not be efficient.

5 Discussion and Concluding Remarks

In this paper, we showed that the necessary and sufficient condition for the
general existence of equilibrium in an assignment game with externalities
is that each agent counts on all possibilities of the actions of the others.
The solution concept was applied to one industrial organization problem.
A PAM can be a stable matching under rational expectations when firm
technology and human capital are either complimentary or substitutable,
while a NAM can be rational stable matching under rational expectations
only when the two production factors are substitutable and the substitutive
effect is strong.

Nothing about the core was mentioned in this paper.22 More definitions
need to be given. Firstly, for example, in our matching-base Cournot model
the members of a coalition must not only have conjectures about what kind
of matchings the agents outside of the coalition will form but also what kind

22Some results about the core are available upon request. But it may not be worthwhile
to fully examine the core of general assignment games with externalities.
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of actions they will play at the second stage.23 Hence, we have to be more
careful about specifying values to the characteristic functions. We cannot
take the values by simply adding up the pairwise values of the coalition
members and taking the minimum of such sums.24 Secondly, the conjectures
of an agent have in different coalitions must be consistent. However, the core
is not ensured to be non-empty even under universal estimations.

Finally, let us point out some possible extensions. From the applica-
tion perspective, some other models (e.g., voting) can be reexamined to
see whether it can be modified in matching-based framework to apply the
solution concept to analyze the problems just as what we did in this paper.

From the theoretical perspective, firstly, besides the core, the equilibrium
payoffs and stable matchings were not characterized in this paper as well, and
hence further work might be done.25 Secondly, since the estimation functions
in the general theory part were assumed to be exogenous, we might be able to
find a way to (partially) endogenize these functions and find some sufficient
conditions for the existence of equilibrium, just as what Hafalir (2008) did.
Lastly, one-sided assignment models and Non-transferable utilities models
may also be explored.
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Appendix

A. Examples.

Example A.1. (More efficient matching may not be stable): Let n = 3.
Then we have six possible matchings. Consider a valuation function which
assigns values to the pairs of agents in the six matchings as follows.

µ1

100 0 0
i1 i2 i3
j1 j2 j3

µ2

1 1 1
i1 i2 i3
j2 j3 j1

µ3

1 1 1
i1 i2 i3
j3 j1 j2

µ4

1 1 1
i1 i2 i3
j1 j3 j2

µ5

1 1 1
i1 i2 i3
j3 j2 j1

µ6

1 1 1
i1 i2 i3
j2 j1 j3

Let the universal conjectures hold: ϕi(j) = ϕj(i) = A(i, j) for all i ∈
I, j ∈ J . Then, all the matchings are admissible, and the values for the
characteristic function are as following:

V (i2j2) = V (i3j3) = 0

V (ij) = 1 for all (i, j) /∈ {(i2, j2), (i3, j3)}.

Hence, the maximum value to the primal problem is zmax = 1, and
µ2, µ3, µ4, µ5, and µ6 are all stable matchings. But matching µ1, the most
efficient matching, is not a stable matching since it is blocked by (i2, j3) and
(i3, j2).

Example A.2.(Non-existence of Equilibrium Under Rational Conjectures):
Let n = 3. Consider a valuation function which assigns values to the pairs
of agents in the six matchings as follows.26

µ1

4 7 7
i1 i2 i3
j1 j2 j3

µ2

7 6 8
i1 i2 i3
j2 j3 j1

µ3

6 10 5
i1 i2 i3
j3 j1 j2

µ4

7 8 9
i1 i2 i3
j1 j3 j2

µ5

7 10 7
i1 i2 i3
j3 j2 j1

µ6

3 9 8
i1 i2 i3
j2 j1 j3

26In this example, r(ipjq) and V (ipjq) are written as r(pq) and V (pq), respectively, for
short.
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Let r(ij) denote the rational conjectural stable matchings in the market
M \ {i, j}. For n = 2, there are no externalities, and so rational conjectures
can be easily obtained by looking at the maximal total valuation of the four
agents. Thus, we have

r(11) = {µ4} r(12) = {µ6} r(13) = {µ5}
r(21) = {µ3} r(22) = {µ5} r(23) = {µ4}
r(31) = {µ5} r(32) = {µ3} r(33) = {µ6}.

These are also agents’ estimations. Consequently, the values for the charac-
teristic function are obtained as follows.

V (11) = 7 V (12) = 3 V (13) = 7

V (21) = 10 V (22) = 10 V (23) = 8

V (31) = 7 V (32) = 5 V (33) = 8.

By putting these values into the primal problem, we obtain the maximum
value zmax = V (11) + V (22) + V (33) = 25. This value is not achievable by
any (admissible) matching, since the maximal total valuation of the six
agents is 24 at matching µ5.

27 Therefore, there is no equilibrium in this
example.

Notice that matching µ1 = {(i1, j1), (i2, j2), (i3, j3)} is not admissible
and only gives a total valuation 18 which is much smaller than 25.

B. Proofs for Section 3

Proof for Lemma 3.1. (a). Since µ∗ is admissible, we have

π(µ∗, i, j) ≥ V (ij|ϕ) ∀(i, j) ∈ µ∗, and therefore∑
(i,j)∈µ∗

π(µ∗, i, j) ≥
∑

(i,j)∈µ∗
V (ij|ϕ) = zmax = wmin.

Thus, (u∗, v∗) is feasible, and (µ∗, u∗, v∗) is a ϕ-pseudo-equilibrium.
(b). For the “if” part, simply use the fact that a ϕ-equilibrium is a

ϕ-pseudo-equilibrium. For the “only if” part, suppose (µ, u, v) is ϕ-pseudo-
equilibrium. (µ, u∗, v∗) is apparently a ϕ-pseudo-equilibrium. Since µ is
admissible, we have π(µ, i, j) ≥ V (ij|ϕ) for all (i, j) ∈ µ, and thus we can
construct a ϕ-equilibrium (µ, u′, v′), in which

(u′, v′) > (u∗, v∗) and u′i + v′j = π(µ, i, j) for all (i, j) ∈ µ.

(c). Follows from (b).

