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Testing for Cointegration in a Double-LSTR
Framework

Claudia Grote and Philipp Sibbertsen

Abstract This paper investigates the finite-sample properties of thesmooth transi-
tion-based cointegration test proposed by Kapetanios et al. (2006) when the data
generating process under the alternative hypothesis is a globally stationary second
order LSTR model. The provided procedure describes an application to long-run
equilibrium relations involving real exchange rates with symmetric behaviour. We
utilise the properties of the double LSTR transition function that features unit root
behaviour within the inner regime and symmetric behaviour in the outer regimes.
Hence, under the null hypothesis we imply no cointegration and globally station-
ary D-LSTR cointegration under the alternative. As a resultof the identification
problem the limiting distribution derived under the null hypothesis is non-standard.
The Double LSTR is capable of producing three-regime TAR nonlinearity when the
transition parameter tends to infinity as well as generatingexponential-type non-
linearity that closely approximates ESTR nonlinearity. Therefore, we find that the
Double LSTR error correction model has power against both ofthese alternatives.
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1 Introduction

Ever since the concept of cointegration has been introducedby Granger (1981) and
Engle and Granger (1987), research on cointegrated time series has experienced a
broad expansion. Yet it is still developing and of great importance for economic
applications such as exchange rates and equity indices, cf.Maki (2012) or Zhang
(2013). One of the latest research branches is the extensionof cointegration to non-
linear dynamics and regime-switching error correction mechanisms. With regard to
the nonlinear cointegration literature, a distinction is drawn between time-varying
cointegration on the one hand, cf. Bierens and Martins (2010) or Shi and Phillips
(2012), and nonlinear adjustment processes on the other hand. Recently, the latter
has been of major interest implying unsteady and unproportional correction of the
disequilibrium error which is why particular attention hasbeen directed towards
testing the existence of nonlinearities, cf. Kapetanios etal. (2006) henceforth KSS,
or Kiliç (2011). Thus, due to the ability to incorporate smooth dynamic adjustment
via smooth transition (STR) functions, STR-models are widely applied for mod-
elling the disequilibrium error.
Regime-switching cointegration can be considered as an approach that deals with
the combination of nonlinearities and nonstationarities.It combines cointegration
as the global problem and nonlinearity as the local problem,cf. Balke and Fomby
(1997). Depending on the specification, the underlying testing problem can be for-
mulated as either unit rootor linearity against STR cointegration, see also Dufrénot
et al. (2006). First approaches suggested a null hypothesisof no nonlinear adjust-
ment in a linear cointegration framework and consequently based inference on a
linear error correction model (ECM), cf. Seo (2004) or Nedeljkovic (2011). Among
others KSS established appropriate theoretical foundations for inference based on a
nonlinear ECM. In accordance with these authors it is reasonable to utilise a test that
is designed to have power against the alternative of nonlinear dynamic adjustment.
The reason why research focus has come to allow nonlinear short-run dynamics in
the adjustment process to deviations from long-run equilibrium relations are e.g.
contemporaneous price differentials for a certain good. Since it is acknowledged
that Jevons’s law of one price does not apply intertemporally, researchers have de-
cided to ease conventional restrictions like the assumption of efficient markets. For
instance exchange rates under the purchasing power parity in the presence of trans-
action costs exemplify the necessity of regime-switching dynamics in econometrics,
compare Taylor et al. (2001) or Taylor (2001).
However, first advances in nonlinear cointegration refer toBalke and Fomby (1997)
who introduced threshold cointegration. According to themerror correction requires
the disequilibrium error to exceed a critical threshold, implying that price deviations
between two locations are corrected by arbitrage only when deviations were suffi-
ciently large. Subsequent extension can be found in Siklos and Granger (1997) or
Chen et al. (2005). For particular contributions with respect to testing see Enders
and Granger (1998), Lo and Zivot (2001) or Hansen and Seo (2002). If the switch
is rather smooth than discrete STR ECMs, brought forward by e.g. Taylor and Peel
(2000) or Kiliç (2011), are applied. If the transition between the slowly adjusting
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inner regime and the quickly adjusting outer regimes are associated with small and
large price deviations respectively, an exponential STR ECM should be employed.
If negative and positive deviations are corrected differently the adjustment process
is subject to asymmetric behaviour. In that case a logistic transition function is just
appropriate for the adjustment process.
In this paper we propose D-LSTR as an overall generalisationof STR functions.
More precisely this work addresses STR-based nonlinear adjustment processes and
especially a globally stationary Double-LSTR cointegration process with symmetric
behaviour in the outer regimes. The aim is to show that D-LSTRcointegration has
better power than other STR functions. We are especially interested in the power re-
sults compared to KSS’s nonlinear cointegration test basedon a globally stationary
exponential-STR cointegration alternative.
The rest of the paper is organized as follows. In section 2 thetesting framework for
the t- andF-type test is set up and section 3 the cointegration tests areintroduced.
Section 4 presents the power results and section 5 concludes.

