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Abstract

Many algorithms that provide approximate solutions for dynamic stochastic gen-

eral equilibrium (DSGE) models employ the generalized Schur factorization since

it allows for a flexible formulation of the model and exempts the researcher from

identifying equations that give raise to infinite eigenvalues. We show, by means

of an example, that the policy functions obtained by this approach may differ

from those obtained from the solution of a properly reduced system. As a conse-

quence, simulation results may depend on the numeric values of parameters that

are theoretically irrelevant. The source of this inaccuracy are ill-conditioned ma-

trices as they emerge, e.g., in models with strong habits. Therefore, researchers

should always cross-check their results and test the accuracy of the solution.



1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse of

macroeconomic research. While the early proponents of this approch had to write their

own computer code, their contemporaneous successors can resort to a variety of freely

available toolkits, among which DYNARE is probably the most well-known and most

versatile one.1 The user-friendly toolkits have spurred the further development and

prevalence of DSGE models, since they have reduced the barriers for potential users

considerably. One does not have to unterstand the details of a particular algorithm,

the pitfalls of numerical mathematics, and the subtleties of different programming

languages in order to solve, simulate, and even estimate a particular model.

In this note we argue for a careful use. In particular, we show by means of an example

that a specific algorithm, namely the generalized Schur factorization (GSF), which

automates the system reduction, may provide inaccurate solutions.

The GSF is often employed in perturbation methods to compute the linear part of the

solution. Theoretically, this approach delivers a unique solution (see Heiberger et al.

(2012)). In numerical applications, however, the solution depends on the condition of

the involved matrices. Errors that occur at this stage affect the computation of higher

order terms of the solution.

It is well-known that higher-order perturbation methods and non-local methods provide

more accuracy than the linear solution. However, to recognize the increased precision,

one must compute certain accuracy measures, as, e.g., Euler equation residuals (Judd

and Guu (1997)) or the Den Haan-Marcet statistic (Den Haan and Marcet (1994)),

since it hardly surfaces in the second moments of simulated data.2 In our example,

however, we observe that the second moments depend on the stationary level of working

hours, a parameter that, theoretically, has no effect on the linear solution. Interestingly,

when we solve a reduced form of the model with the (simple) Schur factorization, we

do not observe this effect.

Our example is by no means specific. Rather, versions of this model are routinely

employed in studies of the equity premium puzzle.3

1Others are the toolkit of Harald Uhlig (1999), and the programs of Sims (2002).
2See Aruoba, Fernández-Villaverde, and Rubio-Ramı́rez (2006) and Heer and Maußner (2008).
3See Heer and Maußner (2012) for an overview of those models.
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The researcher who relies on the use of DSGE toolkits, thus, should be aware of those

strange effects and check his results by either reducing his system adequately or by

computing accuracy measures.

From here we proceed with a brief description of the canonical DSGE model, the

linearized form of this model, and the GSF in the next section. Section 3 presents our

example. Section 4 concludes. The Appendix covers the details of the model presented

in Section 3.

2 Analytical Framework

2.1 Canonical DSGE Model

Our framework closely follows Schmitt-Grohé and Uribe (2004). The solution is based

on Klein (2000) and the presentation follows Heiberger et al. (2012). Let xt ∈ Rn(x),

zt ∈ Rn(z), and yt ∈ Rn(y) denote a vector of endogenous state variables, exogenous

state variables, and not predetermined (jump) variables, respectively. The equilibrium

conditions of a dynamic, stochastic general equilibrium (DSGE) model are

0n(x)+n(y) = Etg(xt, zt,yt,xt+1, zt+1,yt+1), (2.1a)

zt+1 = Πzt + σΩεt+1, εt+1 ∼ N (0n(z), In(z)), (2.1b)

where the operator Et denotes expectations as of period t. Perturbation methods yield

approximate solutions

xt+1 = hx(xt, zt, σ), (2.2a)

yt = hy(xt, zt, σ) (2.2b)

where the parameters of the polynomial functions hi, i ∈ {x, y} are derived from

(analytic or numeric) derivatives of the system (2.1a) at the point (x,0,y) solving

g(x,0,y,x,y,0) = 0n(x)+n(y).

