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1 Introduction

Contents, questions and methods have changed in empirical economics in the
last 50 years. Many methods were developed in the past but the application
in empirical economics followed with delay. Some methods are well-known but
have experienced only little attention. New approaches focus on characteristics
of the data, on modified estimators, on correct specifications, on unobserved
heterogeneity, on endogeneity and on causal effects. Actual data sets are not
compatible with the assumptions of classical models. Modified methods were
presented to inference. Especially nonlinear relationships are in the focus.

Users have to follow specific principles at the selection of appropriate methods.
Kennedy (2002) has formulated 10 rules:
rule 1: Thou shalt use common sense and economic theory.
rule 2: Thou shalt ask the right questions.
rule 3: Thou shalt know the context.
rule 4: Thou shalt inspect the data.
rule 5: Thou shalt not worship complexity.
rule 6: Thou shalt look long and hard at thy results.
rule 7: Thou shalt beware the costs of data mining.
rule 8: Thou shalt be willing to compromise.
rule 9: Thou shalt not confuse significance with substance.
rule 10: Thou shalt confess in the presence of sensitivity.

The following considerations are based on five hypotheses:

(1) Significance is an important indicator in empirical economics but the results
are sometimes misleading.

(2) Assumptions’ violation, outliers and only partially identified parameters are
often the reason of wrong standard errors.

(3) OLS estimation is the working horse in empirical economics but especially
unobserved heterogeneity and endogeneity require alternative methods.

(4) The estimation of average effects is useful but subgroup analysis and quan-
tile regressions are important supplements.
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(5) Causal effects are of great interest but the determination is based on dis-
parate approaches with varying results.

2 Econometric methods

2.1 Significance and standard errors in regression models

The working horse in empirical economics is the classical linear model

yi = x′iβ + ui i = 1, ..., n.

with some specific assumptions which are often not fulfilled using real data sets.
The coefficient vector β is estimated by ordinary least squares (OLS)

β̂ = (X ′X)−1X ′y

and the covariance matrix by

V̂ (β̂) = σ̂2(X ′X)−1.

The influence of a regressor, e.g. xk on the regressand y is called significant if |t| =
|β̂k/

√
V̂ (β̂k)| > t0.975. Ziliak/McCloskey(2008) and Krämer(2011) have criticized

this procedure. Three types of mistakes can lead to a misleading interpretation:

(1) There does not exist any effect but due to technical inefficiencies a signifi-
cant effect is reported.

(2) The effect is small but due to the precision of the estimates a significant
effect is determined.

(3) There exists a strong effect but due to the variability of the estimates the
effect cannot be detected.

The consequence cannot be to neglect the instrument of significance but what
can we do? Some proposals may help:
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• Compute robust standard errors.

• Analyze whether variation within clusters is only small in comparison with
variation between the clusters.

• Check whether dummies as regressors with low or high probability are re-
sponsible for insignificance.

• Test whether outliers induce large standard errors.

• Consider the problem of partially identified parameters.

• Detect whether collinearity is effective.

• Investigate alternative specifications.

• Use sub-samples and compare the results.

• Execute sensitivity analyzes.

• Employ Hamermesh’s sniff test in order to detect whether econometric re-
sults are in accord with economic plausibility.

2.1.1 White’s covariance estimator and modifications

Heteroscedasticity induces inefficient OLS estimates. This problem can be avoided
by transformation of the regression model

yi
σi

=
β0

σi
+ β1

x1i

σi
+ . . .+ βk

xki
σi

+
ui
σi
,

where i = 1, . . . , n. Typically, the individual variances of the error term are
unknown. In the case of unspecific heteroscedasticity White (1980) recommends
the following estimation of the covariance matrix

V̂W (β̂) = (X ′X)−1(
∑

û2
ixix

′
i)(X

′X)−1.

Such estimates are asymptotically heteroscedasticity-robust. In many empirical
investigations this robust estimator is routinely applied without testing whether
heteroskedasticity exists. We should stress that those estimated standard errors
are more biased than conventional estimators if residuals are homoskedastic. As

4



long as there is not too much heteroskedasticity, robust standard errors are also
biased downward. In the literature we find some suggestions to modify this
estimator, namely û2

i should be substituted by:

hc1 =
n

n−K
û2
i

hcj =
1

(1− cii)δj
û2
i

where j=2, 3, 4, cii is the main diagonal element of X ′(X ′X)−1X and δj =

1; 2;min[γ1, (ncii)/K] +min[γ2, (ncii)/K]. It is necessary that γ2 is positive and
constant.

It can be shown for hc2 that under homoskedasticity the mean of û2
i is the same

as σ2(1 − cii). Therefore we should expect that the hc2 options leads under ho-
moskedasticity to better estimates in small samples then the simple hc1 option.
Then E(û2

i /(1 − cii)) is σ2. The second correction is presented by MacKinnon
and White (1985). This is an approximation of a more complicated estimator
which is based on a jackknife estimator. Applications demonstrate that the stan-
dard error increases started with OLS via hc1, hc2 and hc3 option. Simulations,
however, do not show a clear preference. As one cannot be sure which case is the
correct one, a conservative choice is preferable (Angrist/Pischke 2009, 302). The
estimator should be chosen that has the largest standard error. This means the
null hypothesis (H0: no influence on the regressand) keeps up longer than with
other options.

Cribari-Neto and da Silva (2011) suggest γ1 = 1 and γ2 = 1.5 in hc4. The
intention is to weaken the effect of influential observations compared with hc2 and
hc3 or in other words to enlarge the standard errors. In an earlier version (Cribari-
Neto et al. 2007) a slight modification is presented: hc∗4 = 1/(1 − cii)δ4∗ , where
δ4∗ = min(4, ncii/p).It is argued that the presence of high leverage observations
is more decisive for the finite-sample behavior of the consistent estimators of
V (β̂) than the intensity of heteroskedasticity, hc4 and hc4∗ aim at discounting for
leverage points - see section 2.2.1 - more heavily than hc2 and hc3. The same
authors formulate a further estimator

hc5 =
1√

(1− cii)δ5
,
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where δ5 = min(ncii
p
,max(4,

nkcii,max)

p
)) and k is again a predefined constant,

k = 0.7 is suggested. In this case squared residuals are affected by the maximal
leverage.

2.1.2 Re-sampling procedures

Other possibilities to determine the standard error are the jackknife and the boot-
strap estimator. These are re-sampling procedures, which construct sub-samples
with n-1 observations in the jackknife case. Sequentially, one observation is
eliminated. The former methods compare the estimated coefficients of the total
sample size β̂ with those after eliminating one observation β̂−i. The jackknife
estimator of the covariance matrix is

V̂jack =
n−K
n

n∑
i=1

(β̂−i − β̂)(β̂−i − β̂)′.

There exist many ways to bootstrap regression estimates. The basic idea is
assume that the sample with n elements is the population and B timesm elements
(sampling with replacement) are drawn, where m < n and m > n is feasible. If
β̂′boot = (β̂(1)′m, ..., β̂(B)′m) are the bootstrap estimators of the coefficients the
asymptotic covariance matrix is

V̂boot =
1

B

B∑
b=1

(β̂(b)m − β̂)(β̂(b)m − β̂)′

where β̂ is the estimator with the original sample n. Alternatively, β̂ can be
substituted by β̄ = 1/B

∑
β̂(b)m. Bootstrap estimates of the standard error

are especially helpful if it is difficult to compute standard errors by conventional
methods, e.g. 2SLS estimators under heteroskedasticity or cluster-robust stan-
dard errors when many small clusters or only short panels exist. The jackknife
can be viewed as a linear approximation of the bootstrap estimator. A further
popular way to estimate the standard errors is the delta method.This approach
is especially used for nonlinear functions of parameter estimates γ̂ = g(β̂). An
asymptotic approximation of the covariance matrix of a vector of such functions
is determined. It can be shown that

n1/2(γ̂ − γ0) ∼ N(0, G0V
∞(β̂)G′0),

where G0 is an l ×K matrix with typical element ∂gi(β)/∂βj.
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2.1.3 The Moulton problem

The variance of a regressor is low if this variable strongly varies between groups
but only little within groups (Moulton 1986, 1987, 1990). This is especially the
case if industry, regional and macroeconomic variables are introduced or panel
data are considered. In a more general this is called the problem of cluster
sampling. Individuals or establishments are sampled in groups or clusters. Con-
sequence may be a weighted estimation that adjust for differences in sampling
rates. However, weighting is not always necessary and estimates may understate
the true standard errors.

Example: Assume a data set with 5 observations and 4 variables (V 1− V 4).

i V1 V2 V3 V4
1 24 123 -234 -8
2 875 87 54 3
3 -12 1234 -876 345
4 231 -87 -65 9808
5 43 34 9 -765

The linear model

V 1 = β1 + β2V 2 + β3V 3 + β4V 4 + u

is estimated by OLS using the original data set (1F), then the data set is doubled
(2F), quadrupled (4F) and octuplicated (8F). The following estimates result

1F 2F 4F 8F
V1 β̂ σ̂β̂
V2 1.723907 1.753241 0.715757 0.438310 0.292207
V3 2.794101 2.387409 0.974655 0.596852 0.397903
V4 0.027040 0.061766 0.025216 0.015442 0.010294

_cons 323.2734 270.5781 110.463 67.64452 45.0963

The coefficients are the same, however, the standard errors decrease if the same
data set is multiplied. Namely, the variance is only 1/6, 1/16 and 1/36 of the

7



original variance. The general relationship can be shown as follows. For the
original data set (X1) the variance is

V̂1(β̂) = σ̂2
1(X ′1X1)−1.

