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1 Introduction

Suppose that the observations y1, · · · , yn, are generated by the autoregressive moving
average (ARMA) model with errors generated by the generalized autoregressive

conditional heteroscedasticity (GARCH) process:

yt =
pX
i=1

ϕ0iyt−i +
qX
i=1

ψ0iεt−i + εt,(1.1)

εt = ηt
q
ht, ht = α00 +

rX
i=1

u0iε
2
t−i +

sX
i=1

v0iht−i,(1.2)

where ηt is a sequence of independent and identically distributed (i.i.d.) random

variables, with mean zero, variance one and a common density f ; and α00 >

0, u01, · · · , u0r, v01, · · · , v0s ≥ 0. Models (1.1)-(1.2) is called the nonstationary

ARMA-GARCH model if the characteristic polynomial ϕ0(z) = 1−Pp
i=1 ϕ0iz

i has

one unit root taking the value +1, with the remaining roots lying outside the unit

circle.

In the traditional ARMA model, the errors εt are assumed to be i.i.d.. Common

time series practice has provided substantial evidence that these assumptions are

usually inadequate. For example, the conditional variance of the errors may contain

much useful information. Engle (1982) proposed the autoregressive conditional het-

eroscedasticity (ARCH) model, that is, model (1.2) with s = 0, which can capture

such information. Subsequently, Bollerslev (1986) generalised the ARCH model to

the popular GARCH model (1.2). This is a very important class of time series mod-

els and has been widely investigated and applied in the finance and econometric

literature (see the surveys by Bollerslev, Engle and Nelson (1994), and Li, Ling and

McAleer (1999)). For ARCH-type time series, there are already some theoretical

results for the quasi−maximum likelihood estimator (QMLE) in Weiss (1986) and

Ling and Li (1997, 1998). However, when ηt is not normal, the QMLE is not efficient.

For various models with i.i.d. non-normal errors, much effort has been expended

in obtaining efficient estimators. Such efficiency can usually be achieved by adap-
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tive estimation. A comprehensive account of the theory and method can be found in

Bickel (1982) and Bickel, Klaassen, Ritov and Wellner (1993) (henceforth BKRW),

with a valuable survey in Robinson (1988). In the time series context, Kreiss (1987a)

investigated the stationary ARMA model, and proved the locally asymptotic nor-

mality (LAN) of the model and constructed adaptive estimators. Unlike Bickel

(1982), Kreiss’ adaptive procedure uses full samples without splitting and hence is

quite useful in practical applications (see also Kreiss (1987b)). Koul and Schick

(1997) developed a general theoretical framework for nonlinear AR models with

i.i.d. errors, clearly discussed the efficiency and adaptivity, and especially showed

that Stein’s necessary condition can be satisfied in some models with asymmetric

errors. They also investigated several methods of constructing efficient estimators.

Recently, several authors have examined efficient estimation for ARCH-type time

series. Engle and Gonzȧlez-Rivera (1991) proposed a semiparametric estimator for

models (1.1)-(1.2) without a unit root and argued, through simulation, that the semi-

parametric approach does not seem to capture the total potential gain in efficiency.

Linton (1993) considered adaptive estimation for the fixed design regression with

ARCH errors. Koul and Schick (1996) investigated adaptive estimation for a ran-

dom coefficient AR model, which is an ARCH-type time series model. Jeganathan

(1995) and Drost, Klaassen and Werker (1997) (henceforth DKW) developed general

frameworks suitable for stationary ARCH-type times series. However, apart from

the simple ARCH model in DKW (1997) and the GARCH (1,1) model in Drost and

Klaassen (1997), these conditions have not been established for the general-order

GARCH model or the stationary ARMA-GARCH model. As Drost and Klaassen

(1997) argued, greater technical details may be required for more general cases.

These general stationary GARCH and ARMA-GARCH models are included in this

paper as special cases.

The above authors considered only stationary time series. There is a growing in-

terest in efficient estimation for nonstationary time series (see, for example, Koul and
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Pflug (1990), Philips (1991), and Elliott, Rothenberg and Stock (1996)). Jeganathan

(1995) developed a general framework for nonstationary time series models, specif-

ically, a complete optimal inference procedure for nonstationary time series with

i.i.d. errors.

In this paper, we discuss adaptive estimation for the nonstationary ARMA-

GARCH models (1.1)-(1.2), where we allow the ARMA model to have at most one

unit root. We generalise the frameworks in Jeganathan (1995), DKW (1997) and

Koul and Schick (1997). Under this framework, the locally asymptotic quadratic

(LAQ) form of the log-likelihood ratio for the model is obtained. It is shown that

the limit experiment is neither LAN nor locally asymptotic mixed normal (LAMN),

but is instead the locally asymptotically Brownian functional (LABF) defined in

Jeganathan (1995). The adaptivity is discussed and it is found that the parameters

in the model are generally not adaptively estimable if the density f is asymmetric.

For the nonstationary ARMA-GARCH model, the efficient estimator defined in

Fabian and Hannan (1982) is inappropriate. We define efficient estimators in a class

of Mν-estimators and present a new efficiency criterion for the model with symmetric

density f . It is shown that such efficient estimators can be constructed when f

is known. Using the kernel estimator for the score function, adaptive estimators

are constructed for the model with unknown symmetric density f . It is shown

that these estimators are asymptotically efficient in the class of Mν-estimators. In

DKW (1997), the split sample method proposed by Schick (1986) is used for all

the adaptively estimable parameters. In contrast, our adaptive estimation of the

parameters in the ARMA part uses the full sample without splitting and hence may

be more useful in practice. The full sample adaptive procedure can be seen as an

extension of the method in Kreiss (1987a). However, since the ARMA model is

nonstationary and the error is not i.i.d., his proof cannot easily be extended to the

current situation.

