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Abstract

Klein (2000) advocates the use of the Schur decomposition of a matrix pencil

to solve linear rational expectations (RE) models. Meanwhile his algorithm has

become a center piece in several computer codes that provide approximate solu-

tions to (non-linear) dynamic stochastic general equilibrium (DSGE) models. A

subtlety not resolved by Klein is whether or not a certain Schur decompostion

could fail to solve the model while a second one would provide a solution. We

show that this cannot happen.



1 Introduction

Dynamic stochastic general equilibrium (DSGE) models have become the workhorse

of macroeconomic research. Among the various ways to solve these kind of models

(see, e.g., Aruoba et al (2006) and Heer and Maußner (2008)) perturbation methods

are the most popular ones. To obtain these solutions, a forward looking system of

linear stochastic difference equations must be solved. Blanchard and Kahn (1980)

propose to diagonalize the system. A unique solution exists, if there are as many

stable and instable eigenvalues as there are variables with and without given initial

conditions, respectively. This approach has two disadvantages: i) the original system

must be sufficiently reduced and ii) the Jordan decomposition that leads to the diagonal

structure is numerically less reliable than other decompositions.

Paul Klein (2000) proposes to apply the numerically stable Schur decomposition for

which state of the art computer algorithms exist. The Fortran and Matlab code written

by Paul Klein has been widely used and is part of the code of DYNARE, a popular

Matlab toolbox for the solution, simulation, and estimation of (non-linear) DSGE

models.1

Klein (2000), p. 1419, points to a possible problem:

”A subtlety in this context is that the generalized Schur form is not unique

even if a particular ordering of the eigenvalues is imposed. It is therefore an

open question whether there might be two generalized Schur forms of the

same matrix pencil, one with Z11 invertible and the other with Z11 singular.

A reasonable conjecture is that this cannot happen, but apparently there

is no known proof of this.”

In this note we provide a proof of his conjecture.

We depart slightly from Klein (2000) and set up the model in the way Paul Klein does

in the latest version of his computer code. The advantage of this approach is that it is

not necessary to solve the instable block of the triangularized model forward. Instead,

this is taken care of by the LAPACK routine that provides the decomposition. We

then prove that any two different Schur forms yield the same solution, given there is

one at all.

1The respective programs are Solab.f90 and Solab.

1



From here we proceed with a brief description of the canonical linear rational expecta-

tions (RE) model and derive its solution based on the Schur decomposition in the next

section. Section 3 provides our proof and section 4 concludes.

2 Analytical Framework

Let xt ∈ Rn(x), yt ∈ Rn(y), and zt ∈ Rn(z), denote a vector of variables with given initial

conditions at time t, a vector of not predetermined (jump) variables, and a vector of

purely exogenous variables, respectively. The linear RE model that we want to solve

is given by:

AEt

[

xt+1

yt+1

]

= B

[

xt

yt

]

+ Czt, (2.1a)

zt = Φzt−1 + σΩǫt. (2.1b)

A, B, C, Φ, and Ω are given matrices and σ ≥ 0 is a scaling factor. Et denotes

expectations conditional on information available at time t. ǫt is iid with Et(ǫ) =

0n(z)×1 and covariance matrix In(z). The matrix Φ has all eigenvalues within the unit

circle so that zt is a stationary stochastic process.

The set up of Klein (2000) is more general in terms of the stochastic process zt and with

respect to what is meant by predetermined variables. We define these as in Blanchard

and Kahn (1980) as variables with a given initial condition at time t. Almost all models

used in applied research fit in this more restrictive framework, which is also used by

algorithms that provide higher order approximate solutions of DSGE models, as, e.g.,

Schmitt-Grohé and Uribe (2004) and Gomme and Klein (2011).

We rewrite the system (2.1a) as:

ÃEt

[

wt+1

yt+1

]

= B̃

[

wt

yt

]

,

wt =

[

xt

zt

]

,

Ã =







A11 0n(x)×n(z) A12

A21 0n(y)×n(z) A22

0n(z)×n(x) In(z) 0n(z)×n(y)






, B̃ =







B11 C1 B12

B21 C2 B22

0n(z)×n(x) Φ 0n(z)×n(y)






.

