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Abstract

We study disclosure of information about the multidimensional state of the world

when uninformed receivers’ actions affect the sender’s utility. Given a disclosure rule,

the receivers form an expectation about the state following each message. Under

the assumption that the sender’s expected utility is written as the expected value

of a quadratic function of those conditional expectations, we identify conditions under

which full and no disclosure is optimal for the sender and show that a linear transfor-

mation of the state is optimal if it is normally distributed. We apply our theory to

advertising, political campaigning, and monetary policy.
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1 Introduction

Controlling “market expectations” about the state of the world is important in various

situations. For example, a central bank has to control market expectations in order to

stabilize inflation and the output gap around the desired values. A manufacturing firm needs

to build a good reputation for the quality of its product. A ruling political party wants to

maintain a high approval rating by being sensitive to voters’ expectations about its policy

stance and competence. In order to control the information available to market participants,

a central bank designs a communication strategy (Blinder et al. (2008), Woodford (2005),

and others), a firm an advertising strategy (Anderson and Renault (2006), Johnson and

Myatt (2006)), and a political party a campaign strategy (Prat (2002), Polborn and Yi

(2006)).

In this paper, we analyze a model in which a privately informed sender discloses informa-

tion about the realization of the state to uninformed receivers, who then engage in economic

activities that affect the sender’s utility. Through the choice of a disclosure rule that specifies

the information available to the receivers for each state of the world, the sender influences

the receivers’ belief. The question we address in this paper is, given the prior distribution of

the state, what disclosure rule maximizes the sender’s expected utility.

Formally, a disclosure rule assigns to each realization of the state a probability distribution

over messages. As such, the disclosure rule determines the joint distribution of the state and

the message, which in turn determines the distribution of the receivers’ belief. We assume

that the sender’s expected utility, which is originally a function of the joint distribution of

the receivers’ action profile and the state, is reduced in equilibrium to the expected value of

a quadratic function of the receivers’ expectation of the state.1 Under this assumption, the

sender’s problem is to control the distribution (more precisely, its second moments) of the

receivers’ expectation of the state. A sufficient condition on the underlying preferences for

this assumption is that both the sender and the receivers have quadratic utility functions

over the receivers’ action profile and the state. Such a specification is common in models of

oligopoly, network externalities, and so on, and in the recent studies of transparency policy

including Morris and Shin (2007) and Cornand and Heinemann (2008) among others. We

show through our applications presented in Section 6 that this assumption is satisfied in a

number of applications such as monopoly advertising, political campaigning, and monetary

policy making.

1Chakraborty and Harbaugh (2010) study multidimensional cheap talk in a setting in which the sender’s
preferences are described by a continuous (but not necessarily quadratic) utility function over the receivers’
conditional expectation. As illustrated in the next section, our formulation does not necessarily imply that
the sender has state-independent preferences.
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Our first result identifies when full and no disclosure is optimal (Theorem 1). In order

to investigate the optimality of partial disclosure rule, we begin by establishing an upper

bound of the sender’s expected utility. We show that the upper bound depends only on

the second moments of the state and is obtained by solving a semidefinite programming

problem (Theorem 2). To the best of our knowledge, the approach based on semidefinite

programming is novel in the context of information disclosure.2 With this preparation, we

show that the optimal disclosure rule is given by a linear transformation of the state when it

is normally distributed (Theorem 3). We should emphasize that this is the first result that

presents a complete and systematic derivation of the optimal disclosure rule, whether partial

or full, in a continuous state space.

We next examine the implications of our results in three applications. In Subsection

6.1, we consider the optimal advertising strategy of a monopoly firm privately informed

of its product quality and marginal cost, and show that its optimal advertising policy is

to reveal less information about its product quality than the socially optimal level. In

Subsection 6.2, we examine in a model of electoral competition the incentives of a political

party to reveal information about its candidate and show that incumbency advantage leads

to a socially inefficient amount of information revelation to voters. In Subsection 6.3, we

formulate a two-period model of monetary policy and characterize the optimal disclosure

rule and stabilization policy.

Optimal disclosure of information has been studied in a number of different contexts,

including auctions (Milgrom and Weber (1982), Bergemann and Pesendorfer (2007), Board

(2009), Ganuza and Penalva (2010)), corporate finance (Admati and Pfleiderer (2000), Boot

and Thakor (2001)), interim performance evaluation (Aoyagi (2010), Goltsman and Mukher-

jee (2011)), transparency in policymaking (Gavazza and Lizzeri (2009), Prat (2005)), etc.

This paper is closely related to recent studies of Kamenica and Gentzkow (2011) and

Rayo and Segal (2010), who also investigate the optimal disclosure rule under alternative

specifications of the state space and the sender’s utility function. Kamenica and Gentzkow

(2011) study a general setting in which the sender needs to control the distribution of poste-

rior distributions and find general properties of posteriors induced by the optimal disclosure

rule. They characterize the optimal disclosure rule in some simple settings, including when

the state space is binary. Rayo and Segal (2010) characterize the optimal (randomized) dis-

closure rule for the discrete state space when the sender has certain preferences. The main

contribution of our analysis is to identify optimal disclosure in the case where the state is

continuously distributed. A detailed discussion of our contribution is provided in Section 3.

2The same idea is also found in other applications of semidefinite programming such as minimal trace
factor analysis and optimal experiment design (see, for example Vandenberghe and Boyd (1996)).
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In line with much of the literature including Kamenica and Gentzkow (2011) and Rayo

and Segal (2010), we assume that the sender can commit to her disclosure rule. While this is

a strong assumption, it is justifiable in situations where the sender’s information is verifiable

ex post in the form of survey data, estimation results, experts’ reports, and so on. In such

situations, reputational and legal concerns would stop the principal from deviating from

the pre-announced disclosure rule for a short-run gain. It is worth noting that the optimal

disclosure rule for the normally distributed state is a linear transformation, making it easy

to match the disclosed information with the private information. In this sense, it is more

credible than other complex rules. Although some recent papers assume that the sender can

commit to any disclosure rule (e.g., Goltsman and Mukherjee (2011)), most applied papers

assume a limited ability to commit to a disclosure rule and restrict the class of disclosure

rules the sender can choose from. For example, some papers including Shapiro (1986) and

Ederer (2010) examine when full disclosure is superior to no disclosure while Gal-Or (1986)

and Admati and Pfleiderer (2000) among others assume that the sender is able to choose

only the precision of messages the receivers observe so that a closed-form solution for the

sender’s expected utility is obtained.

This paper also contributes to the growing literature on the social value of information.3

In applications, we discuss the divergence between private and social incentives to disclose

information in terms of informativeness of the messages generated by each disclosure rule.

One advantage of our multidimensional analysis is that it allows us to examine not only

the level but also the type of information that is revealed in equilibrium and at the social

optimum.4 For example, the optimal disclosure rule for a political party may reveal less

information about its general competence and too much about its policy stance than the

socially optimal disclosure rule.

The paper is organized as follows. Section 2 presents a motivating example. In Section 3,

we set up the model and discuss our key assumptions. Section 4 identifies conditions under

which full and no disclosure is optimal and characterizes an upper bound of the sender’s

expected utility. In Section 5, the optimal disclosure rule is explicitly obtained when the

state is normally distributed. Section 6 provides applications, and Section 7 concludes the

paper.

3For recent literature, see Morris and Shin (2002) and Angeletos and Pavan (2007) among others.
4For the measure of informativeness of disclosure rules, we follow Ganuza and Penalva (2010), who

propose precision criteria based on the variability of conditional expectations. Especially, if the conditional
expectation induced by a disclosure rule is normally distributed, its variance can measure the precision of
the message generated.
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2 Motivating Example

To provide a concrete example of what we analyze and what our assumption does and

does not mean, we begin with a simple example in which a sender discloses information to two

receivers who then take actions. This example illustrates how our reduced-form formulation

arises in settings with quadratic preferences over the receivers’ actions and the state. This

motivating example is also useful in identifying the key issues that the theorems presented

below resolve.

An organization consists of a principal with private information and two agents (i = 1, 2)

who are hired by the principal to sell her products. The agents simultaneously choose the

target consumers ai ∈ R and their profits depend on agent-specific market condition xi ∈ R
as well as on the action profile (a1, a2). In particular, we suppose that agent i has a utility

function

ui(a1, a2, x1, x2) = −(ai − xi)
2 − γ(ai − a−i)

2

and that the principal has

v(a1, a2, x1, x2) = −
2∑

i=1

(ai − xi)
2 − δ(a1 − a2)

2

where γ ≥ 0 and δ ≥ 0 measure the relative importance of coordination between two

agents.5 Each agent has incentives to adapt to the state in order to reduce the adaptation

loss, (ai − xi)
2, and to choose a similar target in order to reduce the coordination loss,

(ai − a−i)
2, which may arise due to network externalities, reputations, economics of scale,

and so on. The principal is privately informed about (x1, x2), interpreted as the information

about her products and market conditions which may be estimated from past records. The

prior distribution of the state is common knowledge.6 How should the principal disclose her

private information? When is full disclosure optimal?

A (deterministic) disclosure rule is a mapping g : R2 →M that assigns to each realization

of the state a message m ∈ M where the message space M is also chosen by the principal.