Our adaptive estimation for the ARMA part depends heavily on the symme-

3



try assumption. Without this assumption, some different methods of constructing

adaptive estimates were given in Kreiss (1987b), DKW (1997) and Koul and Schick

(1997) for the stationary ARMA model with i.i.d. errors. The research in this

paper can be considered as a first step in exploring optimal inference problems in

nonstationary time series with ARCH errors. Along this route, similar theories and

methods can be developed for the nonstationary ARMA model with alternative

ARCH-type errors, such as E-GARCH and threshold ARCH, among many others.

Another important extension is towards cointegrating time series with multivariate

ARCH-type errors.

This paper proceeds as follows. Section 2 presents a general framework for the

LAQ. Section 3 obtains the LABF form of the log-likelihood ratio, and discusses

adaptivity and efficiency for the nonstationary ARMA-GARCH model. Section 4

develops the efficient and adaptive estimators. Sections 5-6 provide the proofs of

the main theorems.

Throughout this paper, we will use the following notation. B0 denotes the trans-

pose of the vector B; o(1) (O(1)) denotes a series of numbers converging to zero

(being bounded); oλ(1) (Oλ(1)) denotes a series of random numbers converging to

zero (being bounded) in Pλ,f− probability; Pλ,f and Eλ0 are abbreviated as Pλ and

E, respectively; || · || denotes the Euclidean norm; and −→L denotes convergence in

distribution.

2 A General LAQ Criterion

In this section, we present a general LAQ criterion which is a generalization of

the criteria in Jeganathan (1995), DKW (1997) and Koul and Schick (1997). Our

discussion follows the fashion of Koul and Schick (1997).

Let D be a class of Lebesgue densities, Θ be an open subset of the k−dimensional
real space Rk, and B = {Pλ,χ : (λ,χ) ∈ Θ×D} be a family of probability measures,
y1, y2, · · · , yn be observable random variables, Y0 be a p0 × 1 initial (unobservable)
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vector, and Zt−1(λ) = Zt−1(Ȳt−1,λ) and ht(λ) = ht(Ȳt−1,λ) be measurable functions

of the variables Ȳt−1 and λ, where Ȳt = (Y0, y1, · · · , yt) and λ ∈ Θ. Suppose that,

under Pλ,χ, Y0 has a Lebesgue density qλ,χ and the time series yt have the following

structure:

ηt(λ) = [yt − Zt−1(λ)]/
q
ht(λ), t = 1, 2, · · · ,(2.1)

where the rescaled errors η1(λ), η2(λ), · · · are i.i.d. with density χ ∈ D and inde-

pendent of Y0, and the true parameter is (λ0, f).

For the nonstationary AR model with i.i.d errors, the LAQ form of the log-

likelihood ratio (LR) was given in Jeganathan (1995). However, he did not accom-

modate the perturbation of the unknown density and whether or not the parameters

in the nonstationary ARmodel are adaptively estimable. By parameterizing the den-

sity, Koul and Schick (1996, 1997) gave some clear explanations as to the adaptivity

of the parameters in the random AR and nonlinear AR models. This technique

requiring the parameterization of densities is discussed carefully in BKRW (1993).

As in Koul and Schick (1996, 1997), we introduce the following definition.

Definition 2.1. Let c→ fc be a map from a neighbourhood ∆ of the origin in Rl

into D such that f0 = f . We say that c→ fc is a regular path if there exists a mea-

surable function ζ from R to Rl such that
R ||ζ(x)||2f(x)dx <∞, R ζ(x)ζ 0(x)f(x)dx

is nonsingular, and

Z ·q
fc(x)−

q
f(x)− 1

2
c0ζ(x)

q
f(x)

¸2

dx = o(||c||2).

Let P cλ,n be the restriction of Pλ,fc to Fn, a σ−field generated by {Y0, y1, · · · , yn}.
Denote P 0

λ,n by Pλ,n. Define Λn(λ1,λ2, c) as the log-LR of P
c
λ2,n

to Pλ1,n:

Λn(λ1,λ2, c) = 2
nX
t=1

"
log

sc,t(λ2)

st(λ1)

#
+ log

qλ2,fc(Y0)

qλ1,f(Y0)
,

where sc,t(λ) =
q
fc(ηt(λ))/

4

q
ht(λ) and st(λ) = s0,t(λ). The following assumption

ensures that the Fisher information is finite for both scale and location parameters.
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Assumption 2.1. The density f is absolutely continuous with a.e.-derivative

f 0 and

I1(f) =
Z

ξ2
1(x)f(x)dx <∞ and I2(f) =

Z
ξ2

2(x)f(x)dx <∞,

where ξ1(x) = f
0(x)/f(x) and ξ2(x) = 1 + xξ1(x).

Denote gt(λ) = (εt(λ),
q
ht(λ)), where εt(λ) = yt−Zt−1(λ). Let Gn be a sequence

of diagonal non-random k×k matrices depending on n but independent of λ and χ,

θn and ϑn be two bounded sequences in R
k, λn = λ0+G

−1
n θn and λ̃n = λn+G

−1
n ϑn,

andXt(λ) = h
−1/2
t (λ)Ut(λ), where Ut(λ) = (uijt(Ȳt−1,λ))k×2 and uijt is a measurable

function from Rp0+t−1 ×Θ to R. Furthermore, let

Wn(λ) = G
−1
n

nX
t=1

Xt(λ)ξ(ηt(λ)), Wζn(λ) =
1√
n

nX
t=1

ζ(ηt(λ)),

Sn(λ) = G
−1
n

nX
t=1

Xt(λ)JX
0
t(λ)G

−1
n , Sζn(λ) =

G−1
n√
n

nX
t=1

Xt(λ),

W̃n(λ) =

Ã
Wn(λ)
Wζn(λ)

!
, S̃n(λ) =

Ã
Sn(λ) Sζn(λ)V

0
ξζ

VξζS
0
ζn(λ) V

!
,

where ξ = (ξ1,−ξ2)
0, J = E[ξ(ηt)ξ

0(ηt)], Vξζ = E[ξ(ηt)ζ
0(ηt)]0 and V = E[ζ(ηt)

ζ 0(ηt)]. We make the following assumptions.