Using X1 = ... = XF the F times enlarged data set with the design matrix
X ′ =: (X ′1...X

′
F ) leads to

σ̂2
F =

1

F · n−K

F ·n∑
i=1

û2
i =

F (n−K)

F · n−K
σ̂2

1

and

V̂F (β̂) = σ̂2
F (X ′X)−1 = σ̂2

F

1

F
· (X ′1X1)−1 =

n−K
F · n−K

V̂1(β̂).

K is the number of regressors including the constant term, n is the number of
observations in the original data set (number of clusters), F is the number of
observations within a cluster. In the numerical example with F=8, K=4, n=5
the Moulton factor M which indicates the deflation factor of the variance is

M =
n−K

F · n−K
=

1

36
.

This is exactly the same as it was demonstrated in the numerical example. Anal-
ogously the estimated values 1/6 and 1/16 can be determined. As the multiplying
of the data set does not add any further information to the simple data set not
only the coefficients but also the standard errors should be the same. Therefore
it is necessary to correct the covariance matrix. Statistical packages, e.g. Stata,
supply cluster-robust estimates

V̂ (β̂)C = (
C∑
c=1

X ′cXc)
−1

C∑
c=1

X ′cûcûcXc(
C∑
c=1

X ′cXc)
−1,

where C is the number of clusters. In our specific case this is the number of
observations n. This approach implicitly assumes that F is small and n→∞. If
this assumption does not hold a degrees-of-freedom correction

dfC =
F · n− 1

F · n−K
n

n− 1
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is helpful. dfC ·V̂ (β̂)C is the default option in Stata, which corrects for the number
of clusters in practice being finite. Nevertheless, this correction eliminates only
partially the underestimated standard errors. In other words, the t-statistics are
larger than that of β̂k/

√
V̂1.

2.1.4 Large standard errors of dichotomous regressors with small or
large mean

Assume a simple two variable classical regression model

yi = a+ b ·Di + ui,

where Di is a dummy variable. The variance of b̂ is

V (b̂) =
σ2

n
· 1

s2
D

,

where

s2
D = P̂ (D = 1) · P̂ (D = 0) =: p̂(1− p̂) =

(n|D = 1)

n
· (1− (n|D = 1)

n
).

This result holds only for inhomogeneous models. An extension to multiple re-
gression models seems possible - see applications Table A1 and Table 2. V (b̂) is
minimal at given n and σ2 when the estimated variance of D reaches the max-
imum, if p̂ = 0.5. The more p̂ deviates from 0.5, the larger or smaller is p̂, the
higher is the tendency to insignificant effects. This conclusion is not unavoidable
that the t-value of a dichotomous regressor D1 is always larger than that of D2,

when V (D1) > V (D2). The significance is determined by b̂/
√
V̂ (b̂).

Example: An income variable (Y = Y0/107) with 53 664 observations is regressed
on a Bernoulli distributed random variable RV . The linear model Y = β0 +

β1RV + u is estimated by OLS where the mean of RV (RV ) is alternatively
0.1, 0.2, . . . , 0.9
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Y β̂ std.err
RV=0.1 -0.3727 0.6819
RV=0.2 -0.5970 0.5100
RV=0.3 -0.4768 0.4455
RV=0.4 0.3068 0.4170
RV=0.5 0.1338 0.4094
RV=0.6 0.0947 0.4187
RV=0.7 -0.0581 0.4479
RV=0.8 -0.1860 0.5140
RV=0.9 -0.1010 0.6827

This example confirms the theoretical result. The standard error is smallest if
RV = 0.5 and increases systematically if the mean of RV decreases or increases.
An extension to multiple regression models seems possible - see applications in
the Appendix, Tables A1-A4. The more D̄ deviates from 0.5, the larger or smaller
is the mean of D, the higher is the tendency to insignificant effects. A caveat
is necessary. The conclusion that the t-value of a dichotomous regressor D1 is
always smaller than that of D2, when V (D1) > V (D2), is not unavoidable. The
basic effect of D1 may be larger than that of D2 on y. The theoretical result
aims on specific variables and not on the comparison between regressors. In

practice, significance is determined by t = b̂/

√
V̂ (b̂). However, we do not find a

systematic influence of b̂ on t if D̄ varies. Nevertheless, the random differences
in the influence of D on y can dominate the D̄ effect via s2

D. The comparison
of Table A3 with A4 shows that the influence of a works council (WOCO) is
stronger than that of a company level pact (CLP), the coefficients are larger and
the standard errors are lower so that the t-values are larger. In both cases the
standard errors increase if the mean of the regressor is reduced. The comparison
of line 1 in Table A3 with line 9 in Table A4, where the mean of CLP andWOCO

is nearly the same, makes clear that the stronger basic effect of WOCO on lnY
dominates the mean reduction effect of WOCO. The t-value in line 9 of Table
A4 is smaller than that in line 1 of Table A4 but still larger than that in line 1
of Table A3. Not all deviations of the mean of a dummy D as regressor from 0.5

induce increasing standard error effects. The variation of D̄ has to be randomly.
An example, where this is not the case, is matching - see section 2.2 and the
application in section 3. D̄ increases due to the systematic elimination of those
observations with D = 0 that are dissimilar to those of D = 1.
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2.2 Outliers and partially identified parameters

Outliers, influential observations, grouped data, multicollinearity, missing val-
ues, measurement errors and partially identified parameters are specific data
problems. This entails consequences for the coefficients and the standard error
estimates.

2.2.1 Outliers and influential observations

Outliers may have strong effects on the estimates of the coefficients, of the de-
pendent variable and on standard errors and therefore on significance. The main
diagonal elements cii of the hat matrix C = X(X ′X)−1X ′ (Leverages) character-
ize the effects of a single observation on the coefficient estimator, on the estimated
endogenous variable ŷi and on the variance V̂ (ŷi). a leverage is noted as strong
if cii > 2K/n. The higher cii, the higher is the difference between the estimation
with and without the i-th observation. A rule of thumb of influential observations
orients on the relation cii > 2K/n. The effects of the i-th observation on β̂, ŷ
and V̂ (β̂) and the rules of thumb can be expressed by

|β̂k − β̂k(i)| >
2√
n

|
ŷi − ŷi(i)
s(i)
√
cii
| > 2

√
K

n
.

|det(s
2(i)(X ′(i)X(i))−1

det(s2(X ′X)−1)
| > 3K

n
.

The determination of an outlier is based on externally studentized residuals

û∗i =
ûi

s(i)
√

1− cii
∼ tn−K−1.

Alternatively, a mean shift outlier model can be formulated

y = Xβ + Aiδ + ε,
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where

Ai =

{
1 if i is assumed as an outlier
0 otherwise

Observation i has an effect on y if δ is significantly different from zero. The
estimated t-value is the same as û∗i .

Hadi(1992) proposes a generalized approach, an outlier detection with respect
to all regressors. The decision whether the design matrix X contains outliers is
based on an elliptical distance

di(c, V ) =
√

(xi − c)′V −1(xi − c),

where intuitively the classical choices of c and V are the arithmetic mean (x̄)
and the sample covariance matrix S of the data set X so that the Mahalanobis
distance follows. If

di(x̄i, S)2 > χ2
K

observation i is identified as an outlier. As x̄ and S react sensitive to outliers it
is necessary to estimate an outlier-free mean and sample covariance matrix. For
this purpose, only outlier-free observations are considered to determine x̄ and S.
Another way to avoid the sensitivity problem is to use more robust estimators of
the location and covariance matrix, e.g. the median but not the mean is robust
to outliers. Finally, an outlier vector MOD (multiple outlier dummy) instead
of A is incorporated in the model in order to test whether the identified outlier
observations have a significant effect on the dependent variable. A second problem
is whether we should eliminate all outliers or only some of them or no outlier.
The situation is obvious if an outlier is induced by measurement errors. Typically,
however, we cannot be sure. Insofar, the correct estimation is based between the
two extremes: all outliers are considered and all outliers are eliminated.

2.2.2 Partially identified parameters

Some observations are unknown or not exactly measured. Consequence is that
a parameter cannot exactly be determined but only within a range. The outlier
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situation leads to a partial identification problem. There exist many other similar
constellations.

Example: share of unemployed persons is 8% but 5% have not answered to the
question of the employment status. Therefore, the unemployment rate can only
be calculated within certain limits, namely between the two extremes:

• all persons who have not answered are employed

• all person who have not answered are unemployed.

In the first case the unemployment rate is 7.2% and in the second case 12.2%.

The main methodological focus is the inference. Chernozhukov et al. (2007), Im-
bens/Manski (2004), Romano/Shaikh (2010), Stoye (2009) and Woutersen (2009)
have discussed solutions.

If Θ0 = [θl, θu] is the known range of the interested parameter the confidence
interval following Stoye(2009) is

CIα = [θ̂l −
cασ̂l√
n
, θ̂u −

cασ̂l√
n

],

where σ̂l is the standard error of the estimation function θ̂l. cα is chosen by

Φ(cα +

√
n∆n

σ̂l
)− Φ(−cα) = 1− α,

where ∆ = θu− θl. As ∆ is unknown, an analogous interval has to be estimated.

