
Harstad, Ronald M.

Working Paper

Endogenous competition alters the structure of optimal
auctions

ISER Discussion Paper, No. 816

Provided in Cooperation with:
The Institute of Social and Economic Research (ISER), Osaka University

Suggested Citation: Harstad, Ronald M. (2011) : Endogenous competition alters the structure of
optimal auctions, ISER Discussion Paper, No. 816, Osaka University, Institute of Social and Economic
Research (ISER), Osaka

This Version is available at:
https://hdl.handle.net/10419/92866

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/92866
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Discussion Paper No. 816 
 

 
 
 
 
 
 
 
 

ENDOGENOUS COMPETITION 

ALTERS THE STRUCTURE 

OF OPTIMAL AUCTIONS 
 
 

Ronald M. Harstad  
 
 
 
 
 
 
 
 
 
 
 
 

September 2011 
 
 

The Institute of Social and Economic Research 
Osaka University 

6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan 
 



Endogenous Competition Alters the Structure of Optimal

Auctions�

Ronald M. Harstad

harstadr@missouri.edu

Economics, University of Missouri, and

Institute for Social and Economic Research, Osaka University

Revised version, c September, 2011

Abstract

Potential bidders respond to a seller�s choice of auction mechanism for a common-value or

a¢ liated-values asset by endogenous decisions whether to incur an information-acquisition cost

(and observe a private estimate), or forgo competing. Privately informed participants decide

whether to incur a bid-preparation cost and pay an entry fee, or cease competing. Auction

rules and information �ows are quite general; participation decisions may be simultaneous or

sequential. The resulting revenue identity for any auction mechanism implies that optimal

auctions are allocatively e¢ cient; a nontrivial reserve price is revenue-inferior. Optimal auctions

are otherwise contentless: any auction that sells without reserve becomes optimal by adjusting

any one of the continuous, spanning parameters, e.g., the entry fee. Seller�s surplus-extracting

tools are now substitutes, not complements. Many econometric studies of auction markets are

seen to be �awed in their identi�cation of the number of bidders.

D44; D82; C72; Keywords: optimal auctions, endegenous bidder participation, a¢ liated-

values, common-value auctions, surplus-extracting devices
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1 Introduction

How should an owner or auctioneer select a selling procedure when bidders�value estimates for an

asset are private information? That fundamental question has for centuries received a variety of

answers from experienced auctioneers, who in di¤erent markets persist in conducting their business

in quite di¤erent ways. In contrast, theoretical models of �optimal auctions�with rational risk-

neutral bidders have tended to provide a unique answer.1

While the particular answer provided depends fragilely on the model assumed, optimal auc-

tions in the literature share two common characteristics. First, the optimal auction is ine¢ cient

(unless surplus can be fully extracted), primarily due to a nontrivial reserve price.2 Second, it is

a complicated mechanism. Depending on the particular assumptions, it has involved: distribution-

and bidder-speci�c reserve prices, disjoint sets of prices at which seller refuses to sell, requiring

payments from losing bidders that vary with their bids and rivals�, requiring bidders to accept

lotteries with unboundedly large losses, or to accept lotteries before their terms are speci�ed.3

When the assumption of a �xed number of bidders (often simply treated as notation) is realis-

tically opened to having the number of bidders respond endogenously to the expected pro�tability

of bidding,4 the strikingly di¤erent characterizations that arise are shown here also to be strikingly

robust. The optimal auction is e¢ cient, and the argument for a nontrivial reserve price absent.

The characterization of equilibrium expected revenue becomes more general, and indeed can be

expressed as a function solely of the expected number of privately informed participants.

This paper�s second major purpose, less well known but no less important: to demonstrate

1 In essence, the models cited in the following footnote each de�ne a very narrow equivalence class of auctions, and
show that optimal auctions all fall in a single equivalence class, which serves to characterize nearly all auction forms
as necessarily suboptimal, even with adjustments in parameters of that auction form.

2Myerson [1981], Harris and Raviv [1981] and Riley and Samuelson [1981] derive optimal auctions when bidders�
private information (their types) are independent. Of these models, Myerson�s is most general. All revolve around a
nontrivial reseve price (below which the seller prevents the asset from ever being sold); so do more recent papers (see
surveys in Klemperer [2000] and Krishna [2002]). The only optimal auctions attaining e¢ ciency are in models that
use strong informational assumptions and correlated types to extract full surplus: Crémer and McLean [1985], [1988],
McAfee, McMillan and Reny [1989], McAfee and Reny [1992] and Crémer, Spiegel and Zheng [2009]. The criticism
of these models in Robert [1991], that the weakest form of limited liability or in�nitesimal risk aversion renders them
discontinuously suboptimal, is similar in spirit to the present e¤ort. Mares and Harstad [2007] provide an accessible
treatment of necessary and su¢ cient conditions for full surplus extraction.

3Examples of these complications, in order: Harris and Raviv [1981], Myerson [1981], Crémer and McLean [1985],
McAfee, McMillan and Reny [1989], McAfee and Reny [1992].

4Headline-grabbing auctions�airwaves licenses, privatization of governmental enterprises, o¤shore oil leases,
investment-quality art, initial public o¤erings, acquisitions of new, established, and distressed corporations�all �t
the mold of endogenous decisons about whether to compete, rather than exogenous number of bidders. So do such
mundane markets as used-car auctions, timber sales and routine art auctions. (Buying at auction and selling at retail
is a sensible stylization of the art-gallery business.)
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that when bidder participation is modeled as a rational decision, characterization of an auction

as optimal does precious little to constrain the structure of the auction. Di¤erent auctioneers can

employ di¤erent mechanisms without necessarily implying that any are behaving suboptimally. The

Content Theorem below yields a most useful interpretation, given that all auction theory models

abstract from reality: an unmodeled aspect of a particular market�prior practice, the need for

the speed of a Dutch auction, unwarranted costliness of congregating bidders in time or space,

bidders�preference for dynamic ascending prices, or for a mechanism protecting bidders�private

information from a bidtaker or rival or observer who lacks knowledge of the bidder�s beliefs or of the

distribution of private information but can observe his bids�each can be accommodated without

sacri�ce of e¢ ciency or revenue. Indeed, adjusting any spanning variable su¢ ces.

These characterizations stem from two overriding assumptions: symmetry and single-dimensional

types (though quite strong assumptions, these are ubiquitous in auction theory), and two sensible

constraints on auction forms: anonymity and uniqueness. If potential bidders are asymmetric in

their behavior, in their beliefs or in the distribution generating their private information (types),

multiple equilibria are unavoidable, and participation decisions either cannot be analyzed or cannot

be separated from an ad hoc equilibrium selection (which will bury the interesting economics). The

same problem arises if auction rules are not anonymous, and arises unless the seller is constrained

to auction rules which admit a unique symmetric equilibrium. Very little is known about auction

theory when a bidder�s private information cannot be summarized by a single random variable;

the impossibility theorem for equilibrium existence in Jackson [2009] suggests broad, fundamental

problems.

With these two assumptions and two constraints, a model quite general by the usual standards

of auction theory can be analyzed. A¢ liated-values auctions are considered, an extension of the

�General Symmetric Model� in Milgrom and Weber [1982] to allow for an endogenous number of

bidders. Thus, both private-values and common-value motivations can be present. N �potential

bidders�, not yet privately informed, make decisions whether to obtain costly private information;

the decisions may be simultaneous or sequential (the sequential model is treated in Appendix B).

The (endogenous) n �participants� then acquire private information (an estimate of asset value,

equivalently, their type, in the usual terminology of games of incomplete information) and may�or

may not�learn the realization n of the number of privately informed participants who are competing.

Next a (possibly costly) decision as to whether to prepare for and conduct bidding is made; the

a �actual bidders� who do so may�or may not�learn the value of a before bids are submitted.
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Seller�s information disclosure decisions include options as to how accurately to disclose, when to

disclose, and whether to disclose publicly or privately.5 It adds both generality and realism to

incorporate resource costs both before and after participants become privately informed; limiting

revenue generation to arise after participants become privately informed avoids incorporating what

is in essence a lump-sum tax.

Hence, it is determination of the level of competition by expected pro�tability decisions that

alters the structure of optimal auctions, not details of how this determination is modeled.

I emphasize at the outset that the model avoids any assumption of monotone equilibrium, in

particular avoiding the assumption of a screening level (a threshold level of private information

above which a participant chooses to pay the entry fee). An impossibility theorem by Landsberger

and Tsirelson [2000] makes this complication critical.6 This aspect, together with allowing for pos-

sible sequential participation decisions (Appendix B), for general a¢ liated valuations, for resource

costs facing potential bidders both before (an information-acquisition cost) and after becoming pri-

vately informed (a bid-preparation cost), for seller to wield the widest variety of surplus-extracting

tools, as well as allowing for players either to observe or not observe the number of players still

competing at each stage, greatly distinguish the generality of this model from prior auction models

which endogenize the number of bidders.7

2 A Small Example

Auctions are where market transactions usefully re�ect private information because the mechanism

can be explicit about the rules underlying transaction determination. This advantage of auctions

forces robust models to deal with a variety of potentially cumbersome rule choices. So I begin with

a simple illustration of the di¤erence endogenous participation makes.

The example asset has a common value T � U [0; 10]. To provide a contrast, �rst assume each

5The model treats situations where a seller o¤ers an asset to potential bidders who decide whether to compete to
buy. A corresponding model where a buyer details a contractual obligation, and potential bidders decide whether to
compete to supply, has completely corresponding results.

6A more accessible discussion of this theroem is in Landsberger [2007].
7Harstad [1990] introduces the notion that the number of bidders ought to be considered an endogenous variable,

in a simpler model employing monotone equilibrium and with a smaller set of surplus-extracting tools. Levin and
Smith [1994] also depend on monotone equilibrium, and critically on assumptions that the seller [i] cannot disclose
an appraisal, and [ii] cannot impose an entry fee after bidders have private information, for their result supporting a
positive reserve price. Chakraborty and Kosmopoulou [2001] partially specify a simpler model employing monotone
equilibrium and with a smaller set of surplus-extracting tools, and argue for a zero entry fee when negative entry
fees are precluded. McAfee [1993] describes a steady state in a private-values model where an exogenous number of
bidders is endogenously partitioned across sellers; the relation to his paper is reconsidered below in footnote 36.
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of an exogenously speci�ed 3 bidders observes an estimate Xj � U [t; t+ 1jT = t]. Suppose seller

held auction form m2, a second-price auction with no reserve price, no entry fee and no information

about asset value disclosed by seller. In m2�s symmetric equilibrium, expected revenue would be

4:833, the winner�s expected pro�t would be 0:167, and an individual bidder�s ex ante expected

pro�t one-third of that. If seller switched to auction form mE , an otherwise identical auction

conducted under English auction rules, and still drew 3 bidders, expected revenue would rise to

4:875, the winner�s expected pro�t falling to 0:125.

Now adjust, instead to have N = 5 potential bidders decide whether to compete. If a potential

bidder wishes to acquire a privately-observed estimate of asset value, he must incur an information-

acquisition cost c = 0:177; each participant j who does so draws his estimate from the same

distribution as in the prior paragraph, Xj � U [t; t+ 1jT = t]. For simplicity, this example sets the

bid-preparation cost to 0, and assumes that participants learn the number of participants in the

auction before selecting bidding strategies. Calculations are simpli�ed for both second-price and

English auctions by a pathology of the double-uniform distribution: for a participant observing

an estimate Xj 2 [0:5; 10:5], expected pro�tability of continuing to compete (i.e., to decide to bid

upon learning one�s estimate) is constant (it is lower on [10:5; 11] and 0 on [0; 0:5]).