Assumption 2.2. For any sequences θn and ϑn, it follows that:

(i)
·
inf

1≤t≤n

q
ht(λn)

¸−1

= Oλn(1),

(ii)
nX
t=1

h
gt(λ̃n)− gt(λn)− (λ̃n − λn)

0Ut(λn)
i2
= oλn(1),

(iii) sup
1≤t≤n

°°°G−1
n Ut(λn)

°°°2
= oλn(1),

(iv)
nX
t=1

°°°G−1
n Ut(λn)

°°°2
= Oλn(1).

Assumption 2.3.
R |qλ,fc(x) − qλ0,f(x)|dx = o(1) as ||λ − λ0|| = o(1) and

||c|| = o(1), where fc(x) is defined as in Definition 2.1.
Now, we give the general LAQ criterion and its proof can be found in Appendix.

Theorem 2.1. Suppose that the path c → fc is regular and that Assumptions

2.1-2.3 hold. Let un = (ϑ
0
n, v

0
n)
0 and vn be a bounded sequence in Rl. Then:
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(a) Λn(λn, λ̃n, vn/
√
n) = u0nW̃n(λn)− u0nS̃n(λn)un/2 + oλn(1),

(b) Pλ0,n and Pλn,n are contiguous,

(c) S̃n(λn) = S̃n(λ0) + oλ0(1) and W̃n(λn) = W̃n(λ0)− S̃n(λ0)
³ θn
0

´
+ oλ0(1).

Remark 2.1. If the LAQ of Λn(λn, λ̃n, vn/
√
n) is LAN, LAMN or LABF, then

(b) automatically holds (see Kallianpur 1980, Ch. 7, and Jeganathan 1995, p. 850).

In this case, it is sufficient to verify Assumption 2.2 with λn = λ0 and that

nX
t=1

°°°G−1
n [Ut(λn)− Ut(λ0)]

°°°2
= oλ0(1).(2.2)

Assumption 2.3 means that the starting conditions have a negligible effect. If Y0

is assumed to be independent of (λ,χ), as in the next section, then this assump-

tion holds. Koul and Schick (1997) discussed this assumption carefully for some

stationary nonlinear AR models.

Remark 2.2. When the LAQ is LAN or LAMN, the error model D has a

two-dimensional least favorable path: ξ∗(x) = −ξ(x) + VξζV −1ζ(x) with ζ(x) =

(x, x2 − 1)0. Along this path, one can obtain the optimal estimates and discuss the
efficiency and adaptivity. For the stationary nonlinear AR model, Koul and Schick

(1997) showed that the LAQ is LAN, and especially, they found a one-dimensional

least favourable path and generalized the criterion of efficiency in Fabian and Hannan

(1982) and Schick (1988). When the LAQ is LABF, as in the next section, under

which sense the path is least favorable and the estimator is efficient need to be

defined. After defined efficiency, the efficient estimator can be constructed by the

split-sample method similarly as in DKW (1997) and Koul and Schick (1997). For

models (1.1)-(1.2), the efficiency and adaptivity will be discussed in the next section.

3 The LABF, Adaptivity and Efficiency for Non-

stationary ARMA-GARCH Model

First, it is necessary to isolate the unit root in model (1.1). Note that ϕ0(z) can

be decomposed as (1− z)φ0(z), where φ0(z) = 1−Pp−1
i=1 φ0iz

i. Let wt = (1−B)yt,
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where B is the backshift operator. Model (1.1) can be rewritten as

yt = γ0yt−1 + wt, wt =
p−1X
i=1

φ0iwt−i +
qX
i=1

ψ0iεt−i + εt,

where γ0 = 1. In (1.2), we assume that the variance of ηt is one. In this case, all the

parameters in (1.2) can be estimated by the QMLE method, as in Ling and Li (1998).

However, the parameters in (1.2) are not adaptively estimable (see the discussion

below). As in Drost and Klaassen (1997), model (1.2) needs to be reparameterized.

Thus, we assume that, under Pλ,χ, yt, t = 1, · · · , n, satisfy the following structure:

wt(λ) = yt − γyt−1, εt(λ) = wt(λ)−
p−1X
i=1

φiwt−i(λ)−
qX
i=1

ψiεt−i(λ),(3.1)

ηt(λ) = εt(λ)/
q
ht(λ), ht(λ) = α0

h
1 +

rX
i=1

αiε
2
t−i(λ) +

sX
i=1

βiht−i(λ)
i
,(3.2)

with the initial (unobservable) vector Y0 = (y0, · · · , y1−p, ε0, · · · , ε1−q∗ , h0, · · · , h1−s)

and q∗ = max {r, q}, where the rescaled errors η1(λ), η2(λ), · · · are i.i.d. with density
χ ∈ D and independent of Y0, λ = (γ,m

0, δ̃0)0, m = (φ0,ψ0)0 with φ = (φ1, · · · ,φp−1)
0

and ψ = (ψ1, · · · ,ψq)0, δ̃ = (α0, δ
0)0 with δ = (α1, · · · ,αr, β1, · · · ,βs)0, and the true

parameter (λ0, f) ∈ Θ × D. We assume that, for simplicity, Y0 is a constant or

random vector independent of (λ,χ), and for each λ ∈ Θ, it follows that:

Assumption 3.1. All the roots of φ(z) = 1−Pp−1
i=1 φiz

i and ψ(z) = 1+
Pq
i=1 ψiz

i

are outside the unit circle, with φp−1 6= 0 and ψq 6= 0, and φ(z) and ψ(z) having no

common root.

