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Efficient Iterative Maximum Likelihood Estimation of

High-Parameterized Time Series Models

20th January 2014

Nikolaus Hautsch∗ Ostap Okhrin† Alexander Ristig‡

Abstract

We propose an iterative procedure to efficiently estimate models with complex log-likelihood

functions and the number of parameters relative to the observations being potentially high. Given

consistent but inefficient estimates of sub-vectors of the parameter vector, the procedure yields

computationally tractable, consistent and asymptotic efficient estimates of all parameters. We

show the asymptotic normality and derive the estimator’s asymptotic covariance in dependence

of the number of iteration steps. To mitigate the curse of dimensionality in high-parameterized

models, we combine the procedure with a penalization approach yielding sparsity and reducing

model complexity. Small sample properties of the estimator are illustrated for two time series

models in a simulation study. In an empirical application, we use the proposed method to estimate

the connectedness between companies by extending the approach by Diebold and Yilmaz (2014) to

a high-dimensional non-Gaussian setting.

JEL classification: C13, C32, C50

Keywords: Multi-Step estimation, Sparse estimation, Multivariate time series, Maximum likelihood

estimation, Copula.

1. Introduction

Statistical inference for models including many parameters is of growing interest in various fields in

econometrics and statistics. Examples include high-dimensional vector autoregressive moving average
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(VARMA) models, multivariate generalized autoregressive conditional heteroscedasticity (GARCH)

models, vector multiplicative error models (VMEMs) or corresponding copula approaches. Such mod-

els are mostly estimated using multi-step approaches constructed from parts of the log-likelihood.

Such estimators are typically inefficient and their asymptotic distributions are difficult to compute as

asymptotic results for multi-step likelihood procedures are generally widely missing.

In this paper, we address the situation of a complex, possibly highly parameterized log-likelihood

function (in terms of the number of parameters relative to the sample size) whose first- and second-order

derivatives cannot necessarily be derived analytically. Complexity can arise from nonlinearities in the

underlying model and/or if the number of parameters r is high relative to the number of observations.

In such a situation, a one-step optimization of the log-likelihood is typically (computationally or

numerically) not possible and parameters have to be estimated in multiple steps. The contribution of

this paper is to propose an asymptotically efficient and computationally tractable iterative estimation

algorithm and to derive the asymptotic distribution of the estimates in dependence of the number of

underlying iteration steps.

Our approach rests on the assumption of the existence of a consistent but (eventually highly) ineffi-

cient estimator of a vector of parameters ϑ of a log-likelihood function L(ϑ). For example, ϑ might be

consistently but inefficiently estimated by a 2-stage procedure. To obtain an efficient and computation-

ally feasible estimator, we suggest splitting the estimation problem into appropriate computationally

tractable sub-problems. In particular, we decompose ϑ into G sub-vectors ϑ1, . . . , ϑG of arbitrary size,

and maximize L(·) iteratively with respect to ϑg, g = 1, . . . , G, holding fixed all other parameters which

have been updated in previous iteration steps. We show the consistency and asymptotic normality of

the resulting estimator ϑhn in dependence of the number of iterations h and show that it is asymptot-

ically efficient as h → ∞. Moreover, we illustrate how to combine the procedure with penalization

techniques as, e.g., the smoothly clipped absolute deviation (SCAD) penalty introduced by Fan and

Li (2001). This step yields sparse estimates and allows diminishing the curse of dimensionality arising

from highly parameterized models.

Our major focus is on time series models where the number of parameters relative to the number

of observations is high and thus it is computationally challenging or virtually impossible to optimize

the entire log-likelihood in one step. The algorithm and corresponding asymptotic theory, however,

can also be applied to other estimation and inference problems. The asymptotic distribution of the

iterative estimation procedure in dependence of the exact number of iterations is particularly useful

since researchers limit the latter in realistic applications. As illustrated in the paper, these results can

be used, among others, to easily establish the asymptotic efficiency of the feasible generalized least

squares (FGLS) estimator.

Closest to our approach is the procedure proposed by Song, Fan, and Kalbfleisch (2005) who suggest

decomposing the log-likelihood into a so-called (simple) working and a (complicated) error part. While

the analytical first- and second-order derivatives can be computed for the working part, there is no

analytical second-order derivative available for the error part. Then, the log-likelihood’s first order

condition – evaluating the error part at the estimate from previous step – is solved to update the

estimator. Our approach, however, differs in two important respects: Firstly, our algorithm relies on

the decomposition of the parameter space into G sub-spaces and thus is more flexible if ϑ is large.

Secondly, we do not require the analytical first-order derivative which makes it more tractable if the
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underlying model is complex.

However, the drawback of relying on a derivative-free optimization of L(·) is that each sub-vector, ϑg,

g = 1, . . . , G, should realistically only consist of a few parameters, say up to 10, inducing a curse of

dimensionality if ϑ is large. To address the latter and to keep the number of sub-vectors G small, we

combine the underlying log-likelihood with a non-concave penalization function, as, for instance, the

least absolute shrinkage and selection operator (LASSO), see Tibshirani (1996, 2011), or the SCAD

penalty function see Fan and Li (2001). This step makes our approach applicable in high dimensions

and thus useful for many comprehensive applications. We derive the asymptotic properties of the

resulting sparse iterative procedure building on the results by Fan and Li (2001).

The small-sample performance of the procedure is illustrated in two comprehensive simulation stud-

ies. The first one investigates the properties of ϑhn for a 5-dimensional VARMA model including 24

parameters based on 50 observations. In the second simulation study, we analyze the performance of

our estimator for a 15-dimensional VMEM containing 375 parameters based on a sample size of 500.

We illustrate that our proposed procedure significantly simplifies the underlying estimation problem

and performs sufficiently well even in these inherently high-dimensional settings. Finally, we apply

our approach to measure volatility connections between 30 companies by extending the connectedness

measure introduced by Diebold and Yilmaz (2014) to a high-dimensional and non-Gaussian setting.

This requires estimating prediction error variance decompositions based on a 30-dimensional MA(∞)

process of realized volatilities. To allow for a non-Gaussian joint distribution, we model the joint

dependence using Vine copulae, see Kurowicka and Joe (2011), and compute the final connectedness

measure based on simulated (generalized) prediction error variance decompositions. The resulting

model consists of 1860 parameters which are efficiently and sparsely estimated using our approach.

Overall, the examples show that the proposed estimation technique performs well even in challenging

settings and can serve as a working horse for parameter estimation in complex situations.

The paper is organized as follows. Section 2 and 3 discuss the estimation details. Section 4 illustrates

an application of the procedure in a generalized least squares setting. Section 5 shows the performance

of the estimator in two simulation studies. Section 6 presents the empirical application and Section 7

concludes. Proofs are moved to Appendix A.

2. Efficient Multi-Step Estimation

Let the observed data x be a realization of the finite history X
def
= (X>1 , . . . , X

>
n )> of the d-dimensional

stochastic process
{
Xi : Ω→ Rd, d ∈ N, i = 1, 2, . . .

}
, which is defined on a complete probability space

(Ω,F ,P) with Xi
def
= (Xi1, . . . , Xid)

>. Let the absolutely continuous probability measure P describe

the complete probabilistic behavior of X. Equivalently, the stochastic behavior of X can also be

characterized by the measurable Radon-Nikodým density of P denoted by f(X). Based on the σ-

field Fi−1
def
= {Xl : l ≤ i− 1} and conditional density fi(·)

def
= fXi|Fi−1

(Xi1, . . . , Xid), we rewrite the

density as f(X) =
∏n
i=1 fi(Xi1, . . . , Xid). Unless stated differently, we assume that P ∈ P, with

P = {Pϑ : ϑ ∈ Θ ⊆ Rr, r ∈ N}, so that the density of P is given by f(·;ϑ) =
∏n
i=1 fi(·;ϑ), which is

assumed to be measurable for each ϑ ∈ Θ and absolutely continuous on the parameter space Θ.

Assume that the parameter vector ϑ ∈ Θ = Θ1 × Θ2 × · · · × ΘG can be split up into G sub-vectors
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ϑg, g = 1, . . . , G, each consisting of rg components, g = 1, . . . , G, with r =
∑G

g=1 rg denoting the

total number of parameters. Let ϑ0 = v(ϑ1,0, . . . , ϑG,0) denote the (true) parameter vector where the

v(·) operator vectorizes vectors of possibly different dimension, i.e., v(ϑ1, . . . , ϑG)
def
= (ϑ>1 , . . . , ϑ

>
G)>.

The underlying log-likelihood function is given by L(ϑ)
def
= L(ϑ;X) =

∑n
i=1 `i(ϑ) with `i(ϑ)

def
=

log fi(Xi1, . . . , Xid;ϑ). According to Sklar’s Theorem, see Sklar (1959), each d-dimensional distri-

bution function can be decomposed into its conditional marginal distribution functions and a con-

ditional dependence component – the copula function. Consequently, `i(ϑ) can be decomposed into

the log copula density `ci (ϑ1, . . . , ϑG)
def
= `ci (ϑ) depending on ϑ and the sum of log marginal densities

`mi (ϑ1, . . . , ϑk)
def
=
∑d

j=1 log fXij |Fi−1
(·;ϑ1, . . . , ϑk) depending on p =

∑k
g=1 rg parameters split into

k < G groups, ϑ1, . . . , ϑk. See Joe (1997), Nelsen (2006), and Jaworski, Durante, and Härdle (2013)

for comprehensive overviews of copulae and several examples. The log-likelihood can be then written

as

L(ϑ) =
n∑
i=1

{`mi (ϑ1, . . . , ϑk) + `ci (ϑ)} = Lm(ϑ1, . . . , ϑk) + Lc(ϑ), (1)

where Lm(·) def
=
∑n

i=1 `
m
i (·) denotes the marginal and Lc(·) def

=
∑n

i=1 `
c
i (·) the copula part. To keep the

notation simple, we define

L̇(ϑ0)
def
=

∂L(ϑ)

∂ϑ

∣∣∣∣
ϑ=ϑ0

and L̈(ϑ0)
def
=

∂2L(ϑ)

∂ϑ∂ϑ>

∣∣∣∣
ϑ=ϑ0

and accordingly

L̇ϑg(ϑ0)
def
=

∂L(ϑ)

∂ϑg

∣∣∣∣
ϑ=ϑ0

and L̈ϑg ,ϑl(ϑ0)
def
=

∂2L(ϑ)

∂ϑg∂ϑ>l

∣∣∣∣
ϑ=ϑ0

,

with g, l = 1, . . . , G. An analogous notation is used for the components Lm(·) and Lc(·). Expectations

are taken with respect to the measure P and defined as E(·) def
= Eϑ0(·) = EP(·). For a sequence of

random variables, vectors or matrices Un is said to be bounded in probability, the notation Un = Op(1)

is used. The notation Un = Op(Vn) implies for two sequences of compatible random variables, vectors

or matrices Un and Vn, UnV
−1
n

P→ 0.