In a first step one must solve the following system of linear stochastic difference equa-

tions:

AEt

[
w̄t+1

ȳt+1

]
= B

[
w̄t

ȳt

]
, w̄t ≡

[
xt − x

zt

]
, ȳt ≡ yt − y, (2.3a)
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A =

[
g4 g5 g6

0n(z)×n(x) In(z) 0n(z)×n(y)

]
, (2.3b)

B =

[
−g1 −g2 −g3

0n(z)×n(y) Π 0n(z)×n(y)

]
. (2.3c)

where gi denotes the Jacobian matrix of g with respect to its i-th argument.

2.2 The Generalized Schur Method

Usually, the linear system (2.3) contains a number of equations that involve only vari-

ables dated at time t. These arise, e.g., from equations like the economy’s resource

constraint or from static first-order conditions. In this case the matrix A is singular so

that A−1B does not exist and the procedure outlined by Blanchard and Kahn (1980),

cannot be applied.4 As pointed out by Klein (2000), the generalized Schur factorization

can be used to solve the system (2.3).5

There are two ways to use the generalized Schur factorization to solve the model (2.3a).

As shown in Heiberger et al. (2012) both provide the same solution (if it exists at all).

The first way (see Klein (2000)) rests on factoring the matrix pencil (B − λA), the

second on factoring (A− µB) (see Heer and Maußner (2009)). The GSF of the pencil

(B − λA) is:

QHAZ = S,

QHBZ = T,
(2.4)

where Q and Z are unitary matrices, S and T are upper triangular matrixes, and QH

denotes the Hermitian transpose of Q.6 The eigenvalues of the matrix pencil are given

by λi = tii/sii for sii 6= 0.7 Furthermore, the matrices S and T can be arranged so

4Heer and Maußner (2009) present an illustrative example.
5King and Watson (1998, 2000) present a different way to reduce a singular system of linear

stochastic difference equations. The advantage of using the generalized Schur factorization, instead,

is that it is implemented in the freely available LAPACK programs, and thus, easy to implement.
6See, e.g., Golub and van Loan (1996), Theorem 7.7.1, p. 377 who also describe the algorithm to

compute the factorization of A and B. The set of all matrices of the form B − λA, λ ∈ C is called

a pencil. The eigenvalues of the pencil are the solutions of |B − λA| = 0. Unitary matrices Q are

complex-valued matrices whose conjugate (Hermitian) transpose equals the inverse of Q.
7If sii = 0 and tii 6= 0, the eigenvalue µii = sii/tii of the pencil |µA−B| = 0 is defined and equal

to zero. Therefore, we can regard λii as ’infinite eigenvalue’.
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that the eigenvalues appear in ascending order with respect to their absolute value.

Assume that n(w) = n(x) + n(z) eigenvalues have modulus less than one and n(y)

have modulus greater than one. Let Z11 denote the upper left n(w)×n(w) block of Z,

Z12 the upper right n(w)× n(y) block, etc., and define new variables:[
Z11 Z12

Z21 Z22

][
w̃t

ỹt

]
=

[
w̄t

ȳt

]
, (2.5)

so that we can write (2.3) as[
S11 S12

0n(y)×n(w) S22

]
Et

[
w̃t+1

ỹt+1

]
=

[
T11 T12

0n(y)×n(w) T22

][
w̃t

ỹt

]
. (2.6)

S11 is a n(w)×n(w) upper triangular matrix, S22 is a n(y)×n(y) upper triangular ma-

trix, and S12 is a n(w)×n(y) matrix. The matrices T11, T22, and T12 have corresponding

dimensions.

Given these assumptions and definitions, the system

S22Etỹt+1 = T22ỹt

is unstable,8 and to obtain a definite solution, we must set ỹt = 0n(y) for all t. Thus,

from the first line of (2.6)

w̃t+1 = S−1
11 T11w̃t.

Since

w̃t = Z−1
11 w̄t (2.7)

from the first line of (2.5), we get

w̄t+1 = Z11S
−1
11 T11Z

−1
11︸ ︷︷ ︸

Lww

w̄t.

The second line of (2.5) together with (2.7) implies

ȳt = Z21Z
−1
11︸ ︷︷ ︸

Lyw

w̄t.