Assumption 3.2. α0(
Pr
i=1 αi +

Ps
i=1 βi) < 1 with α0 ≥ a positive constant,

αi > 0 and βi > 0, and α0
Pr
i=1 αiz

i and 1− α0
Ps
i=1 βiz

i having no common root.

Assumption 3.3. ρ [Eλ(At(λ)⊗At(λ))] < 1, where ⊗ denotes the Kronecker
product, ρ(B) = max{|x| : x is an eigenvalue of B} for some matrix B, Eλ denotes

the expectation under Pλ,f , and

At(λ) =


α0α1η

2
t (λ) · · · α0αr η

2
t (λ) α0β1 η

2
t (λ) · · · α0βsη

2
t (λ)

Ir−1 O(r−1)×1 O(r−1)×s

α0α1 · · · α0αr α0β1 · · · α0βs
O(s−1)×r Is−1 O(s−1)×1

 ,
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in which Ii is the i× i identity matrix and Oi×j denotes the i× j zero matrix.
Remark 3.1. Assumption 3.1 is the usual second-order stationary condition of

the process {wt} in model (3.1). Assumptions 3.2 and 3.3 are the necessary and
sufficient conditions, respectively, for the finite second- and fourth-order moments

of model (3.2) (see Ling and Li (1997), Ling (1999), and Ling and McAleer (2000)).

Assumption 3.2 is not a necessary condition for strict stationarity of model (3.2),

see Nelson (1990).

To state our main result in this section, we need the following notation:

φ−1(z)ψ(z) =
∞X
i=0

υφψ(i)z
i, ψ−1(z)φ(z) =

∞X
i=0

υψφ(i)z
i, ψ−1(z) =

∞X
i=0

υψ(i)z
i,

(1− α0

sX
i=1

βiz
i)−1 =

∞X
i=0

υβ(i)z
i, (1− α0

sX
i=1

βiz
i)−1(α0

rX
i=1

αiz
i) =

∞X
i=1

υαβ(i)z
i,

where υφ0ψ0(i) and υφnψn(i) denote υφψ(i) with λ = λ0 and λn, respectively. Simi-

larly, define υψ0φ0(i), υψnφn(i), υψ0(i), υψn(i), υβ0(i), υβn(i), υα0β0(i) and υαnβn(i).

Let (w0
t , ε

0
t , h

0
t ) be unobservable processes generated by the following equations:

w0
t =

p−1X
i=1

φ0iw
0
t−i +

qX
i=1

ψ0iε
0
t−1 + ε0

t ,

ε0
t = ηt

q
h0
t , h

0
t = α00(1 +

rX
i=1

α0iε
02
t−i +

sX
i=1

β0ih
0
t−i),

where t = 0,±1,±2, · · ·. Then (w0
t , ε

0
t , h

0
t ) is a fixed function of the {ηt}. We define:

∂ε0
t

∂m
= −

∞X
i=0

υψ0(i)w̃
0
t−i−1,

∂h0
t

∂m
= 2

∞X
i=1

υα0β0(i)ε
0
t−i

∂ε0
t−i

∂m
,

∂h0
t

∂δ̃
=

∞X
i=0

υβ0(i)(u
0
0t−i, ε̃

00
t−i−1)

0, ε̃0
t = α00(ε

02
t , · · · , ε02

t−r+1, h
0
t , · · · , h0

t−s+1)
0,

where w̃0
t = (w

0
t , · · · , w0

t−p+2, ε
0
t , · · · , ε0

t−q+1)
0 and u0

0t = 1+
Pr
i=1 α0iε

02
t−i+

Ps
i=1 β0ih

0
t−i.

Using the same notation as those in Section 2 with Ut = [∂εt(λ)/∂λ, (∂ht(λ)/∂λ)/

2
q
ht(λ)], k = p+ q+ r+ s+1 and Gn = diag(n,

√
nIk−1), our theorem is as follows.

Theorem 3.1. Suppose that Assumptions 2.1 and 3.1-3.3 hold and the map

c → fc is a regular path such that Ω̃ below is positive definite. Let un = (ϑ0n, v
0
n)
0

and vn be a bounded sequence in R
l. Then: (a) the conclusions of Theorem 2.1 hold,
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and (b) the matrix S̃ below is almost surely positive definite and, under Pλ0,

(W̃n, S̃n)(λ0) −→L (W̃ , S̃) =
h Z 1

0
M(τ)dB(τ),

Z 1

0
M(τ)ΣM 0(τ)dτ

i
,

where κ = [1− φ0(1)]
−1 ψ0(1), M(τ) = diag(κω1(τ), Ik−1, Il), B(τ) = (κω2, N

0
mδ̃
,

N 0
ζ)
0(τ), (ω1, ω2, N

0
mδ̃
, N 0

ζ)
0(τ) is a k + l + 1−dimensional Brownian motion with

mean zero and covariance τ Ω̃,

Ω̃ =

Ã
Ω C
C 0 V

!
, Ω = E

Ã
h02
t ξ0(ηt)X00

t ε
0
t

X0
t ξ(ηt)ε

0
t X0

t JX
00
t

!
, Σ = E

Ã
X0
t JX

00
t X0

t V
0
ξζ

VξζX
00
t V

!
,

C = E[ζ(ηt)ε
0
t , VξζX

00
t ]
0, X0

t = (u
00
γt, u

00
mt, u

00
δ̃t
)0, u0

γt = −(h0−1/2
t ,

P∞
i=1 υα0β0(i) ε

0
t−i/h

0
t ),

u0
mt = (h

0−1/2
t ∂ε0

t/∂m, (2h
0
t )
−1∂h0

t/∂m), and u
0
δt = (0, (2h

0
t )
−1∂h0

t/∂δ̃).