(2.2)
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A11 denotes the upper n(x)× n(x) block of A, A12 the upper n(x)× n(y) block and so

forth.

The generalized Schur factorization of the matrix pencil (B − λA) is given by

QSZH = Ã,

QTZH = B̃,
(2.3)

where Q and Z are complex unitary matrices and S and T are complex upper triangular

matrixes. ZH is the Hermitian transpose of Z. We define new variables:
[

Z11 Z12

Z21 Z22

][

w̃t

ỹt

]

=

[

wt

yt

]

, (2.4)

so that we can write (2.2) as

[

S11 S12

0 S22

]

Et

[

w̃t+1

ỹt+1

]

=

[

T11 T12

0 T22

][

w̃t

ỹt

]

. (2.5)

Assume that for i = 1, . . . n(w) the diagonal elements of S and T are such that |sii| >

|tii| ≥ 0 and that for i = n(w) + 1, . . . , n(w) + n(y) 0 ≤ |sii| < |tii|. Given these

assumptions and definitions, the system

S22Etỹt+1 = T22ỹt

is unstable,2 and to obtain a definite solution, we must set ỹt = 0n(y) for all t. Thus,

from the first line of (2.5)

w̃t+1 = S−1
11 T11w̃t.

To get the solution of the original system, we must assume that the matrix Z11 is

invertible so that the first line of (2.4) can be solved for:

w̃t = Z−1
11 wt, (2.6)

and we get

wt+1 = Z11S
−1
11 T11Z

−1
11

︸ ︷︷ ︸

Lw
w

wt.

2To see this, consider the last line of this system, which may be written

Etỹn(y),t+1 = λn(y),n(y)ỹn(y),t, |λn(y),n(y)| = |(tn(y),n(y)/sn(y),n(y))| > 1.
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The second line of (2.4) together with (2.6) implies

yt = Z21Z
−1
11

︸ ︷︷ ︸

L
y
w

wt.

The solved linear model is

xt+1 = Lx
xxt + Lx

zzt, (2.7a)

yt+1 = Ly
xxt + Ly

zzt, (2.7b)

zt+1 = Φzt + σΩǫt+1. (2.7c)

where

Lw
w =

[

Lx
x Lx

z

0n(z)×n(x) Φ

]

, Ly
w =

[

Ly
x Ly

z

]

.

3 Uniqueness

The Schur decomposition is not unique. Thus, we cannot be sure that the mapping

between wt and w̃t is unique. Consider the

Proposition. Let A and B denote two complex n× n matrices and consider the two

decompositions

QTZH = A = Q̃S̃Z̃H ,

QSZH = B = Q̃T̃ Z̃H ,
(3.1)

where Q, Q̃, Z, and Z̃ are unitary matrices, QQH = In while T , T̃ , S, and S̃ are upper

triangular matrices. Assume:

A.1 The matrix pencil A− λB has finitely many generalized eigenvalues λ.

A.2 Non of these eigenvalues lies on the unit circle.

A.3 There is a k ∈ {1, 2, . . . , n} so that:

|tii| > |sii| and |s̃ii| > |t̃ii| for i = 1, 2, . . . , k

|tii| < |sii| and |s̃ii| < |t̃ii| for i = k + 1, . . . , n.
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A.4

Z11 =










z11 z12 . . . z1k

z21 z22 . . . z2k
...

...
. . .

...

zk1 zk2 . . . zkk










is invertible.

Then

Z−1
11 exists ⇒ Z̃−1

11 exists, (3.2)

Lw
w = Z11T

−1
11 S11Z

−1
11 = Z̃11S̃

−1
11 T̃11Z̃

−1
11 , (3.3)

Ly
w = Z21Z

−1
11 = Z̃21Z̃

−1
11 , (3.4)

where X11 denotes the k× k upper left block and X21 denotes the (n− k)× k lower left

block of X ∈ {T, S, Z, T̃ , S̃, Z̃}. ❒

Remarks.

R.1: A.1 implies |A − λB| 6= 0 for at least one λ ∈ C and excludes tii = sii = 0 and

t̃ii = s̃ii = 0, so that for i = 1, . . . , k, |tii|, |s̃ii| > 0 according to A.3.