27Notice that although matching µ4 also gives a total valuation 24, it is not admissible.
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Proof for Theorem 3.1. Firstly, we show that, for any given problem (I, J, π),
if ϕi(j) = ϕj(i) = A(i, j) for all i ∈ I and all j ∈ J , the set PEϕ(I, J, π) of
ϕ-pseudo-equilibria is non-empty. To prove that, we construct a µ∗ and a
(u∗, v∗), in which µ∗ is induced by an extreme solution to the primal prob-
lem and (u∗, v∗) is a solution to the dual problem. This µ∗ is apparently
admissible. Then, by Lemma 3.1, (µ∗, u∗, v∗) is a pseudo-equilibrium.28

Secondly, we show that, for a problem (I, J, π), if either ϕi(j) 6= A(i, j)
or ϕj(i) for some pair of i ∈ I and for j ∈ J , then there exists a valuation
function π such that PEϕ(I, J, π) = ∅. Notice that this can not happen if
there are only two agent on each side of the market, we only need to look
at the cases in which n = |I| = |J | ≥ 3. The proof is divided into several
steps.

Step 1. Let us first consider a sub-LP problem of a pair of agents (i′, j′),
by ignoring the characteristic values related to each of them. Let zmax(i′, j′)
denote the maximum value to the following primal problem:29

max
x

z =
∑
i∈I′

∑
j∈J ′

V (ij|A(i, j))

s.t.
∑
i∈I′

xij ≤ 1 ∀j ∈ J ′,∑
j∈J ′

xij ≤ 1 ∀i ∈ I ′,

xij ≥ 0 ∀i ∈ I ′ and j ∈ J ′,

where I ′ = I \ {i′} and J ′ = J \ {j′}.

Let wmin(i′, j′) denote the minimum value to the following dual problem:

min
u,v

w =
∑
i∈I′

ui +
∑
j∈J ′

vj

st. ui + vj ≥ V (ij|A(i, j)) ∀i ∈ I ′ and ∀j ∈ J ′,
ui ≥ 0 and vj ≥ 0 ∀i ∈ I ′ and ∀j ∈ J ′.

Again, the fundamental duality theorem tells us that wmin(i′, j′) = zmax(i′, j′),
where wmin(i′, j′) is the minimum value of the sum of the payoffs that the
other agents demand when (i′, j′) are going to pair up.

Step 2. W.l.o.g., assume that ϕi1(j2) 6= A(i1, j2). Then there is a µ ∈
A(i1, j2) \ϕi1(j2).Let us denote j′k = µ(ik) for all k ≥ 2. For all k ≥ 3, let π

28Or see Sasaki and Toda (1996) for a constructed example.
29V (ij|A(i, j)) = min{π(µ, i, j)| (i, j) ∈ µ, µ ∈ A(i, j)}. That is, although we ignore i′

and j′, the characteristic value of a pair (i, j) is still taken from all the full matchings in
A(i, j), but not necessarily in A(i, j) ∩A(i′, j′).
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satisfy

π(µ̃, ik, j
′
k) + zmax(ik, j

′
k) >π(µ̃′)

for all µ̃ ∈ A(ik, j
′
k) and for all µ̃′ /∈ A(ik, j

′
k). This is equivalent to

π(µ̃, ik, j
′
k) >π(µ̃′)− wmin(ik, j

′
k)

for all µ̃ ∈ A(ik, j
′
k) and for all µ̃′ /∈ A(ik, j

′
k). Then any matchings other

than µ and µ′ = {(i1, j′2), (i2, j2), (i3, j′3), ..., (in, j′n)} are blocked by some
pair (ik, j

′
k) for k ≥ 3. Then, similarly, let π satisfy

π(µ̄, i1, j
′
2) >π(µ)− wmin(i1, j

′
2)

for all µ̄ ∈ A(i1, j
′
2). Then µ is blocked by (i1, j

′
2). Lastly, let π satisfy

π(µ̂, i1, j2) >π(µ′)− wmin(i1, j2)

for all µ̂ ∈ ϕi1(j2). Then we have that µ′ is blocked by (i1, j2). Therefore,
PEϕ(I, J, π) = ∅ for the problem (I, J, π) constructed in this way.

Combining the above results with Lemma 3.1(b), we get our desired
result.

C. Proofs for Section 4

C.1: Existence of Assortative Stable Matchings

Lemma 5.1. Given a twice continuously differentiable function u(·, ·) : D×
G → R−−, suppose, d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G,
and 2 ≤ p ≤ q ≤ n. For any k = 2, 3, ..., p, if u′′12 ≥ 0, then

(u11 − u1q)− (up1 − upq) ≥ (uk−1k−1 − uk−1k)− (ukk−1 − ukk),

and if u′′12 ≤ 0, then

(u11 − u1q)− (up1 − upq) ≤ (uk−1k−1 − uk−1k)− (ukk−1 − ukk),

Proof.

[(u11 − u1q)− (up1 − upq)]− [(uk−1k−1 − uk−1k)− (ukk−1 − ukk)]
=[(u11 − u1q)− (uk−1k−1 − uk−1k)] + [(ukk−1 − ukk)− (up1 − upq)]
= [[(u11 − u1q)− (u1k−1 − u1k)] + [(u1k−1 − u1k))− (uk−1k−1 − uk−1k)]]

[−[(up1 − upq)− (upk−1 − upk)] + [(ukk−1 − ukk)− (upk−1 − upk)]]
= [[(u11 − u1k−1) + (u1k − u1q)] + [(u1k−1 − u1k))− (uk−1k−1 − uk−1k)]]

[−[(up1 − upk−1) + (upk − upq)] + [(ukk−1 − ukk)− (upk−1 − upk)]]
=[(u11 − u1k−1)− (up1 − upk−1)] + [(u1k − u1q)− (upk − upq)]

+ [(u1k−1 − u1k))− (uk−1k−1 − uk−1k)] + [(ukk−1 − ukk)− (upk−1 − upk)]
≥0
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The last inequality holds, since by supermodularity the terms in the 4 brack-
ets on the left hand side of the inequality are all nonnegative.

Lemma 5.2. Given a twice differentiable function u(·, ·) : D ×G→ R−− ,
suppose u′1 > 0, d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G, and
p ≤ q ≤ n, then for any k = 2, 3, ..., p,

(u11 + u1q)− (up1 + upq) > (ukk−1 + ukk)− (uk−1k−1 + uk−1k)

Proof.