2.1. Iterative Estimation

In non-linear models, first- and second-order derivatives of L(·) are typically complicated, making the

maximization of (1) with respect to ϑ challenging. If, moreover, the number of underlying parameters,

r, is high (either absolutely or relative to the sample size n), one-step estimation is often numeri-

cally impossible. In these situations, it is inevitable to simplify the estimation problem by breaking

it up into lower-dimensional and/or less demanding problems which can be solved individually. In

most situations, however, the resulting estimators are inefficient since the dependence between the

sub-components is neglected in the estimation. Addressing this shortcoming makes it necessary to

apply a multi-step estimation procedure which iterates through all sub-model estimations and thus

4



allows estimates to be successively updated exploiting information from the other steps. A well-known

example of this proceeding is the FGLS estimation of a heteroscedastic linear regression model which

is efficiently estimated by iterating various times between (covariance-based weighted) least squares

estimations of slope parameters and corresponding covariance estimations.

The iterative algorithm proposed in this paper builds on the idea of iterative multi-step estimation

relying on arbitrary decompositions of ϑ into k sub-vectors associated with the marginals and G−k sub-

vectors associated with the copula function. Assuming consistency though inefficiency of the (initial)

estimator in Step h = 1 below, we propose the following algorithm:

Algorithm 1.

Step h = 1:

(1) v(ϑ11,n, . . . , ϑ
1
k,n) = arg zero

v(ϑ1,...,ϑk)
L̇m(ϑ1, . . . , ϑk)

(2) v(ϑ1k+1,n, . . . , ϑ
1
G,n) = arg zero

v(ϑk+1,...,ϑG)
L̇cv(ϑk+1,...,ϑG)(ϑ

1
1,n, . . . , ϑ

1
k,n, ϑk+1, . . . , ϑG)

Step h > 1:

(1) ϑh1,n = arg max
ϑ1
L(ϑ1, ϑ

h−1
2,n , . . . , ϑ

h−1
G,n )

(2) ϑh2,n = arg max
ϑ2
L(ϑh1,n, ϑ2, ϑ

h−1
3,n , . . . , ϑ

h−1
G,n )

...

(G) ϑhG,n = arg max
ϑG
L(ϑh1,n, . . . , ϑ

h
G−1,n, ϑG)

The 2-stage procedure at Step 1 of Algorithm 1 is well known as inference functions for margins and a

simple way to obtain consistent estimators of parametric copula-based models, see Joe and Xu (1996).

Starting with the initial estimates in Step 1, the Algorithm 1 builds on an iterative estimation of the

parameters of each ϑg, given the parameters of the other groups ϑl, l 6= g, g = 1, . . . , G, estimated in

the (instantaneous) previous steps. For a discussion in the context of non-consistent initial estimators,

we refer to Song et al. (2005) and the references therein.

2.2. Asymptotic Properties

We assume that the maximum likelihood (ML) estimator ϑn = v(ϑ1,n, . . . , ϑG,n) of ϑ can be formulated

as the maximizer of L(ϑ) obtained from solving L̇(ϑ) = 0. To show the consistency of ϑhn ∀h in

Theorem 1 below we need the following set of assumptions:

Assumption 1. The model is identifiable and the true value ϑ0 is an interior point of the compact

parameter space Θ. We assume that the model is correctly specified in the sense that Eϑ{∂`i(ϑ)/∂ϑg} =

0 and information equality holds,

Ii,gl(ϑ)
def
= Eϑ

{
∂`i(ϑ)

∂ϑg

∂`i(ϑ)

∂ϑ>l

}
= −Eϑ

{
∂2`i(ϑ)

∂ϑg∂ϑ>l

}
,
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for g, l = 1, . . . , G and i = 1, . . . , n.

Assumption 2. The information matrix is I(ϑ) =
∑n

i=1 Ii(ϑ), with Ii(ϑ) = {Ii,gl(ϑ)}Gg,l=1. Let the

limit of n−1I(ϑ)
P→ J (ϑ) be the asymptotic information matrix, which is finite and positive definite

at ϑ0 and n−1L̈(ϑ)
P→ H(ϑ) be the asymptotic Hessian, which is finite and negative definite for ϑ ∈

{ϑ : ||ϑ− ϑ0|| < δ}, δ > 0.

Then, we can state the following theorem:

Theorem 1. Let the random variables of the sequence X have an identical conditional density fi(·;ϑ)

for which Assumptions 1-2 hold. If ϑ1n
P→ ϑ0, then ϑhn

P→ ϑ0, ∀ h = 2, 3, . . ..

For deriving a compact formulation of the asymptotic covariance matrix of n1/2(ϑhn − ϑ0), define the

number of copula parameters as q = r − p and the matrices

T1 =

(
Ip 0pp 0pq
0qp 0qp Iq

)
and T2 =

(
Ip Ip 0pq
0qp 0qp Iq

)
, (2)

with p-dimensional identity matrix Ip and (p × q) null matrix 0pq. Moreover, define H1(ϑ0) via the

relationship

n−1

{
L̈m(ϑ1,0, . . . , ϑk,0) 0pq
L̈cv(ϑk+1,...,ϑG),ϑ(ϑ0)

}
= H1(ϑ0) + Op(1),

where H1(ϑ0) denotes the (partial) Hessian resulting from Step 1. To show the asymptotic distribution

of the estimator in dependence of the number of iteration steps h, we make the following additional

assumptions:

Assumption 3. The score s(ϑ0) = v{L̇m(ϑ1,0, . . . , ϑk,0), L̇c(ϑ0)} of the decomposed log-likelihood

L(ϑ) = Lm(ϑ1, . . . ϑk) + Lc(ϑ), with
{
n−1s(ϑ0)s(ϑ0)

>} P→ Σ(ϑ0), obeys

n−1/2s(ϑ0)
L→ N{0,Σ(ϑ0)}. (3)

If X is the finite history of a stationary and ergodic stochastic process, Assumption 3 is then satisfied

by ”Gordin’s conditions” as follows: Based on the observation-specific score contributions si(ϑ0)
def
=

∂`i(ϑ)/∂ϑ|ϑ=ϑ0 , denote the long-run covariance by Σ(ϑ0) =
∑∞

i=−∞ E
{
si(ϑ0)si(ϑ0)

>}. According to

Gordin (1969), assuming (i) Σ(ϑ0) existing and being finite,

(ii) E {si(ϑ0)|si−j(ϑ0), si−j−1(ϑ0), . . .}
P→ 0 as j →∞ and (iii)

∑∞
j=0 E(ν>ijνij)

1/2 being finite with

νij = E {si(ϑ0)|si−j(ϑ0), si−j−1(ϑ0), . . .} − E {si(ϑ0)|si−j−1(ϑ0), si−j−2(ϑ0), . . .} ,

is sufficient to guarantee (3).

Assumption 4. Define the lower block and upper block triangular matrix of −n−1L̈(ϑ0) as Ln and

Un, respectively, such that −n−1L̈(ϑ0) = Ln − Un with Lgl,n = 0 for g < l ≤ G and Ugl,n = 0 for
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l ≤ g ≤ G. For the probability limits L and U of Ln and Un, respectively, we assume ρ(Γ) < 1, where

ρ(·) denotes the spectral radius and Γ
def
= L−1 U.

Using these assumptions, we can state the following theorem:

Theorem 2. Let the random variables of the sequence X have an identical conditional density fi(·;ϑ)

for which Assumptions 1-4 hold. Then,

n1/2(ϑhn − ϑ0)
L→ N

{
0,BhΣ(ϑ0)B>h

}
,

where Bh = Γh−1
[
KT1 − {−H(ϑ0)}−1 T2

]
+ {−H(ϑ0)}−1T2,

and K =
{
−H1(ϑ0)

}−1
.

The theorem shows that the asymptotic covariance of ϑhn has a sandwich form consisting of the co-

variance of the ”decomposed” score s(ϑ0), Σ(ϑ0), and matrices Bh. The latter can be computed based

on Σ(ϑ0) exploiting information equality (Assumption 1) and the fact that J (ϑ0) = T2Σ(ϑ0)T >2 =

−H(ϑ0). Since T1Σ(ϑ0)T >1 is the expectation of the outer score product obtained from the 2-stage

procedure in Step 1, the asymptotic covariance matrix of n1/2(ϑ1n − ϑ0) after the first iteration step

(h = 1) collapses to the well known form

{H1(ϑ0)
−1}T1Σ(ϑ0)T >1 {H1(ϑ0)

−1}>. (4)

Moreover, an important implication of Theorem 2 is that the estimator is asymptotically efficient if

h → ∞. This is due to the fact that, by Assumption 1 and 4, limh→∞ Bh = J (ϑ0)
−1T2 and thus the

asymptotic covariance matrix of n1/2(ϑhn − ϑ0) is J (ϑ0)
−1:

Corollary 1. Under the assumptions of Theorem 2,

lim
h→∞

n1/2(ϑhn − ϑ0)
L→ N

{
0,J (ϑ0)

−1} .
While Assumptions 1-3 are standard, Assumption 4 is usually not imposed in the context of ML esti-

mation. From a mathematical point of view, Assumption 4 ensures the convergence of Algorithm 1,

but it is unclear whether ρ(Γ) < 1 is guaranteed for arbitrary decompositions of ϑ = v(ϑ1, . . . , ϑG).

Using the terminology of Song et al. (2005), if U is “larger” than L, then ρ(Γ) ≮ 1 and thus the asymp-

totic normality of the estimator is not guaranteed anymore. Such a situation, however, is unlikely, as

J (ϑ0) can be decomposed as J (ϑ0) = (D−U>) − U, where D = −diag {H11(ϑ0), . . . ,HGG(ϑ0)} is a

block diagonal matrix. We can neither verify that ρ(Γ) < 1 generally holds, nor find a theoretical or

numerical counter-example. Consider for illustration the trivial case of r = 2 and r1 = r2 = 1. Then,

the smallest eigenvalue of

L−1 U =

(
0 −L21 /L11

0 L2
21 /(L11 L22)

)
,

is zero and the largest eigenvalue is smaller than one, since the information matrix is positive definite.