Remark 3.2. From the above theorem, we see that the LAQ form of the log-

LR Λn(λn, λ̃n, v/
√
n) is neither LAN nor LAMN, but is instead LABF. The score

function and information matrix of the unit root may be correlated with those of

the other parameters in the stationary mean part and the GARCH part. This

phenomenon is new in the literature and results in the complicated limiting dis-

tribution (W̃ , S̃). Using Assumptions 3.1-3.3, we can show that Ω > 0, as in

Weiss (1986) and Ling and Li (1997). Furthermore, for Ω̃ > 0, one of the suffi-

cient conditions is E(<t<0t) > 0 with <t = [ηt, ξ
0(ηt), ζ 0(ηt)]0. However, this con-

dition excludes the normal density. If we further assume that the path satisfies:

limc→0

R
(1+x4)fc(x)dx =

R
(1+x4)f(x)dx, then some two-dimensional regular paths

such that Ω̃ > 0 can be constructed. Since the argument becomes more involved,

we refer to Koul and Schick (1996, 1997) for the one-dimensional regular paths.

Remark 3.3. When D includes only densities that are symmetric about zero,

the limiting distribution in Theorem 3.1 (b) can be simplified as follows:

(W̃ , S̃) =


κ
R 1

0 ω1(τ)dω2(τ) κ2Ωγ

R 1
0 ω2

1(τ)dτ 0 0 0
N1 0 Ωm 0 0
N2 0 0 Ωδ̃ V 0̃

δζ

Nζ 0 0 Vδ̃ζ V

 ,
where (ω1,ω2)(τ) is a bivariate Brownian motion with mean zero and covariance

τΩ1 = τ

Ã
Eh0

t 1
1 Ωγ

!
; N1 and

Ã
N2

Nζ

!
are (p + q − 1)− and (r + s + 1 + l)−

10



normal vectors with mean zero and covariances Ωm and

Ã
Ωδ̃ V 0̃

δζ

Vδ̃ζ V

!
, respectively,

and independent of (ω1,ω2)(τ); and Ωγ = E(u0
γtJu

00
γt), Ωm = E(u0

mtJu
00
mt), Ωδ̃ =

E(u0
δ̃t
Ju00

δ̃t
) with J = diag(I1(f), I2(f)), and V

0̃
δζ
= Eu0

δ̃t
V 0ξζ . In this case, the LR is

the product of a LABF and a LAN (a special LABF). If we assume that the unit

root in (1.1) is known and not estimated, then from Theorem 3.1, we see that models

(3.1)-(3.2) belong to the LAN family. Using slightly stronger conditions, this result

is a generalization of Drost and Klaassen (1997) and DKW (1997) for stationary

ARCH-type time series.

The LABF in Theorem 3.1 can assist in understanding the adaptivity of para-

metric estimation for models (3.1)-(3.2). In LAN models, various definitions based

on the locally asymptotic minimax risk for adaptivity were given in Bickel (1982),

Fabian and Hannan (1982), and Koul and Schick (1997), among others. Roughly

speaking, these definitions are equivalent to saying that a sequence of adaptive esti-

mates has the same asymptotic information matrix as the estimates in the case with

known density. The information matrix can completely explain the perturbation of

the unknown density to the score function in LAN and LAMN models. However,

in the LABF model, the information matrix does not have this advantage. This

motivates us to define adaptivity directly by the asymptotic distribution.

In the following definition, we suppose that Assumptions in Theorem 3.1 hold

and the ν : Θ → Rk1, k1 ≤ k, has a total differential ν̇(λ), a k1 × k matrix, such
that there is a k1 × k1 matrix G

∗
n satisfying G

∗
nν̇(λ0)G

−1
n = ν̇(λ0). ν(λ), ν(λ0) and

ν̇(λ0) are abbreviated as ν, ν0 and ν̇0, respectively.

Definition 3.1. Let ν̂n be a sequence of estimates of ν0 and Q be the set of all

regular paths c→ fc such that [(ν̂n − ν0)
0G∗

0
n ,
√
nc0n]

0 = diag(ν̇0, Il)S̃
−1
n (λ0)W̃n(λ0) +

oλ0(1). ν̂n is called adaptive or, precisely, (Q, D)−adaptive if, for every path in Q,

G∗n(ν̂n − ν0) −→L ν̇0S
−1W under Pλ0,

where (W,S) is the k × (k + 1) upper left corner of (W̃ , S̃).

11



This definition stresses only the fact that the estimator of ν0 without the knowl-

edge of the true density can achieve the same asymptotic distribution as its estimator

when f is known. In this sense, the adaptive estimates have the same asymptotic

distribution as the MLE, if the latter is available. The optimality of adaptive esti-

mates will be discussed later. By Theorem 3.1, the necessary and sufficient condition

for λ̂n, i.e. ν̂n with ν = λ, to be adaptive is C = 0 for each path in Q.
When f is asymmetric, λ̂n is not (Q, D2)− adaptive, where D2 denotes the

set of all densities that have zero means and finite variances. In fact, let l∗(x) =

ξ2(x) + 2(x
2− 1)/(u4− 1) with u4 = Eη

4
t , and fc = fΨ(cl

∗)/
R
Ψ[cl∗(x)]f(x)dx with

Ψ(y) = 2(1+ e−2y)−1. It is easy to show that the map c→ fc is a regular path from

(−ε, ε) to D2, with ζ = l∗ and ε sufficiently small. Since E[(η2
t − 1)ξ2(ηt)] = −2, it

can be shown that E[ζt(ηt)ξ2(ηt)] = I2(f)− 4/(u4− 1) > 0 and E(<t<0t) > 0. Along
this path, C 6= 0 and hence our claim holds.