8To see this, consider the last line of this system, which may be written

Etỹn(y),t+1 = λn(y),n(y)ỹn(y),t, |λn(y),n(y)| = |(tn(y),n(y)/sn(y),n(y))| > 1,

where sn(y),n(y) and tn(y),n(y) denote the last element on the main diagonal of S22 and T22, respectively.
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The dynamics of the solved linear model can be represented by

x̄t+1 = Lxxx̄t + Lxzzt, (2.8a)

ȳt+1 = Lyxx̄t + Lyzzt, (2.8b)

zt+1 = Πzt + σΩεt+1. (2.8c)

where the matrices of the linear approximation of the policy functions (2.2) are related

to Lww and Lyw according to

Lww =

[
Lxx Lxz

0n(z)×n(x) Π

]
, Lyw =

[
Lyx Lyz

]
.

2.3 Model Reduction

In this section we assume that the researcher is able to sort the equations in g(·) so

that the first n(u) equations involve only period t variables. This allows us to partition

yt = [u′t,v
′
t]
′ and to write the linearized system (2.1) as:

Cuūt = Cwv

[
w̄t

v̄t

]
, (2.9a)

DwvEt

[
w̄t+1

v̄t+1

]
+ Fwv

[
w̄t

v̄t

]
= D̃uEtūt+1 + F̃uūt, (2.9b)

where the matrices are related to the Jacobian matrix of g according to:

Dg =

[
Cx Cz Cu Cv 0 0 0 0

Fx Fz Fu Fv Dx Dz Du Dv

]
,

Cwv =
[
−Cx −Cz − Cv

]
, Dwv =

[
Dx Dz Dv

0 In(z) 0

]
, Fwv =

[
Fx Fz Fv

0 −Π 0

]
,

D̃u =

[
Du

0

]
, F̃u =

[
Fu

0

]
.

Solving (2.9a) for ut and using the result in (2.9b) yields:

Et

[
w̄t+1

v̄t+1

]
= W

[
w̄t

v̄t

]
, W =

[
Dwv − D̃uC

−1
u Cwv

]−1 [
Fwv − F̃uC−1

u Cwv

]
. (2.10)

This system can be solved along the same lines as system (2.3a). The (simple) Schur

factorization of the matrix W is given by

S = ZHWZ, (2.11)
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where S is an upper triangular matrix with the eigenvalues of W on the main diagonal.

Assume that n(w) = n(x) + n(z) eigenvalues are within and n(v) eigenvalues outside

the unit circle. S and Z can be chosen so that the first n(w) eigenvalues appear first

on the main diagonal of S. In the new variables[
w̄t+1

v̄t+1

]
=

[
Z11 Z12

Z21 Z22

][
w̃t

ṽt

]
(2.12)

the transformed system reads

Et

[
w̃t+1

ṽt+1

]
=

[
S11 S12

0n(y)×n(w) S22

][
w̃t

ṽt

]
. (2.13)

Accordingly, the system Etṽt+1 = S22ṽt is unstable and we must set ṽt = 0n(v)∀t so

that the solution of the linear model (2.10) is

Lww =

[
Lxx Lxz

0n(z)×n(x) Π

]
= Z11S11Z

−1
11 , (2.14a)

Lwv =
[
Lvw Lvz

]
= Z21Z

−1
11 . (2.14b)

Using (2.14b) in (2.9a) yields

Luw =
[
Lux Luz

]
= C−1

u Cwv

[
In(w)

Z21Z
−1
11

]
(2.14c)

so that the matrices from (2.8b) are given by

Lyx =

[
Lux

Lvx

]
, Lyz =

[
Luz

Lvz

]
. (2.14d)

3 An Example

We consider a real business cycle model taken from Heer and Maußner (2012) that

features habits in consumption and hours as well as adjustment costs of capital. The

model introduces endogenous labor supply in the model of Jermann (1998) who studied

the equity premium implications of a production economy.
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3.1 The Model

Households. Households enter the current period t with a given amount of firm

shares St and real bonds Bt. Bonds have a maturity of one period and can be purchased

at the current price vbt and pay one unit of consumption in period t+ 1. The real share

price is vet and real dividend payments per share are dt. Firms pay the real wage wt

per unit of working hours Nt. Thus,

vet (St+1 − St) + vbtBt+1 ≤ wtNt + dtSt +Bt − Ct (3.1)

is the household’s budget constraint, where Ct denotes consumption. The household

chooses contingency plans for consumption Ct, hours Nt, and next-period stocks St+1

that maximize

Ut = Et
∞∑
s=0

βs
(Ct+s − χCCt+s−1)1−η − 1

1− η
− ν0

(Nt+s − χNNt+s−1)1+ν1 − 1

1 + ν1

(3.2)

subject to (3.1). The first-order conditions for this problem and any further mathe-

matical details of this model are prensented in the Appendix.