The case r = 3, however, is already more elaborate and the conclusion ρ(Γ) < 1 cannot be drawn
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straightforwardly due to possibly complex eigenvalues of Γ. A stronger condition implying ρ(Γ) < 1,

is given by ‖Γ‖ < 1, where ‖ · ‖ denotes a matrix norm. Yet, upper bounds constructed from standard

inequalities are too rough and it can be generally shown that ‖Γ‖ 6< 1.

The condition ρ(Γ) < 1 is closely related to the dependence of the group-specific estimators ϑhg,n,

g = 1, . . . , G. Two sub-vectors ϑg and ϑl are said to be orthogonal for g 6= l, if all elements of the

corresponding information matrix Jgl(ϑ0) are zero, c.f., Lehmann and Casella (1998). According to

the structure of L and U, respectively, the blocks of Γ associated with the vectors ϑg and ϑl, are given

by Γgl = (L−1)g•U•l, where (L−1)g• refers to rows related to ϑg,n. If all pairs of {ϑhg,n, ϑhl,n}g 6=l are

(almost) independent of each other, Assumption 4 will be fulfilled, since U will be close to 0rr and

the inverse of L will be mainly driven by the blocks of the main diagonal. Hence, we have a strong

conjecture that the condition will most likely be fulfilled if the dependence between the estimates ϑhg,n,

g = 1, . . . , G, is not too strong. The latter condition typically holds if the number of sub-vectors G

(relative to r) does not become too high or (strong) dependence can be ruled out by construction of

the appropriate sub-vectors.

2.3. Properties under Misspecification

Consider the case where P /∈ P and let the true probability measure G be characterized by an absolutely

continuous distribution function defined on Rd with g(X) denoting its measurable Radon-Nikodým

density. The observed trajectory X stems from a stochastic process defined on (Ω,F ,G). For the

remainder of this subsection, expectations are taken with respect to G, so that E(·) def
= EG(·). Then,

the quasi log-likelihood is given byQ(ϑ)
def
= n−1L(ϑ;X). White (1982) builds on the inference of Akaike

(1973) that the maximizer ofQ(ϑ) estimates the minimizer of the Kullback-Leibler discrepancy between

G and P, denoted by ϑ?n, and shows that it converges almost surely to ϑ?n. The latter is sometimes

referred to as the pseudo-true parameter. Suppose analogously to Theorem 1 that ϑ1n − ϑ?n = Og(1),

where Og(·) refers to the probability measure G. Then, under the assumptions stated in White (1994),

convergence in probability of ϑhn, h > 1, to ϑ?n can be established by recursively applying White (1994,

Theorem 3.11), which intrinsically establishes the consistency of the 2-stage quasi ML estimator.

To derive the limiting distribution of n1/2(ϑhn − ϑ?n), the quantities L and U are re-defined based on

H(ϑ?n) = E{Q̈(ϑ?n)} whith ρ(L−1 U) = ρ(Γ) < 1. Moreover, H1(·) has to be re-defined as

H1(ϑ?n) = E

{
Q̈m(ϑ?1,n, . . . , ϑ

?
k,n) 0pq

Q̈cv(ϑk+1,...,ϑG),ϑ(ϑ?n)

}
.

Since the structure of the procedure is preserved and only the probability limits are changed,[
Γh−1{H(ϑ?n)−1T2 −H1(ϑ?n)−1T1} −H(ϑ?n)−1T2

]−1
n1/2(ϑhn − ϑ?n) (5)

converges in distribution to an r-dimensional normally distributed random variable with covariance

matrix Σ(ϑ?n). As in Theorem 2, the asymptotic covariance matrix for Step 1 is identical to that

obtained from a 2-stage procedure. For h→∞, it collapses to{
H(ϑ?n)−1

}
T2Σ(ϑ?n)T >2

{
H(ϑ?n)−1

}>
,
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corresponding to the robust covariance matrix as if n1/2(ϑhn−ϑ?n) is estimated in one step. Accordingly,

the robust covariance matrix leads to valid statistical inference under misspecification if the step-wise

increments of the log-likelihood given by Algorithm 1 converge to zero for increasing h. Furthermore, it

collapses to the inverse of the information matrix if fi(·) is correctly specified and information equality

holds.

3. Sparse and Efficient Estimation

The iterative estimation approach proposed in the previous section rests on the idea of L(·) being

a complicated function and analytical expressions of L̇(·) are not available. These properties require

derivative-free optimization methods to obtain ϑhg,n, g = 1. . . . , G, at Step h of the algorithm. However,

derivative-free optimization routines do not lead to reliable results for a large number of parameters rg
in group g, g = 1, . . . , G. Therefore, the number of parameters per sub-vector should be small, which,

however, leads to a large number of sub-vectors G, and thus increases the computational burden in

each iteration step. Moreover, as discussed in Section 2.1, a large number of sub-vectors makes it

more difficult to satisfy the condition ρ(Γ) < 1 since the dependence between the sub-vectors generally

rises. In contrast, grouping non-orthogonal parameters in one sub-vector leads to a small G and by

construction reduces inter-group dependencies. To address the resulting tradeoff between the reliability

of derivative-free optimization procedures (suggesting a high G) and the requirement of keeping the

dependence between sub-vectors small (suggesting a low G), we propose combining our estimation

algorithm with a suitable penalization procedure reducing the model complexity in the first step and

providing sparse (though inefficient) estimates as starting point for the iteration steps. Hence, the idea

is to replace Step 1 of Algorithm 1 by a penalized 2-stage procedure.

3.1. Penalized 2-Stage ML Estimation

Though alternative forms of penalization are possible, we formulate the procedure based on a SCAD

penalization of the parameters of Lm(·) and Lc(·) according to Fan and Li (2001). They suggest a

penalty function which is zero at the origin and whose first derivative is given by

p′λ,a (|γ|) = λI (|γ| ≤ λ) +
max (aλ− |γ|, 0)

(a− 1)
I (|γ| > λ) (6)

for a > 2. Fan and Li (2001) show that this form of penalization function yields unbiased ML estimators

which are sparse, i.e., the procedure serves as a thresholding rule setting small estimated coefficients

to zero, and are continuous in the data.

The penalized parameters of the marginals and the copula function are collected in ϑpm
def
= v(ϑ1, ϑ2)

and ϑpc
def
= v(ϑG−1, ϑG), respectively. Conversely, ϑm

def
= v(ϑ3, . . . , ϑk) and ϑc

def
= v(ϑk+1, . . . , ϑG−2)

are non-penalized. Fan and Li (2001) penalize all parameters for the sake of simplicity, but point out

that their theoretical results also apply for decomposing parameters into penalized and non-penalized

components. Such a separation is necessary in our multi-step estimation context. While existing

theory mostly discuss shrinking parameters to zero, we introduce so called penalization targets denoted

by ϑ̆1, ϑ̆2, ϑ̆G−1, ϑ̆G. The latter are user-specific and should imply a reduction of model complexity.
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This is the case, for instance, (i) if the penalization target of the parameter in a linear model is the

corresponding null vector yielding a more parsimonious model or, (ii) if the penalization target of

a copula parameter reflects the independence copula yielding a reduction of model complexity. For

ease of notation, define the centered SCAD penalty as p̆λ,a (γ) = pλ,a (|γ − γ̆|), where γ̆ denotes the

penalization target of γ.

In the following analysis, we assume that the independence copula exists as a special case of the

considered copula family. Without loss of generality suppose ϑ1,0 = ϑ̆1 and ϑG,0 = ϑ̆G, i.e., the true

parameters coincide with the penalization target. The aim is to group as many parameters in ϑpm
and ϑpc as possible, so that shrinking (some of) them implies that fi(·;ϑ0) has a less complicated

functional form than fi(·;ϑ) with ϑ 6= ϑ0. Equivalently, appropriately selected penalization targets

imply a centering of the penalty pλ,a(| · |) around zero, which finally leads to a simpler functional form,

for instance, a more parsimonious regression model. Based on the penalized log-likelihoods

Lpm(ϑ1, . . . , ϑk) = Lm(ϑ1, . . . , ϑk)− n
r1+r2∑
l=1

p̆λmn ,am(ϑl,pm), (7)

Lpc(ϑ) = Lc(ϑ)− n
rG−1+rG∑

l=1

p̆λcn,ac(ϑl,pc), (8)

we formulate a penalized 2-stage ML estimation procedure as

(1) v(ϑ11,n, . . . , ϑ
1
k,n) = arg zero

v(ϑ1,...,ϑk)
L̇pm(ϑ1, . . . , ϑk)

(2) v(ϑ1k+1,n, . . . , ϑ
1
G,n) = arg zero

v(ϑk+1,...,ϑG)
L̇pcv(ϑk+1,...,ϑG)(ϑ

1
1,n, . . . , ϑ

1
k,n, ϑk+1, . . . , ϑG).

In general, the penalties are permitted to be different for each of the penalized coefficients, but we

assume for simplicity one penalty for each of the log-likelihoods. Even though we suggest a data driven

choice of the penalty tuning parameters am and ac, we do not index them by the sample size as they

are irrelevant for the asymptotic analysis. To formulate the asymptotic properties for the penalized

(first-step) ϑ1n, define amn = ‖ bmn ‖∞ and acn = ‖ bcn ‖∞, where ‖·‖p denotes the Lp-norm, with maximum

norm for p =∞, and

bmn
def
=
{
p̆′λmn ,am(ϑ21,0), . . . , p̆

′
λmn ,a

m(ϑ2r2,0)
}>

,

bcn
def
=
{
p̆′λcn,ac(ϑ(G−1)1,0), . . . , p̆

′
λcn,a

c(ϑ(G−1)rG−1,0)
}>

.