Although we consider a more general class of (possibly randomized) disclosure rules in the

following sections, we begin by comparing the following three disclosure rules; full disclosure

gf (x1, x2) = (x1, x2) ∈ R2, which discloses full information; no disclosure gn(x1, x2) = 0 ∈ R,

5Use of a coordination game with quadratic preferences is common in organization economics. Our model
follows Alonso et al. (2008), Calvó-Armengol and de Mart́ı (2009), Calvó-Armengol et al. (2009) and Dessein
and Santos (2006).

6Our formulation allows any correlation between x1 and x2.

5



which discloses a completely uninformative message; and average disclosure ga(x1, x2) =

(x1 + x2)/2 ∈ R, which discloses a sample mean of two variables.

The timing of the game is as follows. First, the principal commits to a disclosure rule

g ∈ {gf , gn, ga}. Second, the state of the world is realized, and a message m = g(x1, x2) is

disclosed according to the disclosure rule. Third, given the disclosure rule and the message,

the agents form a posterior belief and choose actions.

First, we derive the agents’ equilibrium strategies and the principal’s expected utility.

Given g and m ∈M , two agents play a game whose unique Nash equilibrium is, for i = 1, 2,

a∗i (m) =(1− ψ)E[xi|m] + ψE[x−i|m]

where ψ = γ/(1 + 2γ). The equilibrium strategy is linear in the conditional expectations.

Therefore we denote the equilibrium strategy profile by a∗(x̂1, x̂2) = (a∗1(x̂1, x̂2), a
∗
2(x̂1, x̂2))

where x̂j ≡ E(xj|m) is the agents’ estimate of the state. Notice that a prior distribution of

the state and a disclosure rule specify the joint distribution of (x1, x2, x̂1, x̂2), which deter-

mines the joint distribution of (x1, x2, a
∗
1, a

∗
2) in equilibrium. We now rewrite the principal’s

expected utility. The adaptation loss is written as

E(a∗i − xi)
2 =E(x̂1,x̂2)

[
Exi

[
(a∗i )

2 − 2a∗ixi + x2i |x̂1, x̂2
]]

=E(x̂1,x̂2)

[
(a∗i )

2 − 2a∗i x̂i
]
+ E(x̂1,x̂2)

[
E
(
x2i |x̂1, x̂2

)]
=E(x̂1,x̂2)

[
−x̂2i + ψ2

(
x̂21 − 2x̂1x̂2 + x̂22

)]
+ Ex2i .

Similarly, the coordination loss is

E(a∗1 − a∗2)
2 = E(x̂1,x̂2)

[
(1− 2ψ)

(
x̂21 − 2x̂1x̂2 + x̂22

)]
.

Thus, the principal’s expected utility is written as

E(x1,x2,x̂1,x̂2)v(a
∗(x̂1, x̂2), x1, x2)

=−
2∑

i=1

E(a∗i (x̂1, x̂2)− xi)
2 − δE(a∗1(x̂1, x̂2)− a∗2(x̂1, x̂2))

2

=E(x̂1,x̂2)

[
(1− ϕ)(x̂21 + x̂22) + 2ϕx̂1x̂2

]
− Ex21 − Ex22

where ϕ ≡ (2γ2+δ)/(1+2γ)2. Since Ex21 and Ex22 are independent of the disclosure rule, the
principal’s problem is reduced to the maximization of Ev̂(x̂1, x̂2) + c where c is a constant
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Table 1: Comparison among the three rules.

Rule No Full Average

var(x̂1) 0 1/12 1/24

var(x̂2) 0 1/12 1/24

cov(x̂1, x̂2) 0 0 1/24

Rank of Ev
for δ < δ 3rd 1st 2nd

for δ < δ < δ 3rd 2nd 1st

for δ > δ 2nd 3rd 1st

The thresholds are δ = (1 + 4γ)/2 and δ = 1 + 4γ + 2γ2.

and v̂ is a quadratic function defined by

v̂(x̂1, x̂2) = (1− ϕ)(x̂21 + x̂22) + 2ϕx̂1x̂2. (1)

Note that in general the disclosure rule cannot affect the expected value of the estimates,

that is Ex̂i = EE(xi|m) = Exi. Note also that the second moments are given by Ex̂2i =

var(x̂i) + (Exi)2 and Ex̂1x̂2 = cov(x̂1, x̂2) + (Ex1)(Ex2). From these observations, we have

Ev(a∗, x1, x2) =(1− ϕ)(var(x̂1) + var(x̂2)) + 2ϕcov(x̂1, x̂2)

− var(x1)− var(x2)− ϕ (Ex1 − Ex2)2 .

Since the second line is independent of the disclosure rule, the principal’s expected utility is

also expressed as a linear function of variance-covariances of the estimates (plus a constant

term).

It is worth noting that the expected utility conditional on each message is not necessarily

written as v̂(x̂1, x̂2) + c. The former is expressed as

E [v(a∗, x1, x2)|m] = v̂(x̂1, x̂2)− E(x21 + x22|m).

The second term in the right-hand side may change as what message is disclosed while its

average is determined by the prior distribution but not the disclosure rule. For any disclosure

rule, the expectation of the conditional expectation becomes the unconditional expectation

so that Em[E[(x21 + x22)|m]] = E(x21 + x22).

We now evaluate the performances of the three disclosure rules. For ease of exposition,

we assume that x1 and x2 are independent and uniformly distributed on [−1/2, 1/2]. Table
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1 gives the characteristics of the three deterministic disclosure rules. The first three rows

report the variances and covariance of the estimates while the last three rows report the

ranking of the principal’s expected utility. Given γ > 0, there are two thresholds for δ;

δ ≡ (1 + 4γ)/2 and δ ≡ 1 + 4γ + 2γ2. Full disclosure is superior to average disclosure for

δ < δ while the reverse holds for δ > δ. Intuitively, when the principal puts a lower weight

on coordination (δ < δ), the principal should disclose full information in order to induce

adaptation even if it may cause mis-coordination. In contrast, when the coordination is

important (δ > δ), the principal induces similar decisions by disclosing the average state.

Several questions arise. What is the optimal disclosure rule? Is a higher covariance

between x̂1 and x̂2 incompatible with a higher variance of each x̂i? What determines the

limit of information disclosure as a means of controlling expectations? In the following

sections, we will answer these questions and find that in the above example full and average

disclosure is indeed optimal among the general class of disclosure rules when the state is

uniformly distributed.7

3 The Model

A sender privately observes the multidimensional state x = (x1, . . . , xk)
′ ∈ Rk where

x has a density over a convex support in Rk with a non-empty interior, zero mean and a

positive definite variance matrix Σ.8 The sender publicly discloses information about the

realization of the state to uninformed receivers who then engage in economic activities such

as consumption, investment, etc. that affect the sender’s utility.

For the inducement of preferred actions, the sender controls what information to make

available to the receivers by choosing a disclosure rule (α,M), which consists of a measurable

set M of messages and a family of conditional probability distributions {α(·|x)}x over M .

We assume that the disclosure rule (α,M) is such that the conditional expectation E[x|m]

exists for every m ∈ M and so does its second moment var(E[x|m]).9 Let x̂ ≡ E[x|m]

be the conditional expectation given m, call the estimates. A disclosure rule induces a

joint distribution of (x,m), and hence a joint distribution of (x, x̂). This definition includes

the following communication strategies that are common in the literature of information

economics; full disclosure, that reveals the realization of the state; no disclosure, that reveals

no information; noisy communication, that adds white noises to the sender’s observation;

partition, that reveals an element of the partition over the state space that contains the

7In Section 5, we also characterize the optimal disclosure rule when the state is normally distributed.
8We denote by A′ the transpose of matrix A. Throughout the paper, all untransposed vectors are column

vectors.
9A sufficient condition is that the support of x is a compact set in Rk.
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state. The disclosure rule is deterministic if there exists a function g : Rk → M such that

m = g(x) almost surely.10 As we have seen in the previous section, disclosing the average

value of the state, m = g(x) =
∑
xi/k, is an example of a deterministic disclosure rule. In

contrast, disclosing noisy messages, mi = xi + εi where εi ∼ N(0, σ2
i ), is a typical example

of a stochastic disclosure rule.