2.3 Nonlinear models

Linear models are widely spread in empirical economics. Economic theory has
in many fields no clear answer to the question whether and which nonlinear
approaches are preferable. And if this is the case a linearisation is often possible
by renaming, taking of logarithm or representation by Taylor series. Nevertheless,
the approximation mistake can be enormous.

13



The manifold possibilities of nonlinear modeling exist. The Box-Cox transforma-
tion is one way. First the endogenous variable can be modified

y(λ) =

 yλ − 1
λ

λ 6= 0

ln y λ = 0,

where the parameter λ is typically an integer. The same is possible for one or
all regressors, also in combination with y(λ), where the same or different λ values
can be assumed.
An alternative is the construction of interaction variables or the restriction of
linearity to specific ranges. Linear splines are the conventional instrument. In
the two variable case the representation is

y = β
(1)
0 + β

(1)
1 x+ u, if x < x1

y = β
(2)
0 + β

(2)
1 x+ u, if x1 ≤ x < x2

y = β
(3)
0 + β

(3)
1 x+ u, if x2 ≤ x

x1 and x2 are knots. The linear ranges can be determined by dummies

D1 =

{
1, if x ≥ x1

0 otherwise
D2 =

{
1, if x ≥ x2

0 otherwise

These three regressions can be combined to one regression with interactions:

y = γ0 + γ1x+ γ2D1 + γ3D1x+ γ4D2 + γ5D2x+ u .

A further restriction is necessary

γ0 + γ1x1 = (γ0 + γ2) + (γ1 + γ3)x1

(γ0 + γ2) + (γ1 + γ3)x2 = (γ0 + γ2 + γ4) + (γ1 + γ3 + γ5)x2 .

so that the linear restrictions are

0 = γ2 + γ3x1

0 = γ4 + γ5x2.
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The unrestricted regression is

y = γ0 + γ1x+ γ3D1(x− x1) + γ5D2(x− x2) + u.

After renaming

y = α0 + α1z1 + α2z2 + α3z3 + u,

follows, where

z1 = x

z2 = x− x1 if x ≥ x1; 0 otherwise

z3 = x− x2 if x ≥ x2; 0 otherwise.

Testing is possible, whether

• the slopes are the same in all linear ranges (β(1)
1 = β

(2)
1 = β

(3)
1 )

H0 : α2 = α3 = 0

• for x < x2 the slope is constant (β(1)
1 = β

(2)
1 )

H0 : α2 = 0

• for x ≥ x1 the slope is constant (β(2)
1 = β

(3)
1 )

H0 : α3 = 0 �

Linear splines can also be estimated within multiple models, where for regressor
xk a piecewise linear regression is constructed. Assumptions are necessary for
xk1 to xk(L−1) by numerical specification ∗1 ... ∗L−1 that fulfill the condition
∗1 < ... < ∗L−1. The modeling is

dy

dxk
=


βk1, if xk < ∗1

...
βk(L−1), if ∗L−2 ≤ xk < ∗L−1

βkL otherwise

A generalization follows if the linear pieces are substituted by nonlinear functions.
In practice cubic splines are popular.
Three further possibilities of nonlinear modeling are suggested in the literature:
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(1) Construction of specific functions of linear combinations of regressors

yi = F (x′iβ̃ + ui).

Practical relevance has this case if y is a binary variable. F (·) is assumed as
a distribution function, most often a normal or a logistic function function.
The well known probit and logit model follow.

(2) Observations can be substituted by a weighted adjustment due to larger
and smaller neighbor values. The more a neighbor xi deviates from the
observation that shall be adjusted (x0) the lower is the weight

w(u) = w(
|x0 − xi|

∆x0

) =

{
(1− u3)3 for 0 ≤ u < 1

0 otherwise,

where ∆(x0) = maxN(x0) |x0 − xi|.

(3) Unspecific functions for some regressors. Additive models belong to this cat-
egory. Some or all linear functions are substituted by an arbitrary smooth-
ing function, where the exogenous variables are additively combined

y = β0 +

K1∑
k=1

f(xk) +
K∑

k=K1+1

xkβk + u.

The estimation of case (1) can be done by a Taylor series approximation of first
order by the least squares or the maximum likelihood method. A procedure of
numerical optimization has to be applied to obtain the solution. In case (2)
the smoothing is usual a weighted least squares method. Case (3) follows the
backfitting algorithm. Iteratively, the additive nonlinear regression is estimated.
Parametric and nonparametric procedures are available.

2.4 Instrumental variables estimators

OLS estimators are biased and inconsistent if disturbances and regressors are
correlated. Especially, four phenomenons are responsible:

- neglected influences that are correlated with regressors;
- interdependence between regressors and regressand;
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- random measurement errors in the regressors;
- lagged endogenous variables as regressors under autocorrelation.

The interdependencies can be explained by theoretical arguments or by a statis-
tical test. There exist different versions to tests for exogeneity. One possibility is
the comparison of the coefficient estimates of a linear model y = Xβ + u based
on OLS and 2SLS

TS = (β̂OLS − β̂2SLS)′(V̂ (β̂OLS)− V̂ (β̂2SLS))(β̂OLS − β̂2SLS).

This test statistic is asymptotically χ2 distributed. The null hypothesis of exo-
geneity will be rejected if TS exeeds χ2(K; 1 − α) at a given α level. K is the
number of regressors.

Under this decision inconsistence can be avoided if instrumental variables (IV)
estimators are used characterized by two properties: (i) strong correlation with
the interested regressors which have to be eliminated; (ii) no correlation with the
disturbance term.

Look for substitutes (zK1, · · · , zKL) of one or more than one regressor of the linear
regression model y = Xβ + u, e.g. for xK . The instrumental variables matrix is
Z = (x1, · · · , xK−1, zK1, · · · , zKL) ∼ N × (K − 1 + L) and the sample condition

1

N
Z ′û =

1

N
Z ′(y −Xβ̂) = 0.

The weighted distance

(y −Xβ)′ZWZ ′(y −Xβ),

is minimized, where W is a weighting matrix. Ŵ = V̂ −1 is optimal if Ŵ is a
consistent estimation of V ((1/N)Z ′u)−1.

The condition of the sample moments is

1

N
X ′ZŴZ ′û =

1

N
X ′ZV̂ −1(Z ′y − Z ′Xβ̂) = 0
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and the estimation of β follows

β̂IV = (X ′ZV̂ −1Z ′X)−1(X ′ZV̂ −1Z ′y).

Generalized method of moments(GMM) estimators are a generalization of IV es-
timators that we can interpret as a method of moments (MM) estimator. The
2SLS estimator is a special case. In absence of heteroscedasticity and autocorre-
lation we obtain V̂ = 1

N
σ̂2(Z ′Z)−1. If this is substituted in the IV estimator we

obtain the 2SLS estimator

β̂2SLS = (X ′Z(Z ′Z)−1Z ′X)−1(X ′Z(Z ′Z)−1Z ′y).

The first stage is the OLS estimation of the reduced form. In the second stage
the endogenous variables are substituted by the estimated endogenous variables
of the first stage. Then OLS is used again.

The 3SLS and the LIML estimator are specific IV estimators as the 2SLS estima-
tor. The LIML method is based on a ML approach that spends only a priori in-
formation from the interested equation. The difference between the 2SLS and the
3SLS estimator is following: in the latter a system of seemingly unrelated equa-
tions is estimated in the third stage by a generalized least squares estimation. In
this case more information is used than in the 2SLS method. Heteroskedasticity
is allowed. A new Fuller like estimator based on a jackknife version of the LIML
estimator presented by Hausman et al. (2012) is robust to heteroskedasticity
and many instruments. This is in contrast to the conventional LIML and Fuller
estimators.

IV and GMM estimators have preferable asymptotic properties. Less is known
about small sample properties. Nelson and Startz (1990) investigate properties of
IV estimators for finite samples. They are biased and the distribution is bimodal
with relatively strong tails. The estimates are often nearby the OLS estimator
than around the true parameter vector.

Bound, Jaeger and Baker (1995) show that in finite samples the bias has a similar
dimension as that of the OLS estimator. The more the partial determination
coefficient between z and x tends to zero, the more similar is the bias as that
of the OLS estimator. Even in large samples there is a danger of biased IV
estimators.
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It is one of the greatest challenges in empirical economics to find adequate in-
struments. In the literature some general proposals for instrumental variables z
are made:

(i) lagged exogenous or endogenous variables;

(ii) current or previous differences of exogenous variables;

(iii) group means or differences between present values and means over time;

(iv) proxies based on knowledge to economic mechanisms that determine the
variables x;

(v) institutional and legal rules measured by dummies that are responsible that
the variation of the variables x is restricted.

Many instruments in practice are bad instruments because they correlate with
the disturbance term. There is often a trade-off between bad and weak instru-
ments. Instruments are weak if z can explain only the small part of the variation
of x. Consequences: a tendency to inconsistence and a bad approximation of the
true distribution.

Indicators and tests to detect weak instruments are:

• partial determination coefficient between the regressor xK and the instru-
mental variables zK1, . . . , zKL (Bound, Jaeger and Baker 1995);

• F statistics to the regression X∗ = Z∗Π + V , where in X∗ and Z∗ the
influence of joint variables in X and Z is partialed out; as a rule of thumb
Staiger and Stock (1997) recommend to accept instruments if F > 10;

• adjusted partial determination coefficient (Shea (1997);

• two-stage test that reacts sensitive to weak IV (Hahn and Hausman 2002),
where the null hypothesis (H0) is: instruments are not weak.