Theorem 3 below gives the consistency of the penalized 2-stage procedure in the first step, ϑ1n. It

mainly relies on Fan and Li (2001, Lemma 1), whose extension to the modified penalty p̆λ,a(·) is trivial

and therefore not proved here. However, it additionally requires the penalization target being an

interior point of the feasible parameter space. Likewise, while Fan and Li (2001) formulate the proof

for i.i.d. data, we apply Lemma 1 in a time series context, as the extension is straightforward due to

Assumption 3. Additionally, we impose Assumption 5 bounding the third-order derivative of `i(ϑ):
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Assumption 5. There exists an open subset θ of Θ containing the true parameter ϑ0 such that for al-

most all Xi, i = 1, . . . , n, the density fi(·;ϑ) admits all third derivatives ∂fi(Xi1, . . . , Xid;ϑ)/∂ϑu∂ϑv∂ϑw
for all ϑ ∈ θ. Furthermore, there exist functions Muvw(·) such that∣∣∣∣ ∂`i(ϑ)

∂ϑu∂ϑv∂ϑw

∣∣∣∣ ≤Muvw(Xi) for all ϑ ∈ θ,

where E {Muvw(Xi)} <∞ for u, v, w = 1, . . . , r.

Theorem 3. Let the random variables of the sequence X have an identical conditional density fi(·;ϑ)

for which Assumptions 1-3 and 5 hold. Let max{|p̆′′λmn ,am(ϑ2l,0)| : ϑ2l,0 6= ϑ̆2l} → 0, l = 1, . . . , r2,

and max{|p̆′′λcn,ac(ϑ(G−1)l,0)| : ϑ(G−1)l,0 6= ϑ̆(G−1)l} → 0, l = 1, . . . , rG−1, be satisfied. If λmn , λ
c
n → 0,

n1/2λmn →∞ and n1/2λcn →∞ as n→∞, then,

(a) ϑ11,n
a.s.→ ϑ̆1 and ϑ1G,n

a.s.→ ϑ̆G,

(b) ϑ12,n +O(amn )
P→ ϑ2,0 and ϑ1G−1,n +O(acn)

P→ ϑG−1,0, with amn , a
c
n → 0 for λmn , λ

c
n → 0 as n→∞,

(c) ϑ1m,n
P→ ϑm,0 and ϑ1c,n

P→ ϑc,0.

Note, however, that the penalization of certain parameters – particularly copula parameters – can also

be counterproductive. For example, the penalization of the non-diagonal parameters of a correlation

matrix does not ensure its invertibility or a meaningfully chosen penalization target for the parameter

of the Gumbel or Clayton copula lies on the boundary of the feasible parameter space, which does not

support Theorem 3.

3.2. Iterative Efficient and Sparse Parameter Estimation

According to Theorem 3 (a), the estimators of ϑ1 and ϑG do not need to be updated within the

iterative procedure as by assumption their asymptotic limit ϑ̆1 and ϑ̆G imply a simplified form of L(·)
with probability tending to one. Re-estimating the parameters would again lead to a more complex

form of L(·). Consequently, we propose a modification of Algorithm 1 by replacing Step 1 by the

penalized 2-stage ML estimation procedure and ϑ1 and ϑG being replaced by their penalization targets

ϑ̆1 and ϑ̆G in the subsequent steps h > 1. Hence, the resulting algorithm benefits from a reduced

number of parameters to be re-estimated, especially if r1 and rG are large:

Algorithm 2.

Step h = 1

(1) v(ϑ11,n, . . . , ϑ
1
k,n) = arg zero

v(ϑ1,...,ϑk)
L̇pm(ϑ1, . . . , ϑk)

(2) v(ϑ1k+1,n, . . . , ϑ
1
G,n) = arg zero

v(ϑk+1,...,ϑG)
L̇pcv(ϑk+1,...,ϑG)(ϑ

1
1,n, . . . , ϑ

1
k,n, ϑk+1, . . . , ϑG)

Step h > 1:

(1) {blank step}
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(2) ϑh2,n = arg max
ϑ2
L(ϑ̆1, ϑ2, ϑ

h−1
3,n , . . . , ϑ

h−1
G−1,n, ϑ̆G)

...

(G− 1) ϑhG−1,n = arg max
ϑG−1

L(ϑ̆1, ϑ
h
2,n, . . . , ϑ

h
G−2,n, ϑG−1, ϑ̆G)

(G) {blank step}

For the non-shrunken components of ϑhn, define ϑ̃
def
= v(ϑ2, . . . , ϑG−1) and q̃ = r̃− p̃, where r̃ =

∑G−1
g=2 rg

and p̃ =
∑k

g=2 rg. The corollary below shows that the consistency of the iterative estimator ϑ̃hn proved

in Theorem 1 also holds in case of Algorithm 2:

Corollary 2. Under the assumptions of Theorem 3, if λmn , λ
c
n → 0, n1/2λmn →∞ and n1/2λcn →∞ as

n→∞, ϑ̃hn
P→ ϑ̃0 ∀h = 2, 3, . . ..

Based on the consistency of ϑ̃hn, its asymptotic normality can be derived similarly as in Theorem 2.

Let T1, T2 be as in (2), where p and q are replaced by p̃ and q̃. Define bn
def
= v(bmn , 0s, b

c
n), with

s =
∑G−2

g=3 rg, and let the matrices Σ(ϑ̃), H1(ϑ̃), H(ϑ̃), L̈(ϑ̃) and J (ϑ̃) depend on ϑ̃. These matrices

are the corresponding sub-matrices of Σ(ϑ), H1(ϑ), H(ϑ), L̈(ϑ) and J (ϑ). For instance, Σ(ϑ̃) =

Σ(ϑ̆1, ϑ2, . . . , ϑG−1, ϑ̆G). To impose Assumption 4 based on the sub-vectors ϑg, g = 2, . . . , G − 1, we

accordingly re-define the limit of L−1n Un
P→ L−1 U = Γ̃, where the lower block triangular matrix Ln

and the strict upper block triangular matrix Un are arranged according to −n−1L̈(ϑ̃0) = Ln − Un.

Furthermore, since the asymptotic covariance of ϑ̃hn also involves expressions of the second derivative

of the penalty, p̆′′λn,a(·), denote

Ψm
n = diag

{
p̆′′λmn ,am(ϑ21,0), . . . , p̆

′′
λmn ,a

m(ϑ2r2,0)
}
,

Ψc
n = diag

[
p̆′′λcn,ac{ϑ(G−1)1,0}, . . . , p̆

′′
λcn,a

c{ϑ(G−1)rG−1,0}
]
.

Corollary 3. Under the assumptions of Theorem 2 and Theorem 3, if λmn , λ
c
n → 0, n1/2λmn →∞ and

n1/2λcn →∞ as n→∞, then,

n1/2B−1h,n
{

(ϑ̃hn − ϑ̃0) + Γ̃h−1Kn bn

}
L→ N

{
0,Σ(ϑ̃0)

}
,

with Bh,n = Γ̃h−1
[
KnT1 − {−H(ϑ̃0)}−1T2

]
+ {−H(ϑ̃0)}−1T2, 1

Kn =
{

Ψn −H1(ϑ̃0)
}−1

,

and Ψn = diag (Ψm
n , 0ss,Ψ

c
n) .

Hence, compared with Theorem 2, we observe that the first-stage penalization induces two differences:

Firstly, the penalization generates a bias Γ̃h−1Kn bn depending on the first and second derivatives of

1Since Bh,n is a non-square matrix, B−1
h,n refers to the generalized inverse.
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the penalty function and vanishing for h → ∞. Secondly, while in the non-penalization case, Kn just

equals the inverse (partial) Hessian from Step 1, it is now adjusted by the diagonal matrix of second

derivatives of the penalty. Likewise, after the first iteration step, the asymptotic covariance matrix of

n1/2(ϑ̃1n − ϑ̃0) is given by[{
Ψn −H1(ϑ̃0)

}−1]
T1Σ(ϑ̃0)T >1

[{
Ψn −H1(ϑ̃0)

}−1]>
, (9)

which is different from that provided by Fan and Li (2001) since −H1(ϑ̃0) 6= J (ϑ̃0) and T1Σ(ϑ̃0)T >1 6=
J (ϑ̃0). The ”sandwich structure” follows from the (inefficient) 2-stage procedure in Step 1 and can be

well approximated by (4), if λmn , λ
c
n → 0. As in Fan and Li (2001), if λmn , λ

c
n → 0, n1/2λmn → ∞ and

n1/2λcn → ∞ as n → ∞, the estimator ϑ̃hn enjoys the oracle property, i.e., ϑ̃hn performs as well as the

corresponding sub-vector v(ϑh2,n, . . . , ϑ
h
G−1,n) in Theorem 2. In other words, the asymptotic properties

of ϑ̃hn are the same as if we knew that ϑ1,0 = ϑ̆1 and ϑG,0 = ϑ̆G, since all elements of bn and Ψn

converge to zero if λmn , λ
c
n → 0, n1/2λmn →∞, and n1/2λcn →∞ as n→∞.

Finally, if ρ(Γ̃) < 1 and information equality holds, limh,n→∞ Bh,n = J (ϑ̃0)
−1T2 and therefore,

lim
h→∞

n1/2(ϑ̃hn − ϑ̃0)
L−→ N{0,J (ϑ̃0)

−1}. (10)

Result (10) is a crucial implication of Corollary 3, showing that also the sparse estimator ϑ̃hn is efficient

as h → ∞. Hence, if the iteration-specific increments of the log-likelihood given by Algorithm 2

are sufficiently small for a certain h, the finite sample covariance of ϑ̃hn can be well estimated by

n−1J (ϑ̃hn)−1 and is independent of the tuning parameters λmn , λ
c
n and am, ac.

4. Iterative Generalized Least Squares Estimation

Besides complex likelihood-based models, Algorithm 1 and 2 can also be advantageous for maximizing

simple(r) log-likelihoods, whose parameters ϑ1, . . . , ϑG, are non-orthogonal to each other. Consider,

for example, a d-dimensional VAR(q) model under the assumption of heteroscedastic and/or autocor-

related errors of the form

xi = c+

q∑
l=1

Alxi−l + εi, (11)

where c = (c1, . . . , cd)
> is a vector of constants and Al is a (d× d) matrix. To compactly rewrite (11),

define Y
def
= vec(x1, . . . , xn), Zi

def
= (1, x>i−1, . . . , x

>
i−q)

>, Z
def
= (Z1, . . . , Zn) and ε

def
= vec(ε1, . . . , εn).

Then, (11) can be rewritten as Y = (Z>⊗Id)β + ε, where β
def
= vec(c, A1, . . . , Aq). In a situation,

where εi is assumed to be homoscedastic Gaussian with covariance matrix Σε = E(εiε
>
i ), Algorithm 1

and 2 are not beneficial, as β is consistently and efficiently estimated by equation-by-equation OLS

and the estimators for β and Σε are independent of each other.