[(u11 + u1q)− (up1 + upq)]− [(ukk−1 + ukk)− (uk−1k−1 + uk−1k)]

=[(u11 − up1) + (u1q − upq)] + [(uk−1k−1 − ukk−1) + (uk−1k − ukk)]
>0

The last inequality follows because the terms in the brackets are all nonneg-
ative.

Lemma 5.3. Given a twice differentiable function u(·, ·), suppose Y
n +u > 0.

1. If u′1u
′
2 ≥ u′′12(−Y

n − u), u′1 > 0, u′2 > 0, and u′′12 ≤ 0, or

2. if u′1u
′
2 ≤ u′′12(−Y

n − u), u′1 > 0, u′2 < 0, and u′′12 ≥ 0,

then

u(a, b)− u(a, b′)

u(a′, b)− u(a′, b′)
≥

Y
n + 1

2 [u(a′, b) + u(a′, b′)]
Y
n + 1

2 [u(a, b) + u(a, b′)]
,

where a > a′ and b > b′.

Proof. We show for Case 1. The analysis for Case 2 is similar, and thus is
omitted.

u′1u
′
2 ≥ u′′12(−

Y

n
− u)

⇒u′2(a′, ·)[u(a, ·)− u(a′, ·)] ≥ [u′2(a, ·)− u′2(a′, ·)][−
Y

n
− u(a, ·)]

⇒u′2(a, ·)u(a, ·)− u′2(a′, ·)u(a′, ·) ≥ [u′2(a, ·)− u′2(a′, ·)][−
Y

n
]

⇒u′2(a, ·)[
Y

n
+ u(a, ·)] ≥ u′2(a′, ·)[

Y

n
+ u(a′, ·)]

⇒[u(a, b)− u(a, b′)]
Y

n
+

1

2
[u2(a, b)− u2(a, b′)] ≥ [u(a′, b)− u(a′, b′)]

Y

n
+

1

2
[u2(a′, b)− u2(a′, b′)]

⇒ u(a, b)− u(a, b′)

u(a′, b)− u(a′, b′)
≥

Y
n + 1

2 [u(a′, b) + u(a′, b′)]
Y
n + 1

2 [u(a, b) + u(a, b′)]
.

The second inequality holds because u′′12 ≤ 0, u′2 > 0, and u′1 > 0. The last
inequality follows from u′2 > 0 and Y

n + u > 0.
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Lemma 5.4. For given real numbers a, b, c, d, e, f > 0,

1. if b ≥ a, then a+c
b+c ≥

a
b ;

2. if c
d ≥

a
b , then a+c

b+d ≥
a
b ;

3. if a− c > 0, b− d > 0, and a−c
b−d >

e
f , then

a

b
≥ c

d
⇒ a+ e

b+ f
>
c+ e

d+ f
.

Lemma 5.5. Given a twice continuously differentiable function u(·, ·) : D×
G → R−−, suppose D and G are compact, u′1, u

′
2 > 0, X

n + u > 0, and
d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G.

1. If u′′12 ≥ 0, or

2. if u′′12 ≤ 0 and u′1u
′
2 ≥ u′′12(−X

n − u+ n−1
n umin),

then for p = 2, 3, ..., n and q = 2, 3, ..., n,X + (n+ 1)u11 −
∑

(i,j)∈µM+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µM(pq)
+

uij


2

>

X + (n+ 1)u1q −
∑

(i,j)∈µM(1q)
+

uij


2

+

X + (n+ 1)up1 −
∑

(i,j)∈µM(p1)
+

uij


2

.

Proof. Before doing the analysis, we first, w.l.o.g., assume p ≤ q, and derive
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the following equations.
X + (n+ 1)u11 −

∑
(i,j)∈µM+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µM(pq)
+

uij


2

−


X + (n+ 1)u1q −

∑
(i,j)∈µM(1q)

+

uij


2

+

X + (n+ 1)up1 −
∑

(i,j)∈µM(p1)
+

uij


2

=

(
(n+ 1)(u11 − u1q)−

[(
u11 +

q∑
k=2

ukk

)
−

(
u1q +

q∑
k=2

ukk−1

)])

·

2X + (n+ 1)(u11 + u1q)−

 ∑
(i,j)∈µM+

uij +
∑

(i,j)∈µM(1q)
+

uij




−

(n+ 1)(up1 − upq)−

up1 +

p−1∑
k=1

ukk+1 +

q∑
k=p+1

ukk

−
upq +

p−1∑
k=1

ukk +

q∑
k=p+1

ukk−1


·

2X + (n+ 1)(upq + up1)−

 ∑
(i,j)∈µM(pq)

+

uij +
∑

(i,j)∈µM(p1)
+

uij




=

[
n(u11 − u1q) +

q∑
k=2

(ukk−1 − ukk)

]

·

2X + (n+ 1)(u11 + u1q)−

 ∑
(i,j)∈µM+

uij +
∑

(i,j)∈µM(1q)
+

uij




−

n(up1 − upq) +

p−1∑
k=1

(ukk − ukk+1) +

q∑
k=p+1

(ukk−1 − ukk)


·

2X + (n+ 1)(upq + up1)−

 ∑
(i,j)∈µM(pq)

+

uij +
∑

(i,j)∈µM(p1)
+

uij




For convenience, denote T 1, T 2, T 3, T 4 as the terms in the 4 big brackets on
the right hand side of the last equality, respectively. We want to show that
in both cases

T 1T 2 − T 3T 4 > 0.
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Firstly, we have

u′2 > 0 ⇒ T 1, T 3 > 0, and

X

n
+ u > 0 ⇒ T 2, T 4 > 0.

For Case 1, it is sufficient to show that T 1 ≥ T 3 and T 2 > T 4 separately.

T 1 − T 3

=

[
n[(u11 − u1q)− (up1 − upq)]−

p∑
k=2

[(uk−1k−1 − uk−1k)− (ukk−1 − ukk)]

]
≥0,

where the inequality follows from Lemma 5.1, the fact that n ≥ p, and that
u′′12 ≥ 0. Strict inequality holds if u′′12 > 0.