• reverse test - H0 instruments are weak; Stock and Yogo (2005) present a
table of critical values based on the minimal eigenvalue of an F statistic.
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Three tendencies can be observed:

o The IV estimator converge to the OLS estimator if the number of instru-
ments is large in comparison with the sample size and the estimation of the
first stage has a good fit.

o The conclusions of the asymptotic theory are not helpful to assess the IV
estimator based on finite samples if the disturbance term of the interested
equation and that of the first stage model are strongly correlated.

o The asymptotic theory is even meaningless for large samples if the instru-
ments are weak.

A direct test whether the second property of instruments is fulfilled is not possible
as the disturbances are not observable. However in an overidentified model, we
can test for the validity of the overidentifying restrictions (OIR) following Sargan
(1958). In such a test, the residuals from a 2SLS regression are regressed on all
included exogenous regressors and on all instruments. Under the null hypothesis
a LM statistic of the N · R2 form has a large-sample χ2(r) distribution, where r
is the number of overidentifying restrictions. If the OIR test indicates that you
should reject the null hypothesis, then this is clear evidence that the model is
misspecified. We cast doubt on the suitability of the instrument set. This is
not a test of the hypothesis that "the instruments are valid". Nevertheless, the
OIR test can be considered as a first hurdle that needs to be overcome in the
context of IV estimation. Whenever the OIR test implies rejection of the null,
this usually means at least one of the instruments would have a significant effect
in the structural equation.

Tests of overidentifying restrictions actually test two different things simulta-
neously. One is that the equation is misspecified and that one or more of the
excluded exogenous variables should in fact be included in the structural equa-
tion. The other is whether the instruments are uncorrelated with the error term.
Thus a significant test statistic could represent either an invalid instrument or an
incorrect specified structural equation.
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2.5 Panel estimators

A panel data set is a given sample of individuals, establishments, regions or coun-
tries over time and provides multiple observations on each group, e.g. individual,
in the sample. The basic linear model is

yit = β0i +
K∑
k=1

βkxkit + uit i = 1, ..., N t = 1, ..., T

β0i = β̄0 + µi

For the individual effect µi we separate between:

◦ Fixed effects model (FEM): for each individual a constant value µi is
assumed. Correlation between µi and xkit is allowed.

◦ Random effects model (REM): µi is a random variable, µi and xkit are
uncorrelated.

The most often applied methods in practice are:

• First-differences or within estimators are applied to estimate FEMs. Prob-
lem: effects of time-invariant regressors on y are eliminated. These cannot
be separated from the individual effect.

• A generalized least squares estimator is typically applied to REMs. The
assumption that regressors and disturbances are uncorrelated is very often
not fulfilled.

• Test whether individual effects exist (H0 : β′0 = (β̄0, ..., β̄0) against H1 :

β′0 = (β01, ...β0N)) - Breusch-Pagan or F test.

• Hausman test is applied to decide whether the fixed or the random effects
model is preferred.

An alternative to conventional panel estimators is the Hausman-Taylor esti-
mator (1981). This one is also consistent if regressors and the individual term
correlate and can determine the effects of time-invariant regressors. This ap-
proach distinguishes between time-invariant and time-variant regressors (xit, wi).
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In both cases the model separates whether the variables correlate with the indi-
vidual term µi (x2it, w2i) or not (x1it, w1i)

yit = β0 + x′1itβ1 + w′1iγ1 + x′2itβ2 + w′2iγ2 + µi + εit

i = 1, ..., N t = 1, ..., T

The major problem of this approach is that an a priori specification is required.
Which regressors correlate with the individual term and which are uncorrelated.
Generally, this is difficult to decide. Furthermore, the estimator reacts sensitively
to small changes of the specification.

A three-steps least squares method with an estimated individual effect
(3SLSwEIE) is an alternative. The model contains time-invariant regressors
(zi) and an unobserved individual term (µi)

yit = ziγ + x′itβ + µi + uit.

In the first step µi is determined by the within estimator of a FEM

µ̂i = (ȳi − ȳ)− (x̄∗i − x̄∗)′β̂∗,

where β* denotes the coefficient vector of the regressors without the intercept.
µ̂i contains not only the individual effect but also the effect of time-invariant
regressors z. Therefore, we regress µ̂i on zi in the second step

µ̂i = z′iδ + ωi

and calculate µ̂i − z′iδ̂ =: µ̂adj;i.

In the third step µi is substituted by µ̂adj;i. The latter term is incorporated as
an artificial regressor

yit = ziγ + x′itβ + κµ̂adj;i + uit.

A pooled estimator can be applied as the estimated individual effect is explicitly
modeled as regressor. The estimation of κ should be one. In contrast to the fixed
effects estimator the pooled estimator of the modified model can also determine
the effects of time-invariant regressors. As the regressor µ̂adj;i is an estimated
variable and not directly observable, a bootstrap estimator of the standard error
is preferable to the conventional analytical determination.
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2.6 Treatment evaluation

Objective is to determine causal effects of economic measures. The simplest form
to measure the effect is to estimate α in the linear model

y = Xβ + αD + u,

whereD is the intervention variable and measured by a dummy: 1 if an individual
or an establishment is assigned to treatment; 0 otherwise. Typically, this is not
the causal effect. An important reason is that unobserved variables influence y
and D.

A wide range of methods was developed to determine the "correct" causal effect.
Which approach should be preferred depends on the data, the behavior of the
economic agents and the assumptions of the model. The major difficulty is that
we have to compare an observed with an unobserved situation. Depending on
the available information the latter is estimated. We have to ask what would
occur if not D = 1 but D = 0 (treatment on the treated). This counterfactual is
unknown and has to be estimated. Inversely, if D = 0 is observable we can search
for the potential result under D = 1 (treatment on the untreated). A further
problem is the fixing of the control group. What is the meaning of "otherwise"
in the definition of D? Or in other words: What is the causal effect of an
unobserved situation? Should we determine the average causal effect or only
that of a subgroup?

Neither a before-after comparison (ȳ1|D = 1) − (ȳ0|D = 1) nor a comparison of
(ȳt|D = 1) and (ȳt|D = 0) in cross-section is usually appropriate. Difference-
in-differences estimators (DiD) are very popular in applications

∆̄1 − ∆̄0 = [(ȳ1|D = 1)− (ȳ1|D = 0)]− [(ȳ0|D = 1)− (ȳ0|D = 0)].

Practically, the effect can be determined in the following model

y = a1 + b1T + b2D + b3TD + u,

where T = 1 means period 1 follows the period of the measure (D = 1). T = 0

is a period before the measure takes place. b̂3 is the causal effect. The equation
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can be extended by further regressors X. A conditional DiD estimator follows.
If the dependent variable is a dummy a nonlinear estimator has to be applied.
Suggestions are presented by Ai/Norton (2003) and Puhani (2012).

Matching procedures were developed with the objective to find a control group
that is very similar to the treatment group. Parametric and non-parametric
procedures can be employed to determine the control group. Kernel, inverse
probability, radius matching, local linear regression, spline smoothing or trim-
ming estimators are possible. Mahalanobis metric matching with and without
propensity scores and nearest neighbor matching are two typical procedures - see
e.g. Guo/Fraser (2010). The Mahalanobis distance is defined by

(u− v)′S−1(u− v),

where u (v) are the values of matching variables of participants (non-participants)
and S is the empirical covariance matrix determined with all observations. The
distance between propensity score (ps) of two observations (i,j) in the neighbor-
hood is measured by

||psi − psj||.

An observed or artificial statistical twin can be determined to each participant.
The probability of all non-participants to participate on the measure is calcu-
lated based on probit estimates (propensity score). The statistical twin of a
participant is those who has a propensity score (Pj) which is nearest to that of
the participant. The absolute distance between i and j may not exceed a given
value ε

||Pi − Pj|| < ε,

where ε is a predetermined tolerance (caliper). A quarter of a standard devia-
tion of the sample estimated propensity scores is suggested as the caliper size
(Rosenbaum/Rubin 1985).

If the interest is to detect whether and in which amount the effects of intervention
variables differ between the percentiles of the distribution of the objective variable
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y quantile regression analysis is an appropriate instrument. The objective is
to determine quantile treatment effects (QTE). The distribution effect of a
measure can be estimated by the difference ∆ between the effect on y with (y1)
and without (y0) the measure (D=1; D=0) separate for specific quantiles Qτ

where 0 < τ < 1

∆τ = Qτ
y1 −Qτ

y0 .

The empirical distribution function of an observed situation and that of the coun-
terfactual is identified. From the view of modeling four major cases were devel-
oped in the literature that differ in the assumptions. The measure is assumed
exogenous or endogenous and the effect on y is unconditional or conditional.

unconditional conditional
exogenous (1) Firpo(2007) (2) Koenker/Bassett(1978)
endogenous (3) Frölich/Melly(2012) (4) Abadie et al.(2002)

In case (1) the quantile treatment effect Qτ
y1 −Qτ

y0 is estimated by

Qτ
yj = arg min

α0;α1

n∑
i=1

wi,j · ρτ (yi − qj)

where j = 0; 1, qj = α0 + α1(D|D = j), ρτ = a(τ − 1(a ≤ 0)) is a check function;
a is a real number. The weights are

wi,0 =
1−Di

n · (1− p(Xi))
; wi,1 =

Di

n · p(Xi)
.