However, as soon as we allow the sequence {εi}ni=1 being autocorrelated and/or heteroscedastic, i.e.,

ε ∼ N(0,Σ), with Σ = E(εε>) 6= In⊗Σε, equation-by-equation OLS estimation is not efficient anymore.
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In this case, the relevant log-likelihood is given by

L(β,Σ) ∝ −1

2
log |Σ| − 1

2

{
Y−(Z>⊗Id)β

}>
Σ−1

{
Y−(Z>⊗Id)β

}
, (12)

where β = vec(c, A1, . . . , Ap) and efficient estimation of β usually requires maximizing (12) with respect

to β and vech(Σ) in one step. While this is nearly impossible in practice in case of a non-small d, the

iterative FGLS estimator, constructed from applying Algorithm 1 to (12), approaches the Cramér-Rao

bound according to Corollary 1.

To illustrate the application of our iterative procedure in such a situation, assign v(ϑ1, ϑ2) = β and

ϑ3 = vech(Σ), and let v(ϑ01,n, ϑ
0
2,n) denote the (consistent) OLS estimator for β, where vech(·) denotes

half-vectorization of a (symmetric) matrix. As in Algorithm 2, we assume that some VAR parameters

are penalized which are without loss of generality collected in ϑ1,0 = ϑ̆1 = 0. The vector ϑ3 reflects

the imposed (parametric) structure of Σ causing autocorrelation and/or heteroscedasticity. Then,

Algorithm 3 yields a sparse estimator for ϑ = v(ϑ1, ϑ2, ϑ3), which is asymptotically efficient as h→∞:

Algorithm 3.

Step h = 1:

(1) v(ϑ11,n, ϑ
1
2,n) =

[{
(Z Z>+nBλmn ,a

m(ϑ01,n, ϑ
0
2,n)
}−1

Z⊗Id
]

Y

(2) ϑ13,n = vech
[{

Y−(Z>⊗Id)v(ϑ11,n, ϑ
1
2,n)
}{

Y−(Z>⊗Id)v(ϑ11,n, ϑ
1
2,n)
}>]

Step h > 1:

(1) {blank step}

(2) ϑh2,n =
{

(Z⊗Id)(Σh−1
n )−1(Z>⊗Id)

}−1
(Z⊗Id)(Σh−1

n )−1 Y

(3) ϑh3,n = vech
[{

Y−(Z>⊗Id)ϑh2,n
}{

Y−(Z>⊗Id)ϑh2,n
}>]

,

where

Bλmn ,a
m(ϑ1, ϑ2) = diag

{
p′λmn ,am(|ϑ11|)/|ϑ11|, . . . , p′λmn ,am(|ϑ2r2 |)/|ϑ2r2 |

}
,

see Fan and Li (2001). The variable selection at Step 1(1) rests on the assumption of homoscedastic

noise Σ = In ⊗ Σε and corresponds to a ridge regression, which is iteratively computed until the

estimator converges. Similar to Algorithm 2, only the regressors of the active set of parameters are

kept for the computations in Step h > 1. Corollary 3 then yields straightforward statistical inference

for a fixed h. If a non-sparse estimator is considered, the consequences of a misspecified covariance

structure can be inferred from the arguments in Section 2.3.
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5. Simulation Study

We illustrate the finite-sample properties of Algorithm 1 and 2 in two simulation studies. The first one

applies Algorithm 1 for a d = 5-dimensionl VARMA process based on r = 24 parameters using n = 50

and n = 150 observations. Though the number of parameters is comparably small and we do not

incorporate any penalization, the model’s dimension is high as r/n approaches 0.5. The second study

is based on a VMEM process of the dimension d = 15 incorporating 375 (partly penalized) parameters

and shows the performance of Algorithm 2. All results rely on w = 500 Monte Carlo replications.

5.1. VARMA(1, 1)

We assume a VARMA(1,1) process with the conditional mean corresponding to the fourth of the

data generating processes (DGPs) considered by Kascha (2012), who investigates the quality of the

parameter estimates of

xi = Axi−1 +B εi−1 + εi, (13)

for different estimation algorithms. Several elements of A and B are constrained to be zero a priori

in order to avoid identification problems, see Assumption 1, Kascha (2012) or Lütkepohl (2006) for

details.

While Kascha (2012) assumes εi ∼ N(0,Σ), we assume the errors to be t-distributed, i.e., εij ∼ tνj ,

which are linked by a Gaussian copula with correlation matrix R. Hence, Σ`` = ν`/(ν` − 2), for

ν` > 2, and Σk` = Rk`

√
ΣkkΣ``, k, ` = 1, . . . , d, where Σk` denotes the k`-th element of the error term

covariance Σ. To emphasize the importance of using the complete log-likelihood and to challenge the

estimation, we assume a strong dependence structure with

R =


1.00 0.31 0.57 0.10 0.74

0.31 1.00 0.53 0.51 0.78

0.57 0.53 1.00 0.10 0.78

0.10 0.51 0.10 1.00 0.33

0.74 0.78 0.78 0.33 1.00

 , ν =


9

14

6

7

14

 .

While Kascha (2012) sets the starting values of the optimization procedure to the true parameter

values, we choose the start value for the elements of ν as 10, for the elements of R as 0.35, and for

the non-zero parameters of A and B as 0. The r = 24-dimensional parameter vector ϑ is decomposed

into G = 4 sub-vectors: ϑ1 = ν, ϑ2 = vec(Ak`) and ϑ3 = vec(Bk`), for Ak` 6= 0, Bk` 6= 0 respectively,

k, ` = 1, . . . , d, and ϑ4 = vech(R). Covariance stationarity and invertibility of (13) is ensured with

spectral radius ρ(A) ≈ 0.57 and ρ(B) ≈ 0.78.

To evaluate the estimation performance after Step h relative to that after Step 1, we compute the ratio

of the corresponding absolute estimation errors (henceforth, relative absolute estimation errors, RAE)

as given by

RAEhg
def
=
‖ϑg,0 − ϑhg,n‖1
‖ϑg,0 − ϑ1g,n‖1

.
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RAEh1 RAEh2 RAEh3 RAEh4
n 50 150 50 150 50 150 50 150

h = 2 0.98 (0.15) 0.88 0.80 (0.16) 0.68 0.82 (0.14) 0.65 0.94 (0.12) 0.94
h = 4 0.94 (0.20) 0.76 0.60 (0.26) 0.41 0.62 (0.25) 0.41 0.90 (0.21) 0.93
h = 6 0.93 (0.23) 0.73 0.53 (0.28) 0.37 0.53 (0.28) 0.39 0.90 (0.25) 0.95
h = 10 0.90 (0.27) 0.72 0.50 (0.29) 0.36 0.50 (0.34) 0.39 0.93 (0.30) 0.95
h = 15 0.92 (0.28) 0.71 0.51 (0.31) 0.37 0.51 (0.32) 0.39 0.93 (0.31) 0.96
h = 20 0.92 (0.29) 0.72 0.52 (0.31) 0.37 0.51 (0.32) 0.39 0.92 (0.32) 0.98

Table 5.1: Medians of RAEhg for the sample sizes n = 50 and n = 150, with g = 1, 2, 3, 4, and for
500 replications. The MAD (in parentheses) is given only for n = 50 as the corresponding findings for
n = 150 are very similar.

Table 5.1 reports the median of the h-specific sampled RAEhg together with the corresponding median

absolute deviations (MAD, in parantheses). We observe distinct improvements in terms of the RAE

for the first steps of the procedure, e.g., from h = 2 to h = 4 and from h = 4 to h = 6 respectively.

Specifically for n = 50, the RAE is larger for ϑhg,n, h ≤ 2, than for all other estimators ϑhg,n, h > 2,

g = 1, 2, 3, 4. For higher values of h the performance gains generally become smaller and even become

(slightly) negative for some parameters.

Figure 5.1 shows kernel density estimates (KDE) of the RAEhg for different values of h. We identify

three major effects: (i) The distribution of RAEs generally shifts to the left if h increases. This

confirms the statistics shown in Table 5.1 and is true for all sub-vectors. The pattern is most distinct

for the parameters of the time series model and less pronounced for the parameters of the distribution

model. (ii) The RAE distributions of the sub-vectors of time series parameters, ϑ2 and ϑ3, become

right-skewed and thus reflect clear performance gains in most cases but also a higher risk of (rare but

distinct) deteriorations. This effect is not shown for the distribution and copula parameters, RAEh1
and RAEh4 , for which we observe smaller performance gains (on average). This is also confirmed by

Table 5.1 reporting a slight deterioration of the quality of the estimates of copula parameters when

moving from h = 6 to h = 10. (iii) Particularly for the copula parameter, the KDE becomes more

dispersed for increasing h. Hence, for this parameter, there exists a higher risk to obtain a worse

performing estimate over the course of iterations, which is not the case for the other three sub-vectors.

The performance differences between distribution (and copula) parameters and time series parameters

are obviously due to the strong correlation between the errors εi. These mutual correlations induce

a strong dependence between the estimators ϑg,n, g = 1, 2, 3, which is not accounted for in Step 1

but only if h > 1. Consequently, we observe significant improvements in the quality of estimates if

h increases. Conversely, the dependence between ϑ4,n and each ϑg,n, g = 1, 2, 3, is mostly captured

directly at Step 1. Consequently, for these parameters, additional iteration steps cannot generate strong

additional improvements. Overall, the results show a significant superior performance of Algorithm 1

compared to the 2-stage procedure.

The findings above are also supported by corresponding improvements of the log-likelihood as depicted

by Figure 5.2. The median of log-likelihood values strongly increases during the first iterations and

then stabilizes at the final level. The graph also illustrates that the distribution of log-likelihood values
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Figure 5.1: Kernel density estimates for RAEhg , where h = 2 (solid), h = 4 (dashed), h = 6 (dotted)
and h = 20 (dashed-dotted). Although the selected bandwidth of 0.15 leads most likely to a slight
overfitting of all curves, we keep it constant for all estimates to guarantee a comparable bias.

becomes slightly right-skewed confirming the findings on the RAEs above.