T 2 − T 4

=

(
n(u11 + u1q)−

[(
q∑

k=2

ukk

)
+

(
q∑

k=2

ukk−1

)])

−

n(upq + up1)−

 p∑
k=2

uk−1k−1 +

q∑
k=p+1

ukk−1

+

 p∑
k=2

uk−1k +

q∑
k=p+1

ukk


=

[
n(u11 + u1q)−

p∑
k=2

(ukk + ukk−1)

]
−

[
n(upq + up1)−

p∑
k=2

(uk−1k−1 + uk−1k)

]

=n[(u11 + u1q)− (upq + up1)]−

[
p∑

k=2

[(ukk + ukk−1)− (uk−1k−1 + uk−1k)]

]
>0.

The inequality follows from Lemma 5.2, the facts that n ≥ p, and that the
term in the first big bracket on the left hand side of the inequality is positive
because u′1 > 0.

For Case 2, it is sufficient to show that T 1

T 3 ≥ T 4

T 2 . Firstly, we have

u′′12 ≤ 0 and u′2 > 0

⇒0 <
u11 − u1q
up1 − upq

≤ 1 and
ukk−1 − ukk

uk−1k−1 − uk−1k
≥ 1;

u′1 > 0

⇒0 < −[uk−1k−1 + uk−1k] < −[ukk−1 + ukk].
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Then, we have

T 1

T 3
=

[n(u11 − u1q)] +
[∑p

k=2(ukk−1 − ukk)
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

[n(up1 − upq)] +
[∑p

k=2(uk−1k−1 − uk−1k)
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

=
[(n+ 1− p)(u11 − u1q)] +

[∑p
k=2[(u11 − u1q) + (ukk−1 − ukk)]

]
+
[∑q

k=p+1(ukk−1 − ukk)
]

[(n+ 1− p)(up1 − upq)] +
[∑p

k=2[(up1 − upq) + (uk−1k−1 − uk−1k)]
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

≥
[(n+ 1− p)(u11 − u1q)] +

[∑p
k=2[(u11 − u1q) + (ukk−1 − ukk)]

]
[(n+ 1− p)(up1 − upq)] +

[∑p
k=2[(up1 − upq) + (uk−1k−1 − uk−1k)]

]
=

[n(u11 − u1q)] +
[∑p

k=2(ukk−1 − ukk)
]

[n(up1 − upq)] +
[∑p

k=2(uk−1k−1 − uk−1k)
]

≥n(u11 − u1q)
n(up1 − upq)

≥2Y + n(upq + up1)

2Y + n(u11 + u1q)

>
[2X + n(upq + up1)] + [2(n− 1)(−umin)]

[2X + n(u11 + u1q)] + [2(n− 1)(−umin)]

≥
[2X + n(upq + up1)]−

[∑p
k=2(uk−1k−1 + uk−1k)

]
−
[∑q

k=p+1(ukk−1 + ukk)
]
− 2

[∑n
k=q+1 ukk

]
[2X + n(u11 + u1q)]−

[∑p
k=2(ukk−1 + ukk)]

]
−
[∑q

k=p+1(ukk−1 + ukk)
]
− 2

[∑n
k=q+1 ukk

]
=
T 4

T 2
.

The first and second inequalities follow from Lemma 5.1, Lemma 5.4.1, and
5.4.2; the third inequality follows from Lemma 5.3 with Y = X−(n−1)umin;
the fifth inequality follows from Lemma 5.4.3.

Lemma 5.6. Given a twice continuously differentiable function u(·, ·) : D×
G → R−−, suppose D and G are compact, u′1 > 0, u′2 < 0, X

n + u > 0, and
d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G.

1. If u′′12 ≤ 0, or

2. if u′′12 > 0 and u′1u
′
2 ≤ u′′12(Xn − u+ n−1

n umin},
then for p = 2, 3, ..., n and q = 2, 3, ..., n,X + (n+ 1)u11 −

∑
(i,j)∈µM+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µM(pq)
+

uij


2

<

X + (n+ 1)u1q −
∑

(i,j)∈µM(1q)
+

uij


2

+

X + (n+ 1)up1 −
∑

(i,j)∈µM(p1)
+

uij


2

.
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Proof. The proof is basically the same as the the one for Lemma 5.5, and
thus is omitted.

Lemma 5.7. Given a twice continuously differentiable function u(·, ·) : D×
G→ R−−, suppose D and G are compact, u′1 > 0, u′2 < 0, u′′12 > 0, X

n +u >
0, and d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G. If

(u′2)min · (u′1)max
(u′′12)min[−X

n − umin + n−1
n umax]

≤ n2

(2n− 1)(n+ 1)
,

then for any l = 1, 2, ..., n− 1, p = 2, 3, ..., n, q = 2, 3, ..., n, and l < p, l < q.X + (n+ 1)ull −
∑

(i,j)∈µM+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µM(pq)
+

uij


2

>

X + (n+ 1)ulq −
∑

(i,j)∈µM(lq)
+

uij


2

+

X + (n+ 1)upl −
∑

(i,j)∈µM(pl)
+

uij


2

.

Proof. We omit the similar computation as of the one at the beginning of
the proof for Lemma 5.5, yet we denote T 1, T 2, T 3, T 4 as the similar corre-
sponding terms in the proof of Lemma 5.5, and T 1, T 3 < 0 by Lemma 5.1
and T 2, T 4 > 0 by Lemma 5.2. We want to show that T 1

T 3 <
T 4

T 2 . W.l.o.g.,
assume p ≤ q.