Firms. The representative firm uses labor Nt and capital Kt to produce output Yt

according to the production function

Yt = ZtN
1−α
t Kα

t , α ∈ (0, 1). (3.3)

The level of total factor productivity Zt is governed by the AR(1)-Process

lnZt = ρ lnZt−1 + σεt, εt ∼ N (0, 1) . (3.4)

The firm finances part of its investment It from retained earnings REt and issues new

shares to cover the remaining part:

It = vt(St+1 − St) +REt. (3.5)

It distributes the excess of its profits over retained earnings to the household sector:

dtSt = Yt − wtNt −REt. (3.6)

Investment increases the firm’s future stock of capital according to:

Kt+1 = Φ(It/Kt)Kt + (1− δ)Kt, δ ∈ [0, 1], (3.7)
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where we parameterize the function Φ as

Φ(It/Kt) :=
a1

1− ζ

(
It
Kt

)1−ζ

+ a2, ζ > 0. (3.8)

The firm maximizes its beginning-of-period value

Vt = Et
∞∑
s=0

%t+s(Yt+s − wt+sNt+s − It+s) (3.9)

subject to (3.3) and (3.7) where %t+s, with %t = 1, is the firm’s stochastic discount

factor. The respective first-order conditions can be found in the Appendix.

Calibration. We calibrate the model with respect to the US economy. Table 3.1

displays our choice of parameters. The standard parameter values for the production

side, α, ρ, and σ are taken from Hansen (1985), as well as the value of the discount

factor β. The habit parameter χC , η, and the parameters of the capital accumulation

equation (3.7) are taken from Jermann (1998). The parameter ν1 = 2.5 is from de

Paoli, Scott, and Weeken (2010). As these authors, we assume χN = χC ,9 and choose

ν0 so that in the stationary equilibrium N equals 0.33.

Table 3.1

Parameter Choice

Preferences β=0.99 η=5 ν1=2.5 N=0.33

χC=0.82 χN=0.82

Production α=0.36 ρ=0.95 σ=0.00712

Capital Accumulation δ=0.025 ζ=1/0.23

3.2 Accuray of the Solution

Policy Functions. Theoretically, all three ways to compute the coefficients of the

linear part of the policy functions (2.8) should deliver the same solution.10 Indeed, if we

9Alternatively, following Heer and Maußner (2012), we could have chosen the unobserved param-

eters so that the model replicates certain empirical facts. Yet, since we use the model just as an

example, the precise calibration does not matter.
10See Heiberger et al. (2012) for a proof with respect to the GSF. Since the GSF can be reduced to

the SSF, if A (or B) is invertible, this also implies the uniqueness of the solution based on the SSF.
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use N = 0.33 the coefficients are virtually identical: the maximum relative difference

between the coefficients is less than 0.005 percent. This changes considerably, if we use

N = 0.13, a value used by Heer and Maußner (2012) for the German economy.

Table 3.2 presents results regarding the coefficients of the policy functions for the

variables displayed in the left column. The table entries are relative differences between

three different solutions. The first block refers to the solution based on the GSF of the

pencil (B − λA) and the solution of the reduced system. The second block compares

solutions from factoring (A − µB) to those from the reduced system, while the third

block shows differences between the GSF of (A− µB) and (B − λA).

There are no remarkable differences between the reduced system and the GSF of (B−
λA) except for the coefficient that relates Tobin’s qt to the capital stock Kt. The

respective coefficients differ by more than 65 percent. This difference increases to over

150 percent between the GSF of (A − µB) and the SSF. Other noticeable differences

concern the coefficients of the policy function for next period’s capital Kt+1. Both the

coefficients with respect to previous period’s consumption Ct−1 and hours Nt−1 differ

by about 100 percent. The same is true for the coefficient of the technology shock lnZt.

Further, the coefficient that relates consumption Ct to the capital stock Kt is about 10

percent larger in SSF solution.

The differences between the two generalized Schur factorizations displayed in the third

block are the mirror images of the differences between the GSF and the reduced system.