Suppose each of the 5 potential bidders participates (that is, pays c to acquire an estimate,

necessary to compete) with probability � = 0:6. Then the probability �a of a bids submitted is

listed in the middle row of Table 1, with the expected number of bids submitted, 3, shown as a

in the right-hand column. However, any given potential bidder, if he chooses to compete, instead

calculates the probabilities of n�1 rival participants when 4 rival potential bidders each participate

with probability 0:6; this yields as expected number of bids submitted the �a calculations in the

bottom row. Thus, he rationally expects 3.4 bidders on average.

Table 1

# bids: 0 1 2 3 4 5 a

�a 0.01 0.08 0.23 0.35 0.21 0.05 3.0

�a 0 0.03 0.15 0.35 0.35 0.13 3.4

With endogenous participation, the auction rules need further speci�cation; assume both m2

and mE inform participants of the number n of participants before bidding strategies are selected.

Then for the second-price auctionm2, if a potential bidder�s 4 rivals all take part with probability 0:6

(and each then submits the equilibrium bid for the estimate he observed), his expected pro�t should

he compete will be 0:177, making him just indi¤erent over whether he competes. The resulting
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equilibrium attains expected revenue 4:42 (including allowance for 0 revenue in the 0:11-probability

[rounded] event that less than 2 bids are submitted).

Should the same 5 potential bidders participate with the same probability � = 0:6 in the English

auction mE , expected revenue would be 4:46. However, this is not an equilibrium: assuming a

potential bidder�s 4 rivals all take part with probability 0:6, his expected pro�t should he compete

will be less, only 0.166, so he would prefer not to pay the 0:177 information-acquisition cost. Rather,

in equilibrium for auction mE , the 5 potential bidders participate with probability 0:59, yielding

the 0:177 expected pro�t that makes each indi¤erent over competing. The equilibrium revenue for

mE exceeds that for m2 by less than 0:002, one-tenth the revenue di¤erenced that would have been

seen had mE attracted the same 0.6 participation probability that m2 drew.8

As potential bidders are in equilibrium indi¤erent over participating, Theorem 2 below shows

that equilibrium expected revenue equals the expected excess of gains from trade over resource

costs incurred (here, those costs simplify to c�a); Corollary 3 shows that revenue can be expressed

solely as a function of the expected number of bidders. For these parameters, any auction that

attains 2:87 bidders on average (equivalently, a participation probability of approximately 0.574)

will reach the maximum attainable level of revenue, 4:4224. One way of attaining this is to keep

the second-price auction m2, but impose an entry fee of ' = 0:038 (which is just enough to force

down the equilibrium participation probability to the desired level). Among many other ways to

reach maximum attainable revenue is to use the English auction mE , but impose an entry fee of

0:028; the desired entry fee is lower because an English auction with an exogenous n bidders reduces

the winner�s expected pro�t relative to a second-price auction. If some unmodeled aspect of the

marketplace yielded a reason to conduct a �rst-price auction, there would be some entry fee, larger

than the 0:038 for the second-price auction, that would allow a �rst-price auction to be optimal.9

3 A General Model with Endogenous Participation

Begin with the notion that potential bidders choose among a variety of auctions, and other uncertain

economic opportunities, in which to invest their attention, time and money. Only a segment of the

extensive form of such a game, that relating to a particular auction, appears explicitly here. One

8 If the example were changed so that T � U [0; 15], still Xj � U [t; t+ 1jT = t], equilibrium revenue for mE would
be slightly less than for m2.

9The distributional change in the previous footnote would lead to am optimal entry fee in m2 that is negative,
reimbursing a small fraction of information-acquisition costs, for mE reimbursing a slightly larger fraction.
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indivisible asset is sold in the explicit model. A subset of the (exogenously determined) N potential

bidders will participate, and a subset of the n participants will become the a actual bidders. It will

be convenient to describe seller�s strategies both in terms of recognized aspects of auctions, such as

pricing rules and information disclosure policies, and also as elements of an abstract set.

The game segment unfolds as follows, cf. Figure 1. First, seller announces an auction mech-

anism M := (m;'; r) 2 M � (M�<�<+) � <d+1, where m is an auction form, M the set of

auction forms, ' an entry fee, and r a reserve price. An auction form m speci�es not just pricing

rules, but the entire �ow of information and hence the nature of the extensive form continuation.

For example, m = m0 might specify a second-price auction with seller releasing an uncensored

independent appraisal to all participants, as well as specifying that neither participants nor active

bidders learn their number before bidding. Or m = m1 might specify an English (oral ascending)

auction without any seller-released public information, but with an appraisal privately revealed to

one actual bidder chosen at random, in which the number of participants is not learned but the

number of actual bidders is, and alternating recognition rules determine the probabilistic revelation

of bidders�exit prices to remaining bidders. A particular seller in a particular situation may face

additional constraints: he may, for example, �nd credibly imposing a nontrivial reserve price impos-

sible, or may be unable to inform participants of the number of competitors who acquired private

information, or may not have a reputation that would allow using a second-price auction without

bidders assuming he could well insert a fake bid just below the highest bid;10 all such constraints

are treated via making M the feasible set of auction mechanisms for a particular auction. The set

M consists of discrete choices in some variables (e.g., English or second-price or �rst-price auction)

and continuous choices in others (e.g., the signal-to-noise ratio of a public announcement of an

appraisal possessed by seller); without loss of generality, it can be embedded in a real space. For

later convenience, the dimensionality of this space is d+1. Note that when a seller has the option

of credibly announcing how many participants are still competing (or how many actual bidders)

before continuing, or of preventing the participants (or actual bidders) from knowing n (or a),

seller�s choice is simply modeled as a choice between two (otherwise identical) auction forms, just

as if it were a choice between �rst- and second-price auction rules.

Second, a pool of potential bidders N := f1; : : : ; Ng simultaneously select probabilities �i of

10The impact of privately revealed information is considered in Mares and Harstad [2003]; alternating recognition
rules for English auctions are analyzed in Harstad and Rothkopf [2000]. Impacts of bidtaker cheating are considered
in Rothkopf and Harstad [1995].
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Figure 1: Time Line

becoming a participant in this auction, basing those decisions on M (or select these probabilities

sequentially, considered in Appendix B).11 Participation has two consequences: each participant j

obtains some private information Xj 2 X about the asset�s value to him (call this j�s estimate), and

each incurs an information-acquisition cost, c > 0. The information-acquisition cost is exogenously

speci�ed, and does not generate revenue for seller. It may represent resource costs of acquiring

information about the quality of the asset being auctioned and/or represent foregone pro�table

opportunities (e.g., passing on the potentially pro�table option to participate in another auction

occurring elsewhere).12 These two possibilities alter the interpretation of results, an issue considered

in Concluding Remarks. This cost is likely to vary across auctions, but c is the same for all potential

bidders in a given auction, and invariant to the mechanism by which the auction is run. The payo¤

of a potential bidder who does not participate is normalized to 0.

Third, each participant j = 1; : : : ; n decides whether or not to incur a bid-preparation cost

b � 0 (which does not accrue to seller),13 plus pay the entry fee ' to seller and thereby become an

actual bidder, based on information available at the time. This information includes the auction

mechanism M , and participant j�s private estimate Xj . If the component m of M characterizing

the auction form speci�es that participants are informed of the number n of participants, then n

is taken into account. If n is not known, then the vector (�1; : : : ; �N ) of rational participation

probabilities of potential bidders is taken into account. A participant who chooses not to continue

11Similar results to those in the main text when participation decisions are sequential depend on an equilibrium
selection favorable to seller.
12This consideration is missed if a view of substitute auctions is not at least implicitly present. Unwillingness of

an additional potential bidder to participate need not imply zero (gross) expected pro�t.
13The bid-preparation cost is treated as the same no matter what auction mechanism is employed. This assumption

is not innocuous; I return to it in Concluding Remarks.
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attains a payo¤ of �c.

Fourth, each actual bidder k = 1; : : : ; a selects a bidding strategy for the auction form m

with reserve price r. In addition to M and Xk, n if known, and (�1; : : : ; �N ) if n is not known,

this decision takes into account the number a of actual bidders if the auction form m releases this

information. If not, the bidding decision takes into account the functional structure of participants�

decisions on whether to pay the entry fee, and includes strategizing to learn about a (and perhaps

useful inferences about rivals�private information) as soon as information �ows permit.

The winning bidder pays a price p for the asset, if this price is no less than the reserve price

r; otherwise the asset goes unsold, which implies that all actual bidders would then be losers.14

Losing actual bidders attain a payo¤ of �'� b� c.

Asset value to a particular participant observing estimate Xi a continuous function v (T;Xi),

increasing in both variables (common across participants, in that v does not have a subscript).

Here T is a common trend to asset values, or perhaps the common-value component of asset value.

A sale yields the winning bidder a payo¤ of v (T;Xi)� p� '� b� c. Seller�s payo¤ is

uS =

8<: 0, if a = 0 or p < r,

p+ a'; if a � 1 and p � r.
15

3.1 Assumptions: Auction Environment

A.1. The in�nite sequence fX1; X2; : : :g from which participants will observe estimates is a sequence

of exchangeable, positively a¢ liated, real-valued random variables with nonatomic measure �, and

marginal �1 onto support X � <.

A¢ liation is de�ned and characterized in Milgrom and Weber [1982], pp. 1098-1100 and 1118-

1121; it is referred to as the MLRP (monotone likelihood ratio property) in several auction models.

Roughly, a¢ liation means that higher realizations for any subset of the variables fX1; X2; : : :g

make higher realizations for any disjoint subset more likely. Exchangeability means that the joint

14Notation that is already more cumbersome than might be hoped for would �nd signi�cant additional complication
if the seller were allowed to announce a vector of reserve prices ra, with the ra that corresponded to the number a
of bids actually submitted enforced after bids were submitted. That complication would not a¤ect any of the results
below. In particular, the result in Levin and Smith [1994] that a nontrivial reserve price would be employed at least
in the case where only 1 actual bidder showed up is still seen to depend on their assumptions that the seller cannot
utilize an entry fee, and cannot publicly reveal such information as an appraisal.
15Considering the value to seller of an unsold asset to be 0 is, as usual, a harmless normalization. It bears emphasis,

however, that failing to meet the reserve price implies that the seller is irrevocably constrained from ever o¤ering this
asset to this set of potential bidders in the future (this assumption is nearly ubiquitous in auction theory, though
seldom mentioned). I return to this consideration in Concluding Remarks.
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distribution is una¤ected by any �nite permutation of the indices. Let Xz = fX1; : : : ; Xzg, and

Tz =
�
1
z

�Pz
i=1Xi.

A.2. The common trend T = limz!1 Tz; c+ b < inf� v (T;X) < sup� v (T;X) <1.

A variant of DiFinetti�s Theorem justi�es the use of a limit in A.2:

Theorem 1 (Kingman [1980]) Given A.1, the sequence fT1; T2; : : :g almost surely converges point-

wise. Moreover, conditional on T , the fXig are mutually independent.

Letting the common-value component equal the asymptotic mean is without loss of generality

(Milgrom and Weber [1986]).16

3.2 Assumptions: Auction Rules

A.3. The price paid is an anonymous, nondecreasing, continuous function of the pro�le of actual

bids submitted.17

A.4. Each auction form m 2 M provides all bidders with the same strategy set, determines a

winning bidder anonymously,18 and attains a unique symmetric equilibrium continuation for any

exogenously speci�ed binomial distribution of the number of actual bidders (including degenerate).