2 Model setup

We start with a nonlinear vector error correction model (VECM) as in KSS, derived
from an(n×1)-vectorzt = (z1t , . . . ,znt), consisting of I(1) stochastic processes be-
ing given by

∆zt = αβ ′zt−1+G (β ′zt−1)+
p

∑
i=1

Γ i∆zt−i + εt , with t = 1, . . . ,T. (1)

The first and second term on the right hand side represent the linear and nonlin-
ear error correction term.α(n×r) contains the linear adjustment parameters, that
describe the percentaged correction in periodt, while β(n×r) is the cointegrating
vector. The cointegration relation is assumed to be linear which is why the sec-
ond error correction term simply underlies a nonlinear transformation according
to the insinuated nonlinear transition function,G (·). Concerning the specific tran-
sition functionG (·) in our testing approach we will go into detail in the ongo-
ing subsection. For some further explanatory power of the model lagged autocor-
relations are included inΓ , depending on the optimal lag orderp. The (n× n)
error processεt is iid (0,Σ) with Σ being a positive definite matrix. It is as-
sumed that the initial valuesZ0 ≡ (z−p, . . . ,z0) are known andA(z) is given by
(1−z)In−αβ ′z−∑p

i=1Γ i(1−z)zi . If detA(z) = 0, then|z|> 1 orz= 1 what implies
that the number of unit roots equalsn− r with r being the quantity of cointegration
relations.
Since we intent to analyze at most one conditional long-run cointegration relation
the vectorzt is decomposed into(yt ,x′t)

′, the dependent and the explanatory variable
respectively. The scalaryt is hereby conditioned byxt given the past values ofzt .
Hence we obtain
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∆zt = αut−1+G (ut−1)+
p

∑
i=1

Γ ∆zt−i + εt , t = 1, . . . ,T (2)

whereby the linear cointegration relation is enclosed in

ut = yt −β ′
xxt , (3)

with β x ∼ (k×1) containing the cointegration parameters andk equal to(n−1).

2.1 Double logistic smooth transition

In our model setup we presume that the switches between regimes are induced by
a second-order logistic smooth transition or double LSTR (D-LSTR) process, orig-
inally proposed by Jansen and Teräsvirta (1996), derived from

G (st ;γ,c) = (1+exp{−γ(st − c1)(st − c2)})−1 , c1 ≤ c2,γ > 0.