When D includes only densities that are symmetric about zero, from Remark

3.3, we can show that γ̂n and m̂n are adaptive. However, δ̃0 is not adaptively

estimable in terms of (Q,D) as Vδ̃ζ 6= 0 along the same path as for the above

case with asymmetric densities. Similarly, we can show that α00 is not adaptively

estimable. After projecting the score functions for δ̃ and c into that for α0, we have
√
n(δ̂n − δ0) = S

−1
δn (λ0)Wδn(λ0) + oλ0(1)→L N(0,Ω−1

δ ) under Pλ0 , where

Wδn(λ) = − 1

2
√
n

nX
t=1

h
l̇δt(λ)− µ̂δ(λ)

i
ξ2(ηt(λ)),

Sδn(λ) =
1

4n

n nX
t=1

l̇δt(λ)l̇
0
δt(λ)− [

nX
t=1

l̇δt(λ)][
nX
t=1

l̇0δt(λ)]
o
I2(f),

and Ωδ = [E(l̇0δtl̇
00
δt) − E(l̇0δt)E(l̇00δt)]I2(f)/4, with l̇δt(λ) = h−1

t (λ)∂ht(λ)/∂δ, l̇
0
δt =

h0−1
t ∂h0

t/∂δ, and µ̂δ(λ) = n
−1 Pn

t=1[h
−1
t (λ)∂ht(λ)/∂δ]. That is, δ̂n is adaptive. Simi-

lar findings were given in DWK (1997) and Drost and Klaassen (1997) for the ARCH

(p) and GARCH (1,1) models, respectively. In addition, this indicates that the pa-

rameters in model (1.2) are not adaptively estimable if it is not reparameterised as

model (3.2).
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Basing on the above discussion, we are interested in the case with symmetric

density and make the following assumption:

Assumption 3.4. The density f is symmetric and D includes only densities

that are symmetric about zero.

The optimal properties of our adaptive estimator are as yet unknown. In LAN

models, Hȧjek (1972), Fabian and Hannan (1982) and Koul and Schick (1997) es-

tablished the precise notion of efficiency. Jeganathan (1995, Section 3) discussed the

efficiency of the estimators in LAMN models. However, the definition and discussion

they gave are inappropriate for the current case. As in Jeganathan (1995), in order

to obtain some useful optimality properties, we need to restrict the competing class

of estimators. We first define a class of estimators, namely Mν-estimators. Note

that our focus is on the symmetric density f , so that the corresponding restrictions

are made for the π−function in the following definition.
Definition 3.2. Let π(x) = [π1(x),π2(x)]

0 be a bivariate real function with odd

π1(x) and even π2(x), such that E [π(ηt)] = 0, E[π(ηt)π
0(ηt)] = diag(Iπ1, Iπ2) > 0,

c1 ≡ E [π1(ηt)ξ1(ηt)] > 0 and c2 ≡ E [π2(ηt)ξ2(ηt)] > 0. An estimator ν̄n of ν0 is

said to be an Mν−estimator, regardless of whether f is known or unknown, if it has
the asymptotic representation: G∗n(ν̄n − ν0) = ν̇0S

−1
Mn(λ0)WMn(λ0) + oλ0(1), where

WMn(λ) = G
−1
n

Pn
t=1Xt(λ)π(ηt(λ)) and SMn(λ) =

Pn
t=1G

−1
n Xt(λ)JcX

0
t(λ)G

−1
n with

Jc = diag(c1, c2).

Mν-estimation is a very wide class and includes the QMLE, adaptive estimation

and MLE (if available). Now, we define the optimality properties of Mν-estimators

and present an efficiency criterion for estimates in the class Mν below. Under

this criterion, the adaptive estimates ν̂n in Definition 3.1 are efficient inMν . In the

following definition, we suppose that Assumptions 2.1 and 3.1-3.4 hold, under which

every Mν-estimator has a limiting distribution under Pλ0 (see the proof of Theorem

3.2 in Section 5).

Definition 3.3. Let Mν be the set of all Mν -estimators. We say that ν̄n is

13



efficient if ν̄n ∈Mν with limiting distribution G under Pλ0, such that E [GG
0] is the

smallest covariance matrix of the limiting distributions of Mν-estimators inMν.

Theorem 3.2. Suppose that Assumptions 2.1 and 3.1-3.4 hold. If a sequence of

estimators ν̂n of ν0 has the following asymptotic representation:

G∗n(ν̂n − ν0) = ν̇0S
−1
n (λ0)Wn(λ0) + oλ0(1),

then the estimator ν̂n belongs toMν and is efficient.

4 Efficient and Adaptive Estimates

In order to construct the efficient estimator, we need to assume that a Gn- or G
∗
n-

consistent initial estimator is available. In fact, the QMLE in Ling and Li (1998) can

be taken as such an initial estimator. For technical reasons, we also need to restrict

the initial estimator to be discrete. The idea of discretization was first proposed

by LeCam (1960), and has become an important technical tool in the construction

of efficient estimators. Some further applications of the technique can be found

in Bickel (1982), Kreiss (1987a), Jeganathan (1995), and Koul and Schick (1997),

among others. We now provide the following definition and lemma.

Definition 4.1. A sequence of estimators {ν̄n} measurable in terms of Fn is
called discretized G∗n- consistent if, for any small ε > 0, there exists a constant ∆ > 0

and an integer K > 0 such that Pλ0(||G∗n(ν̄n−ν0)|| < ∆) > 1−ε uniformly in n and,

for each n, ν̄n takes on at most K different values in Θ∗n = {ν ∈ Rk1 : ||G∗n(ν− ν0)||
≤ ∆}.
Lemma 4.1. Assume Γn(ν), n = 1, 2, · · · , to be a sequence of random variables

which depends on ν ∈ Θ∗, an open subset in Rk1. If, for each sequence {νn} ∈
Θ∗ satisfying G∗n(νn − ν0) is bounded by a constant ∆ > 0, Γn(νn) = oλ0(1), then

Γn(ν̄n) = oλ0(1) for discretized G
∗
n-consistent estimators ν̄n.