T 1

T 3
=

[(n+ l − p)(ull − ulq)] +
[∑p

k=l+1[(ull − ulq) + (ukk−1 − ukk)]
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

[(n+ l − p)(upl − upq)] +
[∑p

k=l+1[(upl − upq) + (uk−1k−1 − uk−1k)]
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

<
[(n+ l − p)(ull − ulq)] +

[∑p
k=l+1[(upl − upq) + (uk−1k−1 − uk−1k)]

]
+
[∑q

k=p+1(ukk−1 − ukk)
]

[(n+ l − p)(upl − upq)] +
[∑p

k=l+1[(upl − upq) + (uk−1k−1 − uk−1k)]
]

+
[∑q

k=p+1(ukk−1 − ukk)
]

<
n(ull − ulq) + (q − l)(uql − uqq)
n(upl − upq) + (q − l)(uql − uqq)

<
n[(ull − ulq)− (upl − upq)]

(n+ q − l)(uql − uqq)
+ 1

=
n

n+ q − l
·

∫ dl
dp

∫ gl
gq
u′′12 (d, g) dddg∫ gl

gq
u′2(dq, g)dg

+ 1

≤ n

n+ q − l
· (u′′12)min · (dl − dp) · (g1 − gq)

(u′2)min · (b1 − bq)
+ 1

=
n

n+ q − l
· (u′′12)min · (dl − dp)

(u′2)min
+ 1,

30



where the first inequality follows from Lemma 5.1, and the second inequality
follows from Lemma 5.4 and u′′12 > 0.

T 4

T 2
=

[2X+n(upq+upl)]−[
∑p
k=l+1(uk−1k−1+uk−1k)]−[

∑q
k=p+1(ukk−1+ukk)]−2[

∑n
k=q+1 ukk+

∑l−1
k=1 ukk]

[2X+n(ull+ulq)]−[
∑p
k=l+1(ukk−1+ukk)]]−[

∑q
k=p+1(ukk−1+ukk)]−2[

∑n
k=q+1 ukk+

∑l−1
k=1 ukk]

=
n[(upq + upl)− (ull + ulq)] +

[∑p
k=l+1[(ukk−1 + ukk)− (uk−1k−1 + uk−1k)]

]
[2X + n(ull + u1q)]−

[∑q
k=l+1(ukk−1 + ukk)]

]
− 2

[∑n
k=q+1 ukk +

∑l−1
k=1 ukk

]+ 1

>
− n

[∫ dl
dp
u′1(d, gq)dd+

∫ dl
dp
u′1(d, gl)dd

]
−
∑p

k=l+1

[∫ dk−1

dk
u′1(d, gk−1)dd+

∫ dk−1

dk
u′1(d, gk)dd

]
2X + 2numin − 2(n− 1)umax

+ 1

≥
− 2n[(u′1)max · (dl − dp)]− 2[(u′1)max · (dl − dp)]

2X + 2numin − 2(n− 1)umax
+ 1

=
− (n+ 1)[(u′1)max · (dl − dp)]
X + numin − (n− 1)umax

+ 1.

Hence, a sufficient condition to ensure T 1

T 3 < T 4

T 2 is that for any l =
1, 2, ..., n− 1, p = 2, 3, ..., n, q = 2, 3, ..., n, and l < p, l < q,

n

n+ q − l
· (u′′12)min · (dl − dp)

(u′2)min
≤ −(n+ 1)[(u′1)max · (dl − dp)]

X + numin − (n− 1)umax

⇔ n2

(n+ q − l)(n+ 1)
≥ (u′2)min · (u′1)max

(u′′12)min[−X
n − umin + n−1

n umax]
.

Since the minimum value on the left side of the last inequality is n2

(2n−1)(n+1) ,

our statement holds. In addition, it also holds for any X ′ > X.

Lemma 5.8. Given a twice continuously differentiable function u(·, ·) : D×
G→ R−−, suppose D and G are compact, u′1 > 0, u′2 < 0, u′′12 < 0, X

n +u >
0, and d1 > d2 >, ..., > dn ∈ D and g1 > g2 >, ..., > gn ∈ G. If

(u′2)max · (u′1)max
(u′′12)max[−X

n − umin + n−1
n umax]

≤ n2

(2n− 1)(n+ 1)
,

then for any l = 1, 2, ..., n− 1, p = 2, 3, ..., n, q = 2, 3, ..., n, and l < p, l < q.X + (n+ 1)ull −
∑

(i,j)∈µM+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µM(pq)
+

uij


2

<

X + (n+ 1)ulq −
∑

(i,j)∈µM(lq)
+

uij


2

+

X + (n+ 1)upl −
∑

(i,j)∈µM(pl)
+

uij


2

.
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Proof. The proof is basically the same as the proof for Lemma 5.7, and
therefore we omitted most part of the proof.

In this case T 1, T 2, T 3, T 4 > 0, and we want to show T 1

T 3 <
T 4

T 2 . By the
same computation as before, we have

T 1

T 3
<

n

n+ q − l
· (u′′12)max · (dl − dp)

(u′2)max
+ 1,

and

T 4

T 2
>
− (n+ 1)[(u′1)max · (dl − dp)]
X + numin − (n− 1)umax

+ 1,

Hence, it is sufficient if

(u′2)max · (u′1)max
(u′′12)max[−X

n − umin + n−1
n umax]

≤ n2

(2n− 1)(n+ 1)
.

Proposition 5.1. 30 Suppose in an assignment game with no externalities
< I, J, u >,|I| = |J | = n, each agent i ∈ I is of some type ai ∈ F and agent
j of some type bj ∈ S, in which F and S are compact intervals and no two
agents on the same side are of the same type, and u(·, ·) : F × S →∈ R−−
is twice continuously differentiable with u′1, u

′
2 > 0 and H

n + u > 0. (i.e.,
u(a, b) is the surplus of a pair of paired-up agents whose types are a and b
respectively, and it is increasing in both a and b.) Then

1. if the cross derivative u′′12 ≥ 0, or

2. if u′′12 < 0 and u′1u
′
2 ≥ u′′12(−H

n − u+ n−1
n umin),

then

(i.) µM+ = arg max
µ∈A(I,J)

V +(µ), and

(ii.) µM− 6= arg max
µ∈A(I,J)

V −(µ);

3. if

u′′12 < 0 and
(u′2)max · (u′1)max

(u′′12)max[−H
n − umin + n−1

n umax]
≤ n2

(2n− 1)(n+ 1)
,

30There might be two thought for proving this proposition. Look at the supermodular
case. Take a matching µ such that (i, j′), (i′, j) ∈ µ and ai ≥ ai′ , bj ≤ bj′ . Take µ′ :=
{(i, j), (i′, j′), µ\{(i, j′), (i′, j)}}. One thought is that firstly show V + (µ) ≤ π(µ), and
then show π(µ) ≤ π(µ′). Another thought is that show that the values of the terms in
V +(µ′) is a mean increasing spread of that of V +(µ). However, neither of these thoughts
work out since we can find counter examples that they are not always true.
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then

(iii.) µM− = arg max
µ∈A(I,J)

V −(µ), and

(iv.) µM+ 6= arg max
µ∈A(I,J)

V +(µ).