5.2. VMEM(1, 1)

In this section, we apply Algorithm 2 to a vector multiplicative error model (VMEM), which is a

working horse to describe the dynamics of multivariate positive-valued time series x, such as financial

trading volumes, market depth or volatilities. The model has a multiplicative structure given by

xi = µi � εi,
µi = ω +Axi−1 +B µi−1, (14)

where µi
def
= E(xi|xi−1, . . .) denotes a d-dimensional vector of conditional means, εi is a d-dimensional

vector of i.i.d. error terms with E(εij) = 1, j = 1, . . . , d. Moreover, A and B are d-dimensional

parameter matrices and“�”denotes the Hadamard product. For more details on VMEM processes, see,

e.g., Hautsch (2012). To challenge our proposed estimation procedure and illustrate its applicability

to VMEM processes of higher dimensions, we set d = 15. This dimension is significantly higher than

typically used in extant studies and thus causes numerical challenges induced by a high number of

parameters. To limit the complexity in such a high-dimensional process, we, nevertheless, restrict B

being a diagonal matrix B = diag(B11, . . . , Bdd). The errors εij are assumed to follow Weibull(γj)

distributions, whose parameters are randomly chosen from U(0.8, 10).

Capturing mutual dependencies between the components of εi is not straightforward as multivariate

17



1(1) 2 6 10 14 18 22

−
40

0
−

35
0

−
30

0
−

25
0

−
20

0

h

lo
g−

lik
el

ih
oo

d

Figure 5.2: Median of log-likelihood values for each iteration step. The gray area covers 95% of the
estimates.

extensions of standard distributions for positive-valued random variables do not exist or require strong

restrictions. Therefore, extant literature captures the contemporaneous dependence between εi by

copulas, see, e.g., Bodnar and Hautsch (2012) or Hautsch, Okhrin, and Ristig (2013). Here, we

induce dependence between the errors through an R-vine copula, which can generate a broad range

of dependence structures including non-linearities, asymmetries and tail dependence. On the other

hand, R-vines are not necessarily parsimonious in their representation, as the copula density is split

into the product of d(d− 1)/2 parametric (conditional) bivariate copulae. As the particular choice of

the copula is not in the major focus of the present simulation study – the copula parameter is not

penalized/decomposed – we refrain from going into more details and refer the reader to Bedford and

Cooke (2001), Aas, Czado, Frignessi, and Bakken (2009), Kurowicka and Joe (2011) and Hobæk Haff

(2013). To ensure a realistic simulation setup, the R-vine copula is specified based on estimates of

empirical distribution functions of financial returns. This allows capturing typical dependencies being

present in financial data.

The off-diagonal elements Ak`, k 6= `, k, ` = 1, . . . , d, are penalized. Out of the 210 off-diagonal

elements of A, we set 180 elements equal to zero and keep 30 elements as non-zero, being randomly

chosen from U(0.08, 0.2). The diagonal elements of A are sampled from U(0.05, 0.15). The elements

of B are chosen such that E(xi) = (Id − A − B)−1ω = 1d holds, where ωj = 0.05, j = 1, . . . , d.

The model is covariance stationary as ρ(A + B) = 0.95. We construct the low dimensional vectors

v(γj , ωj , Aj•, Bjj) for the re-estimation with Aj• 6= 0, j = 1, . . . , d and Aj• refering to the j-th row

of A. The parameters shrunken to zero are not re-estimated in the iteration steps h, h > 1. Each

replication is based on a sample size of n = 500 with r = 375 parameters to be estimated (including
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h Parameter RAEh SCh

1(1) Ak`, k 6= ` 0.35 (0.09) 169 (10.38)

Ak`, k 6= ` 0.34 (0.10) 169 (10.38)
2 ωj , Ajj , Bjj ∀ j 0.88 (0.17) -

γ 0.60 (0.15) -

Ak`, k 6= ` 0.32 (0.10) 169 (11.86)
4 ωj , Ajj , Bjj ∀ j 0.82 (0.18) -

γ 0.46 (0.16) -

Ak`, k 6= ` 0.31 (0.09) 169 (10.38)
11 ωj , Ajj , Bjj ∀ j 0.80 (0.18) -

γ 0.43 (0.16) -

Table 5.2: Median values of RAEh and SCh for different parameters. The MAD is given in parentheses.
The results are based on 500 replications.

the penalized ones) in total.

To evaluate the performance of the penalization procedure, we employ the RAE statistics introduced

above and furthermore check sign consistency by computing

SCh def
=
∑
k 6=`

I
{

sign(Ak`,0) = sign(Ahk`,n)
}
.

This statistic determines the number of elements of Ak`, k 6= ` being correctly estimated (un)equal to

zero. The results are presented in Table 5.2. Note that the true values of the (non-zero) penalized

coefficients are relatively small, making it difficult to discriminate between relevant and non-relevant

coefficients. Nevertheless, just around 20% out of the 210 penalized parameters are either estimated

unequal zero although they are zero, or estimated zero although they are non-zero. This fraction

remains constant in the course of the algorithm. An explanation for this failure rate is the selection

of the tuning parameters discussed below. Moreover, RAEh reveals remarkable improvements of the

quality of the estimates – noticeably for the penalized parameters and the parameters of the marginal

distributions whose RAEhs are significantly smaller than 1. Note that we take the maximizer of

Lm(ϑ1, . . . , ϑk) as reference value in the denominator of the RAEh in order to evaluate the performance

of the penalization procedure. Therefore, RAEh for Ak`, k 6= `, in Table 5.2 is already smaller than

one at Step 1(1). To maximize Lpm(·) we use the ordinary ML estimator as starting value. Zou and

Li (2008) provide a comprehensive overview concerning the maximization of non-concavely penalized

log-likelihood functions.

Figure 5.3 descriptively illustrates the convergence of Algorithm 2. The very first range of sample

quantiles refers to L(·) evaluated at the ordinary ML estimator. Consequently, the values of the log-

likelihood decline because the values of L(ϑ1n) must be smaller than the values of L(·) evaluated at the

ordinary ML estimator. Moreover, we observe that the range of sample quantiles is wider for Step 1

than for each Step h > 1 and the procedure converges after a few iterations.
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Figure 5.3: Median values of the log-likelihood for each step of the iteration. The gray area includes
95% of the observations.

Remarks on Selecting the Penalization Parameters

The possibly complex functional form of Lm(·) makes the data driven choice of the tuning parameters

of the penalty, λmn and am, via cross-validation computationally demanding. Furthermore, in a time

series setting, the log-likelihood contributions `i(ϑ) might be serially correlated. Hence, instead of

using classical cross-validation, we split the sample into two parts, S1 and S2, containing, for instance,

80% and 20% of the data. Then, we maximize the non-penalized log-likelihood built from S2 in λmn and

am, while the estimator v{ϑ1,n(λ, a), ϑ2,n(λ, a)} defined through Step 1(1) of Algorithm 2 is estimated

from S1, see, e.g., Sun (2011). Formally, we follow the data driven choice

(λmn , a
m)> = arg max

(λ,a)>
Lm {ϑ1,n(λ, a), ϑ2,n(λ, a), ϑ3,n, . . . , ϑk,n} , (15)

where the non-penalized parameters are fixed at values from the ML estimator of the partial log-

likelihood Lm(·) denoted by ϑ3,n, . . . , ϑk,n. Fitting the tuning parameters of the penalized estimator

based on the non-penalized log-likelihood can be motivated by the fact that the asymptotic properties

of the penalized estimator hold, if λmn → 0 as n → ∞, and that the penalized estimator is the ML

estimator for λmn = 0. Therefore, training the tuning parameters via (15) ensures λmn → 0 as n→∞ and

leads to a small λmn for a finite n. Figure 5.4 indicates the distribution of the fitted tuning parameters,

confirming our expectation that am > 2 and λmn ≥ 0 due to the definition of the SCAD penalty. On

average, the values of am are significantly smaller than the traditional value am = 3.7 suggested by

Fan and Li (2001). For the sake of simplicity, we select just one pair of tuning parameters, which,

however, implicitly requires that the log densities `mij (·) = log fXij |Fi−1
(·), j = 1, . . . , d, are similar.
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Figure 5.4: Boxplots for the tuning parameters of the penalization function.

For example, if two marginals would be fundamentally different, selecting the same tuning parameters

would deteriorate the statistical performance of the procedure. The choice of the tuning parameters

becomes even more relevant, if additionally the number of penalized parameters per margin is very

large.

The incorrect shrinkage in roughly 20% of the cases as reported above can also be explained by selecting

just one pair of tuning parameters λmn , a
m for different marginal distribution functions Weibull(γj),

j = 1, . . . , d. While εi3 ∼ Weibull(1.41) and εi4 ∼ Weibull(0.82), the other components of εi follow

Weibull(γj) distributions with significantly larger parameters than 1.41 and 0.82, which induce a

different shape for the corresponding log densities `mij (·). Consequently, the selected tuning parameters

lead to an inappropriate penalization of the parameters associated with the third and fourth time series

leading to a negative bias for the penalized elements of A3• and A4•.

6. Measuring Volatility Connectedness

Our empirical study builds on Diebold and Yilmaz (2014) who proposed measuring the connectedness

between financial firms based on generalized forecast error variance decompositions (GVDs) stemming

from the covariance stationary MA(∞) representation of a linear time series model for daily realized

asset price volatilities. Given the importance of such connectedness/spillover measures in recent dis-

cussions of systemic risk and financial networks, we illustrate an application of our procedure to an

extension of the underlying framework as follows: Firstly, while Diebold and Yilmaz (2014) apply the

measure only to a few stocks in order to keep the parameterization of the underlying process tractable,

we study 30 U.S. companies making the setup more realistic but also significantly more challenging.

Secondly, given that we aim at modeling (realized) volatilities, we specify the underlying time series

model not as a VAR process for log volatilities but as a VMEM process for plain values thereof.

Researchers often model log volatilities instead of the plain series for reasons of tractability and con-

venience. Indeed, logarithmic transformations ensure positiveness of volatilities by construction and

reduce the impact of large outliers. However, when measuring volatility connectedness, it makes a

difference whether we measure dependencies in terms of logarithmic or plain series. Therefore, we

suggest a parameterization which allows modeling the non-transformed series while ensuring the non-
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negativeness of the volatility processes. Thirdly, we allow for deviations from multivariate normality

in terms of non-normal marginals (to ensure non-negativeness) which are coupled together with an

R-vine copula. The resulting framework is statistically more flexible and realistic but obviously more

challenging due to its high parameterization and departures from multivariate normality. However,

note that for a dimension of 30, even a Gaussian VAR(3) parameterization as used by Diebold and

Yilmaz (2014) cannot be easily estimated by OLS. Depending on the sample size, the need of shrinkage

methods is very likely as the number of parameters easily exceeds the number of observations.