st is the state variable that causes the switch between regimes. Herest is replaced
by the lagged variable of the cointegration relation’s error ut−1 where the value of
ut−1 determines if the threshold is met or not. The threshold valuesc1 andc2 are
chosen to bec1 =−√

c andc2 =
√

c assuming that−c1 = c2 holds. Therefore,G (·)
simplifies to

G (st ;γ,c) =
(

1+exp{−γ(y2
t−1− c}

)−1
, γ ≥ 0, (4)

and a symmetric transition function is obtained. The smoothness parameterγ de-
termines the gradual changing strength of adjustment for the changes in regimes.
The reason why we propose D-LSTR in contrast to an ESTR function is that the
D-LSTR approach features special properties. Firstly D-LSTR can display symmet-
ric and stationary behaviour in the outer regimes onceut−1 < −√

c or ut−1 >
√

c
on the one hand. On the other hand it can display unit root behaviour at the central
regime when−√

c< ut−1 <
√

c. Secondly, it is capable of generating exponential-
type nonlinearity that closely approximates ESTR nonlinearity, when the transition
parameter tends to infinity, cf. Sollis (2011), even though the D-LSTR model does
actually not nest an ESTR-model. Contingent on the value ofγ and due to its special
properties the D-LSTR function covers not only exponential-type nonlinearity for
small and moderateγ but nests 3-regime TAR nonlinearity forγ →∞. Consequently,
a self-exciting TAR model is obtained since the state variable equals the transition
variable depending on whether the linear combination ofyt andxt is stationary or
not. This means that the switching of the model depends on thecointegratedness of
yt andxt. With respect to the assumptions onc1 andc2 the outer regimes of this
self-exciting TAR model are restricted to be identical.
Furthermore, D-LSTR offers more flexibility concerning therange of the nonsta-
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tionary regime due to the scaling parameterc, e.g. Kaufmann et al. (2012). In con-
trast to D-LSTR a possible drawback of an exponential transition function would
be that forγ → 0 andγ → ∞, the model becomes linear, cf. van Dijk et al. (2002).
It should be mentioned that unlike the logistic function thesecond order logistic
function is not bounded between[0,1]. For finiteγ the D-LSTR function realises a
minimum different from zero, see van Dijk and Franses (2000). In fact, whenγ = 0,
the D-LSTR functionG (·) reduces to 0.5 and the model becomes linear. For this
reason, in our testing approach we propose the transition function

G (ut−1;γ,c) =
[

(

1+exp{−γ(u2
t−1− c)}

)−1−0.5
]

, γ > 0, (5)

following Teräsvirta (1994), who included−0.5 in order to derive linearity tests. In
our case subtracting 0.5 ensures that there is no cointegration at all and therefore
enables us to test the problem under consideration, what will be issued in an instant.
So far, our partitioned model assembles to

∆yt = φut−1+ρut−1

[

(

1+exp{−γ(u2
t−1− c)}

)−1−0.5
]

+ω ′∆xt

+
p

∑
i=1

ψ ′
i∆∆∆zt−i + εt

∆xt =
p

∑
i=1

Γ xi∆zt−i + εxt .

(6)

Under the assumption thatφ = ξ −γ with ξ < 0 the conditional double logistic STR
ECM for ∆yt and a marginal vector autoregression model for∆xt is obtained. For
further assumptions and details on certain parameter constraints see KSS.

2.2 Testing problem

We want to test no cointegration against the alternative of globally stationary D-
LSTR cointegration. This implies that under the null hypothesis it has to be as-
sured, that there is no cointegration in the process. Nonlinear cointegration is solely
embodied via the transition function (5) and (6), which consequently needs to be
excluded underH0. As G (·) reduces to 0.5, whenγ = 0, subtracting one half estab-
lishes a feasible null hypothesis. This enables us straightforwardly, to formulate the
hypotheses as

H0 : γ = 0 vs. H1 : γ > 0

for testing against globally stationary D-LSTR cointegration. Obviously,γ = 0 im-
plies thatρ andc are not identified under the Null, referred to as the Davies (1987)
problem. The stationarity properties ofut are determined by the positiveness ofγ.
For solving the cointegration problem and in order to test for the nonlinear coin-
tegration relation we apply the Engle and Granger (1987) residual-based two step
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procedure. At the first stage the residuals ˆu = yt − β̂ xx are estimated via OLS. At
the second stage we expand a first order Taylor series approximation to the smooth
transition function due to the non-identification ofρ (ρ andc) in the case of at-type
test (F-type test). The linearisation leads to