Allowing for payments to or from losing bidders greatly complicates the notation, but would

not change any results below. Uniqueness of the symmetric equilibrium continuation (a constraint

on the set of mechanisms available to seller) is critical to being able to predict the pro�tability of

participating and actually bidding; it is satis�ed for a wide variety of auction forms.19

3.3 Assumptions: Behavior

A.5. All N � 2 potential bidders are risk-neutral.20

16 I chose these assumptions about informational and valuational variables to be as natural as possible for the
purpose of modeling endogenous participation. They are also mild in comparison to the bulk of auction theory
models. However, the results below are quite general, and do not depend on the speci�c nature of A.1 and A.2. For
example, all results extend, under virtually unchanged proofs, if the corresponding assumptions in Pesendorfer and
Swinkels [1997] are substituted.
17The sort of revenue-maximizing, non-capricious discriminaton across bidders in Myerson [1981] has already been

ruled out by exchangeability (in A.1). The sort of capricious discriminaton contemplated in McAfee, McMillan
and Reny [1989] is ruled out here, solely for notational ease. Footnote 32 below explains how their mechanism,
which extracts full surplus whenever the exogenous number of bidders is at least two, becomes revenue-inferior with
endogenous bidder participation.
18Though it may be natural, nothing depends on this being the highest bidder. For example, the lottery-quali�cation

auction (Harstad and Bordley [1986]) meets these assumptions.
19Cf. Levin and Harstad [1986], Bikhchandani and Riley [1991], Pesendorfer and Swinkels [1997], Harstad and

Rothkopf [2000], and Maskin and Riley [2000].
20All results below readily extend to the case where all N potential bidders have the same concave utility function,

with much more cumbersome notation and no further insight.
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A.6. Symmetric behavior: each potential bidder selects the same probability � of participating,

each participant selects the same function of known and inferred information to determine whether

to actually bid, and each actual bidder selects the same bid function. These selections constitute a

Bayesian equilibrium continuation.

If, in addition, seller selects the mechanismM to maximize expected revenue given the assumed

behavior of bidders, a full Bayesian equilibrium is attained. As our focus is on the behavior that

various announcements ofM will induce, and thus upon the expected revenue attained, equilibrium

continuation is the key assumption.21

Anonymity appears in A.3 and A.4, distributional symmetry of private information in A.1,

and symmetry of behavior in A.6 (symmetry of beliefs is suppressed, as it would add notation

without altering content). The last part of A.1, that X � <, imposes single-dimensionality of

private information. Seller is constrained in A.4 to announce auction rules satisfying uniqueness.22

4 The Participation Decision

In this model, the equilibrium expected number of participants is not invariant to seller�s choice of

auction mechanism. Rather, it adjusts to the auction mechanism M so that expected pro�t equals

information-acquisition cost. The straightforward logic is, ultimately, independent of many details

of the mechanism.

In the symmetric equilibrium, each of the N potential bidders will participate with the same

probability � (M); the expected number of participants is then n (M) = N� (M). This section

exploits symmetry to consider the participation decision of potential bidder 1 when N � 1 rival

potential bidders all participate with probability �; the main text merely summarizes the intuition,

with the horrendously cumbersome details diverted to Appendix A (and the case of sequential

participation decisions to Appendix B). Appendix A develops the set of estimates bidder 1 could

observe that would imply a su¢ cient expected pro�tability of competing to justify paying the

entry fee. This development di¤ers somewhat according to whether or not the n participants

learn the number of participants; both cases are complicated by the need to avoid assuming a

21Note that there exist Nash equilibria in which seller selects an otherwise inferior M 0 because, for example, all N
potential bidders respond to any M 6=M 0 by not participating, or otherwise punishing seller. These equilibria fail to
be subgame-perfect; in ignoring them, I follow a standard but usually implicit practice.
22Which auction forms meet that constraint may depend on particular details of parameters; for example, only for

narrow classes of � has a unique equilibrium been found when seller�s information is privately disclosed to a randomly
selected bidder (Mares and Harstad [2003]).
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threshold determines such a set. The set characterized is used to identify, in Conclusion 1, the ex

ante probabilities that [i] a particular potential bidder, if he chooses to become a participant, will

draw a signal justifying continued competition, [ii] he will face any particular amount of bidding

competition, and [iii] only the �rst � participants will become actual bidders (which is di¤erent

from [ii]).Probability [iii] is denoted �a (M;�; n), though degenerate in � if participants learn their

number, and in n if they don�t. Next, it develops the probability sr that the reserve price r is met.

Finally, using a function p (�) that expresses the expected auction price conditioned on various

arguments, expected pro�tability is characterized, �rst if the bidding stage is reached, then moving

backward to the decision to become an actual bidder and then to the decision to participate. The

�expected pro�t equals information-acquisition cost�characterization is Conclusion 2.

For all the gory details, the underlying intuition models the only possibilities: a privately

informed participant continues competing to become an actual bidder if and only if the expected

pro�tability of doing so exceeds the costs not yet sunk (entry fee ' and bid-preparation cost b);

a not-yet-privately-informed potential bidder competes (participates) if and only if the expected

pro�tability of doing so (net of ' and b, should they be incurred) at least covers the information-

acquisition cost c. In equilibrium, expected pro�tability exactly equals c.

Appendix A details de�nitions for the following notation:

Table 2

V (M;�; n; '; t) Expected asset value for mechanism M , participation probability �,

n participants, entry fee ', common trend t (ex ante, before learning Xj),

p (M;a; �; n; t) Expected price, given M , a actual bidders, �, n, t,

s (M;a; �; n) (Abbreviated sr), sale probability given M , which speci�es the reserve price r, for a; �; n,

�a (M;�; n) Probability that only the �rst a participants will become actual bidders, for M;�; n,

� (z; Z; �) Binomial probability of z successes in Z trials, given success probability �:

Depending on the information �ows speci�ed by a mechanismM , each of the �rst four functions

above will typically be degenerate in one of its variables.23

23For example, p (�) is degenerate in a for a second-price auction, �a is degenerate in � if the auction form informs
bidders of n, and degenerate in n if bidders are not so informed.
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5 General Revenue Formulation

Begin, naturally, at the end: with a speci�cation of seller�s expected revenue, conditional on as-

suming a � 1 actual bidders and n � a participants:

srE� [p (M;a; �; n; �)] + a';

which simply sums the price paid by the winner (multiplied by the probability of a sale), and

entry fees paid by all actual bidders. It is harmless to condition on the common-value component�s

expected value, and simpli�es the characterization to come.

Stepping back by replacing an assumed number of actual bidders and then of participants with

equilibrium continuation probabilities gives our speci�cation of expected revenue:

R (M;n) =
X
a

(srE� fE� [p (M;a; �; n; �) jT ]g+ a')
�
n

a

�
�a (M;�; n) : (1)

R (M) =
X
n

R (M;n)� [n;N; � (M)]

=
X
n

(X
a

(srE� fE� [p (�) jT ]g+ a')
�
n

a

�
�a (M;�; n)

)
�n: (2)

Equation (2) is still a simple sum of the price paid and entry fees, itself summed over the objective

probabilities of a actual bidders and n participants (there are
�
n
a

�
ways that �a (M;�; n) might

correctly predict the number of actual bidders). (The summation harmlessly ignores the events of

0 participants and 0 actual bidders, which contribute 0 revenue.) To interpret expected revenue,

natural de�nitions of the expected value transferred and expected number of actual bidders, are

invoked:

V (M) =
X
n

X
a

srE� fV [M;� (M) ; n; '; T ]g
�
n

a

�
�a (M;�; n)�n;

a (M) =
X
n

(X
a

a

�
n

a

�
�a (M;�; n)

)
�n:

(These summations also harmlessly ignore the cases n = 0, a = 0.) Note that these de�nitions

depend on the mechanism; in particular, V (M) treats as a zero transfer an asset that does not sell.

Theorem 2 (The Fundamental Revenue Identity): In symmetric equilibrium continuation with
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endogenous bidder participation, for any M 2M,

R (M) = V (M)� ba (M)� cn (M) : (3)

Theorem 2 is proven simply by separating out terms in (2) that are zero by equilibrium partic-

ipation (eq. (13) in Appendix A). The notationally cumbersome details are diverted to Appendix

C.

In simple language, the Identity says that revenue in symmetric equilibrium continuation is

equal in expectation to the expected value transferred (or, if you wish, expected gains from trade)

less aggregate participation and bid-preparation costs.24 It is particularly important that this

identity provides a simple formula for revenue for all M ; there is no need for separate formulas for

�rst-price, second-price, and English auctions, or for di¤erent information-revealing policies (except

to determine � [M ]), and the entry fee does not directly enter the calculation. The reserve price

enters only through the probability of a sale.

Viewing e¢ ciency as the sum of expected surplus of seller and all N potential bidders, Theorem

2 yields a general and striking contrast to prior optimal auctions models (in which revenue is

maximized by enforcing allocative ine¢ ciencies):

Corollary 1 The Bayesian equilibrium in which seller maximizes expected revenue is allocatively

e¢ cient. Indeed, seller�s preferences over any set of auction mechanisms match those of an e¢ cient

social planner.

Proof. The right-hand-side of (3) is an e¢ ciency measure, and in equilibrium continuation is

also seller�s objective.

Due to mixed-strategy participation decisions, when � (M) < 1, there is a probability (1� �)N

of the event that the asset goes unsold because all N potential bidders happen not to participate.

24No result approaching comparable generality is in the literature, but this Theorem has many antecedents. Relative
to Levin and Smith [1994], for example, it is original in extension to a¢ liated-values environments, in its allowance
for costs incurred both before and after bidders observe private information, in allowance for numbers of participants
and actual bidders to be either learned or inferred, in the number and variety of surplus-extracting devices allowed
for, and in dealing with the impossibility of a screening level.
In special cases, a corresponding result is found by Samuelson [1985] and Hausch and Li [1990], can be calculated in

the example of Theorem 5.2 in Milgrom [1981], and found as an asymptotic approximation in Matthews [1984] (where
the number of bidders is not necessarily an equilibrium level, but the information-acquisition costs are). Theorem 2
veri�es shortcuts taken, but not justi�ed explicitly, in equations (2) and (3) in Harstad [1990]. French and McCormick
[1984] discuss a similar heuristic feature of �rst-price, common-value auctions, but do not provide a complete model
or equilibrium characterization. McAfee and McMillan [1987b] assert the corresponding equation for a nonstochastic
but supposedly endogenous n, without justi�cation either for the equation or the source of n, and proceed incorrectly
to dismiss the possibility that seller could enhance expected revenue via a positive entry fee.
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This is not an ine¢ ciency: as it can only be avoided by making the auction so attractive that all

N potential bidders participate, and the added resource costs accrue to seller, seller and a central

planner identically accept this event. A more subtle issue: since the set of estimates justifying

continued competition are not in general upper contours, in a revenue-maximal auction, there

can be a positive probability that the participant observing the highest estimate chooses to cease

competing rather than pay the entry fee, with the asset then sold to a participant who values it less

highly than he does. While this reduces the expected value transferred, seller and a social planner

both accept it. A su¢ cient reduction in ' will eliminate the possibility of selling to an ine¢ cient

acquirer, but the lower ' will increase n, and with it increase the resource costs borne by seller.25

6 Inferiority of a Nontrivial Reserve Price

A seller can attain the entire interval of equilibrium participation probabilities, 0 through 1; this

result is shown next for a second-price auction, chosen purely for convenience. The range of

equilibrium values of � is attained by varying only the entry fee ' (including possibly ' < 0,

reimbursing a fraction of participation and bid-preparation costs), while keeping the reserve price

�xed at r = 0. Let M' = (m;'; 0), where m is a �vanilla�second-price auction with no disclosure

of seller�s information, and with n and a revealed to bidders; M' �sells without reserve.�

Theorem 3 For any �0 2 [0; 1], there exists an entry fee '0 such that �
�
M'0

�
= �0.