As discussed in the introduction, we consider situations in which the sender controls the

receivers’ actions, denoted by a, through information disclosure. Let v(a,x) be the sender’s

utility function. In what follows, we make the following two assumptions. First, we suppose

that the receivers’ behavior is simply a continuous function of their conditional expectation

of the state. We denote their actions given x̂ = E[x|m] by a∗(x̂). Under this assumption,

the sender’s problem is to control the joint distribution of x and x̂ so as to maximize her

expected utility E(x,x̂)v(a
∗(x̂),x). Second, there exists a k×k symmetric matrix V such that

for any disclosure rule,

E(x,x̂)v(a
∗(x̂),x) = Ex̂ [x̂

′V x̂] + c (2)

where c is a constant that is independent of the disclosure rule. Let v̂(x̂) = x̂′V x̂. A sufficient

condition is that the receivers’ equilibrium strategies are given by an affine function of their

conditional expectations and the sender has a quadratic utility function over a and x. We

call Ev̂(x̂) the gain from a disclosure rule.11

As briefly discussed in the previous section, the law of iterated expectations plays a key

role in deriving such a representation. First, the expected value of the product a∗(x̂) · xi is
expressed as the expected value of a function of the estimates. That is, E(x,x̂)[a

∗(x̂)xi] =

Ex̂[a
∗(x̂)x̂i]. Second and more importantly, the expected utility conditional on the message,

E[v(a∗(x̂),x)|m], is not necessarily written as v̂(x̂)+c. For example, suppose that the sender

has v(a, x) = −(a−x)2 and the receiver has u(a, x) = −(a−x)2 so that the receiver chooses

a∗ = x̂. Then the sender’s expected utility conditional on m is E[v(a∗, x)|m] = x̂2 −E[x2|m]

while v̂(x̂) = x̂2. Although the disclosure rule affects the distribution of Ex[x
2|m], it cannot

affect its average value Em[Ex[x
2|m]] = Ex2. Thus, our formulation may apply when the

sender’s conditional expected utility given each m cannot be written as a quadratic function

of the estimates.

An important consequence of our assumptions is that the sender’s expected utility can

10Note that every deterministic disclosure rule can be represented by a partition and vice versa. For
example, a message m under a deterministic rule g is equivalent to disclosing its inverse image g−1(m) ={
x ∈ Rk : g(x) = m

}
.

11This terminology is due to Kamenica and Gentzkow (2011), who define it to be the difference between
the sender’s expected utilities under a disclosure rule and no disclosure. In this paper, no disclosure induces
x̂ = 0 and hence Ev = c.
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be expressed as Ex̂ [x̂
′V x̂]+ c = tr(V Σ̂)+ c where Σ̂ ≡ E [x̂x̂′] denotes the second moment of

the estimates.12 There are two key features of the sender’s problem that immediately follow

from this equality: (i) if two disclosure rules induce the same Σ̂, they yield the same expected

utility, and (ii) given Σ̂, it is easy to compute the sender’s expected utility, tr(V Σ̂) + c.13

Although such a reduced-form formulation can be generated in different ways from the

underlying preferences of the receivers and their equilibrium behaviors as illustrated in the

previous section, there are important cases that cannot be reduced to our model. The first

case is where the receivers’ action space is discrete. In the above simple example, if the action

space is given by {−1, 1}, then the receiver’s action is not continuous in his expectation of

the state.14 Second, even when the receiver’s behavior is given by a continuous function of

the estimates, the sender’s utility function should not be too complex. For example, suppose

that a∗(x̂) = x̂ and v(a, x) = −(a + 1)2(a − 1)2. Then the sender’s expected utility cannot

be expressed in the form of (2).

Rayo and Segal (2010) study optimal information disclosure where the sender’s expected

utility is written as Ex̂1x̂2 + c, and characterize the optimal randomized disclosure rule for a

finite state space. Since we assume that the state has a continuous distribution, our analysis

is based on different techniques and applicable to common distributions such as uniform

and normal. In Section 5, we will find that the disclosure of a weighted average becomes a

solution to their problem when the state is normally distributed.15

Kamenica and Gentzkow (2011) consider a general problem where the sender’s expected

utility is expressed as the expected value of a function of the receiver’s posterior belief and

characterize the posterior beliefs induced by the optimal disclosure rule. They provide the

optimal (partial) disclosure rule in simple settings, especially when the state space is binary.

They also analyze whether no disclosure is suboptimal for the setting in which the sender’s

utility depends only on the receiver’s conditional expectation of the state. Although we

make a stronger assumption on the sender’s preferences, we provide a simple and complete

characterization of the optimal disclosure rule in the continuous state space, which is useful

for applied research.

12For any rule (α,M), we have E[x̂′V x̂] = E[tr(x̂′V x̂)] = E[tr(V x̂x̂′)] = tr(V E[x̂x̂′]) = tr(V Σ̂) where
tr(A) is the trace of matrix A.

13Even though this operation itself does not rely on the assumption that x̂ is the receivers’ conditional
expectation of x, we often use it when we derive matrix V . In the above simple example, we use it when we
compute E(x,x̂)xa

∗(x̂) = Ex̂2.
14In such a case, the receiver takes a = 1 (= −1) if x̂ ≥ (<)0, respectively. That is, the first assumption

is not satisfied. In this case, the sender’s expected utility is expressed as E(x,x̂)v(a
∗, x) = 1+2bE(|x̂|)−Ex2.

15One can also show that, by applying Theorem 2 presented below, the average disclosure is optimal if
(x1, x2) is uniformly distributed over [0, 1]2.
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4 Optimal Disclosure and Semidefinite Programming

First, we identify when full and no disclosure is optimal and when partial disclosure yields

a higher expected utility than full and no disclosure. Detailed proof is in Appendix A

Theorem 1 (i) Full disclosure is optimal if and only if v̂ is a convex function or, equiva-

lently, V is positive semidefinite. (ii) No disclosure is optimal if and only if v̂ is a concave

function or, equivalently, V is negative semidefinite.

The if parts, which simply follow from Jensen’s inequality and the law of iterated ex-

pectations, are already known in the literature. The only if part of (ii) is also found in

Kamenica and Gentzkow (2011)[Proposition 3], who analyze a setting in which the sender

has a continuous but not necessarily quadratic utility function over conditional expectations.

In contrast, the only if part of (i) is novel and relies on the quadraticity of v̂. To illustrate

the main idea behind the proof, consider the following example: suppose that V =

(
1 2

2 1

)
,

which is not a positive semidefinite matrix so that there is a vector x− =

(
1

−1

)
that satisfies

x′
−V x− < 0. Then any x can be expressed as x = βx+ + γx− where x+ =

(
1

1

)
. We argue

that a partial disclosure rule that reveals only β yields a higher gain than full disclosure that

reveals both β and γ. When only β is disclosed, the estimate is given by

x̂ = βx+ + E(γ|β)x−,

and then the realization of the state is written as

x = x̂+ (γ − E(γ|β))x−. (3)

Indeed, if the sender reveals the realization of γ in addition to β, an additional variation in

the receivers’ expectation, (γ − E(γ|β))x−, is generated. Using the expression of (3), the

sender’s gain from full disclosure can be written as follows:

E [x′V x] =E
[
[x̂+ (γ − E(γ|β))x−]

′ V [x̂+ (γ − E(γ|β))x−]
]

=E [x̂′V x̂] + 2Eβ

[
Eγ

[
(γ − E(γ|β))x′

−V x̂|β
]]

+ E
[
(γ − E(γ|β))2x′

−V x−
]

=E [x̂′V x̂] +
(
x′
−V x−

)
Eβ [var(γ|β)] .

Since E [var(γ|β)] > 0 and x′
−V x− < 0, we have E[x′V x] < E[x̂′V x̂]. Intuitively, compared

with full disclosure, the partial disclosure specified above reduces an unfavorable variability
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of conditional expectations. Hence, full disclosure is suboptimal whenever V is not positive

semidefinite.

The proof of the only if part of (ii) in Appendix is based on a reverse argument that,

compared with no disclosure, the sender can generate a favorable variability of conditional

expectations if V is not negative semidefinite. In particular, the sender controls information

so that the conditional expectations lie on a vector x+ such that x′
+V x+ > 0.

For the purpose of use in applications in Section 6, we restate Theorem 1 for the case of

k ≤ 2.

Corollary 1 For the one-dimensional state space (k = 1), full disclosure is optimal if and

only if V ≥ 0 and no disclosure is optimal if and only if V ≤ 0. For the two-dimensional

state space (k = 2), full disclosure is optimal if and only if V11, V22, det(V ) ≥ 0 and no

disclosure is optimal if and only if V11, V22,−det(V ) ≤ 0.

In the motivating example, V is positive semidefinite if and only if δ ≤ (1+4γ)/2, which

coincides with the condition for the optimality of full disclosure among the three simple

rules. So far we know little about what disclosure rule is optimal when δ > (1 + 4γ)/2 in

the example.

To investigate the optimality of partial disclosure, we begin by establishing an upper

bound of the sender’s expected utility (or equivalently the gain) attainable through infor-

mation control. Recall that in general E[x̂′V x̂] = tr(V Σ̂) where Σ̂ = E [x̂x̂′] = var(x̂).

Hereafter, we interpret the sender’s problem as the choice of a variance matrix of x̂ by

choosing a disclosure rule.

We now investigate conditions on Σ̂ that can be induced by a disclosure rule. First we

know that (i) Σ̂ must be positive semidefinite since it is a variance matrix. Furthermore, for

any joint distribution of (x,m), the law of total variance holds;

var(x) =E[var(x|m)] + var(E(x|m))

where var(x|m) = E[(x − E[x|m])(x − E[x|m])′|m]. Since every variance matrix is positive

semidefinite, so is its expectation E[var(x|m)].16 This implies that (ii) Σ−Σ̂ must be positive

semidefinite. Let ≽ denote the Löwner partial ordering on the set of k×k symmetric positive

semidefinite matrices. That is, for two symmetric positive semidefinite matrices A and B,

A ≽ B if A−B is positive semidefinite.17 LetO and I denote the zero and the identity matrix,

16For all non-zero vector z ∈ Rk, we have z′E[var(x|m)]z = E[z′var(x|m)z] ≥ 0 since var(x|m) is positive
semidefinite for any m ∈ M .