In the above,

V +(µ) =
∑

(p,q)∈µ

H + (n+ 1)u(ap, bq)−
∑

(i,j)∈µM(pq)
+

u(ap, bq)


2

;

V −(µ) =
∑

(p,q)∈µ

H + (n+ 1)u(ap, bq)−
∑

(i,j)∈µM(pq)
−

u(ap, bq)


2

.

Proof. W.l.o.g., we assume a1 > a2 > ... > an and b1 > b2 > ... > bn. We
just show the supermodularity case, and the proof is proceeded by analyzing
the agents at one side of the market one by one sequentially.

For Case (i), we show that under the conditions agent (i1, j1) must be
to with each other, and then (i2, j2),..., so on so forth until (in, jn).

Take a matching µ1 ∈ A(I, J). If (i1, j1) /∈ µ1, we can show that for
matching µ′1 := {(i1, j1), (µ1(j1), µ1(i1))} ∪ [µ1\{(i1, µ1(i1)), (µ1(j1), j1)}],

V +(µ′1) > V +(µ1),

by directly using Lemma 5.5 with setting X to be H.
Similarly, for k = 2, 3, ..., n−1, take a matching µk ∈ A(i1, j1)∩A(i2, j2)∩

.... ∩ A(ik − 1, jk − 1). If (ik, jk) /∈ µk, we can show that for matching
µ′k := {(ik, jk), (µk(jk), µk(ik))} ∪ [µk\{(ik, µk(ik)), (µk(jk), jk)}],

V +(µ′k) > V +(µk),

by using Lemma 5.5 with the variable X being properly substituted.
As a result, µM+ = arg maxµ∈A(I,J) V

+(µ), since we cannot find another

matching that induces a higher V + value than µM+ does.

For Case (ii), we define a function w(a, β) := u(a, b(β)) in which b(β) :=
−β, and apply Lemma 5.6 to function w(·, ·). Then, it is easy to see that

V −(µM− ) < V −(µ′)

in which µ′ := {(i1, j1), (in, in)} ∪ [µM− \{(i1, jn), (i1, jn)}.
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For Case (iii), we again define a function w(a, β) := u(a, b(β)) in which
b(β) := −β, apply Lemma 5.7 to function w(·, ·), and then apply the same
method in the analysis of Case 1, it can be show that the µM− indeed induces
the maximum value of V −.

Similarly for Case (iv), by applying Lemma 5.8, we directly have

V +(µM+ ) < V +(µ′)

in which µ′ := {(il, jk), (ik, jl)}∪[µM+ \{(il, jl), (ik, jk)} for any l, k = 1, 2, 3, .., n
and l 6= k.

Proof for Theorem 4.1. The above question is a quadratic problem and thus
can be solved by a linear system. W.l.o.g., let us assume α to be 1.

We first derive for each realized matching the solution to the Cournot
game (i.e., the output each firm-manager pair produces for a realized match-
ing µ). For any pair (i, j) ∈ µ, (i, j) chooses qij(µ) (also wrote as qfi,mj (µ))
such that

qij(µ) = arg max
q≥0

q · [H − (q +
∑

(i′,j′)∈µ,i′ 6=i,j′ 6=j

qi′j′)− c(fi, sj)]

The first order condition for each pair (i, j) ∈ µ gives us the following linear
system. 

H − c(f1, sµ(f1))
H − c(f2, sµ(f2))

...
H − c(fn, sµ(fn))

 =


2 1 . . . 1
1 2 1 . . .
...

...
...

...
1 . . . 1 2



qf1,µ(f1)
qf2,µ(f2)

...
qfn,µ(fn)


Thus

qf1,µ(f1)
qf2,µ(f2)

...
qfn,µ(fn)

 =


n
n+1 − 1

n+1 . . . − 1
n+1

− 1
n+1

n
n+1 − 1

n+1 . . .
...

...
...

...
− 1
n+1 . . . − 1

n+1
n
n+1



H − c(f1, sµ(f1))
H − c(f2, sµ(f2))

...
H − c(fn, sµ(fn))


Therefore, for a pair (i, j) ∈ µ, their optimal output quantity for a

realized matching µ is

qij(µ) =
1

n+ 1
[H − (n+ 1)cij +

∑
(i′,j′)∈µ

ci′j′ ] > 0.

Substituting back the above solution to the surplus functions, we get

π(i, j, µ) =
1

(n+ 1)2
[H − (n+ 1)cij +

∑
(i′,j′)∈µ

ci′j′ ]
2 = q2ij(µ).
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Here we emphasize that qij(µ) is the amount of output that (i, j) are
going to produce when (i, j) believe that if they pair up with each other, µ
is going to be the resulting matching and all the firms will play the Cournot
game in the second stage. That is, qij(µ) is (i, j)’s best response to their
conjectures, and thus π(i, j, µ) is the corresponding surplus for (i, j).

Next, we define a function u(·, ·) := −c(·, ·). Then the theorem can be
proved simply by applying Propsition 5.1 to < I, J, u >. We do not go
through the cases one by one here, but just illustrate that by showing the
PASM case.

Under positive assortative conjectures (i.e., ϕi(j) = {µM(ij)
+ }), µM+ is

admissible. Thus, to show µM+ is an stable matching, we only need to show
that µM+ is induced by a solution to the primal problem of the game. Firstly,

c′1 < 0, c′2 < 0, and c′′12 ≤ 0

implies

u′1 > 0, u′2 > 0, and u′′12 ≥ 0,

and secondly,

z(µ) =
∑

(i,j)∈µ

V (ij|ϕ)

=
∑

(i,j)∈µ

π
(
i, j, (i, j) ∪ µM(ij)

+

)
=

1

(n+ 1)2

∑
(i,j)∈µ

[H − (n+ 1)cij +
∑

(i′,j′)∈µM(ij)
+

ci′j′ ]
2

=
1

(n+ 1)2

∑
(i,j)∈µ

[H + (n+ 1)uij −
∑

(i′,j′)∈µM(ij)
+

ui′j′ ]
2.