Most remarkable is the coefficient on capital in the policy function for Tobin’s q, which

is positive and equal to 0.0137 in the GSF of (A − µB) and equal to -0.0084 in the

GSF of (B − λA), implying a relative difference of over 260 percent.

Second Moments. Table 3.3 presents results from four different simulations of the

model.11 The moments in the first panel rest on the solution obtained from factoring

(A − µB) while the moments in the second panel are from simulations that use the

policy function obtained from solving the reduced model. The single difference between

the panels labeled N = 0.33 and N = 0.13 are two different values for the stationary

level of hours N . The second moments refer to HP-filtered logs of simulated time

series. It can be shown that the coefficient matrices of the log-linearized system do not

11The simulations were performed with a Fortran program. There is also a Gauss program using the

CoRRAM toolkit written by Alfred Maußner (2011). Both programs can be obtained from the authors

upon request.
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Table 3.2

Policy Functions

Dependent Independent Variables

Variables Kt Ct−1 Nt−1 lnZt

(B − λA) and reduced system

Kt+1 0.00045 0.00502 0.00449 0.01746

Yt 0.00965 −0.00399 0.00193 0.00735

Ct −0.03604 0.00105 −0.00365 −0.01336

It 0.01832 0.00502 0.00449 0.01746

Nt −0.04525 −0.00399 0.00193 −0.01520

wt −0.00407 −0.00399 0.00193 −0.00236

qt −0.65013 0.00502 0.00449 0.01746

Λt −0.03604 −0.00399 −0.00365 −0.01336

(A− µB) and reduced system

Kt+1 −0.00814 −1.01943 −1.00000 −1.00000

Yt 0.02706 −0.01883 0.00949 0.02359

Ct −0.10108 0.00495 −0.01795 −0.04287

It 0.04384 0.00328 0.00210 0.03534

Nt −0.12691 −0.01883 0.00949 −0.04878

wt −0.01142 −0.01883 0.00949 −0.00756

qt −1.56602 0.00408 0.00289 0.03616

Λt −0.10108 −0.01883 −0.01795 −0.04287

(A− µB) and (B − λA)

Kt+1 −0.00858 −1.01933 −1.00000 −1.00000

Yt 0.01725 −0.01490 0.00755 0.01612

Ct −0.06748 0.00390 −0.01435 −0.02991

It 0.02505 −0.00174 −0.00238 0.01757

Nt −0.08554 −0.01490 0.00755 −0.03410

wt −0.00738 −0.01490 0.00755 −0.00521

qt −2.61779 −0.00094 −0.00160 0.01837

Λt −0.06748 −0.01490 −0.01435 −0.02991

Notes: The entries represent relative differences between the coefficients of the policy func-

tions of the variables in the leftmost column. Λt is the Lagrange multiplier of the household’s

budget constraint.

depend on N so that the simulations should yield identical second moments, given that

the same sequence of random numbers is used. However, the second moments in the
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first panel reveal many obvious differences, both in the standard deviations and in the

cross- as well as autocorrelations of the variables displayed. Yet, the second moments

displayed in the lower left and the lower right panel are the same.

Table 3.3

Second Moments

Variable sx sx/sY rxY rx sx sx/sY rxY rx

GSF

N = 0.33 N = 0.13

Output 0.54 1.00 1.00 0.59 0.52 1.00 1.00 0.50

Consumption 0.40 0.74 0.88 0.85 0.21 0.41 1.00 0.50

Investment 1.21 2.25 0.89 0.33 1.38 2.65 1.00 0.50

Hours 0.62 1.15 −0.93 0.82 0.75 1.44 −0.67 0.88

Real Wage 1.14 2.12 0.98 0.73 1.16 2.24 0.88 0.75

Tobin’s q 5.38 9.97 0.87 0.33 6.09 11.72 1.00 0.50

SSF

N = 0.33 N = 0.13

Output 0.54 1.00 1.00 0.59 0.54 1.00 1.00 0.59

Consumption 0.40 0.74 0.88 0.85 0.40 0.74 0.88 0.85

Investment 1.21 2.25 0.89 0.33 1.21 2.25 0.89 0.33

Hours 0.62 1.15 −0.93 0.82 0.62 1.15 −0.93 0.82

Real Wage 1.14 2.12 0.98 0.73 1.14 2.12 0.98 0.73

Tobin’s q 5.38 9.97 0.87 0.33 5.38 9.97 0.87 0.33

Notes: sx:=Standard deviation of HP-filtered simulated time series x, where x stands

for any of the variables from column 1, based on 500 replications with 200 observations

each. sx/sY :=Standard deviation of variable x relative to standard deviation of output

Y . rxY :=Cross-correlation of variable x with output y, rx:=First order autocorrelation of

variable x.