R.2: The existence of the decomposition (3.1) follows from Theorem 7.7.1 in Golub

and Van Loan (1996).

As preliminary step, let

M = Z̃HZ. (3.5)

In the Appendix, we prove the following

Lemma.

M =

[

M11 0k×(n−k)

0(n−k)×k M22

]

,

M11 and M22 are unitary matrices, i.e., M11M
H
11 = Ik and M22M

H
22 = In−k. ❒
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Proof of the Proposition. The Lemma implies

Z = Z̃M

⇔

[

Z11 Z12

Z21 Z22

]

=

[

Z̃11 Z̃12

Z̃21 Z̃22

][

M11 0k×(n−k)

0(n−k)×k M22

]

=

[

Z̃11M11 Z̃12M22

Z̃21M11 Z̃22M22

]

yielding

Z11 = Z̃11M11,

Z21 = Z̃21M11.
(3.6)

Note that (3.6) together with the invertibility of M11 implies that there cannot be two

transformations Z11 and Z̃11, one being invertible and the other not, proving (3.2).

Thus, the subtlety raised by Klein (2000) is resolved.

Furthermore, from the first line in (3.1), S̃ = Q̃HQTZHZ̃ = Q̃HQTMH implies

S̃11 =
(

Q̃11Q11 + Q̃12Q21

)

︸ ︷︷ ︸

=:X

T11M
H
11 ⇒ T11 = X−1S̃11M11, (3.7)

where Q̃11 and Q̃12 denote the upper left and the upper right block of Q̃H . The existence

of X−1 follows from the fact that S̃11, T11, and MH
11 are invertible. Analogously, from

the second line in (3.1), T̃ = Q̃HQSZHZ̃ = Q̃HQSMH implies

S11 = X−1T̃11M11. (3.8)

Using (3.6) to substitute for Z11 and Z21 on the right-hand side of (3.4), establishes

the third part of the proposition. The second statement (3.3) follows from substituting

for T−1
11 and S11 on the right-hand side of (3.3) using (3.7) and (3.8). ❒

A Caveat. The uniqueness of the solution implied by the Proposition is a theoret-

ical result. In practice, however, the decomposition delivered by the respective linear

algebra routines depends on the condition numbers of Ã and B̃. In a companion paper,

Heiberger et al (2012), we show by means of a model from the asset pricing literature

that there can be noticable differences in the matrices Lw
w and Ly

w depending on the

factorization employed.
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4 Conclusion

Popular toolkits, like DYNARE, employ the generalized Schur decompostion of a ma-

trix pencil to generate approximate solutions of non-linear DSGE models. The Schur

decomposition, however, is not unique. Therefore, Klein (2000) raises the question

whether it could happen that one decomposition fails to compute a solution while an-

other one succeeds. We prove that this cannot happen. Given that the problem at

hand satisfies the Blanchard and Kahn (1980) conditions and given that the trans-

formation matrix is invertible, a unique solution exists. In numerical applications,

however, solutions may differ, if the involved matrices are sufficiently unconditioned.
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Appendix: Proof of the Lemma

Let T11 = (tij) for i, j = 1, . . . k and similarly for the other matrices in (3.1) yielding

the partitioning:

T =

[

T11 T12

0(n−k)×k T22

]

, T̃ =

[

T̃11 T̃12

0(n−k)×k T̃22

]

, S =

[

S11 S12

0(n−k)×k T22

]

, S̃ =

[

S̃11 S̃12

0(n−k)×k S̃22

]

,

Q =

[

Q11 Q12

Q21 Q22

]

, Q̃ =

[

Q̃11 Q̃12

Q̃21 Q̃22

]

, Z =

[

Z11 Z12

Z21 Z22

]

, Z̃ =

[

Z̃11 Z̃12

Z̃21 Z̃22

]

.

Next, let zj denote the columns of Z,

Z = [z1, z2, . . . , zn],

and define the matrix M by

M = Z̃HZ,

with partition

M =















m11 . . . m1k m1k+1 . . . m1n

...
. . .