By applying Proposition 5.1, we know that z is maximized at µM+ . Therefore,
µM+ is an equalibrium matching, and hence is a PASM as desired.

C.2: Rational Equilibrium

Proof for Theorem 4.2. The proof is basically a repetition of the proof for
Theorem 4.1, thus we only give a sketch here, readers can go through
Lemma 5.5, Lemma 5.7, and Proposition 5.1 again to derive the result.

For Case 1 and Case 2, we want to show that for any conditional reduced
market

M r := {M s | µc},
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µM
s

+ = arg max
µs∈A(Is,Js)

zM
r
(µs|ϕMr

+ )

= arg max
µs∈A(Is,Js)

∑
(i,j)∈µs

V (ij|ϕMr

+ )

= arg max
µs∈A(Is,Js)

∑
(i,j)∈µs

π
(
i, j, µc ∪ µM

s(ij)
+

)

= arg max
µs∈A(Is,Js)

1

(n+ 1)2

∑
(i,j)∈µs

H − (n+ 1)cij +
∑

(i′,j′)∈µc∪µM(ij)
+

ci′j′


2

.

Next, define u(·, ·) = −c(·, ·) again. By exactly the same proof for
Lemma 5.5, we could showX + (n+ 1)u11 −

∑
(i,j)∈µc∪µMs

+

uij


2

+

X + (n+ 1)upq −
∑

(i,j)∈µc∪µM
s(pq)

+

uij


2

>

X + (n+ 1)u1q −
∑

(i,j)∈µc∪µM
s(1q)

+

uij


2

+

X + (n+ 1)up1 −
∑

(i,j)∈µc∪µM
s(p1)

+

uij


2

.

Then by the same logic in the proof for Proposition 5.1, we could show that
µM

s

+ is the one maximizes the value of zM
r
.

For Case 3, using the same method with Lemma 5.7 and Proposition 5.1,
we can show that

µM
s

− = arg max
µs∈A(Is,Js)

zM
r
(µs|ϕMr

− )

as well.
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C.3: Efficient Matching

Proof for Proposition 4.1. W.l.o.g., assume again α = 1. For a given match-
ing µ, the social benefit is

B(µ) :=

∫ Q(µ)

0
H − q dq

=HQ(µ)− Q2(µ)

2

=
H

n+ 1
[nH − c(µ)]− 1

2(n+ 1)2
[nH − c(µ)]2

=
1

n+ 1

(
[n− n2

2(n+ 1)
]H2 − 1

n+ 1
Hc(µ)− 1

2(n+ 1)
c2(µ)

)
,

and the total cost of production is

C(µ) :=
1

n+ 1

∑
(i,j)∈µ

cij [H − (n+ 1)cij + c(µ)]

=
1

n+ 1
[Hc(µ)− (n+ 1)

∑
(i,j)∈µ

c2ij + c2(µ)].

Hence the social surplus is

B(µ)− C(µ)

=
1

n+ 1

[n− n2

2(n+ 1)
]H2 − n+ 2

n+ 1
Hc(µ)− [1 +

1

2(n+ 1)
]c2(µ) + (n+ 1)

∑
(i,j)∈µ

c2ij

 .

Then, for any two matching µ and µ′, in which µ\µ′ = {(i, j), (i′, j′)} and
µ′\µ = {(i.j′), (i′, j)}, we have

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

=− n+ 2

n+ 1
H[c(µ)− c(µ′)]−

[
1 +

1

2(n+ 1)

]
[c(µ)− c(µ′)][c(µ) + c(µ′)]

+ (n+ 1)[(c2ij + c2i′j′)− (c2ij′ + c2i′j)]

=− n+ 2

n+ 1
H[(cij + ci′j′)− (cij′ + ci′j)]−

[
1 +

1

2(n+ 1)

]
[(cij + ci′j′)− (cij′ + ci′j)][c(µ) + c(µ′)]

+ (n+ 1)[(cij − cij′)(cij + cij′)− (ci′j − ci′j′)(ci′j′ + ci′j)]

=− n+ 2

n+ 1
H[(cij + ci′j′)− (cij′ + ci′j)]−

[
1 +

1

2(n+ 1)

]
[(cij + ci′j′)− (cij′ + ci′j)][c(µ) + c(µ′)]

+ (n+ 1)
[
(cij − cij′)[(cij + cij′)− (ci′j′ + ci′j)] + [(cij − cij′)− (ci′j − ci′j′)](ci′j′ + ci′j)

]
.
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For Case 1, to show that µM+ can be inefficient when c′′12 < 0, we construct
the following example. We know that cnn = cmax. Let us take two values c̃
and ˜̃c such that

cij ≤ c̃ < ˜̃c ≤ cnn−1 < cnn for all (i, j) /∈ {(n, n), (n, n− 1)}.

Take matching µ′ := {(in, jn−1), (in−1, jn)} ∪ [µM+ \{(in−1, jn−1), (in, jn)}].
In the following we will show that there are some scenarios in which µ′ is
more efficient than µM+ . Firstly, (cn−1n−1− cn−1n)− (cnn−1− cnn) < 0 since
c′′12 < 0, and we have

[B(µM+ )− C(µM+ )]− [B(µ′)− C(µ′)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

=− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
[c(µM+ ) + c(µ′)] + (n+ 1)(cn−1n−1 + cn−1n)

+ (n+ 1)
(cnn−1 − cnn)[(cn−1n−1 + cn−1n)− (cnn + cnn−1)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

>− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
· 2(n− 1)c̃+ [n− 1

2(n+ 1)
] · 2˜̃c

+ (n+ 1)
(ci′j − ci′j′)[(cij + cij′)− (ci′j′ + ci′j)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

≥− n+ 2

n+ 1
H − 2n+ 3

n+ 1
· (n− 1)c̃+

2n2 + 2n− 1

n+ 1
˜̃c+ 2(n+ 1) · (c′2)min · (c′1)min

(c′′12)max

=
2n2 + 2n− 1

n+ 1

[
˜̃c− n2 + 2n

2n2 + 2n− 1
· H
n
− 2n2 + n− 3

2n2 + 2n− 1
c̃

]
+ 2(n+ 1) · (c′2)min · (c′1)min

(c′′12)max

>
2n2 + 2n− 1

n+ 1

[
(˜̃c− c̃)− n2 + 2n

2n2 + 2n− 1
· H
n

]
+ 2(n+ 1) · (c′2)min · (c′1)min

(c′′12)max
.