17For the standard notation in matrix algebra and some basic properties of matrices, see Horn and Johnson
(1985) and Boyd and Vandenberghe (2004).
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respectively. Then, every Σ̂ must satisfy Σ ≽ Σ̂ ≽ O. Roughly speaking, variance matrices of

the estimates induced by the disclosure rule are (partially) ordered by the matrix inequality

according to which full (no) disclosure attains the greatest (least) element. Therefore, an

upper bound on the gain is given by solving the following semidefinite programming :

max
Σ≽Σ̂≽O

tr(V Σ̂).

To simplify the notation in the problem and its solution, it is useful to change the variable

in the above program. Let Z ≡ Σ− 1
2 Σ̂Σ− 1

2 and W ≡ Σ
1
2V Σ

1
2 . Since the variance matrix

Σ is nonsingular, Z must be a symmetric positive semidefinite matrix. Then the condition

Σ ≽ Σ̂ ≽ O is equivalent to I ≽ Z ≽ O. It is straightforward to see that Z = Σ− 1
2ΣΣ− 1

2 = I

for full disclosure and Z = Σ− 1
2OΣ− 1

2 = O for no disclosure. The gain is also written in

terms of Z and W as tr(V Σ̂) = tr(WZ). Thus, an upper bound of the gain is characterized

as follows:

Lemma 1 Let W = Σ
1
2V Σ

1
2 . Then the upper bound of the gain is given by solving the

following semidefinite programming:

(SDP) max
I≽Z≽O

tr(WZ).

Before presenting the solution to SDP, it may be helpful to give an intuition of the

constraint Σ ≽ Σ̂ ≽ O in the context of the motivating example in Section 2. Recall that

matrix V has entries V11 = V22 = 1−ϕ and V12 = V21 = ϕ where ϕ = (2γ2+δ)/(1+2γ)2 (see

(1)). Moreover, we have assumed that x1 and x2 are independent and uniformly distributed

over [−1/2, 1/2] so that Σ has σ11 = σ11 = 1/12 and σ12 = 0. It immediately follows from

Σ̂ ≽ O (i.e., Σ̂ is positive semidefinite) that σ̂11 ≥ 0, σ̂22 ≥ 0 and σ̂11σ̂22 ≥ σ̂2
12. That is,

the variances of the estimates are nonnegative and the correlation between two estimates,

corr(x̂1, x̂2) =
√
σ̂2
12/(σ̂11σ̂22), is in [−1, 1]. Similarly, from Σ ≽ Σ̂ (i.e., Σ − Σ̂ is positive

semidefinite), we have σ11 ≥ σ̂11, σ22 ≥ σ̂22, and

(σ12 − σ̂12)
2 ≤(σ11 − σ̂11)(σ22 − σ̂22). (4)

The first two conditions imply that the variance of the estimate cannot exceed that of

the underlying state. It may make sense that any message about the state cannot be

more informative than revealing the state itself. The condition (4) implies that to gen-

erate a certain covariance of the estimates that differs from that of the underlying state

(cov(x̂1, x̂2) ̸= cov(x1, x2)), the sender must induce lower variances of the estimates than

that under full disclosure (var(x̂1) < var(x1) and var(x̂2) < var(x2)). In the context of the

13
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z12

z11 = z22

Figure 1: Solution to the semidefinite programming

motivating example, this condition turns out to be an important trade-off for the principal.

Recall that both the adaptation and coordination losses are decreasing in σ̂12 = E(x̂1x̂2). To
induce a higher covariance between the two estimates, the sender must reduce the variance

of the estimates, which is also valuable to the principal whenever δ < δ. Roughly speak-

ing, to facilitate coordination between the two agents, the principal needs to withhold some

information and reduce the degree of adaptation.

We now apply Lemma 1 to the problem in the motivating example and obtain an upper

bound of the gain. Since Σ = 1
12
I, we have Z = 12Σ̂ and W = 1

12
V . Moreover, the

constraint I ≽ Z ≽ O is expressed as (i) z11, z22 ≥ 0, z212 ≤ z11z22, and (ii) z11, z22 ≤ 1,

z212 ≤ (1− z11)(1− z22). Thus, SDP for the example is written as

(SDP) max
z11,z12,z22

1

12
[(1− ϕ)(z11 + z22) + 2ϕz12]

subject to z11, z22 ∈ [0, 1]

z212 ≤ min{z11z22, (1− z11)(1− z22)}.

Notice that in order to relax the constraint on z12, we have to choose z11 = z22.
18 Then the

inequality constraint is reduced to z12 ≤ min{z11, (1 − z11)}. Figure 1 depicts the feasible

set of (z11, z12) as a shaded area with the level curves of the objective function tr(WZ).

Recall that the solution Z to SDP corresponds to the variance matrix of the estimates as

Σ̂ = Σ
1
12ZΣ

1
12 = 1

12
Z. If the slope w11/w12 = (1 − ϕ)/ϕ of the level curves is greater than

1, the solution is (z11, z22, z12) = (1, 1, 0), or equivalently (σ̂11, σ̂22, σ̂12) = (1/12, 1/12, 0),

which is achieved by full disclosure (see the first three rows in Table 1). On the other

18For any (z11, z22) with z11 ̸= z22, consider z̃11 = z̃22 = (z11 + z22)/2. Since w11 = w22 = (1− ϕ)/12, we
have w11z11+w22z22 = w11z̃11+w22z̃

′
22. Moreover, z11z22 < z̃11z̃22 and (1−z11)(1−z22) < (1− z̃11)(1− z̃22).

Thus we can relax the inequality constraint without altering the objective value.
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hand, if w11/w12 is less than 1, the solution is (z11, z12, z22) = (1/2, 1/2, 1/2), or equivalently

(σ̂11, σ̂22, σ̂12) = (1/24, 1/24, 1/24), which is, indeed, what average disclosure achieves. Thus,

we find that average disclosure attains the upper bound for δ > (1 + 4γ)/2.

Corollary 2 In the motivating example with a prior xi
iid∼ U [−1

2
, 1
2
] for i = 1, 2, full disclo-

sure is optimal if δ ≤ (1 + 4γ)/2 and average disclosure is optimal if δ > (1 + 4γ)/2.

Although Lemma 1 provides a key insight into the control of conditional expectations,

we need some knowledge in matrix algebra to solve the program. Here we present a solution

to SDP and relegate its derivation to Appendix A.19

Theorem 2 Let Q+ = [q1, . . . ,qr] consist of the eigenvectors associated with the nonnega-

tive eigenvalues of W = Σ
1
2V Σ

1
2 . Then a projection matrix Z = PQ+ = Q+(Q

′
+Q+)

−1Q′
+

is a solution to SDP. Moreover, the upper bound achieved equals the sum of all positive

eigenvalues of W .

An important implication for k = 2 is that the two estimates x̂1 and x̂2 must be perfectly

correlated when x1 and x2 are independent. To see this, suppose that σ
2
i = var(xi) for i = 1, 2

and that V (and hence W ) is neither positive nor negative semidefinite so that there exists

exactly one positive eigenvalue. Suppose also that V12 ̸= 0 so that the optimal disclosure rule

is nontrivial.20 Let (q1, q2) be the eigenvector associated with the unique positive eigenvalue.

Then the solution to SDP is given by

Z =

(
q21

q21+q22

q1q2
q21+q22

q1q2
q21+q22

q22
q21+q22

)
,

and the second moment of the estimates is

Σ̂ = Σ
1
2ZΣ

1
2 =

(
σ2
1q

2
1

q21+q22

σ1q1σ2q2
q21+q22

σ1q1σ2q2
q21+q22

σ2
2q

2
2

q21+q22
.

)

Thus, the correlation between x̂1 and x̂2 equals q1q2/|q1q2|, which is either 1 or −1 whenever

both x̂1 and x̂2 have positive variances.21 In other words, to achieve the upper bound, the

two estimates must satisfy a linear restriction x̂2 = βx̂1 where the coefficient is given by

β = σ2q2/σ1q1. Another implication is that the solution to SDP satisfies z11 + z22 = 1. This

19If all eigenvalues of W is negative, the zero matrix Z = O achieves the upper bound as established in
Theorem 1.

20If x1 and x2 are independent and V12 = 0, then the optimal disclosure is g(x1, x2) = x1 when V11 >
0 > V22 and g(x1, x2) = x2 when V22 > 0 > V11.

21For mutually dependent states, we have corr(ŷ1, ŷ2) ∈ {−1, 1} where

(
ŷ1
ŷ2

)
= Σ− 1

2

(
x̂1

x̂2

)
.
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implies that two variables, z11 ∈ [0, 1] and ρ ∈ {−1, 1}, determine the other two variables

z22 and z12 as z22 = 1 − z11 and z12 = ρ
√
z11(1− z11). From these observations, the search

for the upper bound is characterized as a simple maximization problem that does not need

to compute the positive eigenvalue: let ρ ∈ {−1, 1} and z ∈ [0, 1] be parameters and h(ρ, z)

be a function on {−1, 1} × [0, 1] defined by

h(ρ, z) = σ2
1V11z + 2σ1σ2V12ρ

√
z(1− z) + σ2

2V22(1− z).