T1(γ) = 0.5+0.25γ(u2
t−1− c). (7)

It might seem more appropriate to use a Taylor expansion of a higher order since it
captures the symmetric property far better than the line of the first order. Neverthe-
less, this implies more terms and respectively more restrictions to be tested, which
might result in a loss of power.
Substituting (7) into (6) we obtain the following auxiliaryregression

∆yt = δ1ût−1+ δ2û3
t−1+ω ′∆xt +

p

∑
i=1

ψ ′
i∆zt−i +et , (8)

where we defineδ1 ≡ φ −0.25ργc andδ2 ≡ 0.25ργ. In accordance with KSS we
assume thatφ = 0 so that a unit root behaviour around the equilibrium can occur.
Imposingφ = 0 does not influence theF-type test as long asc 6= 0. For the case that
c= 0 the test reduces to at-type test.

3 Cointegration tests

Setting the switch pointc equal to zero finds theoretical justification in many eco-
nomic and financial applications. Preferably it is utilisedin the context of an ESTR
function. However, this leads to the following auxiliary regression for thet-type test,
whereδ1 and respectively ˆut−1 cancel out

∆yt = δ2û3
t−1+ω′∆xt +

p

∑
i=1

ψ ′
i∆zt−i +et ,

with the corresponding hypotheses

H0 : δ2 = 0 vs. H1 : δ2 < 0 .

Thet-statistic is given by

t =
û3′
−1Q1∆y

√

σ̂2
NECû3′

−1 Q1 û3
−1

(9)

whereû3
−1=

(

û3
0, . . . , û

3
T−1

)

, Q1= IT −S(S′S)−1S′, S=(∆X,∆Z−1, . . . ,∆Z−p)

and∆y = (∆y1, . . . ,∆yT)
′.

Assuming thatc 6= 0 the auxiliary regression is given by (8). As we have two re-
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strictions in theF-type test case the corresponding couple of hypotheses for testing
for nonlinear cointegration are given by:

H0 : δ1 = δ2 = 0 vs. H1 : δ1 6= 0 or δ2 < 0 .

TheF-type statistic has the form

FNEC=
(RSS0−RSS1)/2
RSS1/(T −3− p)

, (10)

whereRSS0 is the residual sum of squares obtained by imposing the two restrictions
given under the null hypothesis,δ1 = δ2 = 0 andRSS1 is the residual sum of squares
under the alternative. Since the alternative to a unit root is actually one-sided in the
direction of stable roots, like hereδ2 is restricted to be less than zero, it might be
beneficial to take the one-sidedness of the alternative intoaccount. For this purpose,
an approach that incorporates one-sided alternatives can be found in Abadir and
Distaso (2007).
In either thet-type test or theF-type test case will the limiting distribution be non-
standard under the null hypothesis due to the fact that in case of a non-cointegrated
relation the series remain nonstationary. Hence, the limiting distributions converge
to some functionals of Brownian motions. By similar arguments as in KSS we derive
for thet-type test

tNEC=

∫

B3dW
√

∫

B6dα
,

and for theF-type test

FNEC=
1
2

[

∫

BdW

]







∫

B2dα
∫

B4dα
∫

B4dα
∫

B6dα







−1





∫

BdW
∫

B3dW






,

whereB andW are shorthand notations for

B(α) =W(α)−Wx(α)′
(

∫ 1
0 Wx(α)Wx(α)′dα

)−1
×
(

∫ 1
0 Wx(α)Wx(α)dα

)

where

W(α) andWx(α) defined onα ∈ [0,1] are independent scalar andk-vector standard
Brownian motions. For a proof hereof see KSS.