It is not hard to see that there are certain circumstances in which the term
on the right hand side of the last inequality can be larger than or equal to 0.
For instance, when ˜̃c is sufficiently larger than n2+2n

2n2+2n−1 ·
H
n (but of course

˜̃c has to be less than H
n ), and c̃ and

(c′2)min·(c′1)min
(c′′12)max

are sufficiently close to 0,

then the term is larger than 0. Hence in this scenario

[B(µM+ )− C(µM+ )]− [B(µ′)− C(µ′)] < 0,

and thus µM+ is less efficient than µ′.

For Case 2, take a matching µ′ 6= µM+ . W.l.o.g, assume (i, j′), (i′, j) ∈ µ′,
in which i > i′ and j > j′. Take another matching µ = {(i, j), (i′, j′)} ∪
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[µ′\{(i, j′), (i, j′)}]. Then we have

[B(µ)− C(µ)]− [B(µ′)− C(µ′)]

=[(cij − cij′)− (ci′j − ci′j′)]
(
− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
[c(µ) + c(µ′)] + (n+ 1)(ci′j′ + ci′j)

+ (n+ 1)
(cij − cij′)[(cij + cij′)− (ci′j′ + ci′j)]

(cij − cij′)− (ci′j − ci′j′)
)

>[(cij − cij′)− (ci′j − ci′j′)]
(
− n+ 2

n+ 1
H + n(ci′j′ + ci′j)

+ (n+ 1)
(cij − cij′)[(cij + cij′)− (ci′j′ + ci′j)]

(cij − cij′)− (ci′j − ci′j′)
)

>[(cij − cij′)− (ci′j − ci′j′)]
(
− n+ 2

n+ 1
H + 2n

H

n

+ (n+ 1)
(cij − cij′)[(cij + cij′)− (ci′j′ + ci′j)]

(cij − cij′)− (ci′j − ci′j′)
)

>[(cij − cij′)− (ci′j − ci′j′)]
( n

n+ 1
H + (n+ 1) ·

[∫ sj
sj′
c′2(fi, s)ds

]
·
[∫ fi
fi′
c′1(f, sj)df +

∫ fi
fi′
c′1(f, sj′)df

]
∫ fi
fi′

∫ fi
fi′
c′′12(f, s)dfds

)
>[(cij − cij′)− (ci′j − ci′j′)]

( n

n+ 1
H + (n+ 1) ·

[
(c′2)max(sj − sj′)

]
· 2 [(c′1)max(fi − fi′)]

(c′′12)min(sj − sj′)(fi − fi′)
)

[(cij − cij′)− (ci′j − ci′j′)]
( n

n+ 1
H + 2(n+ 1) · (c′2)max · (c′1)max

(c′′12)min

)
≥0.

That is, for any matching µ′ 6= µM+ , there is another matching which is more
efficient than µ′. Hence µM+ is the most efficient matching.

For Case 3, take a matching µ′ 6= µM+ . W.l.o.g, assume (i, j′), (i′, j) ∈ µ′,
in which i > i′ and j > j′. Take another matching µ = {(i, j), (i′, j′)} ∪
[µ′\{(i, j′), (i, j′)}]. Then we have
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[B(µM+ )− C(µM+ )]− [B(µ′)− C(µ′)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

=− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
[c(µM+ ) + c(µ′)] + (n+ 1)(cn−1n−1 + cn−1n)

+ (n+ 1)
(cnn−1 − cnn)[(cn−1n−1 + cn−1n)− (cnn + cnn−1)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

>− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
· 2H + (n+ 1)

(ci′j − ci′j′)[(cij + cij′)− (ci′j′ + ci′j)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

≥− 3n+ 5

n+ 1
H + 2(n+ 1) · (c′2)max · (c′1)max

(c′′12)max

≥0.

Thus, [B(µM+ ) − C(µM+ )] − [B(µ′) − C(µ′)] > 0, and µM+ must be the most
efficient matching.

For Case 4, take a matching µ 6= µM− . W.l.o.g, assume (i, j), (i, j) ∈ µ′,
in which i > i′ and j > j′. Take another matching µ′ = {(i′, j), (i, j′)} ∪
[µ′\{(i, j), (i′, j′)}]. Then we have

[B(µM+ )− C(µM+ )]− [B(µ′)− C(µ′)]

(cn−1n−1 − cn−1n)− (cnn−1 − cnn)

<− n+ 2

n+ 1
H −

[
1 +

1

2(n+ 1)

]
· 2cmin + (n+ 1) · 2H

n
+ 2(n+ 1) · (c′2)min · (c′1)min

(c′′12)min

=
2n+ 3

n+ 1

[
n2 + 2n+ 2

2n2 + 3n

H

n
H − cmin

]
+ 2(n+ 1) · (c′2)min · (c′1)min

(c′′12)min

Hence the right hand side of the last inequality is less than or equal to 0, if

cmax > cmin ≥ n2+2n+2
2n2+3n

H
n and

(c′2)min·(c′1)min
(c′′12)min

is sufficiently close to 0. Then

µM− must be the most efficient matching by the same logic as in the previous
cases.

For Case 5, take a matching µ′ 6= µM+ . W.l.o.g, assume (i, j′), (i′, j) ∈ µ′,
in which i > i′ and j > j′. Take another matching µ = {(i, j), (i′, j′)} ∪
[µ′\{(i, j′), (i, j′)}]. Then we have

[B(µ)− C(µ)]− [B[µ′]− C(µ′)]

=(ci′j − ci′j′)(cij + cij′)− (ci′j − ci′j′)(ci′j′ + ci′j)

>0.

Hence, µM+ is the most efficient matching.
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