Then we have maxh(ρ, z) = maxΣ≽Σ̂≽O tr(V Σ̂).

Although Theorem 2 tells us what distribution of the estimates should be induced by the

optimal disclosure rule, it tells little about how to construct a disclosure rule that induces

such a distribution of the estimates. While the upper bound characterized in Theorem 2

depends only on the second moment of the underlying distribution of the state, the optimal

rule may depend on the entire distribution of x since we have to obtain the conditional

expectations for each m. In general, there is little hope of finding a disclosure rule that

attains the upper bound. This leaves us with two choices: one is to investigate necessary

conditions for the optimal disclosure rule as in Kamenica and Gentzkow (2011) and Rayo

and Segal (2010), while the other is to characterize the optimal rules for some class of state

distributions. We take the second approach and identify optimal disclosure rules under the

assumption that the state has a normal distribution.

5 Normally Distributed State and Linear Disclosure

Rule

In this section, we characterize the optimal disclosure rule when the state has a normal

distribution. Specifically, we suppose that x ∼ N(0,Σ) where Σ is symmetric and positive

definite.

A linear rule of rank l is a deterministic disclosure rule such that m = g(x) is a linear

transformation of rank l.22 For l ≥ 1, we can represent a linear rule by g(x) = A′x ∈ Rl

where A is a k × l matrix of rank l.23 We can interpret a linear rule of rank l as a rule

publicizing l variables (m1, . . . ,ml) none of which is redundant. Note that full disclosure is

a linear rule of rank k such as g(x) = x and no disclosure rank zero such as g(x) = 0. Since

22That is, the dimension of the range of g equals l.
23If g maps each realization of the state into RL with L > l, there are L − l redundant variables, say

(ml+1, . . . ,mL), in the sense that E[x|m1, . . . ,mL] = E[x|m1, . . . ,ml]. Thus we can represent the linear rule
of rank l by a k × l matrix A without loss of generality.
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we know that no disclosure is optimal if and only if V is negative semidefinite, so we suppose

that V is not negative semidefinite.

When the state is normally distributed and a linear rule of rank l ≥ 1 is chosen, the

message m = A′x ∈ Rl has a normal distribution with zero mean. The standard result of

the normal distribution gives the conditional expectation x̂ = E[x|m] = ΣA(A′ΣA)−1m.24

Since m = A′x, we have

x̂ = ΣA(A′ΣA)−1A′x.

Intuitively, a linear rule of rank l projects the realization of the state onto an l dimensional

subspace in which the estimates are distributed. It follows from the analogue of Theorem 1

that the optimal disclosure rule must induce a distribution of conditional expectations such

that V is positive semidefinite on its support. That is, x̂′V x̂ ≥ 0 for every x̂ in its support.

Otherwise, we can reduce unfavorable variability of conditional expectations in a similar

manner to the only if part of Theorem 1 (i). This necessary condition effectively narrows

the set of potential solutions.

Let B ≡ Σ
1
2A and PB = B(B′B)−1B′. The matrix PB is an orthogonal projection matrix

that maps vectors in Rk onto the column space of B. Then the estimates are x̂ = Σ
1
2PBΣ

− 1
2x,

and hence the second moment Σ̂ is written as

Σ̂ = Ex̂x̂′ = Σ
1
2PBΣ

1
2 .

Thus the gain of the disclosure rule is written as tr(V Σ̂) = tr(V Σ
1
2PBΣ

1
2 ) = tr(WPB) where

W = Σ
1
2V Σ

1
2 .

Consider a linear rule m = A′x such that A = Σ− 1
2Q+ where, as denoted in Theorem

2, Q+ = [q1, . . . ,qr] is the eigenvectors associated with the nonnegative eigenvalues of W .

Then B = Σ
1
2A = Q+ and tr(WPB) = tr(WPQ+), which equals the upper bound identified in

Theorem 2. Thus, we find a linear rule that is optimal among the general class of disclosure

rules.

Theorem 3 Suppose that the state is normally distributed, that is x ∼ N(0,Σ). Then a

linear rule g(x) = Q′
+Σ

− 1
2x is optimal where Q+ = [q1, . . . ,qr] is the eigenvectors associated

24Consider the joint distribution (x,m) ∼ N(µ̃, Σ̃) where the mean vector and variance matrix can be
partitioned as

µ̃ =

(
µ̃x

µ̃m

)
, Σ̃ =

(
Σ̃x,x Σ̃x,m

Σ̃m,x Σ̃m,m

)
.

It follows (see, for example Vives (2008)) then the conditional density of x given m is normal with conditional
mean µ̃x + Σ̃x,mΣ̃−1

m,m(m − µ̃m) and variance matrix Σ̃x,x − Σ̃x,mΣ̃−1
m,mΣ̃m,x. Now apply to m = A′x, we

have Σ̃x,m = E[xx′A] = ΣA and Σ̃m,m = E[A′xx′A] = A′ΣA.
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with the nonnegative eigenvalues of the symmetric matrix W = Σ
1
2V Σ

1
2 .

The optimal linear rule in Theorem 3 is interpreted as the following information process-

ing. First, the sender adjusts the variance of the state as y ≡ Σ− 1
2x so that var(y) = Ik.

Second, r variables (m1, . . . ,mr) is disclosed each of which is a linear combination mi =

q1iy1 + · · · + qkiyk of y where the weights (q1i, . . . , qki) constitute an eigenvector associated

with a nonnegative eigenvalue of W .25

Here we briefly discuss the role of two key properties in Theorem 3: the normality of

the state and the linearity of the disclosure rule. The first remark is that there exists

Z ∈ {Z̃ : I ≽ Z̃ ≽ O} such that it cannot be induced by the linear rule. Recall that

for any linear rule A (translated into B = Σ
1
2A), we have Z = PB = B(B′B)−1B′. A

property of orthogonal projection matrices (that is, symmetric and idempotent) is that every

eigenvalue is either zero or one. Therefore, the linear rule cannot induce Z such that it has

an eigenvalue in (0, 1). Second, when the normality fails, the linear rule is no longer able to

achieve the upper bound identified in Theorem 2. For example, consider V =

(
1 1

1 0

)
and

xi
iid∼ U [−1/2, 1/2] for i = 1, 2 so that Σ = 1

12
I and W = 1

12
V . Then the upper bound is

given by the positive eigenvalue of W , which equals (1 +
√
5)/24 ≈ 0.1348, while the linear

rule yields at most 86
27

· 1
24

≈ 0.1327 under g(x1, x2) = 3x1 + 2x2.

5.1 The Two-dimensional Normal State

We now apply the theory developed above to obtain the optimal disclosure rule under

the normally distributed state for k = 2. Let v̂(x̂) = x̂′V x̂ and (x1, x2) ∼ N((0, 0),Σ). From

Corollary 1, we focus on the case where V is indefinite (i.e., neither positive nor negative

semidefinite) and find the optimal linear rule A of rank 1 that maximizes tr(V Σ̂).26

We normalize the state and the estimates by y = Σ− 1
2x and ŷ = Σ− 1

2 x̂. First we see

how an orthogonal projection PB determines the distribution of ŷ. For B = (b1, b2)
′ ∈ R2,

we have ŷ = PBy, or equivalently ŷ1 =
b1y1+b2y2

b21+b22
b1

ŷ2 =
b1y1+b2y2

b21+b22
b2.

25It is worth noting that if the rank of W is less than k, say k − n, then the rank of optimal linear
rule is indeterminate. Formally, letting Q++ = [q1, . . . ,qr−n] be the eigenvectors associated with positive

eigenvalues, any linear rule A = Σ− 1
2B such that B contains every column of Q++ but orthogonal to Q−

attains the same value. Hence the rank of an optimal linear rule may be r−n or more but must be less than
or equal to r.

26If V is positive (negative) semidefinite, full (no) disclosure which corresponds to a linear rule of rank 2
(0, respectively) is optimal.

18



Thus we find that (ŷ1, ŷ2) are distributed on the line b2ŷ1 = b1ŷ2. Moreover the variance

matrix of (ŷ1, ŷ2) is var(ŷ) = E[PByy
′P ′

B] = PB, or equivalently

var(ŷ1, ŷ2) =

(
c21 c1c2

c1c2 c22

)

where (c1, c2) = ( b1√
b21+b22

, b2√
b21+b22

) is a point on the unit sphere in R2. This implies that the

sender’s choice variable is essentially one-dimensional, and hence the optimization problem

can be solved by standard calculus.

Corollary 3 Suppose that V is indefinite and W = Σ
1
2V Σ

1
2 . Then the optimal linear rule

is A = Σ− 1
2B where B = (b1, b2)

′ ∈ R2 is such that: (i) if w12 = 0, then B = (1, 0)′ for

w22 < 0 < w11, and B = (0, 1)′ for w11 < 0 < w22; (ii) if w12 = w21 ̸= 0, then

b1
b2

=
(w11 − w22) +

√
(w11 − w22)2 + 4w2

12

2w12

.