The proof (in Appendix C) simply sets up the Intermediate Value Theorem.

A reserve price r is nontrivial if at least one actual bidder does not guarantee a sale, that is, if

there is an a > 0 such that fs (M;a; �; n) < 1; �a (M;�; n) > 0g :

Corollary 2 Any auction mechanism M with a nontrivial reserve price, yielding � (M) 2 (0; 1),

is an expected-revenue-inferior mechanism for seller to adopt.

Though the proof (in Appendix C) conveys little insight, Corollary 2 is quite intuitive. There

is an unavoidable detriment in this model, whenever � < 1. That is, with probability (1� �)N ,

25 Indeed, with some additional notation, one can readily build an extension of this model featuring a number NL

of potential bidders who face information-acquisition costs cL and NH who face costs cH > cL. In such a model,
compare any auction mechanism M1 for which the high-cost potential bidders participate with positive probability
(in which case, all low-cost potential bidders strictly prefer to participate) with any mechanism M2 for which the
high-cost potential bidders do not participate. It is straightforward to show that a seller will prefer M1 to M2 if and
only if an e¢ cient social planner does. Cox, Dinkins and Swarthout [2001] outline a model in which each potential
bidder draws his information-acquisition costs from a smooth distribution.
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the independent mixed-strategy decisions lead to no potential bidder participating, which is a cost

that both seller and a social planner would take into account. (Appendix B considers an alternative

model avoiding this detriment.)

Should a nontrivial reserve price be used, a further detriment that is an ine¢ ciency is introduced:

not only is there no sale with probability (1� �)N , there is also a probability

X
n

nX
a=0

[1� s (M;a; � (M) ; n)]

�
n

a

�
�a (M;� (M) ; n)�n (4)

that one or more potential bidders participate, but none of them are willing to pay the reserve

price.

When the number of bidders responds endogenously to the pro�tability of competing, there is

no counterbalance to make up for the loss of a sale due to a nontrivial reserve price. Occasionally,

a reserve price would have, for example, fallen between the highest and second-highest bids in a

second-price auction, or prevented a single participant from obtaining the asset for merely the entry

fee, but the increased revenue such events create will have been taken into account in bidders�

calculations of the probability with which to participate. Levin and Smith [1994] �nd that a

nontrivial reserve price enhances revenue in common-value auctions with entry; their result is

entirely due to disallowing entry fees, disclosure of seller�s information, and other surplus-extracting

devices that shed the revenue losses in (4).26

Via Corollary 2, endogenizing bidder participation turns much of standard auction theory on

its head. A reserve price (or bidder-speci�c reserve prices if bidders draw types asymmetrically) is

the focus of Myerson�s [1981] original �Optimal Auction Design�paper, and of much of the optimal

26Levin and Smith [1994] have a more primitive device in their model that they call an entry fee, but it is an
information fee, in that it must be paid before bidders learn their signals; it in essence allows seller to employ a lump-
sum tax on participants before they become privately informed. They obtain the result that a nontrivial reserve
price is called for when they assume this information fee has to be set to zero. This paper follows a tradition in the
literature, led by Cassady [1967], Milgrom and Weber [1982] and Samuelson [1985] in the normal usage of the term
entry fee (as a fee incurred after participants become privately informed).
It also follows the tradition in the optimal auctions literature, and indeed in auction theory more generally (the

only other exceptions I know of are McAfee and Reny [1992] and Crémer, Spiegel and Zheng [2009]), of assuming
that any surplus-extracting device is potentially distortive, and thus ruling out devices that are in essence lump-sum
taxes. I thank Jeroen Swinkels for emphasizing this issue, and for pointing out that a limit to the generality of this
paper�s results is that they apply only after a seller has exhausted usage of devices that are essentially lump-sum
taxes.
Levin and Smith criticize Samuelson [1985] for considering the impact of entry fees in a model where the aggregate

expenditures on becoming privately informed are exogenous. The current model withstands that criticism.
Chakraborty and Kosmopoulou [2001] report a similar characterization to Corollary 2, that with entry, an auction

with a nontrivial reserve price is revenue-inferior to some auction with a lower reserve and an entry fee. It is not clear
what model of entry yields the nonstochastic number of participants in their paper, which depends on a screening
level.
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auctions and mechanism design literature since (see, for examples, surveys in Klemperer [2000] and

Krishna [2002]). Indeed, auction policy papers also focus on the reserve price as if it were a key

variable (Klemperer [2002]). Yet when the number of bidders becomes an endogenous variable, the

reserve price becomes a uniquely inferior tool for extracting surplus from bidders; a rational seller

does not use it, and an e¢ cient social planner is glad he doesn�t.

7 Revenue and Participation

In view of Corollary 2, the remainder of the text limits mechanisms toM 2MZ = fM 2M j r = 0g,

zero-reserve-price auctions. This section shows that seller�s announcement of M a¤ects expected

revenue solely through its e¤ects on the participation probability �. To develop and understand

this result, I begin with some natural comparative statics: two auction mechanisms with the same �

have the same expected revenue, and a change in mechanism which would lead to a higher expected

revenue for any exogenously given number of bidders will lead to a lower �. Formally,

Proposition 1 For any fM;M 0g �MZ ,

[i]: f� (M) = � (M 0)g ) fR (M) = R (M 0)g;

[ii]: f� (M) = � (M 0)g )
�
V (M)� ba (M) = V (M 0)� ba (M 0)

	
;

[iii]:
�
R (M;n) R R (M 0; n)8n 2 N

	
)
�
� (M) Q � (M 0)

	
.

The proof is in Appendix C.27

Proposition 1 implies that revenue consequences of an increased number of bidders are neces-

sarily less rosy when the extra bidders arrive via a rational participation calculation:28

Remark 1 Suppose a seller can switch to an auction mechanism that increases equilibrium par-

ticipation. Then each participant has a lower chance of winning, and so in equilibrium requires

a higher expected pro�t in the event of winning. The winner�s higher expected pro�t means an

expected revenue further below expected value transferred.

A host of econometric studies of auction markets are not sensible in this context, cases where

revenue, the high bid, or some similar variable is estimated using the number of bidders as an

27Proposition 1 applies only when � (M) is a function. The only auction mechanism this appears to rule out is the
McAfee, McMillan and Reny [1989] mechanism that extracts full surplus if n � 2 bidders are exogenously given. I
cover the details of comparison with that mechanism in footnote 32.
28This is the intuition behind the negative answer in Harstad [2008].
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exogenous explanatory variable. If ten potential bidders decided to participate expecting about

three participants, but mixed strategy participation decisions happened to lead to six showing up,

no wonder the extra bidders led to higher revenue: the auction rules were su¢ ciently extractive

of bidders�surplus that no one wanted to be a fourth bidder. It would be interesting to discover

the circumstances under which a higher expected number of bidders was associated with a higher

expected price, but the historical record of auctions (outside carefully designed laboratory experi-

ments, cf., e.g., Levin and Smith [2002]) does not include data on the expected number of bidders.

The actual number of bidders is no substitute.29 That revenue is higher when the realized number

of bidders is higher does not imply that a seller prefers to take steps to increase the expected number

of bidders.

For many empirical studies, especially merger-and-acquisition studies, it remains a problem that

the record does not indicate the number of participants, but at most the number of actual bidders.

Hence, the size of a winner�s curse adjustment a bidder ought rationally to make depends on a

variable (or inferences about that variable) unavailable to the empirical analyst.

Proposition 1.[ii ] �nds the di¤erence V (M)�ba (M) takes on the same value for any mechanisms

M;M 0 that attain the same �; let W (�) denote this di¤erence. Then let a simple function R on

the entire unit interval be de�ned by

R (�) =W (�)� c�N: (5)

Corollary 3 R (M) = R [� (M)] for all M 2 MZ ; that is, R (M) can be projected onto [0; 1] to

yield R (�).

Proof. Proposition 1 implies that M in�uences R (M) only through its in�uence on � (M).

Theorem 3 shows that the entire interval [0; 1] can be reached.

Remark 2 Corollary 3 �nally changes auction theory�s view of the comparative roles of the various

surplus-extracting devices available to a seller, from complements (their role in exogenous-number-

of-bidders models in the tradition of Milgrom and Weber [1982]) into their common-sense role

of substitutes. With exogenous n, a seller who had introduced some subset of: switching to an

29 If a historical series of auctions arguably results from the same equilibrium for each auction, then the binomial
distribution that is the number of participants can be estimated from the series. Many empirical auction databases,
however, arise from situations far enough from ex-ante symmetry to warn against direct application of this model.
Nonetheless, observed data on the number of bidders may incorporate entry decisions based on which rivals were
expected to take part with what probabilities. If the identities of participants are recorded in the database, a separate
binomial distribution representing participation of each potential bidder could be estimated.
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English auction, releasing public information, setting an entry fee, and adding a nontrival reserve

price, would still gain by incorporating the remaining surplus-extracting devices. With endogenous

participation, it is (solely) the equilibrium probability � that interests seller, and alternative methods

of accomplishing an improvement in this variable are substitutes for each other.

8 The Content of Optimal Auctions

Theorem 3 and Corollary 3 imply that R (�) in (5) is continuous. As its range is obviously

bounded, it attains a maximum. Let R� > 0 be the maximum attainable level of revenue.

Since a screening level is impossible, it is unsurprising that I have not been able to demon-

strate strict concavity of R (�). Accordingly, there may be multiple values of � attaining R�;

let A = f� 2 [0; 1] jR (�) = R�g. By continuity, A contains a minimal and a maximal element, ��0
and ��1 (not necessarily di¤erent). As R (0) = 0, �

�
0 > 0.

Proposition 2 If N > 2, ��1 < 1:

Proof. Evaluation of (5) as � decreases from 1 to 1�4� shows a revenue gain from decreased

information-acquisition costs that is linear in 4�, and a revenue loss from a probability of 0

participants that is of the order (4�)N .

Proposition 2 applies to N = 2 potential bidders in a common-value auction.30 In that case,

it is revenue-inferior to adopt an auction that leads to both bidders participating with probability

one. The seller will have some revenue-superior alternative which will lead potential bidder 2 to

be indi¤erent over participating even when he infers that there will be at least a (1� ��1) > 0

probability of facing no competition.

A little structure enables characterizing the size of the set of optimal auctions. As mentioned

in section 3, without loss of generality, the set M of seller�s feasible auction mechanisms can be

embedded in a real space, M � <d+1. Then the set of zero-reserve-price auctions can be viewed as

one dimension smaller (by omitting the r = 0 component): MZ � <d, let D = f1; : : : ; dg. D can

be called the set of components the seller chooses.31

30Harstad [2008] proves and interprets this result in a somewhat simpler model.
31The exact dimensionality depends on modeling choices (as to what constitute the components) that otherwise

distract from the paper. The entry fee is one component. Whether n and a are revealed generates two more. At least
one component could be generated by whether the auction is dynamic (if the degree of information dispersal during
the course of the auction is an issue, more than one component), and still �rst-price and second-price auctions have
not been distinguished. Mares and Harstad [2003] show that seller�s information disclosure options cannot be fully
speci�ed via a single component.
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De�ne MC to be the set of auction forms m for which some component im 2 D continuously

alters � and allows spanning [0; 1]. Theorem 3 above shows that MC 6= ?; the continuity used

in that proof is known to hold for the English and �rst-price auctions (and for public information

disclosure). Next, de�ne a set of auction mechanisms M =
�
M 2MZ jm 2MC

	
� <d; this is

the set of mechanisms selling without reserve for which the auction form exhibits continuity and

spanning via some component of D.