Denote the d-dimensional positive-valued time series by x and define the zero-mean martingale dif-

ference sequence by ηi
def
= xi − µi, i = 1, . . . , n, with Ση = E(ηiη

>
i ). Then, under the assumption

ρ(A+B) < 1, the VMEM(1, 1) model in (14) can be rewritten in terms of a MA(∞) parameterization,

i.e.,

yi =ηi +

∞∑
l=1

{
(A+B)l − (A+B)l−1B

}
ηi−l = ηi +

∞∑
l=1

Ψlηi−l, (16)

with yi = xi − {Id − (A+B)}−1 ω. While in the given context the insights from interpreting the

single elements of the matrix Ψl are rather low, the components of the GVDs “summarize” the ef-

fect from shocking the `-th element of ηi on the k-th time series. Define the H-step prediction

error as νi(H) =
∑H−1

l=0 Ψlηi+H−l and conditional on η`,i+H−l = δ, l = 0, . . . ,H − 1 as νi,`(H) =∑H−1
l=0 Ψl {ηi+H−l − E(ηi+H−l|η`,i+H−l = δ)}. Then, the elements of the GVD are defined as

ṽk`,H =
e>k [Var {νi(H)} −Var {νi,`(H)}] ek

e>k Var {νi(H)} ek
, (17)

where ek = (0, . . . , 0k−1, 1k, 0k+1, . . . , 0)> is a (d× 1) vector.

Building on the components of the standardized H-step GVD, whose elements are given by vk`,H =

ṽk`,H/
∑d

`=1 ṽk`,H , Diebold and Yilmaz (2014) propose three types of aggregated connected measures:

(i) the (net) pairwise directional connectedness’ from ` to k are defined as Ck←`,H = vk`,H and Ck`,H =

C`←k,H − Ck←`,H , respectively. (ii) The total directional connectedness from others to k is given by

Ck←•,H =
∑
6̀=k vk`,H , the total directional connectedness to others from ` by C•←`,H =

∑
k 6=` vk`,H

and the net total directional connectedness by C`,H = C•←`,H − C`←•,H . (iii) Accordingly, the total

connectedness in the system is given by CH =
∑

k 6=` vk`,H .

As a closed form expression for ṽk`,H can only be derived for ηi being Gaussian white noise, the

components ṽk`,H are simulated. In particular, the GVD is constructed based on 250 Monte Carlo

simulations, where the (conditional centered) moments in (17) are replaced by corresponding sample

averages. We conduct this study for δ =
√

Σ``,η though the simulation-based estimation of the GVDs

also supports alternative specifications of δ. For instance, constructing the measures based on extreme

shocks, we might consider δ = κ` with κ` denoting the fourth standardized moment of η`,i. This can

be particularly insightful when copulae are used which incorporate tail dependence in contrast to the

Gaussian distribution.

The sequence {Ψl,n}Hl=1 can be computed from An and Bn for arbitrary H > 0. Analogously to the sim-

ulation study, we assume εij ∼Weibull(γj), with E(εij) = 1, but restrict the bivariate (un)conditional
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Figure 6.1: Upper panel: log-likelihood values and total systemic connectedness C12 in dependence
of h. Lower panel: volatility contagion from Google C•←GOOG,12 and Goldman Sachs C•←GS,12 in
dependence of h. The solid lines refer to the median of the simulated connectedness measures where
the gray areas contain 90% of the respective Monte Carlo sample. The dotted-dashed lines refer to
the connectedness measures under the assumption of ηi being Gaussian white noise.

copulae of the R-vine to be the t-copulae. Since the resulting specification involves r = 1860 param-

eters to be estimated, an efficient and sparse estimation procedure is expected to induce substantial

efficiency gains.

Our analysis employs daily variances estimated using realized kernels as proposed by Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008) for 30 companies listed in Table B.1 over the period 01/01/2007

to 31/12/2008. The list contains several constitutes of the Dow Jones Industrial Average and is

completed by various large financial institutions. This allows assessing the connectedness between

financial companies and important components of the major U.S. industrial stock index.

Figure 6.1 summarizes the main estimation results for a forecast horizon H = 12 as in Diebold and

Yilmaz (2014).The upper left panel of Figure 6.1 shows the convergence of the log-likelihood function.

As in the simulation study, the log-likelihood function sharply decreases as soon as the significant

variables are selected and the irrelevant parameters are set to zero. Even though the procedure visually

converged, the increments of the log-likelihood at h = 25 are still around 30. They become sufficiently

tiny for h ≈ 80, but the insights from the remaining iteration steps are rather low for illustration

purposes. The slower rate of convergence compared to the simulation study is mainly caused by the
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large-dimensional parameter vector. The penalization shrinks 487 out of the 870 penalized off-diagonal

elements of A to zero. Therefore, a couple of sub-vectors are comparably large for using derivative-free

optimization techniques which additionally slows down the rate of convergence. Moreover, estimates of

the R-vine copula reveal strong dependencies between the components of the random vector εi, which

also increases the number of steps h until convergence of Algorithm 2. As illustrated by Figure B.1,

this cross-sectional dependence is due to strong co-movements of the 30 time series. Song et al. (2005)

detect similar features of their algorithm in such a setting. In any case, given the separation of the

sub-vectors v(γj , ωj , Aj•, Bjj), j = 1, . . . , d, they are merely implicitly dependent through the copula

and thus Assumption 4 should be fulfilled.

The directional connectedness from Google (GOOG) and Goldman Sachs (GS) to other companies

of the sample, C•←GOOG,12 and C•←GS,12, are exemplarily investigated. Based on these measures for

volatility contagion, we have identified Google and Goldman Sachs as driving factors for volatility in

our sample, as the medians of C•←GOOG,12 and C•←GS,12 in Figure 6.1 are significantly larger than

1. The lower panel illustrates how the estimates change in dependence of the number of iterations h.

As in Section 5.2, the values at h = 0 refer to the non-penalized likelihood estimation at which the

medians of C•←GOOG,12 and C•←GS,12 are already larger than 1. Then, the shrinkage procedure sets

several elements of the matrix A to zero and thus the estimated volatility connectedness to the other

companies declines as expected. Incoporating the copula into the estimation procedure at Step 1(2)

increases both measures (to 1.26) since the components of ηi+H−l, l = 0, . . . ,H − 1 are not mutually

independent anymore. Both connectedness estimates stabilize after some fluctuations on a level around

1.69, which is supported by widely symmetric sample quantiles.

Comparing our estimates with the corresponding connectedness measures built on the GVD under the

(misleading) assumption of Gaussian white noise errors ηi, reveals that our more flexible approach

produces on average larger values for C•←GOOG,12 and C•←GS,12. Hence, imposing (multivariate)

normality yields an under-estimation of volatility connectedness. Nevertheless, also the estimates

based on the Gaussian GVD react to the penalization and the incorporation of the copula in a similar

(and expected) way.

The total connectedness presented in the upper right panel of Figure 6.1 does not vary with increasing

h, but a smaller sample range can be observed. Values of C12 close to 30 indicate strong connectedness

for the considered network. Likewise, we also find stable results for the connectedness from others

as h increases. Overall, it is well illustrated that our iterative algorithm can be used as a valuable

workhorse for the estimation of complex high-dimensional time series models. Moreover, it is shown

that inefficient 2-stage estimation procedures may yield significantly different estimates resulting in

different interpretations of the underlying effects.

7. Conclusion

In this paper, we have proposed an iterative algorithm for maximizing complicated log-likelihood

functions and have established the asymptotic properties of the resulting estimator. We have shown

that the resulting estimator is asymptotically efficient as the number of iteration steps tends to infinity.

As a valuable by-product, we have derived the exact (asymptotic) distribution of the estimator in

dependence of the number of iteration steps.
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To deal with highly parameterized models, we have combined the procedure with a non-concave penalty

reducing model complexity and the curse of dimensionality. While we have focused on multivariate

time series models and have illustrated the finite-sample performance of our estimator in a simulation

study, the procedure and asymptotic theory can be straightforwardly carried over to several other

estimation and inference problems. For example, some are listed in Joe and Xu (1996) and include the

multivariate Poisson-Lognormal distribution, multivariate extreme value models and in general copula-

based models. Further applications comprise the limited information estimator for the simultaneous

probit model and similar models for binary choice variables like the multivariate and the recursive

probit model. To illustrate the applicability of the method in realistic but challenging settings, we

have estimated volatility connectedness measures constructed from the generalized forecast error vari-

ance decomposition of a highly-parameterized non-linear 30-dimensional MA(∞) process of realized

volatilities.
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A. Mathematical Appendix

This appendix presents the mathematical proofs of the theorems and corollaries given in Section 2 and

3. Expectations are taken with respect to the (true) measure P and defined as E(·) def
= Eϑ0(·) = EP(·).

Proof of Theorem 1.

Assume ϑ1g,n is consistent, so that ϑ1g,n = ϑg,0 + Op(1) for g = 1, . . . , G. Note that ϑ21,n satisfies

L̇ϑ1(ϑ21,n, ϑ
1
2,n, . . . , ϑ

1
G,n) = 0. Then, by a Taylor expansion of L̇ϑ1(·) around ϑ1,0 and utilizing the

mean value theorem it follows that

0 =L̇ϑ1(ϑ1,0, ϑ
1
2,n, . . . , ϑ

1
G,n) +

{
L̈ϑ1ϑ1(ϑ̄1, ϑ

1
2,n, . . . , ϑ

1
G,n)

}
(ϑ21,n − ϑ1,0),

where ϑ̄1 lies between ϑ21,n and ϑ1,0. This leads directly to

(ϑ21,n − ϑ1,0) =
{
−n−1L̈ϑ1ϑ1(ϑ̄1, ϑ

1
2,n, . . . , ϑ

1
G,n)

}−1
n−1L̇ϑ1(ϑ1,0, ϑ

1
2,n, . . . , ϑ

1
G,n). (18)

The first term of the right hand side of (18) converges in probability to a bounded matrix by Assump-

tion 2. Since ϑ1n is consistent, we obtain

n−1L̇ϑ1(ϑ1,0, ϑ
1
2,n, . . . , ϑ

1
G,n) = lim

n→∞
n−1 E{L̇ϑ1(ϑ0)}+ Op(1),

as n → ∞ and since the derivatives of all log-likelihood contributions have a mean zero at ϑ0 by

Assumption 1, the second term on the right hand side of (18) converges in probability to zero. Hence,

the product of the two random quantities converge in probability to zero by applying Slutsky’s theorem

and the consistency of ϑ21,n can be deduced. Given the consistency of ϑ21,n, the consistency of ϑ2g,n,

g = 2, . . . , G, can be shown in a similar manner. As all sub-vectors ϑ21,n, . . . , ϑ
2
G,n are consistent, ϑ2n is

consistent.