...
...

. . .
...

mk1 . . . mkk mkk+1 . . . mkn

mk+11 . . . mk+1k mk+1k+1 . . . mk+1n

...
. . .

...
...

. . .
...

mn1 . . . mnk mnk+1 . . . mnn















=

[

M11 M12

M21 M22

]

.

Thus, we may write:

A[z1, . . . , zk] = QTZH [z1, . . . , zk] = QT [e1, . . . , ek] = Q

[

T11

0(n−k)×k

]

and

B[z1, . . . , zk] = QSZH [z1, . . . , zk] = QS[e1, . . . , ek] = Q

[

S11

0(n−k)×k

]

,

= Q

[

T11

0(n−k)×k

]

T−1
11 S11.

Therefore:

B[z1, . . . , zk] = A[z1, . . . , zk]T
−1
11 S11. (A.1)
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Considering the respective right-hand sides of (3.1), we may also write:

A[z1, . . . , zk] = Q̃S̃Z̃H [z1, . . . , zk]= Q̃S̃

[

M11

M21

]

= Q̃

[

S̃11M11 + S̃12M21

S̃22M21

]

,

B[z1, . . . , zk] = Q̃T̃ Z̃H [z1, . . . , zk]= Q̃T̃

[

M11

M21

]

= Q̃

[

T̃11M11 + T̃12M21

T̃22M21

]

.

Employing (A.1) yields:

Q̃

[

T̃11M11 + T̃12M21

T̃22M21

]

= Q̃

[

S̃11M11 + S̃12M21

S̃22M21

]

T−1
11 S11.

Since Q̃HQ̃ = In, the second line of the previous matrix equation implies:

T̃22M21 = S̃22M21T
−1
11 S11. (A.2)

Note that T−1
11 , being the inverse of an upper triangular matrix, is itself an upper

triangular matrix with diagonal elements tii = 1
tii
, i = 1, . . . , k. Let P = (pij), i, j =

1, . . . , k denote the matrix P = T−1
11 S11 with diagonal elements pii = sii/tii. Equation

(A.2) yields:

n∑

l=i

t̃ilmlj =

n∑

l=i

s̃il

j
∑

h=1

mlhphj for i = k + 1, . . . , n, j = 1, . . . , k. (A.3)

We use induction over j and i to show M21 = 0(n−k)×k.

• j = 1:

– i = n:

In this case (A.3) reduces to

mn1 =
s̃nn

t̃nn

s11
t11

︸ ︷︷ ︸

|·|<1

mn1,

where the inequality follows from A.3. Therefore: mn1 = 0.

– mi+11 = 0 ⇒ mi1 = 0:

In this case (A.3) reduces to

mi1 =
s̃ii

t̃ii

sii
tii

︸ ︷︷ ︸

|·|<1

mi1

so that indeed mi1 = 0.
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• mij = 0 ⇒ mij+1 = 0:

– i = n:

Thus, mn1 = mn2 = · · · = mnj = 0 so that (A.3) reduces to

mnj+1 =
s̃nn

t̃nn

sj+1j+1

tj+1j+1
︸ ︷︷ ︸

|·|<1

mnj+1

proving the assertion.

– mnj+1 = mn−1j+1 = · · · = mi+1j+1 = 0 ⇒ mij+1 = 0:

In this case (A.3) reduces to

mij+1 =
s̃ii

t̃ii

sj+1j+1

tj+1j+1
︸ ︷︷ ︸

|·|<1

mij+1

proving the assertion.

This results allows us to partition M as:

M =

[

M11 M12

0(n−k)×k M22

]

.

Since

MHM = (ZHZ̃Z̃HZ) = In =

[

MH
11 0k×(n−k)

MH
12 MH

22

][

M11 M12

0(n−k)×k M22

]

=

[

MH
11M11 MH

11M12

MH
12M11 MH

12M12 +MH
22M22

]

,

we get:

Ik = MH
11M11,

0k×(n−k) = M12,

In−k = MH
22M22

so that M11 and M22 are unitary matrices and

M =

[

M11 0k×(n−k)

0(n−k)×k M22

]

.

❒
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