The estimation is characterized by two stages. First, the propensity score is
determined by a large number of regressors X via a nonparametric method -
p̂(X). Second, in Qτ

yj the probability p(X) is substituted by p̂(X).

Case (2) follows Koenker/Bassett(1978).

N1∑
(i|yi≥x′iβ)=1

τ · |yi − x′iβ|+
N∑

(i|yi<xiβ)=N1+1

(1− τ) · |yi − α(Di|Di = j)− xiβ|
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has to be minimized with respect to α and β, where τ is given. In other words,

Qτ
yj = argmin

α;β

N∑
i=1

wi,j · ρτ (yi − qj),

where j = 0; 1, qj = α(D|D = j) + x′β.

The method of case (3) is developed by Frölich/Melly (2012). Due to the en-
dogeneity of the intervention variable D, an instrumental variables estimator is
used with only one instrument Z and this is a dummy. The quantiles follow from

Qτ
yj |c = arg min

α0;α1

E[ρτ (y − qj) · (W |D = j)],

where j = 0; 1, qj = α0 + α1(D|D = j), c means complier. The conditional
weights are

W =
Z − p(X)

p(X)(1− p(X))
(2D − 1).

Abadie et al. (2002) investigate case (4) and suggest a weighted linear quantile
regression. The estimator is

Qτ
yj = argmin

α,β
E[wi,j · ρτ (yi − αD − x′β)],

where the weights are

W = 1− D(1− Z)

1− p(X)
− (1−D)Z

p(X)
.

If the endogenous variable is censored Powell (2010) has developed an uncondi-
tional quantile treatment effects estimator in the presence of covariates.

Regression discontinuity (RD) design allows to determine treatment effects
in a special situation. This approach uses information on institutional and legal
regulations that are responsible that changes occur in the effects of economic
measures. Thresholds are estimated which indicate discontinuity of the effects.
Two forms are distinguished: sharp and fuzzy RD. Either the change of the
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status is exactly effective at a fixed point or it is assumed that the probability of
a treatment change or the mean of a treatment change is discontinuous.

In the case of sharp RD individuals or establishments (i = 1, . . . n) are assigned
on the base of the observed variable S to the treatment or the control group. If
variable Si is not smaller than a fixed bound S̄ then i belongs to the treatment
group (D = 1)

Di = 1[Si ≥ S̄].

In a simple regression model y = β0 + β1D + u the OLS estimator of β1 would
be inconsistent when D and u correlate. If, however, the conditional mean
E(u|S,D) = E(u|S) = f(S) is additionally incorporated in the outcome equation
(y = β0 + β1D + f(S) + ε, where ε = y − E(y|D,S)) the OLS estimator of β1 is
consistent. Assume f(S) = β2S, the estimator of β1 corresponds to the difference
of the two estimated intercepts of the parallel regressions

ŷ0 = Ê(y|D = 0) = β̂0 + β̂2S

ŷ1 = Ê(y|D = 1) = β̂0 + β̂1 + β̂2S.

The strong RD approach identifies the causal effect by distinguishing between the
nonlinear function due to the discontinuous character and the smoothed linear
function. If, however, a nonlinear function of the general type f(S) is given,
modifications have to be regarded.

Assume, the true function f(S) is a polynomial of p-th order

yi = β0 + β1Di + β21Si + β22S
2
i + · · ·+ β2pS

p
i + ui

but a linear model is estimated, then the difference between the two intercepts,
interpreted as the causal effect, is biased. What looks like a jump is in reality a
neglected nonlinear effect.

Another strategy is to determine the treatment effect exactly at the fixed dis-
continuity point S̄ assuming a local linear regression. Two linear regressions are
considered

y0 − E(y0|S = S̄) = δ0(S − S̄) + u0

y1 − E(y1|S = S̄) = δ1(S − S̄) + u1,
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where yj = E(y|D = j) and j = 0; 1. In combination with

y = (1−D)y0 +Dy1

follows

y = (1−D)(E(y0|S = S̄) + δ0(S − S̄) + u0)

+ D(E(y1|S = S̄) + δ1(S − S̄) + u1).

The linear regression

y = γ0 + γ1D + γ2(S − S̄) + γ3D(S − S̄) + ũ

can be estimated, where ũ = u0 +D(u1 − u0). This looks like the DiD estimator
but now γ1 and not γ3 is of interest. The former coefficient is a global estimation
and not a localized average treatment effect. The latter follows if a small interval
around S̄ is modeled, i.e. S̄ − ∆S < Si < S̄ + ∆S. The treatment effect
corresponds to the difference of the two former determined intercepts, restricted
to S̄ < Si < S̄+∆S on the one hand and to S̄−∆S < Si < S̄ on the other hand.

The fuzzy RD assumes that the propensity score function of treatment P (D =

1|S) is discontinuous with a jump in S̄

P (Di = 1|Si) =

{
g1(Si) if Si ≥ S̄

g0(Si) if Si < S̄,

where it is assumed that g1(S̄) > g0(S̄). Therefore, treatment in Si ≥ S̄ is more
likely. In principle the functions g1(Si) and g0(Si) are arbitrary, e.g. a polynomial
of p-th order can be assumed but the values have to be within the interval [0;1]
and different values in S̄ are necessary.

The conditional mean of D that depends on S is

E(Di|Si) = P (Di = 1|Si) = g0(Si) + (g1(Si)− g0(Si))Ti,

where Ti = 1(Si ≥ S̄) is a dummy indicating the point where the mean is dis-
continuously. If a polynomial of p-th order is assumed the interaction variables
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SiTi, S
2
i Ti · · ·S

p
i Ti and the dummy Ti are instruments of Di. The simplest case is

to use only Ti as instrument if g1(Si) and g0(Si) are discriminable constants.

We can determine the treatment effect around S̄

lim
∆→0

E(yi|S̄ < Si < S̄ + ∆)− E(yi|S̄ −∆ < Si < S̄)

E(Di|S̄ < Si < S̄ + ∆)− E(Di|S̄ −∆ < Si < S̄)
.

The empirical analogon is a conditional Wald estimator.
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3 Applications: some new estimates of produc-
tion functions

In the following some estimates of production functions are presented where IAB
establishment panel data are used. The empirical analysis is restricted to the
period 2006-2010. Methods of section 2 are applied. The results can be found in
Table 1-13. Table 1 focus on alternative estimates of standard errors - see section
2.1.1 and 2.1.2. The estimated coefficients in column 1-3 and 5 are identical.
Estimates with hc2 and hc4 - not presented in the Tables - deviate only slightly
from those with hc1. The jackknife estimates of standard errors and t-values are
also not so far away from the heteroskedasticity-consistent estimates with hc1 and
hc3. The nearness to estimates with hc3 is plausible because the latter is only a
slightly simplified version of what one gets by employing the jackknife technique.
Furthermore, Table 1 demonstrates that bootstrap and cluster-robust estimates
of the t-values differ strongest of the input factor labor (lnL). Capital (lnK),
measured by the sum of investments of the last four years, has evidently lower
cluster-robust estimates of standard errors than that from the other methods.

Table 1: Alternative determination of standard errors using hc1,
hc3, bootstrap, jackknife estimates and cluster-robust estimates

Variable hc1 hc3 boot- jack- cluster
strap knife (idnum)

lnL 0.9472 0.9472 0.9472 0.9582 0.9472
(184.02) (183.99) (227.40) (184.49) (126.29)

lnK 0.2225 0.2225 0.2225 0.2178 0.2225
(60.80) (60.79) (60.40) (59.58) (43.04)

const 9.0810 9.0810 9.0810 9.0908 9.0810
(307.86) (307.81) (271.82) (308.83) (215.20)

Note: N=34308; t-ratios in parentheses; idnum - individual identification number

30



An extended version of column 1 in Table 1 is presented in Table 2. The latter
estimates show smaller coefficients and smaller t-values of the input factors labor
and capital. However, the major intention of Table 2 is to demonstrate that
also in this example there is a clear relationship between the mean of dummies
(D̄) as independent variables and the estimated standard errors as maintained in
section 2.1.4. The nearer D̄ to 0.5 the smaller is the standard error. A caveat
seems necessary. The result in Table 2 in contrast to that in Table A1 cannot be
generalized because the standard error of a dummy is not only determined by the
mean. The residual variance that depends on the importance of all regressors is
also relevant.

Table 2: OLS estimates with Bernoulli distributed regressors

lnY mean coef. std. Err. t
lnL 0.8808 0.0061 144.33
lnK 0.2049 0.0041 49.55
CLP 0.0871 0.0307 0.0236 1.30
WOCO 0.3035 0.3915 0.0184 21.19
BARGAIN 0.3819 0.1385 0.0133 10.36
P1 0.0834 0.2462 0.0231 10.65
P2 0.3695 0.1032 0.0132 7.78
const 9.2905 0.0367 253.03

Note: The regressors CLP (company-level pact), WOCO (works council), BARGAIN (industry-

wide agreement), P1 (profits last year: very good) and P2 (profits last year: good) are dummies.