Consider M the domain of choice for seller, in light of Corollary 2. Without loss of generality,

the d components of D can be ordered so that component i 2 � = f1; : : : ; d�g (0 < d� < d) denotes

a spanning, continuous component for all m 2MC (' is one such component, guaranteeing 0 < d�;

other examples are provided below). For arbitrary auction mechanism M 2 M and arbitrary

component � 2 �, let M�jM � M denote the set of mechanisms which di¤er from M only in the

value of the component � (thus, for example, if � connotes the entry fee, all mechanisms in M�jM
di¤er only in the entry fee, so if M incorporates the auction form m for which only the number of

actual bidders is learned before bidding under �rst-price rules, then this holds for all auctions in

M�jM ). Let M� = fM �M j� (M) 2 Ag, a collection of optimal auctions.32 Then,

Theorem 4 (The �Content�Theorem): For arbitrary auction mechanism M � M and arbitrary

component � 2 �,
�
M�jM \M�� 6= ?. That is, any auction in M can be converted into an optimal

auction in M� merely by adjusting any one component in �.

Proof. Select an arbitrary M0 2 (MnM�). If � (M0) 2 A, nothing remains to be proven, so

assume � (M0) =2 A. Select an arbitrary component � 2 �. Construct cM 2 M�jM by changing M0

solely in component �, as follows. Take an arbitrary �� 2 A; if � (M0) < ��, set �(cM) = 1 (by

' = �c � b, for example), else if � (M0) > ��, set �(cM) = 0 (by ' = E [T ]); � 2 � insures this

is possible. As in Theorem 3, continuity implies the existence of a value for this �th component

32Some readers may question how these optimal auction mechanisms compare to the mechanism which extracts
full surplus in McAfee, McMillan and Reny [1989]. For their mechanism, call it MMMR, the unique equilibrium
continuation is �

�
MMMR

�
= 0, hence R

�
MMMR

�
= 0. To arrive at a sensible comparison, consider mechanisms

MMMR
' with negative entry fees appended. Setting ' < �c� b necessarily generates a revenue-inferior auction; the

reverse inequality su¤ers the same R
�
MMMR
'

�
= 0 problem as MMMR. So consider ' = �c� b: for MMMR

�c�b , every
� 2 [0; 1] is an equilibrium continuation. Selecting � 2 (��1; 1] yields excessive incurrence of information-acquisition
costs with no compensation; selecting � 2 [0; ��1] runs into the same problem as a reserve price: there is an excess
probability of no sale (happening anytime a < 2), with no compensation. So any equilibrium selection � is revenue-
inferior to the second-price auction M' of Theorem 3 that attains the same �, hence suboptimal. If a mechanism
similar to Crémer and McLean [1985], [1988] were to apply to a common-value auction, it would su¤er the same
problems. So would the mechanism of McAfee and Reny [1992], which also depends on using information fees, ruled
out here (cf. footnote 26).
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Figure 2: The Set of Optimal Auctions

yielding M� 2M�, with M� di¤ering from M0 only in this �th component.33

Thus, prior optimal-auction characterizations depend critically on the implicit assumption that

a seller has a captive audience: there will be exactly n bidders no matter how the seller changes

auction rules to extract more surplus. When the number of bidders responds endogenously to the

pro�tability of competing, the content of optimal common-value auctions is merely this: choose

any auction form, commit to sell without reserve, and adjust any continuous parameter to avoid

overly encouraging or overly discouraging bidder participation.

Figure 2 may help to visualize Theorem 4. It simpli�es by imagining that M has three dimen-

sions: ' on the vertical axis, plus one dimension in whichM can take on one of three discrete values

(e.g., English, second-price, or �rst-price auction form, for a seller we imagine to be constrained

to those three choices), and one dimension in which a variable can be chosen over an interval, but

may not necessarily span the range of �. The set M is then the union of three rectangles in parallel

vertical planes, outlined in Figure 2 by dashed lines. The set of optimal auctions M� is represented

by the union of a collection of curves shown lying in the three rectangles. The optimal auctions

M� span M in that, from any point in one of the three rectangles, it is possible to reach one of

the curves by moving only vertically, that is, by adjusting only the entry fee. (To be consistent

33A geometric interpretation: construct the projection mapping proj� : <d ! <d�1 by deleting the component
corresponding to an arbitrary � 2 � from any d-vector M 2 M. Then the proof of Theorem 4 has shown for every
M 2 M an element M�

M 2M� such that proj� (M) = proj� (M�
M ). Note that M

� is typically a strict superset of the
set thus obtained.
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with the Theorem, the curves must, collectively, contain continuous paths from the left to the right

edges of all three rectangles.)

A variety of surplus-extracting devices might exhibit su¢ cient continuity to apply this logic.

For example, suppose seller observes XN+1 (which is a¢ liated with asset value T ), and consider

mechanisms M1
y , all �rst-price auctions with ' = '0 (arbitrary), r = 0, and with seller making a

public announcement of Zy = XN+1+y�, where � is an independent standard normal (white noise),

and y a scalar parameter of the noisiness of this public announcement. Then (by Theorem 17 in

Milgrom and Weber [1982] and Proposition 1.[iii ] above), �
�
M1
y

�
is nondecreasing in y; assume

(naturally) that it is continuous. Suppose �
�
M1
0

�
< ��0 < �

�
M1
Y

�
for su¢ ciently large Y . That is,

full and honest public announcement of seller�s information is overly extractive of surplus, but not

a public announcement where the signal-to-noise ratio is very small (this is, in essence, a spanning

supposition). Then the argument of Theorem 4 can be applied to derive the existence of a y� such

that M1
y� is an optimal auction.

34

For another example, let cM� denote an auction (with seller�s information-disclosure policy

and ' = '0 arbitrary) in which the highest sealed bid win at a price p = �b(1) + (1� �) b(2), a

convex combination of the two highest bids. Naturally assuming continuity in �, if � (M2) < ��1 <

� (M1) (a spanning assumption that the �rst-price but not the second-price auction is insu¢ ciently

extractive of surplus given the arbitrary entry fee and information policy), then only the weight �

on the highest bid needs to be adjusted to obtain an optimal auction.35

In a world where a wide variety of auction mechanisms are employed by experienced and ap-

parently successful auctioneers and frequent auction sellers or bid-taking procurers, Theorem 4 has

the comforting conclusion that this variety is not per se unambiguous evidence that some of these

sellers and auctioneers must be choosing suboptimally. If some aspect of a particular situation

falling outside the model creates a preference for one auction form over another, nothing in the

model surmounts that preference, so long as some variable remains su¢ ciently adjustable.

The sharpness of Theorem 4 stems partly from the exactness attained via a mixed-strategy par-

ticipation decision arrived at simultaneously by ex-ante symmetric potential bidders (thus not yet

34A similar example: some sellers categorize assets being sold, so each asset in a category has an appraisal in a
given range (e.g., $20K-$40K for one range, $40K-$80K for the next). For any auction form with the property that
a broad enough range is insu¢ ciently extractive and an exact announcement of the appraisal overly extractive, there
exists a range width yielding an optimal auction. Thus, from an arbitrary auction form, only the range width of this
categorization need be altered to obtain optimality.
35The same analysis would apply if � were the probability that a �rst-price auction would be run, if seller had

precommitted to a rule wherein each bidder submitted both a bid for a �rst-price and another bid (presumably
distinct) for a second-price auction, before a credible randomization determined which set of bids would be used.
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privately informed). Appendix B �nds the bulk of these results attainable, if granted a su¢ ciently

useful equilibrium selection, when potential bidders sequentially decide whether to participate. The

intuition is this: if behavior once participating is symmetric, and one potential bidder who is in-

di¤erent over whether to participate does take part, then that one participant�s indi¤erence drives

revenue whether his participation decision was made simultaneously or sequentially.

9 Concluding Remarks on Generality

The contrast is striking: Many papers calculate an �optimal auction,� having innocuously (or at

least without comment) assumed there are n bidders. When this number remains �xed as the

role of being a bidder is made far less pro�table, these authors are in essence assuming irrational

behavior, for most situations where they would have us apply their results. Those results typically

�nd a particular auction form to be optimal, and it typically revolves around strategically setting

a reserve price which has a signi�cant chance of preventing a sale.

When bidders are also rational in deciding whether to bid, and the number of bidders is explicitly

recognized as an endogenous variable, these results are completely overturned: seller optimally

conducts an allocatively e¢ cient auction (even in some situations where this means sale to a bidder

other than the highest-valuing participant�because in equilibrium that participant does not pay

the entry fee); the only aspect of an auction design that, per se, characterizes it as suboptimal

is a nontrivial reserve price. Selling without reserve is the full content of optimal auctions when

participation is endogenous.

As contemplated in auction theory, a nontrivial reserve price is almost never seen in practice

(Cassady [1967]). The contemplated reserve price is a credible binding commitment that, if no bid

exceeds it, the asset will not now and never in the future be available to the potential bidders.

In some situations, such a commitment may stretch credibility, but in many, I suspect a tool so

impacting yet so blunt is not used because it would pointlessly introduce ine¢ ciency. What is

common, and in the industry usually called a reserve price, is a price below which the current

auction will end without a sale, but the same asset will be put up for sale again later36 (often,

36Though he does not comment on the di¤erent usage of the term reserve price, this is the sense in which McAfee
[1993] �nds a nontrivial reserve price in the steady state of a model where sellers repeatedly hold auctions, with
private-values buyers each time deciding which auction to attend. When a reserve price is not met, the seller simply
holds another auction, possibly with a di¤erent reserve price, in the next period. Successful transactors, buyer and
seller, exit the market. Each period, new buyers and sellers are exogenously placed in the market (though all buyers,
new or having bid before, choose among sellers�auctions each period).
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there may be negotiations between the seller and the high bidder to buy between the �nal bid and

the reserve price). Such a policy, of course, limits potential ine¢ ciencies to a wholly lower order

of magnitude; introducing it would bring complications of dynamic negotiations into the model,

which I have avoided.

This paper has a¢ rmed how natural and robust are the two principal result reversals when

the expected number of bidders is endogenous: optimal auctions do not generate ine¢ ciencies, and

do not set a nontrivial reserve price. The principal result is that while selling without reserve,

the set of optimal auctions is large, consisting of single-parameter adjustments of all auctions.

While the demonstration has hopefully been as straightforward as possible, it is clear that the

characterizations allow several natural extensions:

� The oft-seen formulation of an auction problem as an abstract mechanism design problem

contemplates payments to or from losing bidders. Such payments are easily incorporated

here, although Theorem 3 and Proposition 1 render them pointless.

� The bid-preparation cost above was exogenous, and independent of the form of the auction.

If strategic issues were to make it more costly to prepare a bid in a �rst-price auction than

in a second-price or an English auction (due to some variant on incentive compatibility), a

more complicated twist on the tools provided here would be needed.37

� The assumption of a single asset for sale does not seem critical to the qualitative results.