Corollary 3 characterizes the optimal linear rule when k = 2 as in the motivating example

and in Rayo and Segal (2010). In contrast to the finite state space case, the optimal disclosure

rule is deterministic and linear if the state has a bivariate normal distribution. For example,

for xi ∼ N(0, σ2
i ) for i = 1, 2, the solution to the Rayo and Segal (2010)’s problem is the

linear rule g(x1, x2) = σ−1
1 x1 + σ−1

2 x2.

6 Applications

6.1 Optimal Advertising Policy

Suppose that a monopoly firm chooses an information disclosure policy about its new

product. In particular, the firm observes its cost shock xc and quality shock xa. Assume

that random variables xa and xc are independent and normally distributed with means zero

and variances σ2
a and σ2

c , respectively. A disclosure rule (α,M) determines information m

available to consumers. For example, a computer manufacturer discloses various informa-

tion about its product including display resolution, battery life, processing speed, and so

on. A production company releases on-line free music/movie clips. By controlling infor-

mation revealed, the firm can induce a preferred distribution of the consumers’ conditional

expectations about the product quality and production cost.

Suppose that a representative consumer has a quadratic utility function u(q, xa) =(
(a+ xa)q − 1

2
q2
)
− pq where q is the quantity consumed and p is the unit price. It fol-
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lows that the inverse demand function given message m is q = a+ x̂a−p where x̂a = E[xa|m]

is the consumer’s conditional expectation about the quality shock. The firm’s profit function

is v(q, xc) = pq − (c + xc)q. For simplicity, we assume that the price is exogenously fixed.27

The timing of the game is as follows. First, the firm commits to a disclosure rule (α,M).

Second, the firm observes the realization of the state (xa, xc) and discloses information m.

Third, the consumer estimates the product quality and determines the demand quantity.

The firm’s expected profit is written as

Ev =E [(p− c− xc)(a+ x̂a − p)]

=− Ex̂ax̂c + (p− c)(a− p).

Thus, we have v̂(x̂a, x̂c) = −x̂ax̂c. An immediate implication is that the firm’s expected

profit is a decreasing function of the covariance between x̂a and x̂c. Intuitively, the firm

is better off increasing the probability that demand expand when it has a lower cost. The

expected value of social welfare (i.e., consumer surplus plus the firm’s profit) is

Ew =E
[(

(a+ xa)q −
1

2
q2
)
− (c+ xc)q

]
=E

[
1

2
x̂2a − x̂ax̂c

]
+ (a− p)

(
a+ p

2
− c

)
so that the socially optimal disclosure rule maximizes the expected value of a quadratic

function ŵ(x̂a, x̂c) =
1
2
x̂2a − x̂ax̂c.

From Corollary 3, the optimal disclosure rule for the firm is gP (xa, xc) = σcxa − σaxc

while the socially optimal disclosure rule is gS(xa, xc) = κxa − σaxc where

κ =
σa +

√
σ2
a + 4σ2

c

2
> σc.

The coefficient on xa is interpreted as the amount of information revealed about the product

quality.

Proposition 1 The monopoly advertisements contain less information about the product

quality than the socially optimal advertisements.

Lewis and Sappington (1994) examine the amount of information a monopoly firm might

27Milgrom and Roberts (1986) analyze a model in which the firm chooses its price and consumers draw
product-quality inferences from price as well as advertisement. Although such a “signaling effect” of action
is important in a number of different contexts such as monetary policy (see, Baeriswyl and Cornand (2010)),
it requires different techniques and is beyond the scope of the present paper.

20



provide to potential buyers. In their setting, each buyer privately observes an imperfect

signal about his valuation and the firm controls the precision of the signals. Anderson

and Renault (2006) and Johnson and Myatt (2006) distinguish the informational content of

advertisements (e.g., price vs. attributes and hype vs. real information, respectively). In our

model, the firm should disclose a one-dimensional index constructed from its product quality

and marginal cost and control the variances and covariance of the “market expectations.”

6.2 Campaign Advertising and Incumbency Advantage

The population consists of two groups of voters, indexed by i ∈ {1, 2}. These groups

differ in their policy preferences over a one-dimensional policy space. Let q1 = −1
2
and q2 =

1
2

be the preferred policies of groups 1 and 2, respectively. As in Prat (2002), voters also judge

candidates in another dimension, say valence, which represents the general competence of a

candidate such as negotiating ability, leadership, and integrity. Unlike policy preferences, all

voters’ preferences are the same in the valence dimension.

Two parties compete against each other in an election. An incumbent runs from the ruling

party and a challenger from the opposition party. The ruling party is privately informed

about the characteristics of the incumbent and makes campaign advertising that may reveal

information about him. The incumbent is characterized by two parameters (x, y) where

x ∈ [−1
2
, 1
2
] represents his policy stance and y ∈ [−1

2
, 1
2
] represents his valence. Assume that

x and y have zero means and are independent of each other. The ex ante distribution of

(x, y) is common knowledge, but its realization is observed only by the ruling party. We

address the optimal campaign policy for the ruling party that maximizes the probability of

reelection in the absence of the opposition party’s campaign.28 A possible interpretation of

the campaign strategy is such that the party chooses topics discussed in a meeting and in

candidates’ speeches.

When the incumbent of type (x, y) is elected, voters in group i ∈ {1, 2} receive utility

ui = −|x − qi| + y. On the other hand, when the challenger is elected, they receive ui =

−|0− qi|+ ti where ti is a private information of group i that represents an ideological bias

toward the challenger. We assume that ti is independent of t−i and is uniformly distributed

over [− 1
2h
, 1
2h
] for a sufficiently small h > 0.29 Thus, given m and ti, voters in group i vote

for the ruling party if E[ui(x, y)|m] ≥ −|0− qi|+ ti.

The timing of the game is summarized as follows. The ruling party commits to a disclosure

rule. The ruling party observes the incumbent’s type (x, y) and publicly discloses a message

28Information disclosure by multiple senders raises a new issue and is beyond the scope of the paper. A
recent work of Gentzkow and Kamenica (2011) tackles such a problem.

29For h ∈ (0, 1
2 ), the interior solution is guaranteed.
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m according to the disclosure rule. The noise variables (t1, t2) are realized. Given m and ti,

each voter votes for the candidate he prefers. If both groups vote for the same candidate, he

wins with probability one. If two groups disagree, then the incumbent wins with probability

ψ ∈ [0, 1].

Let x̂ = E[x|m] and ŷ = E[y|m]. The voters’ expected utility from the incumbent

conditional on m is written as

E[ui(x, y)|m] =

−(1
2
+ x̂) + ŷ for group 1

−(1
2
− x̂) + ŷ for group 2

The probability P1 (P2) that voters in group 1 (group 2) vote for the incumbent is given

by P1 = 1
2
+ h(ŷ − x̂) (P2 = 1

2
+ h(ŷ + x̂), respectively). The conditional probability P (m)

that the incumbent wins given message m is

P (m) =P1P2 + ψ(1− P1)P2 + ψP1(1− P2)

=
1 + 2ψ

4
+ hŷ + (1− 2ψ)h2(ŷ + x̂)(ŷ − x̂).

Thus, we have v̂(x̂, ŷ) = (1−2ψ)h2(ŷ2− x̂2). Since we assume that x and y are independent,

we find the following result.30

Proposition 2 When the incumbent has an advantage (ψ ≥ 1
2
), then it is optimal for the

ruling party to reveal only the incumbent’s policy stance (g(x, y) = x).

Intuitively, when the incumbent has an advantage, the ruling party has an incentive to

increase the probability that at least one group prefers the incumbent to the challenger even

though it decreases the probability of unanimity. Consequently, the incumbency advantage

impairs the selection of a competent candidate through the campaign strategy that reveals

no information about the valence characteristics. We also predict that the opposition party

needs to attract both groups of voters and has an incentive to reveal the valence dimension

of the candidates; for example, revealing scandals involving the incumbent and emphasizing

his inconsistent statements.

Similar situations arise in different contexts. For example, in a criminal court, a defense

attorney who needs to persuade only a part of juries is better off making an emotional appeal

to them while a prosecutor who needs to avoid a conflict among juror is better off gathering

objective evidence of guilt. In this case, the voting procedure determines the incentives of

information revelation by the prosecutor and the attorney.

30Note that the result does not depend on the marginal distributions of x and y.
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Polborn and Yi (2006) analyze information revelation in a political campaign assuming

that each candidate must truthfully reveal either positive or negative information. Coate

(2004) and Galeotti and Mattozzi (2011) analyze informative campaign which perfectly re-

veals the candidate’s policy position to a fraction of voters while Prat (2002) analyzes cam-

paign advertising when the campaign expenditures signal the candidate’s valence.

6.3 Central Bank Transparency

We examine how central bank transparency affects the volatility of the output gap and

inflation and characterize the optimal disclosure rule and monetary policy. As in Geraats

(2002) and Jensen (2002), we consider a simple two-period model where period 1 is regarded

as the present and period 2 as the future.