Outliers may have strong effects on coefficient and standard error estimates. How-
ever, estimates do not react sensitively to all outliers. This can be demonstrated if
the results with and without outliers are compared. Table 3 presents an example
for simple Cobb-Douglas functions in column 1 and 2. The coefficients are very
similar while the differences of the standard errors are more evident. The picture
is clearer if only the observations with high leverage are eliminated - see column
3. Coefficients and standard errors in column 1 and 3 reveal a clear disparity for
both input factors. This result is not unexpected. The consequence is not un-
ambiguous. Is column 1 or 3 preferable? If all observations with strong leverages
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are due to measurement errors the decision speaks in favor of the estimates in
column 3. As no information is available to this question both estimates may
be useful. Column 4 extends the consideration to outliers following Hadi (1992).
The squared difference between individual regressor values and the mean for all
regressors - here lnL and lnK - is determined for each observation weighted by
the estimated covariance matrix. The decision whether establishment i is an
outlier is now based on the Mahalanobis distance. The multiple outlier dummy
(MODi = 1 if i is an outlier; =0 otherwise) is incorporated as an additional
regressor. The estimates show that all outliers together have a significant effect
on the output variable lnY .

Table 3: Cobb-Douglas production functions with
and without outliers, t-values in parentheses
Dependent variable: logarithm of sales - lnY

Variable with without without with
outliers outliers strong leverages Hadi-MOD

lnL 0.9472 0.9415 1.0409 0.9412
(222.12) (240.28) (169.10) (240.10)

lnK 0.2225 0.2242 0.1724 0.2243
(70.11) (77.04) (36.33) (77.08)

MOD 1.8810
(2.33)

const 9.0811 9.0498 9.3445 9.0490
(333.20) (362.66) (238.53) (362.62)

N 34 308 33 851 27 262 34308
R2 0.866 0.866 0.805 0.843

As it is not obvious whether the outliers are due to measurement errors that
should be eliminated or whether these are unusual but substantially induced
observations that should be accounted for, only partially identified parameters
are possible. Therefore in Table 4 confidence intervals are not only presented
for the two extreme cases (column 1: all outliers are induced by specific events ;
column 2: all outliers are due to measurement errors). Additionally, in column 3
the confidence interval based on Stoye’s method is displayed. The results show
that the lower and upper coefficient estimates of lnL by Stoye lies within the
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interval of the estimated coefficients in column 1 and 2. The upper coefficient
is nearer to that of column 2 and the lower is nearer to that of column 1. This
means the Stoye interval is shorter or in other words more precise. We do not find
the same pattern for input factor lnK. In the case β̂lnK;u the Stoye coefficient
deviates more from column 2 than from column 1. And for β̂lnK;l we find the
opposite result. A clear interpretation is not possible. If the upper and the lower
Stoye coefficient would be nearer to that of the interval without outliers we could
say that the majority of the outliers is induced by measurement errors.

Table 4: Confidence intervals (CI) of output elasticities of labor and
capital based on a Cobb-Douglas production function, estimated with
and without outliers, Stoye confidence interval at partially identified
parameters
Dependent variable: logarithm of sales - lnY

Coefficient CI with CI without Stoye
outliers outliers CI

β̂lnL;u 0.9555 0.9492 0.9511
β̂lnL;l 0.9388 0.9339 0.9376
β̂lnK;u 0.2287 0.2299 0.2282
β̂lnK;l 0.2162 0.2185 0.2184

Table 5 presents nonlinear estimates of three different production function - Cobb-
Douglas, CES and Translog function. The results due to t-values and F-tests
speak in favor of the Cobb-Douglas function.
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Table 5: Estimates of Cobb-Douglas, CES and Translog functions;
t-values in parentheses, dependent variable: logarithm of sales - lnY

Variable CD CES TRANSLOG
lnL 0.9582 0.9758 0.9699

(220.04) (45.82) (73.29)
lnK 0.2178 0.2000 0.2217

(68.30) (9.38) (42.23)
(lnK-lnL)2 0.0011

(0.84)
lnK·lnL -0.0010

(-0.94)
const 9.0908 9.1590 9.0477

(332.89) (144.49) (169.07)
N 33 860 33 860 33 860
F test 0.3991 0.3491

In contrast to the estimates of Table 5 in the next Table it is assumed that the
input factor labor or capital is not exogenous and IV estimates are employed.
Table 6 presents four specifications. In column 1 and 3 lnL is instrumented.
In the former case WOCO, FLEXTIME and SHORT TIME dummies are used
as instruments, while in the latter CLP and FLEXTIME are the instruments.
Column 2 and 4 are analogously modeled for lnK. For all four specifications the
hypotheses of weak instruments and exogeneity have to be rejected. The latter
result signals that 2SLS estimates should be preferred in comparison with OLS
estimates. The F test statistics exceed the critical values of the Stock-Yogo test
and the partial determination coefficients are high enough. If we compare the
results in column 1 of Table 5 with those of column 1 and 3 in Table 6 it is
obvious that the partial productivity elasticity of labor in the latter is larger
than in the former or more precisely, we detect a transition from decreasing to
increasing returns to scale. The lnK effect is decreasing. This means the partial
productivity elasticity of capital is furthermore lower than one. If capital is
assumed endogenous - see column 2 and 4 in Table 6 - the partial productivity
elasticity of labor and capital are still smaller than one. The tendency for lnL
and lnK go in the opposite direction when IV estimates instead of OLS estimates
are employed. The influence of lnK is increasing while that of lnL is decreasing.
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If lnL and lnK are simultaneously endogenized the results - not presented in
the tables - are implausible - negative partial production elasticity of capital.
Furthermore the hypothesis of weak instruments cannot be rejected. The test of
overidentifying restrictions (OIR) suggests that CLP and FLEXTIME are better
instruments for lnL than WOCO, FLEXTIME and SHORT TIME but also the
former are not optimal. We cast doubt on the suitability of the instrument set.
In the case of lnK the OIR test does not reject the null hypothesis. This speaks in
favor of the instruments WOCO, FLEXTIME and SHORT TIME. Nevertheless,
we cannot be sure that the instruments are valid.

Table 6: 2SLS Estimates of CD functions
Dependent variable: logarithm of sales - lnY

Variable IV1 IV2 IV3 IV4
lnL 1.2011 0.3120 1.1545 0.4219

(95.31) (7.52) (59.23) (6.76)
lnK 0.0784 0.8474 0.1058 0.7338

(10.27) (21.00) (9.35) (12.12)
const 9.8564 4.1431 9.7080 5.0555

(197.35) (12.98) (145.99) (10.58)
N 20 099 20 099 20 457 20 457
R2 0.8271 0.6600 0.8296 0.7213
weak IV-F test 1825.90 155.21 985.97 84.27
p–value 0.0000 0.0000 0.0000 0.0000
exogeneity test 546.31 553.47 132.85 126.40
p-value 0.0000 0.0000 0.0000 0.0000
OIR test 6.58 0.20 2.93 5.44
p-value 0.0372 0.9036 0.0869 0.0197

Notes: t-ratios in parentheses; instrumented regressors - IV1=lnL, IV2=lnK, IV3=lnL and

IV4=lnK; instruments in column 1 and 2 are WOCO (works council), FLEXTIME (flextime

wage record) and SHORT TIME, while in column 3 and 4 CLP (company-level pact) and

FLEXTIME are the instruments.

The next four estimates in Table 7 are focussed on panel models with a time-
invariant regressor. During the period 2006-2010 no establishment changes the
localization in Mecklenburg-West Pomerania (M −WP ). Besides Saarland (S)

35



this is the only German Land where over the five years no move of a firm is
observed in the IAB Establishment Panel. In Table 7 only the M −WP case is
presented, however, estimates with the S dummy leads to similar results. In col-
umn 1 and 2 the conventional panel estimates are displayed. The random effects
estimates in column 1 are inconsistent as the Breusch-Pagan test (BP ) reveals
that individual effects exist and the Hausman test rejects the null hypothesis
that the individual effect is uncorrelated with the regressors. The fixed effects
estimates in column 2 do not allow to determine the M-WP effect on lnY. This
is possible with the Hausman-Taylor approach (HT ) in column 3. A priori it
is fixed that lnL is endogenous and the dummy M −WP is the time-invariant.
One should expect that the coefficients of lnL and lnK, respectively, are similar
in column 2 and 3. This is not the case but the analogous estimates in column 4
and 2 are identical. Furthermore, β̂EIE=1 speaks in favor of this approach.

Table 7: CD Panel Estimates
Dependent variable: logarithm of sales - lnY

Variable RE FE HT 3SLSwEIE
lnL 1.0333 0.4096 0.7079 0.4096

(221.02) (35.84) (85.95) (330.46)
lnK 0.0576 0.0195 0.0285 0.0195

(28.76) (9.72) (16.28) (24.84)
M-WP -0.1867 0 -0.3924 -0.3927

(-5.15) (omitted) (-6.09) (-69.64)
EIE 1.0000

(818.90)
const 10.6356 13.2449 11.9937 13.2449

(463.91) (302.82) (362.71) (1727.73)
N 34 308 34 308 34 308 34 308
BP test 20 138
Hausman test 18 885

The next tables present estimates of alternative methods in order to determine
causal effects. First, the difference-in-differences (DiD) approach is estimated.
Results can be found in Table 8. The coefficient of the interaction variable
CLP ∗ D2009 in column 1 is significantly different from zero. This means that
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sales between firms with a company-level pact (CLP), adopted in 2009, and those
without such a pact differ between 2009 and the years before (2006-2008). The
adoption of a CLP in the year of the Great Recession is combined with lower sales
than in the years before if an unconditional DiD specification is used. In column
2 the sign changes and the effect of the interaction variable is insignificant if an
extended CDF is estimated. This approach is preferred because in the former
the influence of the input factors is partially added to the causal effect. Insofar,
we cannot detect any influence of the adoption of a CLP on sales in 2009. One
could argue that the estimates in column 1 lead more than that in column 2 to
significant results because the sample in the former is smaller. This argument is
not compelling. If we draw a random sample of 63.83 percent so that in column
1 the sample size is n=20,489 the interaction effect is -0.2939 and the significance
is preserved (t=-2.26).