The proof of this lemma is similar to Lemma 4.4 in Kreiss (1987a), and hence

is omitted. Based on the initial estimator, the efficient estimator can be obtained
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by a one-step Newton-Raphson iteration if the density f is known. This gives the

following theorem which comes directly from Theorem 2.1(c), Theorem 3.1(a) and

Lemma 4.1 with ν(λ) = λ.

Theorem 4.1. Suppose that λ̄n is a discretized Gn−consistent estimator, and
Assumptions 2.1 and 3.1-3.4 hold. Let

λ̃n = λ̄n +G
−1
n S

−1
n (λ̄n)Wn(λ̄n).

Then Gn(λ̃n−λ0) = S
−1
n (λ0)Wn(λ0)+oλ0(1), and hence λ̃n is an efficient estimator.

In practice, the density is usually unknown. In the following, we will construct an

adaptive estimator which does not depend on the density but has the same efficiency

as when the density is known. As in the discussion in Section 3, only the parameters

γ0, m0 and δ0 are adaptively estimable. We merge α00 into f , which is equivalent to

assuming that ηt has a finite variance α00 and that the true parameter α00 in model

(3.2) is equal to 1. In the remainder of this section and Section 6, denote (γ,m0, δ0)0

by λ. Similarly, define λ0 and λ̂n. We introduce the notation:

Wγn(λ) =
1

n

nX
t=1

h 1q
ht(λ)

∂εt(λ)

∂γ
ξ1(ηt(λ))− 1

2ht(λ)

∂ht(λ)

∂γ
ξ2(ηt(λ))

i
,

Wmn(λ) =
1√
n

nX
t=1

h 1q
ht(λ)

∂εt(λ)

∂m
ξ1(ηt(λ))− 1

2ht(λ)

∂ht(λ)

∂m
ξ2(ηt(λ))

i
,

Sγn(λ) =
1

n2

nX
t=1

h 1

ht(λ)

³∂εt(λ)
∂γ

´2
I1(f) +

1

4h2
t (λ)

³∂ht(λ)
∂γ

´2
I2(f)

i
,

Smn(λ) =
1

n

nX
t=1

h 1

ht(λ)

∂εt(λ)

∂m

∂εt(λ)

∂m0 I1(f) +
1

4h2
t (λ)

∂ht(λ)

∂m

∂ht(λ)

∂m0 I2(f)
i
,

W1n(λ) =

 Wγn(λ)
Wmn(λ)
Wδn(λ)

 , S1n(λ) =

 Sγn(λ) 0 0
0 Smn(λ) 0
0 0 Sδn(λ)

 ,
where Wδn(λ) and Sδn(λ) are defined as in Section 3.

Now we construct adaptive estimators for λ0. As in Kreiss (1987a), we use the

usual kernel density estimator for ξ1(x). First, define

f̂a,j(x,λ) =
1

2(n− 1)
nX

i=1,i6=j
[g(x+ ηi(λ), a) + g(x− ηi(λ), a)] ,(4.1)
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where j = 1, · · · , n, g(x, a) = (2πa2)−1/2exp(−x2/2a2), x ∈ R,

ξ̂1n,j(x,λ) =


f̂ 0an,j(x,λ)

f̂an,j(x,λ)
if


f̂an,j(x,λ) ≥ dn,
|x| ≤ gn,
|f̂ 0an,j(x,λ)| ≤ cnf̂an,j(x,λ),

0 otherwise,

(4.2)

and ξ̂2n,j(x,λ) = xξ̂1n,j(x,λ) + 1, with an, cn, dn and gn satisfying:

Assumption 4.1. an, dn → 0; cn, gn → ∞; ancn → 0; n−1a−3
n c

2
ng

3
n → 0; and

n−1g4
n = O(1).

We also define Î1n(λ) and Î2n(λ), where

Î1n(λ) =
1

n

nX
t=1

ξ̂2
1n,t(ηt(λ),λ) and Î2n(λ) =

1

n

nX
t=1

h
ηt(λ)ξ̂1n,t(ηt(λ),λ) + 1

i2
.

Denote [Ŵγn(λ), Ŵ
0
mn(λ)] by [Wγn(λ),W

0
mn(λ)] with ξi(ηt(λ)) replaced by ξ̂in,t( ηt(λ),

λ), and diag[Ŝγn(λ), Ŝmn(λ)] by diag[Sγn(λ), Smn(λ)] with Ii(f) replaced by Îin(λ),

where i = 1, 2. Wγn(λ), Wmn(λ), Sγn(λ) and Smn(λ) are estimated by Ŵγn(λ),

Ŵmn(λ), Ŝγn(λ) and Ŝmn(λ), respectively.