However, the ease with which extension to the modal multiple-unit auction model (where

Though quite di¤erent models address quite di¤erent issues, this model and McAfee�s are strikingly congruent. In
particular, his sellers� steady state choices, essentially just in-period reserve prices, are those that a social planner
would choose. In his model, a buyer�s cost of attending an auction is foregoing opportunities to compete in other
auctions, which is an acceptable interpretation of the information-acquisition cost c here. His model explicitly solves
for sellers�steady state behavior; here other sellers are implicitly represented via potential bidders only participating
if expected pro�tability is high enough. His bidders decide which auction to attend, but the number of bidders in the
marketplace is exogenous; thus, most of the questions addressed here cannot be addressed in his model.
37Engelbrecht-Wiggans [2001] argues that the strategic simplicity of English auctions, in some simple settings, yields

lower bid-preparation costs than �rst-price sealed-bid auctions, and so English auctions might attract more bidders
and attain higher expected revenue. He demonstrates the possibility in a simple example with independent, uniformly
distributed private values and in�nitely many potential bidders. Unfortunately, the notion of strategic simplicity does
not admit nearly as facile a sensible de�nition when going beyond such a simple setting. In particular, it may be that an
English auction becomes far less simple strategically when a signi�cant entry fee is prepended. (Engelbrecht-Wiggans
does not write as if he is comfortable with the notion that an English auction necessarily remains strategically simpler
once common-value elements enter the model.) Since in the equilibrium above, aggregate expected bid-preparation
costs fall on the seller (Theorem 2), this by itself gives an incentive to favor devices which extract surplus while facing
bidders with lower bid-preparation costs. For a given �, the mechanisms with lower bid-preparation costs yield higher
revenue. For there to be a su¢ ciently large set of such lower-bid-preparation-cost mechanisms to span continuously
the range of participation probabilities, and thus render all higher-bid-preparation-cost mechanisms inferior, is likely
to depend on some controversial assumptions about strategic simplicity.
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each bidder can acquire but one asset) arises in Milgrom [1981] and Pesendorfer and Swinkels

[1997] would be somewhat misleading. If k identical assets are sold, the probabilities of

0; : : : ; k � 1 actual bidders would signi�cantly clutter up the expected revenue formula.

� The model has been designed so that adding other sellers who are auctioning related assets is

virtually automatic. (No problems are created if one seller�s auction exhibits an information-

acquisition cost of c, while a possibly more distant seller has a cost c0 > c.)

A nontrivial dynamic structure would, however, introduce concerns not yet addressed. Among

them, both sellers and potential bidders may have incentives to invest in building reputations.

Nonetheless, a stride in this direction is made here: if an analysis of such reputational issues is to

be applicable to markets where a subset of �rms in an industry appear as bidders, reputational

investments need to be viewed in terms of their discounted expected pro�tability when responses

of other players include an endogenous decision as to whether and when to play.

This model assumes rational behavior consistent with a symmetric equilibrium. Asymmetric

equilibria at the bidding stage are certainly not going to be unique, so it is unclear how to prepend an

entry stage, without a unique expected pro�tability calculation. Asymmetric participation decisions

are presumably rife for signaling a preferred asymmetric equilibrium. A �symmetric sequential�

entry model which then assumed symmetric behavior following sequential entry decisions can be

built; it yields similar but less sharp results. An outline is provided in Appendix B.

Laboratory evidence suggests the winner�s curse is not easily overcome in common-value auctions

(Kagel, Levin and Harstad [1995]); however, it is far from clear how to model participation decisions

of potential bidders who will not follow up by bidding rationally. Nor can I envision how to model

usefully the participation decision of a potential bidder who will himself behave rationally, but who

cannot predict even the number of irrationally-behaving rivals who will participate.

10 Appendix A: Mathematics of the Participation Decision

Recall that N is the exogenous number of potential bidders, �(M) the symmetric equilibrium

probability of participating given mechanism M , and n and a numbers of participants and of

actual bidders. Throughout, the usual binomial formula for the probability of z successes in Z

trials, each with independent success probability & is denoted

� (z; Z; &) =

�
Z

z

�
&z (1� &)Z�z :
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Thus, ifN potential bidders each participate with probability �, the probability of n participants

is � (n;N; �). A potential bidder analyzing the consequences of proceeding to the next step of the

game (participating or actually bidding) rationally evaluates the likelihood of di¤erent numbers of

rival competitors according to � (n� 1; N � 1; �), which accounts for the presumption that he (the

analyzing potential bidder) proceeds�even if this is not a certainty, all behavior is otherwise payo¤-

irrelevant.38 When context makes clear, I will shorten � (n;N; �) to �n and � (n� 1; N � 1; �)

to �n�1. When an arbitrary potential bidder i becomes a participant, I will harmlessly treat the

renumbering function ren(i; n;N) that would provide his position in the numerically ordered set of

participants as if it were the identity function, and refer to the continuing roles of the player who

begins as potential bidder i as if he becomes participant i if he participates, and actual bidder i

if he pays the entry fee. Symmetry attained through A.1 and A.6 allows a focus throughout on

potential bidder 1, participant 1, and actual bidder 1.

At the point that the decision to become an actual bidder (to incur the bid-preparation cost b

and pay the entry fee ') is made, participant 1 has observed estimate X1 = x. Two cases must

be developed.

Case 1: M 2 MK , where MK is the subset of mechanisms for which auction form m speci�es

that participants know (perhaps because the seller informed them, perhaps because the seller could

not prevent their knowing) the number of participants, n, before deciding whether to pay the entry

fee.

Let	 denote the set of �1-measurable subsets of X , with element  � X , and	x = f 2 	jx 2  g.

Let � (�) : 	x�X ! [0; 1] be de�ned by � ( ; x) = Pr� [X2 2  jX1 = x], the probability that a given

rival participant observed an estimate in the set  , conditional on participant 1 observing estimate

x. Next de�ne the binomial distribution B ( ; x; n) attaching density � [j � 1; n� 1; � ( ; x)] to

values j = 1; : : : ; n. Let �K (M;a; n;  ; x) be the expected pro�tability (gross of bid-preparation

cost and entry fee, but net of information-acquisition cost) of actually bidding in auction M , when

there are a actual bidders, n participants, the a actual bidders all observed estimates in  , and

actual bidder 1 observes X1 = x. De�ne for  2 	x

�
K
(M;n;  ; x) =

nX
j=1

�K (M; j; n;  ; x)� [j � 1; n� 1; � ( ; x)] ;

38This insight is originally due to Matthews [1987] (who is credited in McAfee and McMillan [1987a]), and is
employed in Harstad, Kagel and Levin [1990]. In all three papers, the uncertain number of bidders follows an
exogenous distribution.
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which is expected pro�tability when the number of actual bidders is determined by the number of

rival participants who observe estimates in  .

Next let �K (M;n; ';  ; x) =
n
& 2 	xjx 2 & ) �

K
(M;n;  ; x) � '+ b

o
, so that the correspon-

dence �M;n;';x (�) : 	x ! 	x can be de�ned by

�KM;n;';x ( ) =
�
& 2 	xj& 2 �K (M;n; ';  ; x)

	
:

What �K does is take an arbitrary subset  of the space of estimates, a subset consistent with

participant 1 observing X1 = x, use it to �nd out expected pro�tability if rival participants pay

the entry fee ' i¤ they observe an estimate in  , and then map that expected pro�tability into

the subsets of 	x for which paying the entry fee is rational (i.e., yields an expected pro�tability

preferable to ceasing further competition). Finally,

�K (M;n; ') =
�
x 2 X j9 2 �KM;n;';x ( ) j f9 ( 0; z) 2 (	x �X1) j �  0; z 2 int ( 0n )g )  0 =2 �M;n;';x ( 0)

	
,(6)

�K (M;n) =

Z
�K(M;n;')

d�1 (x) :

Here, �K (M;n; ') is the maximal subset of X consisting of those estimates with a su¢ ciently

high interim expected pro�tability to justify continuing to compete in auction M with n� 1 rival

participants, and �K (M;n) is the ex-ante probability that a potential bidder whose action is to

participate will end up becoming an actual bidder.

Continuing with case 1, M 2 MK , de�ne, for n = 1; : : : ; N; i = 1; : : : ; n, the event that partic-

ipants 1; : : : ; i observe estimates leading them to continue, while participants i + 1; : : : ; n observe

estimates leading them to cease competing:

�K (M; i; n) =
��
Xj 2 �K (M;n; ')

	
, fj � ig ; j = 1; : : : ; n

�
:

Let

�K (M; i; n) = Pr
�

�
Xn 2 �K (M; i; n)

�
, and

�K (M; i; n) = Pr
�

�
Xn 2 �K (M; i; n) jX1 2 �K (M;n; ')

�
denote the probability of this event, and its probability conditional on participant 1 observing an
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estimate leading to continued competition. By Bayes�Formula, for n = 1; : : : ; N; i = 1; : : : ; n,

�K (M; i; n) = �K (M; i; n)�K (M;n) : (7)

Case 2: M 2MU =MnMK , when the auction formm speci�es that the number of participants

is unknown when deciding whether to pay the entry fee.

Let �U (M;a; �;  ; x) be the expected pro�tability (gross of bid-preparation cost and entry fee,

but net of information-acquisition cost) of actually bidding in auction M , when there are a actual

bidders, N � 1 rival potential bidders participated with probability �, the a actual bidders all

observed estimates in  , and actual bidder 1 observes X1 = x.39 De�ne for  2 	x

�
U
(M;�;  ; x) =

NX
i=1

iX
j=1

�U (M; j; i;  ; x)� (i� 1; N � 1; �)� [j � 1; i� 1; � ( ; x)] :

The next four steps of case 2 correspond exactly to those of case 1, substituting �
U
above

for �
K
to de�ne �U (M;�; ';  ; x), �U to de�ne �UM;�;';x ( ), �

U to de�ne �U (M;�; '), �U to

de�ne �U (M;�). In case 2, the event that participants 1; : : : ; i actually bid, and i+ 1; : : : ; n cease

competing:

�U (M;�; i; n) =
��
Xj 2 �U (M;�; ')

	
, fj � ig ; j = 1; : : : ; n

�
;

which is well-de�ned although the participants do not know that they number n. The probability

of the �rst i participants becoming the only actual bidders, given that N potential bidders each

become a participant with probability �, must take the probabilities of events �U (M;�; i; n) and

weight them according to their likelihood:

�U (M;�; i) =

NX
n=1

� (n;N; �) Pr
�
Xn 2 �U (M;�; i; n)

�
, and

�U (M;�; i) =

NX
n=1

� (n;N; �) Pr
�
Xn 2 �U (M;�; i; n) jX1 2 �U (M;�; ')

�
is the conditional probability given that participant 1 observes a estimate leading to continued

39 If the auction form m speci�es that information disclosed by seller is disclosed before the entry fee is paid, �K and
�U are speci�ed with respect to the equilibrium in the bidding subgame corresponding to the information actually
disclosed. If m speci�es that information disclosed by seller is disclosed after the entry fee is paid, �K and �U are
speci�ed with respect to the distribution of equilibria expected given the prior distribution of seller�s information.
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competition. As before,

�U (M;�; i) = �U (M;�; i)�U (M;�) : (8)

Conclusion 1 The relevant ex-ante probabilities combine the two cases :

� (M;�; n) =

8<: �K (M;n) ; M 2MK ;

�U (M;�) ; M 2MU ;
;

�i (M;�; n) =

8<: �K (M; i; n) ; M 2MK ;

�U (M;�; i) ; M 2MU ;
; and

�i (M;�; n) =

8<: �K (M; i; n) ; M 2MK ;

�U (M;�; i) ; M 2MU ;
;

with, for any M , each of �; �i; �i degenerate in one of its last two variables.

Thus, � (M;�; n) takes an ex-ante view, from the viewpoint of a potential bidder: it is the

probability, should he participate, that he will go on to become an actual bidder, evaluated before

the estimate x is observed. Similarly, �a (M;�; n) is the ex-ante probability, should he become

an actual bidder, that a potential bidder will �nd himself to be one of the set f1; : : : ; ag actual

bidders, and �a (M;�; n) is the (unconditional) ex-ante probability of f1; : : : ; ag being the set of

actual bidders.40

Note that prior models of endogenous participation have, explicitly or implicitly, assumed a

screening level : some ex (M;n; ') 2 X such that
�
x 2 �K (M;n; ')

	
, fx � ex (M;n; ')g. Lands-

berger and Tsirelson [2000] demonstrate that this is impossible in a common-value auction, for

large numbers of potential bidders, under mild assumptions, satis�ed by this and most prior mod-

els. Whether a corresponding impossibility theorem extends to a¢ liated-values auctions is unclear.