We also computed various measures of the accuracy of the solutions that we used for the

simulations reported in Table 3.3. They indicate that all solutions are rather imprecise

but they give no clear cut advice as to what solution performs better. The interested

reader can consult the Appendix where we present the details of this exercise.
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3.3 Source of the Problem

The odd results reported in the previous subsection origin in the first-order condition

for consumption

Λt = (Ct − χCCt−1)−η.

The steady-state value of consumption is small and increases with the stationary value

of working hoursN . Therefore, a strong habit (χC close to one) and a large coefficient of

relative risk aversion η imply a huge value of Λ, the multiplier of the budget constraint

(3.1). This gives rise to very large coefficients in the Jacobian matrix of g, and,

accordingly, in the matrix B of (2.3a) and the W matrix of (2.10). Yet, due to the

reduction of the model, W is less unbalanced as is A: the condition number (computed

in the L1 norm) of the matrix B for N = 0.33 (N = 0.13) is 0.21× 1012 (0.169× 1017)

while the condition number of the matrix W is 0.978× 109 (0.787× 1014).

4 Conclusion

The availability of easy to use toolkits for solving dynamic stochastic general equi-

librium (DSGE) models has enhanced the widespread application of these models in

macroeconomic research. The researcher supplies the equations of his model to pro-

grams as, e.g., Dynare, which solve and simulate the model.

We demonstrate by means of an example that an uninformed use of DSGE solution

software may produce strange results. We consider a model that has been employed in

studies of the equity premium puzzle. The second moments implied by simulations of

this model are theoretically independent from the steady state value of working hours.

If we reduce the model adequately, the simulations confirm this prediction. However,

when we automate the system reduction by use of the general Schur factorization, we

find noticeable differences in the simulation results, though theoretically the solution

should be invariant to the specific factorization employed. The reason for this result

are more or less ill-conditioned matrices.

Researchers should be aware of those effects and check the accuracy of solutions by

trying different ways to solve their model.
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Appendix (not for publication)

In this Appendix, we provide the formal details of our example model and compute

several measures of the accuracy of the linear solutions.

A.1 The Model

Equilibrium Conditions. The first-order conditions of maximizing (3.2) subject to

(3.1) and given initial values of St and Bt are:

Λt = (Ct − χCCt−1)−η, (A.1.1a)

Λtwt = (Nt − χNNt−1)ν1 , (A.1.1b)

vet = βEt
λt+1

Λt

(dt+1 + vet+1), (A.1.1c)

vbt = βEt
Λt+1

Λt

, (A.1.1d)

where Λt is the Lagrange multiplier of the budget constraint (3.1).

The first-order conditions of the firm’s problem – maximizing (3.9) subject to (3.3) and

(3.7) and a given initial stock of capital Kt – are

wt = (1− α)ZtN
−α
t Kα

t , (A.1.2a)

qt =
1

Φ′(It/Kt)
, (A.1.2b)

qt%t = Et%t+1

{
αZt+1N

1−α
t+1 K

α−1
t+1 − (It+1/Kt+1) + qt+1

[
Φ(It+1/Kt+1) + 1− δ

]}
.

(A.1.2c)

In equilibrium all markets clear. We assume that bonds are in zero supply, Bt = 0∀t,
and that the firm finances investment entirely from retained earnings. Using equa-

tions (3.5) and (3.6) the household’s budget constraint (3.1) reduces to the economy’s

resource restriction Yt = Ct + It. Equilibrium in the market for shares requires

%t+s = βs
Λt+s

Λt

.