4 Finite Sample Properties

In order to examine the power results in dependence of the twomajor parametersγ
andρ we conduct a Monte Carlo study. For this purpose, the model issimplified to
a bivariate ECM, whereβx is assumed to be equal to one and
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∆yt = λ ∆xt +ρut−1

[

(

1+exp{−γ(u2
t−1− c)}

)−1−0.5
]

+ εt

∆xt = νt , ut = yt −βxxt
[

εt

νt

]

∼ iid N

(

0,
[

σ2
1 0

0 σ2
2

])

.

The parameter constellations under investigation are the following:

λ = {0.5,1},ρ = {−1.0,−0.5,−0.3,−0.1},γ = {0.8,1,2,1000}, andσ2 = {1,4}.

Becauseγ does not only determine the smoothness of adjustment but determines
also how present the effect of the nonlinear error correction is, we expect the test
to have power finding a nonlinear cointegration relation, when γ becomes larger.
Therefore, we varyγ as is illustrated bellow. In accordance with KSS we investigate
the impact of the common factor restriction,λ = 1, for serial correlation in the
disturbances. Therefore, we consider different parametervalues forλ = {0.5,1}
and also we want investigate the impact of different signal-to-noise ratios and vary
σ2

2 = {1,4}.

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ut−1

G
(u

t−
1, 

γ,
 c

)=
1

1
+

ex
p(

−
γ(

u t
−12

−
c)

)

γ = 0.8
γ = 1
γ = 2
γ = 1000

Figure 1: Transition function depending on a varyingγ with ac= 0.

As mentioned before, the codomain for the transition probabilities has been
scaled down to a half and to[0.5,1] respectively.γ < 1 are frequently chosen values
in the ESTR context, which is whyγ is set equal to 0.8, compare the squared line.
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The triangled and hashed lines show a still very smooth transition whereas the cir-
cled line graphs a very fast transition atγ = 1000. Here the speedy transition results
in a 3-regime TAR approximation.
ρ determines how present the nonlinear cointegration is which is why we expect a
drop in the power for a sinkingρ . The values forλ are taken from KSS.
In the following table the power results for ourt- andF-type test are presented.
Additionally we compare these results to a linear cointegration test, wherefore we
conducted the Johansen procedure on the globally stationary D-LSTR process, cf.
Johansen (1988, 1991) in order to discriminate between a nonlinear and a linear
cointegation test. The table provides the power results forall possible combinations
of the before mentioned parameter constellationsσ2,ρ ,γ, andλ . The results are
displayed in Table 1 and Figure 2.



4.1 Power Results

T=100,α = 0.05 σ2 = 1 σ2 = 4

raw data demeaned data detrended data raw data demeaned data detrended data

ρ γ λ JOH tNEC FNEC JOH tNEC FNEC JOH tNEC FNEC JOH tNEC FNEC JOH tNEC FNEC JOH tNEC FNEC

-1

0.8
0.5 0.9270 0.9984 1.00000.9258 0.9902 1.00000.8188 0.9712 1.00000.9482 1.0000 1.00000.9502 1.0000 1.00000.8272 0.9998 1.0000
1 0.8590 0.9968 0.99860.8646 0.9744 1.00000.7844 0.9424 1.00000.8676 0.9976 0.99940.8610 0.9764 1.00000.7784 0.9408 0.9994

1
0.5 0.9292 0.9980 1.00000.9340 0.9902 1.00000.8230 0.9700 0.99980.9502 1.0000 1.00000.9484 1.0000 1.00000.8168 0.9998 1.0000
1 0.8946 0.9972 1.00000.8910 0.9804 0.99960.7924 0.9398 1.00000.8882 0.9962 1.00000.8878 0.9792 1.00000.7890 0.9430 1.0000

2
0.5 0.9410 0.9984 1.00000.9460 0.9902 1.00000.8040 0.9700 1.00000.9488 1.0000 1.00000.9478 1.0000 1.00000.8280 1.0000 1.0000
1 0.9162 0.9970 1.00000.9162 0.9722 1.00000.8068 0.9354 1.00000.9214 0.9960 0.99980.9158 0.9762 1.00000.8140 0.9404 1.0000