Table 8: DiD estimates of CDF with company-level pact (CLP) effects.
Dependent variable: logarithm of sales - lnY

unconditional conditional
lnL 0.9423

(166.03)
lnK 0.2211

(53.37)
CLP 3.1152 0.0951

(35.91) (2.36)
D2009 0.0597 0.0216

(2.25) (1.54)
CLP*D2009 -0.3029 0.0400

(-2.90) (0.84)
n 31,985 20,490
R2 0.101 0.841

Note: t-values in parentheses

Alternative methods to determine causal effects are matching procedures. These
are suggested when there does not exist control over the assignment of treat-
ment conditions, when in the basic equation y = Xβ + αD + u the dichotomous
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treatment variable D and the disturbance term u correlate, when the ignorable
treatment assignment assumption is violated. In the example of the CDF it is
questioned that this condition is fulfilled for CLPs. This means that the OLS
estimates in column 1 of Table 9 are biased and inconsistent. As an alternative
the Mahalanobis metric matching (MM) without propensity score and in column
3 the nearest neighbor matching (NNM) with caliper are applied, presented in
column 2 and 3, respectively. In the latter method non-replacement is used. That
is, once a treated case is matched to a non-treated case, both cases are removed
from the pool. The former method allows that one control case can be used as
a match for several treated cases. Therefore, the total number of observations in
the nearest neighbor is larger than that in column 2. We find that the CLP effect
on sales is insignificant in both cases but the CLP coefficient of MM estimates
exceeds by far that of NNM. The estimates of the partial elasticities of production
are very similar in the three estimates in Table 9. The insignificance of the CLP
effect confirms the result of column 2 of Table 8. If the DiD estimator of column
2 in Table 8 is applied after matching the causal effect is - not unexpected - also
insignificant. The probvalue is 0.182 if the MM procedure is used and 0.999 under
the NNM procedure.

Table 9: Estimates of CDF with CLP effects using matching proce-
dures; dependent variable: logarithm of sales - lnY

no matching MM NNM
lnL 0.9420 0.9362 0.9533

(166.03) (47.75) (63.32)
lnK 0.2212 0.1938 0.2007

(53.42) (15.12) (19.70)
CLP 0.1231 0.1928 0.0496

(5.22) (1.31) (1.46)
n 20,490 1,806 3,346
R2 0.840 0.838 0.849

Note: MM - Mahalanobis metric matching, NNM - nearest neighbor matching, control vari-

ables are lnL and lnK, t-values in parentheses.

The previous estimates have demonstrated that company-level pacts (CLP) have
no statistically significant influence on output, on sales. We cannot be sure that
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this result is also true for subgroups of firms. One way to test this is to conduct
quantile estimates. As presented in section 2.2 four methods can be applied to
determine quantile treatment effects (QTE). The CLP effects on sales can be
found in Table 10 where the results of five quantiles (q=0.1,0.3, 0.5, 0.7, 0.9) are
presented. In contrast to the previous estimations most CLP effects are signifi-
cant in the columns 1-4 of Table 10. Firpo considers the simplest case without
control variables under the assumption that the adoption of a company-level
pact is exogenous. The estimated coefficients in column 1 (F ) seem oversized.
The same follows from the Frölich-Melly approach, where CLP is instrumented
by a short work time dummy (column 3 - F-M). Other available instruments
like opening clauses, collective bargaining, works councils or research and de-
velopment within the firm do not evidently change the results. One reason for
the overestimated coefficients can be neglected determinants of the output that
correlate with CLP. Estimates of column 2 (K-B) and 4 (A-A-I) support this hy-
pothesis. From the view of expected CLP coefficients the conventional quantile
estimator, the Koenker-Bassett approach, with lnL and lnK as regressors seems
best. However, the ranking of the size of the coefficients within column 2 is im-
plausible. The smaller the quantile the larger is the estimated coefficient. This
would mean that CLPs are advantageous for small in comparison to large firms
but large firms have a higher propensity to adopt a company-level pacts. Such a
behavior is difficult to understand. However, it is possible that small firms with
advantages in productivity due to CLPs have relative high costs to adopt a CLP.
In this case the higher propensity of large firms to introduce a CLP is consistent
with higher productivity of small firms. The coefficients of the Abadie-Angrist-
Imbens approach, a combination of Frölich-Melly’s and Koenker-Bassett’s model,
are also large but not so large as in column 1 and 3.

Possibly, all estimates in column 1-4 of Table 10 are biased and inconsistent. This
is the case when CLP and non-CLP firms fundamentally differ due to unobserved
variables. To avoid this problem the QTE and the matching approaches are
combined. Based on the matching of Table 9 the QTE analogously to column
1-4 in Table 10 can be estimated. In column 5 and 6 only two combinations are
presented, namely MM+K-B and MM+A-A-I. We find that the ranking and the
size of the coefficients are plausible in column 5. The sizes of the coefficients in
column 6 are smaller than in column 4 but the identified causal effects seems
still too high. The most important result is the following: the CLP effects are
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significant for higher quantiles, i.e. for q=0.9 in column 5 and for q=0.7 and
q=0.9 in column 6. However, the median estimators (q=0.5) of CLP effects in
column 5 and 6 that can be compared with the estimates of column 2 in Table
9 are insignificant. Quantile estimators highlight information that cannot be
revealed by other treatment methods, i.e. in Table 8 and 9. The estimations of
the other six combinations (MM+F, MM+F-M, NNM+F, NNM+K-B, NNM+F-
M, NNM+A-A-I) - not presented in the tables - are less plausible. The ranking
of the size of coefficients is inconsistent in the light of theoretical and practical
experience.

Table 10: Quantile estimates of CLP effects ; dependent variable: log-
arithm of sales - lnY

Quantile F K-B F-M A-A-I MM+K-B MM+A-A-I
q=0.1 2.9957 0.2236 5.3012 1.2092 -0.1064 0.9776

(38.94) (6.76) (20.42) (3.10) (-0.87) (1.06)
q=0.3 3.3242 0.1836 5.8227 1.1615 0.0715 0.7140

(54.67) (7.15) (23.67) (3.11) (0.46) (0.62)
q=0.5 3.1325 0.1526 6.3549 1.2000 0.1793 0.6736

(54.19) (6.31) (24.58) (2.57) (1.09) (1.37)
q=0.7 2.9312 0.1036 6.8703 1.2479 0.2270 0.8072

(56.91) (4.07) (26.14) (2.09) (1.54) (2.18)
q=0.9 2.3203 -0.0176 7.8119 1.6549 0.4523 1.4242

(34.18) (-0.37) (20.12) (1.36) (3.36) (2.92)
n 31,985 20,490 20,909 13,496 1,806 1,206

Note: F - Firpo; K-B - Koenker/Bassett; F-M - Frölich/Melly; A-A-I - Abadie/Angrist/Imbens,

MM - Mahalanobis metric matching, control variables are lnL and lnK, t-values in parentheses.

The final discussed treatment method in section 2.2 is the regression discontinuity
(RD) design. This approach exploits information of the rules determining treat-
ment. The probability of receiving a treatment is a discontinuous function of one
or more variables where treatment is triggered by an administrative definition or
an organizational rule.

In a first example using a sharp RD design it is analyzed whether at an esti-
mated probability of 0.5 that a CLP exists a structural break on logarithm of
sales (lnY) is evident. For this purpose a probit model is estimated with profit
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situation, working-time account, total wages per year and works council as deter-
minants. All coefficients are significantly different from zero - not in the tables.
The estimated probability Pr(CLP ) is then plotted against lnY based on a frac-
tional polynomial model over the entire range (0 < Pr(CLP ) < 1) and on two
linear models split into Pr(CLP ) <= 0.5 and Pr(CLP ) > 0.5. The graphs are
presented in Figure 1.

A structural break seems evident. Two problems have to be checked: First, is the
break due to a nonlinear shape, and second, is the break significant? The answer
to the first question is yes, because the shape over the range 0 < Pr(CLP ) < 1

is obviously nonlinear when a fractional polynomial is assumed. The answer to
the second question is given by a t-test - cf. section 2.2 - based on

y = γ0 + γ1D_Pr(CLP ) + γ2(Pr(CLP )− Pr(CLP ))

+γ3D_Pr(CLP ) · (Pr(CLP )− Pr(CLP )) + u

=: γ0 + γ1D_Pr(CLP ) + γ2cPr(CLP ) + γ3D_Pr(CLP ) · cPr(CLP ) + u,

where

D_Pr(CLP ) =

{
1 if Pr(CLP)≤0.5
0 otherwise.

The null that there is no break has to be rejected (γ1=-3.96; t=-6.87; prob-
value=0.000) as can be seen in Table 11.
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Table 11: Testing for structural break of CLP effects between Pr(CLP)≤0.5
and Pr(CLP)>0.5

coef. std.err. t P>|t|
D_Pr(CLP ) -3.9608 0.5765 -6.87 0.000
cPr(CLP ) 4.3413 0.8390 5.17 0.000
D_Pr(CLP ) · cPr(CLP ) 11.3838 0.8437 13.49 0.000
const 18.4375 0.5764 31.99 0.000

The estimates in Table 11 cannot tell us whether the output jump in Pr(CLP)=0.5
is a general phenomenon or whether the Great Recession in 2008/09 is responsible.
To test this the combined method of RD and DiD - derived in section 2.2. - is
employed and the results are presented in Table 12. The estimates show that the
output jump does not significantly change between 2006/2007 and 2008/2010.
The influence of D_Pr(CLP ) ·T on lnY is insignificant. Therefore, we conclude
that the break is of general nature.