Let xt = [Kt, Ct−1, Nt−1]′, yt := [Yt, Ct, It, Nt, wt, dt, qt,Λt, v
e
t ]
′, zt := lnZt. Then, the

system (2.1) is given by:

Λt = (Ct − χCCt−1)−η, (A.1.3a)
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Λtwt = (Nt − χNNt−1)ν1 , (A.1.3b)

wt = (1− α)ZtN
−α
t Kα

t , (A.1.3c)

dt = Yt − wtNt − It, (A.1.3d)

qt =
1

Φ′(It/Kt)
, (A.1.3e)

Yt = ZtN
1−α
t Kα

t , (A.1.3f)

Yt = Ct + It, (A.1.3g)

vet = βEt
λt+1

Λt

(dt+1 + vet+1), (A.1.3h)

qt = βEt
Λt+1

Λt

{
αZt+1N

1−α
t+1 K

α−1
t+1 − (It+1/Kt+1) + qt+1

[
Φ(It+1/Kt+1) + 1− δ

]}
(A.1.3i)

Kt+1 = Φ(It/Kt)Kt + (1− δ)Kt. (A.1.3j)

Note that equations (A.1.3a)-(A.1.3g) involve only variables dated at t (using the def-

inition of xt above). Therefore, the matrix A of the linearized model will be singular.

Deterministic Stationary Equilibrium. Assume σ = 0 so that lnZt equals its

unconditional expectation 0 for all t (and, hence, Z = 1). In this case, we can ignore

the expectations operator Et. Stationarity implies xt+1 = xt = x for any variable in our

model. As usual, we specify Φ so that adjustment costs play no role in the stationary

equilibrium, i.e., Φ(I/K)K = δK and q = Φ′(δ) = 1. This requires that we choose

a1 = δζ ,

a2 =
−ζδ
1− ζ

.

These assumptions imply via equation (A.1.3i) the stationary solution for the output-

capital-ratio:

Y

K
=

1− β(1− δ)
αβ

. (A.1.4a)

Using the production function, we can solve for the capital-labor ratio and for labor

productivity:

K

N
=

(
Y

K

) 1
α−1

, (A.1.4b)

Y

N
=

(
Y

K

) α
α−1

. (A.1.4c)
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Given these solutions equations (A.1.3a)-(A.1.3c) and (A.1.3f) can be reduced to an

equation in N :

(1− α)
Y

N
= (1− χN)ν1(1− χC)η

(
Y

N
− δK

N

)η
N ν1+η. (A.1.4d)

Given the solution for N , the levels of the stock of capital K, output Y , consumption

C, and investment I can be computed. In the final step, equation (A.1.3a) delivers the

stationary level of the Lagrange multiplier Λ.

A.2 Accuracy Measures.

Table A.1 displays various measures that indicate the accuracy of the solutions. The

Euler equation residuals refer to the maximum absolute value of the Euler equations

residuals computed over a four dimensional grid over the state variables Kt, Ct−1, Nt−1,

and lnZt. The grid covers almost all points that the model visited in a simulation with

1,000,000 obserations. Each of the four subintervals was divided into 50 points so that

we had to compute 504 residuals. The meaning of the residuals is as in Judd and Guu

(1997): it is the fraction by which consumption had to be raised via its value given by

the policy function so that the left and the ride hand side of the Euler equation for the

optimal stock of capital (A.1.3i) are equal to each other.

Table A.1

Accuracy Measures

GSF SSF

N=0.33 N=0.13 N=0.33 N=0.13

Euler equation residuals 2.00 1.48 2.02 1.11

Equity premium 1.56 1.69 1.56 1.56

DM-Statistic

percent < 1.69

13.10 1.90 13.10 13.10

percent >16.01 1.00 4.50 1.00 1.00

For all four solutions, the residuals reveal a serious accuracy problem which is somewhat

less pronounced in the case of N = 0.13.
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The equity premium was computed as average of the ex-post premium from a simulated

time series with 1,000,000 observations. As with the second moments, there is no

difference between the two simulations based on the SSF solution.

The Den Haan-Marcet (DM) statistic reports the percentage of simulations (out of

1,000) for which the Wald statistic of the null hypotheses that 3 lags of consumption

and 3 lags of the productivity shock do not help to predict the ex-post residual of

the Euler equation (A.1.3i) is either below the 2.5 or above the 0.975 critical value of

the χ2-distribution with 7 degrees of freedom. What we would expect from a good

solution are approximately 2.5 percent below and 2.5 percent above the respective

critical values. Again, the numbers displayed in Table 3.3 are quite distinct from these

benchmarks and, thus, indicate inaccurate solutions.
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