1000
0.5 0.9438 0.9980 1.00000.9416 0.9846 1.00000.8244 0.9598 1.00000.9450 1.0000 1.00000.9464 1.0000 1.00000.8212 0.9998 1.0000
1 0.9392 0.9940 1.00000.9342 0.9624 1.00000.8146 0.9212 1.00000.9374 0.9926 1.00000.9336 0.9638 1.00000.8236 0.9140 1.0000

-0.5

0.8
0.5 0.5754 0.8962 0.85700.5720 0.7268 0.89040.5898 0.5682 0.92060.9486 0.9984 0.99840.9482 0.9922 1.00000.8222 0.9516 1.0000
1 0.3996 0.8606 0.70020.4056 0.6256 0.78440.4690 0.4724 0.85400.4068 0.8452 0.70340.4100 0.6350 0.78120.4828 0.4632 0.8566

1
0.5 0.5936 0.9068 0.86580.5884 0.7244 0.91060.6056 0.5456 0.92980.9476 0.9982 0.99820.9442 0.9898 1.00000.8102 0.9534 0.9998
1 0.4232 0.8494 0.72100.4254 0.6228 0.80640.4892 0.4694 0.87440.4186 0.8494 0.73440.4276 0.6264 0.81460.4970 0.4810 0.8756

2
0.5 0.6392 0.8910 0.88820.6476 0.7260 0.92100.6348 0.5622 0.94660.9480 0.9988 0.99960.9462 0.9914 1.00000.8264 0.9528 1.0000
1 0.4818 0.8312 0.77220.4936 0.6220 0.84580.5490 0.4688 0.90260.4850 0.8388 0.77300.4898 0.6256 0.85040.5260 0.4870 0.8942

1000
0.5 0.6858 0.8878 0.90680.6710 0.7192 0.94080.6564 0.5600 0.95160.9446 0.9990 1.00000.9388 0.9900 1.00000.8198 0.9544 0.9998
1 0.5318 0.8210 0.80500.5332 0.6172 0.87520.5696 0.4644 0.90680.5388 0.8332 0.80760.5284 0.6246 0.86280.5626 0.4718 0.9154

-0.3

0.8
0.5 0.2614 0.6226 0.38220.2624 0.3746 0.48160.3536 0.2566 0.57340.9128 0.9586 0.97320.9114 0.8652 0.97260.7832 0.6612 0.9354
1 0.1796 0.5484 0.25820.1826 0.3076 0.37720.2820 0.2100 0.51920.1732 0.5592 0.25880.1780 0.3176 0.38840.2918 0.2108 0.5100

1
0.5 0.2624 0.6342 0.39540.2610 0.3856 0.49200.3328 0.2558 0.57660.9076 0.9572 0.97620.9204 0.8692 0.97160.7892 0.6548 0.9378
1 0.1932 0.5464 0.26620.1916 0.3004 0.39320.2822 0.2180 0.51900.1910 0.5510 0.26320.1880 0.3100 0.38880.2840 0.2118 0.5152

2
0.5 0.2876 0.6192 0.41500.2842 0.3826 0.51480.3774 0.2454 0.59240.9188 0.9568 0.97300.9086 0.8642 0.97320.7760 0.6628 0.9354
1 0.2134 0.5446 0.29180.2022 0.3188 0.41800.3052 0.2212 0.54840.2080 0.5336 0.29220.2014 0.3322 0.42340.2976 0.2298 0.5548

1000
0.5 0.2868 0.6218 0.43180.2990 0.3920 0.54900.3802 0.2694 0.61360.9126 0.9598 0.97540.9244 0.8744 0.97300.7888 0.6706 0.9376
1 0.2178 0.5414 0.30960.2100 0.3114 0.43780.3042 0.2178 0.56940.2140 0.5324 0.30920.2208 0.3240 0.42720.3186 0.2224 0.5408