The private sector behavior is summarized by a standard Phillips curve31

lt = πt − EP
t−1πt + εt

where lt is (log) employment in period t, πt is the inflation rate in period t (the change in the

log price level between period t− 1 and t), and εt is an employment shock (a supply shock).

The expectation operator EP
t−1[·] denotes the market expectation formed in period t− 1.

The central bank has perfect control over inflation πt = it where it is the central bank’s

intended inflation.32 We assume that the central bank can commit to a contingent monetary

policy in the short-run, but cannot commit to the future policy. For example, career concerns

of the policymakers may prevent discretionary policymaking in the short-run, but in the

future the composition of the policymaker board may alter and an alternative policy plan

may be chosen. Moreover, an unpredictable change in economic and political conditions may

make the initial plan totally inadequate.

The central bank’s loss function is E[L1 + βL2] where β ∈ (0, 1) is the discount factor

and Lt is the period t loss function

Lt = π2
t + λ(lt − l∗t )

2

for some λ > 0. The employment target l∗t can be interpreted as a demand shock due to

stochastic preferences of the representative household or as the central bank’s preference

shock due to a change in the degree of central bank independence.

31The description of the economy is based on Faust and Svensson (2001).
32Faust and Svensson (2001) assume that the central bank has imperfect control over inflation so that

πt = it + ηt where ηt is a control error.
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We assume that the supply shock and the employment target are independent and nor-

mally distributed with mean zero. In particular, we assume that l∗1 ∼ N(0, σ2
l ) and ε1 ∼

N(0, σ2
ε), and that these shocks evolve according to εt+1 = ρεεt + ξt+1 and l∗t+1 = ρll

∗
t + ζt+1

where ξt+1 and ζt+1 are independent shocks with mean zero and ρl, ρε ∈ (−1, 1).

The timing of events is as follows. The central bank chooses a disclosure rule (α,M)

and a short-run monetary policy plan i1 : R2 ×M → R which depends on the realization

of the supply and demand shocks and the message disclosed. The state of nature (l∗1, ε1) is

realized and a message m ∈M is publicly announced according to (α,M). The central bank

sets a short-run monetary policy i1(l
∗
1, ε1,m), and the inflation rate π1 is determined. Given

m and i1(l
∗
1, ε1,m), the private sector forms an expectation about the future inflation rate

EP
1 [π2]. In period 2, the central bank chooses a policy i2 given the realization of (l∗2, ε2) and

the market expectation.

In period 2, the central bank’s problem is given by

min
i2

π2
2 + λ(l2 − l∗2)

2

subject to l2 = π2 − EP
1 π2 + ε2

π2 = i2.

From the first-order condition and the rational expectation, we have

π2 =
λ

1 + λ

[
λ(l̂∗2 − ε̂2) + (l∗2 − ε2)

]
l2 − l∗2 =− 1

1 + λ

[
λ(l̂∗2 − ε̂2) + (l∗2 − ε2)

]
where ŷ ≡ EP

1 y denotes the market expectation of a random variable y formed in period 1.

The loss in period 2 is given by

L2 =
λ

1 + λ

[
λ(l̂∗2 − ε̂2) + (l∗2 − ε2)

]2
.

We now consider the short-run monetary policy and optimal disclosure rule, which solve

the following problem

min
i1(·),(α,M)

E[π2
1 + λ(l1 − l∗1)

2] + βEL2(l̂
∗
2, ε̂2, l

∗
2, ε2)

subject to l1 = π1 − EP
0 π1 + ε1

π1 = i1(l
∗
1, ε1,m).
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Note that we can restrict our search for optimal short-run policy plans to the class of m-

measurable functions without loss of generality. To see this, consider a disclosure rule (α,M)

and a short-run policy plan i1 : R2×M → R. The private sector observes m and i1(l
∗
1, ε1,m),

and forms an expectation (l̂∗2, ε̂2). Now consider a disclosure rule (α̃,M × R) where the

message is given by m̃ = (m, i1(l
∗
1, ε1,m)), and a m̃-measurable policy ĩ1(m̃) = i1(l

∗
1, ε1,m).

This pair of a disclosure rule and a policy plan is essentially identical to the initial pair

((α,M), i1) in the sense that the information revealed to the private sector and the short-

run monetary policy in period 1 are the same almost surely. Therefore we first characterize

the optimal short-run policy plan given each disclosure rule, and then find the optimal

disclosure rule.

Fix a disclosure rule (α,M). From the first-order condition, the optimal short-run policy

i1(·) is given by

i1(l̂
∗
1, ε̂1) =

λ

1 + λ
(l̂∗1 − ε̂1),

and the ex ante expected loss is

EL1 + βEL2 =λE(l∗1 − ε1)
2 − λ2

1 + λ
E(l̂∗1 − ε̂1)

2

+ β

[
λ

1 + λ
(l∗2 − ε2)

2 +
λ2(2 + λ)

1 + λ
E(l̂∗2 − ε̂2)

2

]
.

Recall that l̂∗2 = EP
1 [l

∗
2] = ρl l̂

∗
1 and ε̂∗2 = EP

1 [ε
∗
2] = ρεε̂

∗
1. Then we have

V =
λ2

1 + λ

(
1 −1

−1 1

)
− βλ2(2 + λ)

1 + λ

(
ρ2l −ρlρε

−ρlρε ρ2ε

)
. (5)

Since det(V ) = −β(2+λ)λ4

(1+λ)2
(ρl − ρε)

2 ≤ 0, the following statement holds.

Proposition 3 A linear rule of rank 1 is optimal whenever ρl ̸= ρε.

The central bank needs to respond to the shocks (l∗1, ε1) to stabilize the output gap.

On the other hand, it should avoid information revelation about the future policy since it

weakens the policy effectiveness in the future. This trade-off makes partial revelation optimal

in the generic case where ρl ̸= ρε.

To make this point clear, suppose that ρl = 1 and ρε = 0. Then

W = Σ
1
2V Σ

1
2 =

λ2

1 + λ

(
σ2
l (1− β(2 + λ)) −σlσε

−σlσε σ2
ε

)
.
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From Corollary 3, the optimal linear rule g(l∗1, ε1) = κl∗1 − ε1 where κ ∈ (0, 1) is a decreasing

function of β(2 + λ) and (σε/σl).
33 As β increases, the information revelation about l∗1

becomes more costly and then the amount of information contained in the message, which

can be measured by κ, should decrease.34

Given the optimal linear rule, the short-run policy is written as

i1 =
λ

1 + λ
(l̂∗1 − ε̂1) =

λ

1 + λ

κσ2
l + σ2

ε

κ2σ2
l + σ2

ε

(κl∗1 − ε1). (6)

As κ increases, the stabilization policy becomes more responsive to l∗1, which increases Eπ2
1

and decreases E(l1 − l∗1)
2. Intuitively, as the central bank becomes more myopic, the cost

from the output stabilization due to information revelation becomes less important. This

comparative statics is summarized as follows.35

Proposition 4 As the central bank becomes myopic, the output gap is stabilized while the

inflation becomes volatile.

As illustrated above, our framework is useful to characterize the optimal monetary policy

that plays a signaling role as well as the stabilization role.36 Note that the optimal short-run

policy plan i1 is a linear function of the message m = κl∗1−ε1 (see (6)). This implies that the

policy outcome i1(m) contains the same information as the message, and hence the optimal

disclosure rule and monetary policy are also implemented by committing to the optimal

short-run policy plan and making the policy outcome transparent.

A number of papers (e.g., Faust and Svensson (2001) and Jensen (2002) among others)

investigate the welfare effect of central bank transparency and the optimal monetary policy in

different transparency regimes. Unlike these papers which restrict communication strategies

available to the central bank to noisy communications, we characterize the optimal disclosure

rule and monetary policy plan in the general class of policies. Our analysis suggests that the

33An exact expression for κ is

κ =1− 1

2
(1 + (σε/σl)

2 + β(2 + λ))

+
1

2

√
(1 + (σε/σl)2 + β(2 + λ))2 − 4β(2 + λ).

34The amount of information about the supply shock revealed is measured by the variability of the
conditional expectation of l∗1, var(E[l∗1|m]) = κ2σ4

l /(κ
2σ2

l + σ2
ε), which is increasing in κ ∈ (0, 1).

35In a similar manner, one can examine how the policy maker’s preferences, parameterized by λ, affect
the monetary policy and central bank transparency.

36Recently, Baeriswyl and Cornand (2010) study this problem in the setting where the monetary policy
is imperfectly observed by the private sector.
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central bank should control the covariance of market expectations rather than the variance

of private sector forecast errors of each variable, written as var(ε− ε̂) and var(l∗ − l̂∗).

7 Conclusion

We study multidimensional information disclosure where the sender’s expected utility

is expressed as the expected value of a function of the receivers’ expectations of the state.

The semidefinite programming is applied to identifying necessary conditions for the second

moment of the conditional expectations that can be induced by the disclosure rule and char-

acterizing an upper bound of the sender’s expected utility. We characterize the optimal

disclosure rule among the general class of (possibly randomized) rules as a linear transfor-

mation of the state when it is normally distributed. Based on such a simple and tractable

characterization, we study several applications and provide interesting implications. Possible

directions for future work include studying settings with multiple senders and with receivers’

private information.