Proof of Theorem 2.

Using a Taylor expansion of L̇ϑg(·), g = 1 . . . , G, around ϑ0, the estimator ϑhn satisfies the following

equations:

0 =L̇ϑg(ϑ0) +
∑
l≤g

{
L̈ϑgϑl(ϑ0)

}
(ϑhl,n − ϑl,0) +

∑
l>g

{
L̈ϑgϑl(ϑ0)

}
(ϑh−1l,n − ϑl,0).

Rewriting this system of equations in matrix notation leads to

n1/2(ϑhn − ϑ0) =L−1n n−1/2L̇(ϑ0) + L−1n Unn
1/2(ϑh−1n − ϑ0). (19)

Note that L−1n
P→ L−1, Un

P→ U and L is invertible. Similarly to Song et al. (2005), iterating the
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recursive system of equations (19) results in

n1/2(ϑhn − ϑ0) =
(
L−1n Un

)h−1
n1/2(ϑ1n − ϑ0) +

h−2∑
l=0

(
L−1n Un

)l
L−1n n−1/2L̇(ϑ0) (20)

=
(
L−1n Un

)h−1
n1/2(ϑ1n − ϑ0) +

[{
Ir −

(
L−1n Un

)h−1}
(
Ir − L−1n Un

)−1
L−1n n−1/2L̇(ϑ0)

]
.

Following basic matrix algebra, we get
(
Ir − L−1n Un

)−1
L−1n =

{
−n−1L̈(ϑ0)

}−1
, so that (20) simplifies

to

n1/2(ϑhn − ϑ0) =
(
L−1n Un

)h−1
n1/2(ϑ1n − ϑ0) (21)

+

[{
Ir −

(
L−1n Un

)h−1}{−n−1L̈(ϑ0)
}−1

n−1/2L̇(ϑ0)

]
.

A local approximation of the left hand side of T1s(ϑ1n) = 0 around ϑ0, with T1s(ϑ) = v{L̇m(ϑ1, . . . , ϑk),

L̇cϑk+1
(ϑ), . . . , L̇cϑG(ϑ)} and T1 from (2), leads to

0 =


L̇m(ϑ1,0, . . . , ϑk,0)

L̇cϑk+1
(ϑ0)

...

L̇cϑG(ϑ0)

+


L̈m(ϑ1,0, . . . , ϑk,0) 0pq
L̈cϑk+1,ϑ1

(ϑ0) . . . L̈cϑ1,ϑG(ϑ0)
...

. . .
...

L̈cϑG,ϑ1(ϑ0) . . . L̈cϑG,ϑG(ϑ0)

︸ ︷︷ ︸
def
=K

(
ϑ1n − ϑ0

)
.

Based on the matrix
(
−n−1K

)−1 P→
{
−H1(ϑ0)

}−1
, a closed form expression for n1/2(ϑ1n − ϑ0) can

directly be derived and (21) can be reformulated as

n1/2(ϑhn − ϑ0) =
(
L−1n Un

)h−1 (−n−1K)−1 T1n−1/2s(ϑ0)
−
[(
L−1n Un

)h−1 {−n−1L̈(ϑ0)}−1 − {−n−1L̈(ϑ0)}−1
]
T2n−1/2s(ϑ0),

with T2s(ϑ0) = L̇(ϑ0) and T2 from (2). The statement of the theorem follows, as n→∞, by applying

Slutsky’s theorem to the right hand side of the latter equation and factorizing the outcome.

Proof of Theorem 3.

As L(ϑ11,n, . . . , ϑ
1
k,n, ϑk+1, . . . , ϑG) is measurable for each v(ϑk+1, . . . , ϑG) ∈ Θk+1 × . . . × ΘG and

v(ϑk+1, . . . , ϑG) can be chosen to induce the product copula, the existence of the penalized estimator as

maximizer of Lpm(·) from (7) is ensured by Fan and Li (2001, Theorem 1). Therefore, the first statement

of part (a) follows from Fan and Li (2001, Lemma 1), since the expectation of the third derivative

of the log-likelihood contributions are bounded by Assumption 5, n−1/2L̇m(ϑ1,0, . . . , ϑk,0) = Op(1) by

Assumption 3 and n−1L̈m(ϑ1, . . . , ϑk)
P→ Hm(ϑ1, . . . , ϑk) by Assumption 2.

To prove the first statements of (b) and (c), treat Lm(ϑ2, ϑm) = Lm(ϑ̆1, ϑ2, . . . , ϑk) and its derivatives
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as functions of v(ϑ2, ϑm) and apply the mean value theorem around v(ϑ2,0, ϑm,0) to the right hand

side of

0 =L̇m(ϑ12,n, ϑ
1
m,n)− n

{
p̆′λmn ,am(ϑ121,n), . . . , p̆′λmn ,am(ϑ12r2,n), 0>sm

}>
,

with sm
def
=
∑k

g=3 rg. Based on ϑ̄m lying between ϑ1m,n and ϑm,0 and ϑ̄2 between ϑ12,n and ϑ2,0, the

latter equation can be rewritten as(
ϑ12,n
ϑ1m,n

)
−

(
ϑ2,0
ϑm,0

)
=
{
−n−1L̈m(ϑ̄2, ϑ̄m) + Ψ̄m

n

}−1
n−1L̇m(ϑ2,0, ϑm,0) (22)

−
{
−n−1L̈m(ϑ̄2, ϑ̄m) + Ψ̄m

n

}−1(bmn
0sm

)
,

where Ψ̄m
n = diag{p̆′′λmn ,am(ϑ̄21), . . . , p̆

′′
λmn ,a

m(ϑ̄2r2), 0>sm} and p̆′′λ,a(·) denotes the derivative of p̆′λ,a(·). The

statement follows as n→∞, since the first term on the right hand side of (22) is Op(1) and the second

of order O(an).

The second statement of part (a) follows from Fan and Li (2001, Lemma 1) as v(ϑ11,n, . . . , ϑ
1
k,n) is

consistent for λmn → 0 as n → ∞. The second statements of (b) and (c) follow straightforwardly by

similar arguments as for proving the first statements of (b) and (c).

Proof of Corollary 2.

The consistency of ϑ̃12,n and ϑ̃1G−1,n follows from Theorem 3 for λmn , λ
c
n → 0 as n→∞. Thus, ϑ̃1n can

be consistently estimated. Applying Theorem 1 leads to the consistency statement for ϑ̃hn.

Proof of Corollary 3.

To show the asymptotic normality, a closed form expression for n1/2(ϑ̃1n − ϑ̃0) has to be derived. For

this purpose, treat L(ϑ̃) = L(ϑ̆1, ϑ2, . . . , ϑG−1, ϑ̆G) and Lc(ϑ̃) = Lc(ϑ̆1, ϑ2, . . . , ϑG−1, ϑ̆G) as a function

of ϑ̃. Similarly to the proof of Theorem 2, Taylor’s expansion around ϑ̃0 leads to

0 =


L̇m(ϑ̆1, ϑ2,0, . . . , ϑk,0)

L̇cϑk+1
(ϑ̃0)

...

L̇cϑG−1
(ϑ̃0)

+



L̈m(ϑ̆1, ϑ2,0 . . . , ϑk,0) 0p̃q̃
L̈cϑk+1,ϑ2

(ϑ̃0) . . . L̈cϑ2,ϑG−1
(ϑ̃0)

...
. . .

...

L̈cϑG−1,ϑ2
(ϑ̃0) . . . L̈cϑG−1,ϑG−1

(ϑ̃0)

−
Ψn

n


︸ ︷︷ ︸

def
=K

(ϑ̃1n − ϑ̃0)−
bn
n
,

with
(
−n−1K

)−1 P→
{

Ψn −H1(ϑ̃0)
}−1

. Replacing n1/2(ϑ̃1n − ϑ̃0) in the corresponding expression of
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(21) results in

n1/2
{

(ϑ̃hn − ϑ̃0) +
(
L−1n Un

)h−1 (−n−1K)−1 bn

}
(23)

=
[(
L−1n Un

)h−1 [(−n−1K)−1 T1 − {−n−1L̈(ϑ̃0)}−1T2
]

+{−n−1L̈(ϑ̃0)}−1T2
]
n−1/2s(ϑ̃0),

with s(ϑ̃0) = v{L̇m(ϑ̆1, ϑ2,0, . . . , ϑk,0), L̇cϑ2(ϑ̃0), . . . , L̇cϑG−1
(ϑ̃0)}. Given that n−1/2s(ϑ̃0)

L→ N{0,Σ(ϑ̃0)},
applying Slutsky’s theorem to the product on the right hand side of (23), as n → ∞, completes the

proof.

B. List of Companies

This appendix presents a list of the 30 companies used in Section 6.
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Figure B.1: Median of the realized volatilities over the companies presented in Table B.1. The gray

area includes 0.90% of the observations.
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Company Ticker Sector

3M MMM Conglomerate

AT&T T Telecommunications

ConocoPhillips COP Oil & Gas

Caterpillar CAT Heavy Equipment

Chevron CVX Oil & Gas

Cisco Systems CSCO Networking Equipment

Coca-Cola KO Beverage

DuPont DD Chemicals

ExxonMobil XOM Oil & Gas

General Electric GE Conglomerate

Goldman Sachs GS Banking

Google GOOG IT

Hewlett-Packard HPQ IT

Home Depot HD Retailing

IBM IBM IT

Intel INTC IT

Johnson & Johnson JNJ Medical Equipment

JPMorgan Chase JPM Banking

Kraft Foods KFT Food Processing

McDonald’s MCD Restaurants

Merck & Co MRK Pharmaceuticals

MetLife MET Financial Services

Microsoft MSFT IT

Pfizer PFE Pharmaceutical

Procter & Gamble PG Consumer Goods

United Technologies UTX Conglomerate

U.S. Bancorp USB Banking

Walmart WMT Retail

Walt Disney DIS Mass Media

Wells Fargo WFC Banking

Table B.1: Basic information of the companies used in Section 6.
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