Table 12: Testing for differences in structural break of CLP effects
between Pr(CLP)≤0.5 and Pr(CLP)>0.5 in 2006/07 and 2008/10

coef. std.err. t P>|t|
T 0.0130 1.3118 0.01 0.992
D_Pr(CLP ) -4.1045 1.1191 -3.67 0.000
cPr(CLP ) 3.9314 1.6795 2.34 0.019
D_Pr(CLP ) · cPr(CLP ) 11.6383 1.6884 6.89 0.000
D_Pr(CLP ) · T 0.0392 1.3119 0.03 0.976
cPr(CLP ) · T 0.2801 1.9520 0.14 0.886
D_CLP · cPr(CLP ) · T -0.0662 1.9623 -0.03 0.973
const 18.5422 1.1190 16.57 0.000

Two further examples are presented in Figure 2 and 3. The Institut für Mit-
telstandsforschung defines small firms as such that have less than 10 employees
and until 1 million Euro sales per year. The analogous definition of middle-size
firms is less than 500 employees and until 50 million Euro sales per year. A sharp
regression discontinuity design is applied to test whether the first and the second
part of the definition are consistent. In other words, based on a Cobb-Douglas
production function with only one input factor, the number of employees, it is
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tested whether there exists a structural break for small firms between 9 and 10
employees at a 1 million sales border. We find for small firms in Figure 2 that
there seems to be a sales break around 1 million Euro per year.

The t-test analogously to the first example yields weak significance (γ1=-13.8667;
t=-1.61; probvalue=0.107).

The same procedure for middle-size firms - see Figure 3 - leads to following results.
Apparently, there exist a break but this visual result might be due to a nonlinear
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relationship as the fractional polynomial estimation over the entire range suggests.
The t-test does not reject the null (γ1=-8977; t=-0.54; probvalue=0.588). The
conclusion from Figure 2 and 3 is that the graphical representation without the
polynomial shape as comparison course and without testing on a structural break
can lead to a misinterpretation.

The final example uses a fuzzy regression discontinuity design. It is analyzed
whether the CLP effects on the logarithm of sales (lnY=ln(sales/10000)) differ
between the East and West German federal states. The graphical representation
can be found in Figure 4a and 4b. The former shows the disparities in the level
of sales per year and the latter those of Pr(CLP ) - here measured by the relative
frequency of firms with a CLP to all firms in a German federal state.
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Although clear differences are detected for both characteristics (lnY, Pr(CLP ))
we cannot be sure that these disparities are significant and whether the CLP
effects are smaller or larger in West Germany. This is checked by a Wald test in
Table 13. We find that the CLP effects on lnY (-0.8749/-0.0571=15.3165) are
significantly higher in the West German federal states (z=4.29).

Table 13: Fuzzy regression discontinuity between East and West Ger-
man federal states (GFS) - Wald test for structural break of company-
level pact (CLP) effects on sales; jump at GFS>0; dependent variable:
logarithm of sales - lnY

Variable coef std. err z
lnY jump -0.8749 0.1234 -7.09
CLP jump -0.0571 0.0138 -4.13
Wald estimator 15.3165 3.5703 4.29

Note: GFS=-10 Berlin(West); -9 Schleswig-Holstein; -8 Hamburg; -7 Lower Saxony; -6 Bre-

men; -5 North Rhine-Westphalia; -4 Hesse; -3 Rhineland-Palatinate; -2 Baden-Württemberg; -1

Bavaria; 0 Saarland; 1 Berlin(Ost); 2 Brandenburg; 3 Mecklenburg-West Pomerania; 4 Saxony;

5 Saxony-Anhalt; 6 Thuringia.

45



4 Summary

Many reasons like heteroskedasticity, clustering, basic probability of qualitative
regressors, outliers and only partially identified parameters may be responsible
that estimated standard errors based on classical methods are biased. Appli-
cations show that the estimates under suggested modifications do not always
deviate so much from that of the classical methods.

The development of new procedures is ongoing. Especially, the field of treatment
methods were extended. It is not always obvious which method is preferable to
determine the causal effect. As the results evidently differ it is necessary to de-
velop a framework that helps to decide which method is most appropriated under
typically situations. We observe a tendency away from the estimation of average
effects. The focus is shifted to distribution topics. Quantile analysis helps to
investigate differences between subgroups of the population. This is important
because economic measures have not the same influence on heterogenous estab-
lishments and individuals. A combination of quantile regression with matching
procedure can improve the determination of the causal effects. Further combi-
nations of treatment methods seem helpful. Difference-in-differences estimates
should be linked with matching procedures and regression discontinuity designs.
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Appendix

Table A1: OLS estimates of Cobb-Douglas functions with artificial
dummies (DV.) as regressor; dependent variable: logarithm of sales -
lnY

β̂lnL std.err β̂lnK std.err β̂DV. std.err
DV 1=0.1692 0.9464 0.0043 0.2223 0.0032 0.0470 0.0128
DV 2=0.2952 0.9453 0.0043 0.2223 0.0032 0.0808 0.0105
DV 3=0.3672 0.9446 0.0043 0.2224 0.0032 0.0923 0.0099
DV 4=0.5388 0.9434 0.0043 0.2225 0.0032 0.1334 0.0096
DV 5=0.6301 0.9432 0.0043 0.2226 0.0032 0.1285 0.0100
DV 6=0.7190 0.9438 0.0043 0.2226 0.0032 0.1124 0.0107
DV 7=0.8360 0.9449 0.0043 0.2226 0.0032 0.0979 0.0130
DV 8=0.9445 0.9448 0.0043 0.2226 0.0032 0.1599 0.0210
DV 9=1.0000 0.9472 0.0043 0.2225 0.0032 0.0000 -

Note: IAB Establishment Panel 2006-2010; n=34,308. DV is constructed in the following way:

The interaction variable between the wave number (14,...,18) and the identification number of

the establishments is split into nine classes and ordered from the smallest to the largest class

(C1, ..., C9). Then new cumulative variables are determined and transformed into dummy

variables: DV1=1 if the establishment j belongs to C1, =0 otherwise; DV2=1 if j belongs to

C1 or to C2, =0 otherwise; ... ; DV8=1 if j belongs to C1 or C2 or ... or C8, =0 otherwise.
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Table A2: OLS estimates of Cobb-Douglas functions with an artifi-
cial dummy (D.) determined from a rectangular distributed random
variable as regressor. Results are average values of 300 estimates; de-
pendent variable: logarithm of sales - lnY

β̂D. std.err
D1=0.1 -0.0177 0.0182
D2=0.2 -0.0040 0.0135
D3=0.3 -0.0065 0.0118
D4=0.4 -0.0148 0.0110
D5=0.5 -0.0105 0.0108
D6=0.6 -0.0111 0.0110
D7=0.7 -0.0134 0.0118
D8=0.8 -0.0073 0.0135
D9=0.9 0.0086 0.0180

Note: IAB Establishment Panel 2006-2010; n=34,308.
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Table A3: OLS estimates of Cobb-Douglas functions with company-
level pact dummy (CLP) as regressor, decreasing shares of n(CLP=1)/n;
dependent variable: logarithm of sales

β̂CLP std.err t
CLP=0.0693 0.1231 0.0236 5.22
CLP=0.0624 0.1209 0.0246 4.92
CLP=0.0533 0.1299 0.0259 5.02
CLP=0.0477 0.1131 0.0275 4.11
CLP=0.0407 0.1006 0.0295 3.41
CLP=0.0336 0.1005 0.0322 3.12
CLP=0.0273 0.1429 0.0356 4.01
CLP=0.0207 0.1446 0.0403 3.39
CLP=0.0135 0.1357 0.0486 2.79
CLP=0.0067 0.1887 0.0671 2.80

Note: IAB Establishment Panel 2006-2010; n=31,985. In the first line the estimation with the

original sample and CLP=0.0693 is presented. Next, only 90% of the firms with CLP=1, where

CLP=0.0624, are considered. The random selection of the CLP firms is based on a rectangular

distribution of the CLP firms. The determination of the following lines is analogous to that of

the second line.
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Table A4: OLS estimates of Cobb-Douglas functions with works coun-
cil dummy (WOCO) as regressor, decreasing shares of n(WOCO=1)/n
- randomly determined based on a rectangular distribution; dependent
variable: logarithm of sales

β̂WOCO std.err t
WOCO=0.3045 0.4076 0.0136 29.50
WOCO=0.2747 0.3573 0.0136 26.32
WOCO=0.2440 0.3140 0.0136 23.13
WOCO=0.2132 0.2784 0.0137 20.29
WOCO=0.1829 0.2418 0.0141 17.11
WOCO=0.1523 0.2102 0.0148 14.20
WOCO=0.1221 0.1904 0.0159 11.99
WOCO=0.0920 0.1842 0.0177 10.43
WOCO=0.0605 0.1888 0.0208 9.07
WOCO=0.0305 0.1730 0.0281 6.16

Note: IAB Establishment Panel 2006-2010; n=34,217.
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