This paper is careful to allow for the fact that �K (M;n; ') and �U (M;�; ') may not be upper

contours of X ; much of the complication in cases 1 and 2 above is due to that allowance.41

40What has been shown is that the two extreme possibilities, that participants are informed of their number and
that they are not, can be combined into a sensible description of the relevant ex-ante probabilities. This same
procedure could readily be followed (with yet more notation) should seller also have some third or fourth options,
such as informing participants with some interior probability, or informing them whenever n > 3 but not informing
them when n � 3. In other words, the procedures just shown are illustrative, rather than limiting. As stated in the
introduction, it is the endogeneity of the degree of competition that changes the picture, not the details of how that
is modeled.
41A second-price auction with ' = r = 0 is one special case where �K and �U are upper contours of X . In general,

the sets �K ('; �) of estimates implying at least ' expected pro�tability are unions of nondegenerate intervals (�ins�)
separated by nondegenerate intervals (�outs�). An adjustment improving pro�tability�decreasing � or '�continuously
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Two cases are also distinguished with respect to actual bidders. An auction form m 2 MK0

if the number a of actual bidders becomes known before bidding strategies are selected; let the

probability of a sale be sK
0
(M;a), which is the probability that at least one of a actual bidders

is willing to pay the reserve price r. For m 2 MU 0 = MnMK0
, the number of actual bidders

is unknown when bidding; let sU
0
(M;�; n) be the probability that at least one actual bidder is

willing to pay the reserve price r when either [a] each of n participants becomes an actual bidder

i¤ Xj 2 �K (M;n; '), if m 2 MK (degenerate in �), or [b] if m 2 MU , each of N potential

bidders becomes a participant with probability �, and if a participant, becomes an actual bidder

i¤Xj 2 �U (M;�; ') (degenerate in n). Again, combine these cases via

s (M;a; �; n) =

8<: sK
0
(M;a) ; M 2MK0

;

sU
0
(M;�; n) ; M 2MU 0 :

(9)

Notation will be slightly abused when context makes clear by representing this probability as sr

(the reserve price r is the principal component of M a¤ecting this probability).

Getting closer to a characterization: Relying on A.4, let p (M;a; �; n; t) be a function indicating

the expected price paid by the winning bidder, given auction M , a actual bidders, � probability of

participating, n participants, and conditional on a realization t of common trend T . Depending on

which cases above apply, p (�) will typically be degenerate in at least one variable. It bears emphasis

that p (�) is an ex-ante calculation, and thus is symmetric across potential bidders. De�ne

V (M;�; n; '; t) =

8<:
R
�K(M;n;')G

K (M;n; '; x; t) v (t; x) d�1 (xjt) ; M 2MK ;R
�U (M;�;')G

U (M;�; '; x; t) v (t; x) d�1 (xjt) ; M 2MU ;
(10)

where GK (M;n; '; x; t) [resp., GU (M;�; '; x; t)] is the probability of becoming the winning bidder

for a potential bidder who will participate in auction M , when there are n � 1 other participants

[when N � 1 other potential bidders participate with probability �], the entry fee is ', he will

observe estimate x, and underlying asset value is t. Then V (M;�; n; '; t) is the expected asset

value to a potential bidder who will participate, conditional on his winning in the circumstances

speci�ed by its arguments.

Momentarily assume a potential bidder is one of n participants and one of a � n actual bidders;

expands the �in� intervals. Harmlessly de�ning the �ins�as closed sets then justi�es the reference to maximality of
�K and �U .
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his ex-ante expected payo¤ is

s (M;a; �; n)

a
E� fV (M;�; n; '; T )� E� [p (M;a; �; n; �) jT = t]g � '� b� c: (11)

In essence, conditioning the price on the common-value component (the inner expectation) makes

the outer expectation simply the expected di¤erence between what the winner gets and what he

pays for it. The probability that the winner obtains this di¤erence is simply the probability of

a sale (s). Ex ante, given a winner, the probability that any one of the a actual bidders is the

winner is 1/a, by A.1 and A.6. For an actual bidder, the bid-preparation cost b, entry fee ' and

information-acquisition cost c are subtracted with certainty. (Note that this calculation need not

require that the actual bidder know the value of n or a.)

Continuing to assume n participants, the ex-ante probability of being an actual bidder is

� (M;�; n), and of any particular formula (11) being the relevant calculation for an assumed actual

bidder is
�
n�1
a�1
�
�a (M;�; n), since there are

�
n�1
a�1
�
ways in which actual bidder 1 could face a � 1

remaining rivals. Now to step back, assume only that a potential bidder is one of n participants.

His expected pro�t, for n = 1; : : : ; N; is

w (M;n) = � (M;�; n)

 X
a

hsr
a
E� fV (�)� E� [p (M; �) jT ]g � '� b� c

i�n� 1
a� 1

�
�a (M;�; n)

!
:

(12)

Throughout,
P
a and

P
n are to be taken as abbreviated forms of

Pn
a=1 and

PN
n=1. Each formula

(12), for di¤erent n, is relevant (assuming participation) with probability �n�1 = � [n� 1; N � 1; � (M)].

Thus,

Conclusion 2 Equilibrium participation is that � 2 (0; 1) characterized by

0 =
X
n

�n�1w (M;n)

=
X
n

�n�1

(
� (M;�; n)

X
a

hsr
a
E� fV (�)� E� [p (M; �) jT ]g � '� b� c

i�n� 1
a� 1

�
�a (M;�; n)

)
;(13)

equating the payo¤ from nonparticipation to the net expected bene�ts.

The right-hand side of (13) can be lowered by increasing �. If � = 1 is allowed as an equilib-

rium possibility (Proposition 2 �nds this a revenue-inferior option for seller), 0 = r:h:s:(13) must

be replaced by [r:h:s:(13) ] � 0 = (� � 1) [r:h:s:(13)]. Equation (13), by implicitly de�ning the sym-
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metric participation probability function � (M), together with equilibrium continuation, provides

a complete characterization of potential bidders�behavior.42

11 Appendix B: An Alternative Sequential-Entry Model

Consider the following �symmetric sequential�participation model. First, the seller announces an

auction mechanismM , as above. An exogenous randomization assigns to the N potential bidders a

relabeling of their indices, with a potential bidder�s realization that he is number i in this relabeling

his own private information, and all reorderings equally likely. Then potential bidders are in order

given the opportunity to participate (at cost c, as above). As soon as a potential bidder declines

to participate (an action that may be the result of a mixed strategy), seller is committed to giving

no other potential bidder the opportunity.

As a potential bidder knows the step in this order in which he makes his decision, he knows how

many potential bidders have already chosen to participate. As a participant�s stage in the order

does not get revealed, an opportunity to signal a favorite asymmetric equilibrium via becoming

participant 1, for example, is unavailable. After participation decisions have been made, one of the

participants may know privately that he is the marginal participant, but none knows the order in

which rivals became participants.43 For symmetric behavior to be possible, the private information

of the last participant, as to the equilibrium number of participants, must become public; denote

this number ne (M). Hence only mechanisms where participants learn the number of participants

can be considered (in Appendix A, this is the set MK).

The ex-ante probabilities of a participant becoming an actual bidder, and of participants

1; : : : ; a becoming the actual bidders (unconditional and conditional), are exactly the same as

�K [M;ne (M)], �K [M;a; ne (M)], and �K [M;a; ne (M)], as these terms are deined in Appendix

A, and s (�) is unchanged from (9) except that it no longer can depend on �. Lack of dependence

on � is also the only change in p (�) above, so the expected pro�tability of being the ne (M)th par-

ticipant is still (12) above. Hence, ne (M) is determined by the equilibrium participation constraint

w [M;ne (M)] � 0 > w [M;ne (M) + 1] : (14)

42A corresponding equation is asserted by French and McCormick [1984], and found in simpler models by Harstad
[1990] and Levin and Smith [1994]. The current development is original in extending to a¢ liated-values settings,
avoiding a monotonicity assumption and allowing for the full variety of information �ows.
43 It is solely for this reason that the model builds a counterfactual where a potential bidder�s sequence order is his

own private infomation.
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For equality in (14), participation by ne (M) � 1 potential bidders with probability 1 and by

the ne (M)
th potential bidder with probability � 2 [0; 1] are equilibria for all values of �. Selection

of the � = 1 equilibrium (revenue-maximal in this set of equilibria) can be based on it being the

unique element of this set which is the limit of equilibria for mechanisms di¤ering from M by

having in�nitesimally smaller entry fees. Of course, virtually as strong a selection argument can

be made for the � = 0 equilibrium, as the unique limit of equilibria for mechanisms di¤ering from

M by having in�nitesimally larger entry fees. However, usual problems with limits of open sets

prevent existence of optimal auctions if the � = 0 equilibrium is selected. I will just consider the

self-servingness of the � = 1 selection be a weakness of the alternative model, and proceed with it.

Revenue is now R (M) = R [M;ne (M)], from (1). De�ne

# (M;n) =

8<: 1; n = ne (M) ;

0; otherwise:

This substitutes for the binomial coe¢ cients � (�) in the formulas for expected value transferred

and the expected number of actual bidders:

V (M) =
X
n

X
a

s (M;a; n)E� [T ]

�
n

a

�
�K (M;a; n)# (M;n) ;

a (M) =
X
n

(X
a

a

�
n

a

�
�K (M;a; n)

)
# (M;n) :

Then expected revenue satis�es

R (M) � V (M)� ba (M)� cne (M) ; (15)

with equality for and only for the selected equilibria attaining equality in (14); letM= be the subset

of MK consisting of those mechanismsM for which equality in (14) and (15) can be attained. Note

that
�
MKnM=

�
contains a dense subset of MK (open in the dimensions of MK with an interior).

De�ne Mknk=
�
M 2MK jne (M) = n

	
, for n = 1; : : : ; N , and MZ =

�
M 2MK jr = 0

	
.

The following results can be obtained for such a model. [i ]. fM0;M1g � M= and ne (M0) =

ne (M1) implies R (M0) = R (M1). This corresponds to a comparative static of the simultaneous

entry model.

[ii ]. Suppose a mechanism M0 2 M= with ne (M0) = n0 participants in equilibrium. Then

32



there exists M1 2
�
Mkn0k \M= \MZ

�
(i.e., M1 does not use a positive reserve price). This M1

is revenue-maximal in the set Mkn0k; revenue comparisons across auction forms for an exogenous

number of bidders apply withinMkn0k, and surplus-extracting devices are substitutes withinMkn0k,

with the exception that nontrivial reserve prices are revenue-inferior.

[iii ]. Suppose there existMsm 2M=,MLg 2MK such that 1 � ne (Msm) < ne (MLg) � N , and

R (MLg) > R (Msm). Then there exists n� > ne (Msm) such that [a]M� =
�
Mkn�k \M= \MZ

�
6= ;

(these are all zero-reserve-price auctions attaining equality in (14) for n� participants), and [b] every

auction inM� is an optimal auction. Moreover, for an arbitrary auction form m0 for which expected

pro�tability is continuous in the entry fee ', if there existsM 0 = (m0; '0; 0) such that ne (M 0) < n�,

then there exists '� such that (m0; '�; 0) 2 M�. In this sense, an arbitrary auction can be made

optimal by the change of a single parameter, attaining a quite similar characterization to the

principal result of the simultaneous entry model.