Appendix

A Proofs

Proof of Theorem 1. The if parts (the optimality of full/no disclosure when V is definite)

follow from Jensen’s inequality and the only if parts (the optimality of partial disclosure

when V is indefinite) are shown by constructing a rule that yields a higher gain than full/no

disclosure.

(i): if part. Suppose that V is positive semidefinite. We will show that full disclosure is

optimal. If V is positive semidefinite, or equivalently if v̂ is a convex function, then, for any

disclosure rule (α,M), we have from Jensen’s inequality that Ev̂(x̂) ≤ E[E[v̂(x)|m]] = Ev̂(x)
but the last is equal to the gain under full disclosure. Hence full disclosure is optimal.

(ii): if part. Suppose that V is negative semidefinite. We will show that no disclosure is

optimal. If V is negative semidefinite, or equivalently if v̂ is a concave function, then, for

any disclosure rule (α,M), we have Ev̂(x̂) ≤ v̂(Ex̂) = v̂(Ex) but the last is equal to the gain

under no disclosure. Hence no disclosure is optimal.

(i): only if part. Suppose that V is indefinite. We will construct a partial disclosure that

attains a higher gain than full disclosure. Since V is not positive semidefinite, there exists

a vector x− ∈ Rk such that x′
−V x− < 0. Let Lx− be the linear subspace in Rk spanned by
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a vector x− and L⊥
x− be the orthogonal complement of Lx− . Any point in Rk is represented

by the sum of vectors in Lx− and L⊥
x− , as x = y + γx− for some γ ∈ R and y ∈ L⊥

x− .

Now consider a disclosure rule (α,M) such that the sender discloses vector y ∈ L⊥
x− for

each realization of x. Under this rule, the receivers know on which line x is realized, but they

are still uninformed about γ ∈ R. Thus x|m is distributed over a line through x̂ parallel to

x−, and hence we can write x|m− x̂ as γx− where γ ∈ R is a corresponding random variable.

Now compare the gain Ev̂(x) under full disclosure with the gain Ev̂(x̂) under rule (α,M):

E[x′V x]− E[x̂′V x̂] =E[E[x′V x|m]− E[x̂′V x̂]]

=Em [E[(x− x̂)′V (x− x̂)|m]]

=Em

[
E[γ2x′

−V x−|m]
]

=x′
−V x−Eγ2 < 0

where the inequality holds since γ ̸= 0 almost surely.37

(ii): only if part. Suppose that V is indefinite. We will construct a partial disclosure that

attains a higher gain than no disclosure, which equals zero. Let s ∈ Sk−1 be a point in the

unit sphere in Rk and consider a disclosure rule under which the sender discloses the sign of

s′x ∈ R.38 Let x̂p = E[x|s′x ≥ 0] and x̂n = E[x|s′x < 0].

Since V is not negative semidefinite, there exists x+ ∈ Rk such that x′
+V x+ > 0. We

want to show that there exists s ∈ Sk−1 such that x̂p = γspx+ and x̂n = γsnx+ for some

γsp, γ
s
n ∈ R.
Let B be a k × (k − 1) matrix such that all its column vectors are orthogonal to x+.

Consider a function g : Rk−1 → Rk−1 defined by g(s) = B′[E(x|s′x ≥ 0) − E(x|s′x < 0)].39

Since g is a continuous function from an (k−1)-sphere into Euclidean (k−1)-space, from the

Borsuk-Ulam theorem, there exists s ∈ Sk−1 such that g(s) = g(−s). However we know that

g(−s) = −g(s).40 Therefore there exists s ∈ Sk−1 such that g(s) = −g(s), which must be

equal to zero. Using the fact that Pr(s′x ≥ 0)E[x|s′x ≥ 0]+Pr(s′x < 0)E[x|s′x < 0] = Ex =

0, we have B′E[x|s′x ≥ 0] = B′E[x|s′x < 0] = 0. This implies that they are proportional to

x+; so we can write x̂ = γx+ where γ ∈ {γsp, γsn} is a corresponding random variable. Then

Ev̂(x̂) = E[γ2x′
+V x+] > 0 = v̂(Ex).

Proof of Theorem 2. First, we give a necessary condition for the solution, and then

37Note also that the second equality holds since Em[E[x̂′V x|m]] = Em[E[x′V x̂|m]] = Em[x̂′V E[x|m]] =
Em[x̂′V x̂].

38Formally, for each s ∈ Sk−1 ⊂ Rk, define (αs, {m+,m−}) by αs(m+|s′x ≥ 0) = 1, αs(m−|s′x ≥ 0) = 0,
αs(m+|s′x < 0) = 0, and αs(m−|s′x < 0) = 1.

39Note that for all s ∈ Sk−1, E[x|m] ̸= 0.
40This follows from B′[E(x| − s′x ≥ 0)− E(x| − s′x < 0)] = B′[E(x|s′x ≤ 0)− E(x|s′x > 0)]. Note that

{x : s′x = 0} has measure zero.
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establish the result.

Step 1 : We will show that Z is an orthogonal projection matrix whenever Z is a solution

to SDP. Since Z ∈ Sk
+ is a symmetric matrix, we have the eigenvalue decomposition Z =

CΛC ′ where C is an orthogonal matrix and Λ is a diagonal matrix with real entries.41 Z ≽ O

implies that all eigenvalues are nonnegative (λi ≥ 0 for every i), and I−Z = C(I−Λ)C ′ ≽ O

implies that all eigenvalues must satisfy 1 − λi ≥ 0 for all i. From a property of the trace

operator, we have tr(WZ) = tr(WCΛC ′) = tr(ΛC ′WC) =
∑k

i=1 λiδi where δi is the i-th

diagonal entry of C ′WC. Now consider a matrix Z̃ = CΛ̃C ′ where Λ̃ is a diagonal matrix

with each entry λ̃i being equal to 0 if δi < 0 and 1 if δi ≥ 0. By construction, we have

tr(WZ) =
∑
λiδi ≤

∑
λ̃iδi = tr(WZ̃). Since Z̃ is a symmetric positive semidefinite matrix

and furthermore is idempotent,42 the solution to SDP must be an orthogonal projection

matrix.43

Step 2 : We now show that for any orthogonal projection matrix Z of rank l, there

exists a k × l matrix D such that Z = QD(D′D)−1D′Q′ where Q = [q1, . . . ,qk] consists

of all eigenvectors of W . Since W is symmetric, we have the eigenvalue decomposition

W = QΩQ′ =
∑
ωiqiq

′
i.

Note that every orthogonal projection matrix is characterized by its target subspace in

Rk. Fix an arbitrary subspace in Rk and suppose that it is spanned by column vectors of

some k × l matrix B. Then the orthogonal projection matrix onto this subspace is written

as PB = B(B′B)−1B′.44 Let D = Q′B. Then B = QD, and hence

PB =QD[(QD)′(QD)]−1(QD)′

=QD[D′D]−1D′Q′

=QPDQ
′.

Step 3 : Assume, without loss of generality, that each eigenvalue ωi is nonnegative for

i = 1, . . . , r, and negative for i = r, . . . , k. Let Q+ ≡ [q1, . . . ,qr] and Q− ≡ [qr+1, . . . ,qk].

Note that Q′Q = Ik implies Q′
+Q+ = Ir and Q

′
+Q− = Or,k−r. We will show that tr(WPQ+) ≥

tr(WPB) for any k×k orthogonal projection matrix PB = QPDQ
′. Recall that every diagonal

entry of PD satisfies 0 ≤ (PD)ii ≤ 1 since both PD and I − PD are positive semidefinite.

41A matrix A is orthogonal if AA′ = I.
42A matrix A is idempotent if A2 = A. Note that Z̃2 = CΛ̃C ′CΛ̃C ′ = CΛ̃2C ′ = Z̃ since Λ̃2 = Λ̃.
43A matrix A is an orthogonal projection matrix if it is symmetric and idempotent.
44For any k × l matrix B of rank l, PB is symmetric and idempotent. Check P ′

B = [B(B′B)−1B′]′ =
B(B′B)−1B′ and P 2

B = B(B′B)−1B′B(B′B)−1B′ = B(B′B)−1B′.
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Then

tr(WPB) =tr(QΩQ′QPDQ
′)

=tr(ΩPD)

=
k∑

i=1

ωi(PD)ii

≤ω1 + · · ·+ ωr.

Finally we check tr(WPQ+) =
∑r

i=1 ωi.

tr(WPQ+) =tr(ΩQ′Q+(Q
′
+Q+)

−1Q′
+Q)

=tr

(
Ω

(
Q′

+

Q′
−

)
Q+(Q

′
+Q+)

−1Q′
+

(
Q+ Q−

))

=tr

(
Ω

(
Ir

Ok−r,r

)(
Ir Or,k−r

))

=tr



ω1 0 · · · 0

0 ω2 · · · 0
...

...
. . .

...

0 0 · · · ωk


(

Ir Or,k−r

Ok−r,r Ok,k

)
=ω1 + · · ·+ ωr.

Thus we conclude that tr(WPQ+) ≥ tr(WZ) for every orthogonal projection matrix Z.
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