-0.1

0.8
0.5 0.0816 0.1816 0.04640.0818 0.0992 0.10660.1772 0.0726 0.20200.2814 0.3822 0.20080.2920 0.1998 0.22380.2952 0.0764 0.1888
1 0.0756 0.1628 0.04200.0692 0.1014 0.09980.1708 0.0774 0.19760.0756 0.1620 0.03920.0694 0.0926 0.10140.1708 0.0768 0.2046

1
0.5 0.0856 0.1788 0.04300.0808 0.0910 0.10920.1708 0.0652 0.19000.2834 0.3726 0.20120.2798 0.2050 0.23060.3100 0.0762 0.1990
1 0.0712 0.1658 0.03800.0728 0.0930 0.10460.1722 0.0670 0.18460.0700 0.1544 0.04200.0680 0.0882 0.10360.1702 0.0748 0.1958

2
0.5 0.0774 0.1706 0.04520.0776 0.0900 0.11080.1710 0.0680 0.17860.2872 0.3782 0.19820.2916 0.1934 0.22420.3150 0.0760 0.1874
1 0.0696 0.1604 0.04620.0688 0.0892 0.09740.1762 0.0678 0.20000.0748 0.1604 0.04540.0670 0.0866 0.09820.1688 0.0700 0.2016

1000
0.5 0.0760 0.1788 0.05060.0732 0.1030 0.10380.1768 0.0764 0.18480.2850 0.3786 0.19740.2890 0.1978 0.22080.3012 0.0784 0.1862
1 0.0750 0.1596 0.04480.0688 0.0864 0.10380.1672 0.0684 0.20340.0688 0.1544 0.04300.0782 0.0968 0.10820.1668 0.0666 0.1948

Table 1: Power results for varying parameter constellations of{σ2,λ ,γ ,ρ}.
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One can recognize a clear power loss forρ > −1 whenσ2 = 1. In case that
σ2 = 4 the power loss begins forρ > −0.3 for raw and demeaned data and for
detrended data atρ > −0.5. A power loss for a sinking magnitude ofρ is quite
plausible asρ < 1 determines how present cointegration is and thus ensures global
stationarity. The power values within a particular block ofthe same kind of data and
for the sameρ are however alike. Apparently the transition speed does notmake a
big difference to the power whenγ varies among{0.8,1,2,1000}. The power gain
for a faster transition is marginal. This finding might be dueto the possibly low
amount of observations in the outer regimes.
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Figure 2: Power results for thet- andF-type test forγ = 1.
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It is interesting to observe that theF-type test gains power when the data is
demeaned or detrended whereas thet-type test looses power. Regarding the graphs
it can bee seen, that the power forλ = 0.5 dominates the power results forλ = 1 for
both tests and all kinds of data sets and moreover, increaseswith the variance of the
innovations in the regressorx. This finding is analogue to KSS, where the nonlinear
tests have superior power when the common factor restriction is violated, which
is due to the increased correlation with the regression error, see KSS. As expected
Johansen’s linear cointegation test is beaten by the nonlinear cointegration tests (t
andF) for all different kinds of data sets, see Table 1.

5 Conclusion

Our proposed D-LSTR function that nests discontinuous adjustment behaviour and
is also able to mimic ESTR behaviour has better power than a comparable linear
cointegration test. Even though it can be stated for thet- andF-type test that there is
a significant power drop for the case whenρ ≥−0.3 implying that the cointegration
relation is quite weakly present in the process, we can nevertheless conclude that our
extension of the KSS testing procedure offers reasonable power results. Compared
to thet-type test theF-type test provides even slightly better power results.
In addition to our approach it would be interesting to further discriminate between
different cases forc 6= 0, what meant a wider inner regime of nonstationarity.
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