[iv ]. Let Msm;MLg 2MK be such that ne (Msm) < ne (MLg). Suppose

X
a

�
s [Msm; a; ne (Msm)]

�
ne (Msm)

a

�
�a [M;�; ne (Msm)]

�
�

X
a

�
s [MLg; a; ne (MLg)]

�
ne (MLg)

a

�
�a [M;�; ne (MLg)]

�
;

that is, suppose a sale is at least as likely ex ante under Msm as under MLg. Then R (Msm) >

R (MLg), a sense in which the bidder-discouragement �avor of the simultaneous entry model extends

to this model. Note that the sale-probability supposition is critical to result [iv ]. (Proofs of these

results correspond closely to methods used in the main text and Appendix C.)

Figure 3 illustrates these results, for auctions that use a 0 reserve price. The entry fee ' is

shown horizontally, expected revenue R vertically. The solid curve illustrates one type of auction,

the dotted curve a second type which extracts less surplus for a given number of bidders. For

concreteness, we may call the solid curve English auction revenue, and the dotted curve �rst-

price auction revenue. The vertical line segments on each correspond to values of ' for which

the speci�ed auction mechanism lies in M=. In particular, each point in a vertical line segment

is revenue associated with one of the multiple equilibria: the lower endpoint is associated with

the marginal participant selecting to enter with probability 0, the upper endpoint associated with

probability 1.

The rightmost vertical segments are where one participant in an English (solid vertical segment)
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Figure 3: The Sequential Participation Model

and in a �rst-price (dotted) auction is enough to make a second potential bidder indi¤erent over

participating. Along the sloped segment of each curve to the left of its rightmost vertical segment,

the second potential bidder strictly prefers to participate, while staying out is the third potential

bidder�s strict preference. Then each curve reaches another vertical segment where the third

potential bidder�s indi¤erence yields multiple equilibria, followed further left by a sloped segment

along which there are three participants.

Each pair of vertical segments corresponding to the multiple equilibria where the ith potential

bidder is indi¤erent over participating peak at exactly the same height. This is a result of equality

in (14) and (15). A curve like those shown could be drawn for any auction form; for example, the

curve for a second-price auction would have vertical segments that lie between the paired vertical

segments shown. The vertical segments shown for the English auction would be shifted to the left

if seller�s information were publicly disclosed. All such curves for auction forms with 0 reserve

prices would reach identical heights at the peaks of vertical segments.

The case illustrated, which would �t a pure common-value environment, will have as an optimal

auction (given the self-serving equilibrium selection mentioned above) any auction without a reserve

price where the entry fee is set so that the second potential bidder is indi¤erent over participating.

Any auction form which is su¢ ciently extractive to strictly discourage the second potential bidder

via a high enough entry fee will have an entry fee which makes that auction form (with r = 0)

optimal.

34



In the general a¢ liated-values environment, it is possible that the rightmost pair of vertical line

segments in Figure 3 do not attain the height of the pair to the left of them. If so, then optimal

auctions are those where potential bidder 3 is indi¤erent over participating but does take part (cf.

Harstad [2008]).

Consider, for an arbitrary auction form m, beginning with n0 participants in equilibrium, im-

pacts of increasing '. Increasing from small enough ', revenue is monotonically increasing, and

w, the expected pro�tability of participating (the l.h.s. of (14)), is monotonically decreasing, while

s, the probability of a sale (here, with r = 0, the probability that a > 0), holds nearly constant.

As ' continues to increase, past some level s starts to decrease nonnegligibly. There will be some

threshold b' at which revenue from n0 participants hits a local maximum and starts to decrease.

Figure 3 is drawn assuming potential bidder n0 is driven down to indi¤erence over participating

before ' reaches b'.
I know of no assumption on the primitives of the model guaranteeing this will always be the case

(this is why the results above in this appendix are stated with such speci�c conditions). In general,

little is known about the behavior of auction mechanisms above b'. Revenue need not be monotonic
in ' above b', nor need w be monotonic. It is the case that, for (m;'0; 0) 2M=, revenue approaches

R (m;'0; 0) from below as ' approaches '0 from below. Also, (m;'; 0) 2Mkn0k ) 9'0j (m;'0; 0) 2

M= \Mkn0k. However, '
0 > b' will mean multiple local maxima of revenue in ' for given m, across

the set of ' for which an equilibrium with n0 participants is selectable. In the presence of such

multiple local maxima, I know of no argument from primitives that implies the global maximum

revenue must lie in M=. Should it not, in essence the theory of auctions with an exogenous number

of bidders applies.

Several seminar attendees have insistently pursued the following assertion: a seller who (some-

how) had a choice between selling via an auction following the �sequential symmetric� entry of

this Appendix and via an auction following the �simultaneous symmetric�entry in the main text

above would always prefer the former. I �rst provide a counterexample, and then discuss why the

assertion appears to be so appealing.

Example: Let there be N = 2 potential bidders for a common-value asset: v (T;Xi) = T .

Denote M = (m; 0; 0), a second-price auction. Fix �; then E [T ] and R
�
M; 2

�
are �xed. Then

choosing information-acquisition cost c =
�
E [T ]�R

�
M; 2

��
=2 and bid preparation cost b = 0

yields an environment for which M is an optimal auction in the sequential entry model, if the

equilibrium is selected in which the second potential bidder is indi¤erent over participating but
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participates with probability 1. The expected revenue attained is R
�
M; 2

�
. In the simultaneous

entry model, �
�
M
�
= 1 and R

�
M
�
= R

�
M; 2

�
. However, by Proposition 2, an increase in ' from

0 to d' increases revenue, to a level unattainable in the sequential entry model.

The assertion pays attention to an obvious detriment in the main model, the probability

(1� �)N that no potential bidder participates, and thus no gains from trade occur. It neglects a

more subtle advantage: for optimal mechanisms, the probability that a participant faces a smaller-

than-average number of rival participants is far larger than (1� �)N . In the example, a potential

bidder making a sequential participation decision knows for sure that he faces one rival bidder, and

is indi¤erent over participating when ' = 0; an entry fee of d' > 0 will lead to his nonparticipation

and a plunge in revenue (to d'). However, a potential bidder making a simultaneous participation

decision will face one rival bidder with probability �� slightly less than 1. If he faces one rival

bidder, his net expected pro�tability is �d'. Countering this loss is the (1� ��) probability that

he faces no opposition and obtains the asset for a price of d'. The seller gains because the resource

costs have been reduced from 2c to 2��c, and in each case there is a participant who is indi¤erent.

For those auction forms where the relationship between a bidder�s expected pro�tability and an

exogenously speci�ed number of bidders is known, this relationship is strictly convex. Hence, a seller

can sometimes attain a sizable �, even though the mechanism is strongly surplus-extractive, because

a bidder is weighing in the chances of being the only participant or one of very few participants.

With �sequential symmetric�entry, an optimal auction never faces a participant with fewer than

ne (M)� 1 rival participants. On average, the seller may be able to gain from this di¤erence.

12 Appendix C: Proofs

Proof of Theorem 2: For the proof, shorten � (M) to �, � (M;�; n) to �, �a (M;�; n) to �a,

�a (M;�; n) to �a, � (n;N; �) to �n, and � (n� 1; N � 1; �) to �n�1. Begin by harmlessly con-

ditioning the price on the common trend, and then adding 0 in useful forms at two locations in
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(2):

R (M) = (srE� fE� [p (M;a; �; n; �) jT ]g+ a')

=
X
n

(X
a

(srE� fE� [p (�)� V (�)� ab+ V (�) + abjT ]g+ a')
�
n

a

�
�a � cn+ cn

)
�n

=
X
n

(
srE� [V (�)]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE� fE� [p (�)� V (�) jT ]g+ a ['+ b])
�
n

a

�
�a + cn

)
�n

=
X
n

(
srE� [V (�)]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE� fE� [p (�) jT ]� V (�)g+ a ['+ b])
n

a

�
n� 1
a� 1

�
�a�+ cn

)
�n;

where the last equality uses the Bayes�formulas [(7) or (8)].

R (M)

=
X
n

(
srE� [V (�)]� b

X
a

a

�
n

a

�
�a (M;�; n)� cn

)
�n

+
X
n

(X
a

(srE� fE� [p (�) jT ]� V (�)g+ ['+ b])
�
n� 1
a� 1

�
�a�+ c

)
n�n

P
i i� (i;N; �)P
i i� (i;N; �)

= T (M)� ba (M)� cn (M)

+

"X
n

(
�
X
a

(srE� fE� [p (�) jT ]� V (�)g+ ['+ b])
�
n� 1
a� 1

�
�a + c

)
�n�1

#
N�;

where the �rst equality sorts n out of
P
a and multiplies by 1 in a useful form, and the �nal equality

simpli�es the numerator and combines the denominator with n�n. The term in large [�] is 0 by

(13).

Proof of Theorem 3: Setting ' = supB v (T;X) generates � = 0; ' = �c�b generates � = 1.

Interim expected pro�tability �
�
M'; n;  ; x

�
is degenerate in ', so the mapping ' 7! �K

�
M'; n; '

�
[(6)] is continuous. Smoothness of B1 (from A.1) implies that �K

�
M'; n

�
and �K

�
M'; a; n

�
are

continuous in '. Since, for m, the price function p (�) is degenerate in ', it follows that the �
�
M'

�
function implicitly de�ned in (13) is continuous in '. The Intermediate Value Theorem yields the

conclusion.

Proof of Corollary 2: Consider any M = (m;'; r) such that � (M) = b� 2 (0; 1), with r
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nontrivial. By Theorem 3, there exists M b' = (m; b'; 0) so that � �M b'� = b�. Expected revenue,
R (M), with r nontrivial, is

X
n

"X
a

(E� fV [M;� (M) ; n; '; T ]g � ab)
�
s (M;a; b�; n)�n

a

�
�a (M;�; n)

�#
�n � cb�N

<
X
n

"X
a

(E� fV [M;� (M) ; n; '; T ]g � ab)
�
s
�
M b'; a; b�; n��n

a

�
�a
�
M b'; �; n��

#
�n � cb�N ,(16)

which is R
�
M b'�. Naturally, the probability that a given participant pays the reserve price is strictly

less than the probability that he wins, while the probability that he pays the entry fee is strictly

greater than the probability that he wins. Hence, with both mechanisms attaining participation

probability b�, b' < '+ r. The inequality then results from the terms in f�g on the left-hand side of

(16) summing to less than the corresponding terms on the right-hand side (as terms corresponding

to the cases where no participant is willing to pay the reserve price are zero on the left-hand side,

but positive on the right, while the aggregate expected pro�t of participants is the same).

Proof of Proposition 1: [i ]: The same � implies that (r.h.s.) of (13), which is monotone,

attains the same value. Now reversing the substitutions used in the proof of Theorem 2 demon-

strates revenue equality. [ii ]: f� (M) = � (M 0)g ) fn (M) = n (M 0)g, so [ii ] follows from [i ]. [iii ]:

The proof for the equality has already been shown. Suppose R (M;n) > R (M 0; n) 8n 2 N. From

(2), 8n 2 N,

X
a

(E� fE� [p (M; �) jT ]g+ a ['+ b])
�
n

a

�
�a (M;� (M) ; n)

>
X
a

�
E�
�
E�
�
p
�
M 0; �

�
jT
�	
+ a

�
'0 + b

���n
a

�
�a
�
M 0; �

�
M 0� ; n�

implies, using Bayes�formula as in the previous proof:

X
n

�n�1

(
�
�
M 0; �0; n

�X
a

�
1

a
E�
�
T � E�

�
p
�
M 0; �

�
jT
�	
� '0 � b

��
n� 1
a� 1

�
�a
�
M 0; �

�
M 0� ; n�) > c,

implying � (M) < � (M 0). The reverse inequality is identical.
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