To estimate the score function of δ, we need the split sample technique. This

technique was proposed by Schick (1986) and was also used by DKW (1997). Let

kn be an integer such that kn/n → τ ∈ (0, 1). Split the residual η1(λ), · · ·, ηn(λ)
into two parts, namely (η1(λ), · · ·, ηkn(λ)) and (ηkn+1(λ), · · ·, ηn(λ)). Denote

f̂
(1)
a,j (x,λ) =

1

2a(kn − 1)
knX

i=1,i6=j

h
K
³x+ ηi(λ)

a

´
+K

³x− ηi(λ)

a

´i
,

f̂
(2)
a,j (x,λ) =

1

2a(n− kn − 1)
nX

i=kn+1,i6=j

h
K
³x+ ηi(λ)

a

´
+K

³x− ηi(λ)

a

´i
,

where K(x) = e−x/(1 + e−x)2 is the logistic kernel. Define ξ̂(i)
2n,j(x,λ) = f̂

(i)0
a1n,j(x,λ)/

[bn + f̂
(i)
a1n,j(x,λ)], where i = 1, 2 and n

−1a−3
1n b

−1
n = o(1). Wδn(λ) is estimated by

Ŵδn(λ) = − 1

2
√
n

knX
t=1

h 1

ht(λ)

∂ht(λ)

∂δ
− µ̂δ(λ)

i
ξ̂

(2)
2n,t(ηt(λ),λ)

− 1

2
√
n

nX
t=kn+1

h 1

ht(λ)

∂ht(λ)

∂δ
− µ̂δ(λ)

i
ξ̂

(1)
2n,t(ηt(λ),λ),

where µ̂δ(λ) is defined as in Section 3.
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The main result in this section is the following theorem, which indicates that the

parameter λ0 is adaptively estimable.

Theorem 4.2. Suppose that λ̄n is a discretized Gn−consistent estimator, and
that Assumptions 2.1, 3.1-3.4 and 4.1 hold. Let

λ̂n = λ̄n +G
−1
n Ŝ

−1
1n (λ̄n)Ŵ1n(λ̄n).

Then Gn(λ̂n−λ0) = S
−1
1n (λ0)W1n(λ0)+oλ0(1), and hence λ̂n is an adaptive estimator,

where Gn = diag(n,
√
nIk−2), Ŵ1n(λ) = [Ŵγn(λ), Ŵ

0
mn(λ), Ŵ

0
δn(λ)]

0 and Ŝ1n(λ) =

diag[Ŝγn(λ), Ŝmn(λ), Ŝδn(λ)].

Remark 4.1. In Theorem 4.2, we use the full sample without splitting for

(γ0,m
0
0)
0. This method is different from that used in DKW (1997) and may be more

useful in practical applications, as in the simulation evidence in Koul and Schick

(1997). This method is also different from that in Koul and Schick (1997), where

they need to truncate the variable Ḣj. The adaptive estimate of δ0 is constructed by

the split sample method, because no symmetry can be used in the score function of

δ. If we make a suitable truncation to h−1
t (λ)∂ht(λ)/∂δ− µ̂δ, as in Koul and Schick

(1997, sections 5-6) and use the results in Schick (1987) and Schick and Susarla

(1988), it is possible to avoid splitting the sample.

Remark 4.2. Theorem 4.2 includes the new results that, by deleting the cor-

responding component for the unit root, the adaptive procedure above can be used

for the stationary ARMA-GARCH model, and that the adaptive estimators achieve

the smallest asymptotic covariance matrix in LAN models.

To see how well the adaptive estimator (AE) performs in finite samples com-

pared with the QMLE and LSE for both the nonstationary and stationary cases, we

simulate the following simple AR-GARCH model:

yt = γ0yt−1 + εt, εt = ηt
q
ht, ht = α00(1 + α0ε

2
t + β0ht−1),(4.3)

where ηt is i.i.d. with density f(x) = [0.5e
−(x−3)2/2/

√
2π + 0.5e−(x+3)2/2/

√
2π]/
√
10,

and α00 = 1. This density has been frequently used for investigating the finite-
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sample behaviours of adaptive estimates, as in Kreiss (1987a) and Shin and So

(1999). In the simulation, γ0 = −0.5, 0.5, and 0.8 for the stationary case, and 1.0 for
the nonstationary case; and (α0,β0) = (0.57, 0.02). We set cn = 5.0, dn = e

−225/3/6π,

and gn = 15. The sample size is n = 250, and 1000 replications are used. Since

the performance of the AE for (α0,β0) in finite samples has been investigated in

Drost and Klaasen (1997), we report here only the results for γ0 in Table 1. In this

table, the efficient estimator (EE) is constructed as in Theorem 4.1 and the QMLE

is described as in Ling and Li (1998). From these results, we can see that the AE

and EE are much more efficient than the LSE and QMLE, while the AE and EE are

very similar. Meanwhile, the biases of the AE and EE are generally smaller than

those of the LSE and QMLE, except when γ0 = 0.5.

TABLE 1

The Empirical Bias and Standard Deviation of LSE, QMLE, AE and EE
n=250, 1000 Replications, and the smoothing parameter an = 0.35

γ0 = −0.5 γ0 =0.5 γ0 =0.8 γ0 =1.0

Bias SD Bias SD Bias SD Bias SD

LSE .0088 .0640 −.0042 .0625 −.0079 .0444 .0075 .0151
QMLE .0043 .0403 −.0004 .0408 −.0036 .0289 .0046 .0100

AE −.0014 .0180 .0022 .0182 .0009 .0118 .0001 .0028
EE −.0005 .0175 .0018 .0184 .0001 .0117 −.0009 .0035

Remark 4.3. The adaptive estimator γ̂n of γ0 can be used to construct a unit

root test. From Theorems 3.1 (b) and 4.2, we have n(γ̂n−1) −→L
R 1

0 w1(τ)dw2(τ)/κ

Ωγ

R 1
0 w

2
1(τ)dτ . Let

B1(τ) =
1

σε
w1(τ) and B2(τ) = − 1

σ2
ε

vuut σ2ε

σ2
εΩγ − 1w1(τ) +

vuut σ2
ε

σ2
εΩγ − 1w2(τ),

where σ2
ε = Eε

02
t . Then B1(τ) and B2(τ) are two independent standard Brownian

motions. As shown in Ling and Li (1998), we can show that

n(γ̂n − 1) L−→
R 1

0 B1(τ)dB1(τ)

σ2
εΩγκ

R 1
0 B

2
1(τ)dτ

+

q
σ2
εΩγ − 1
σ2
εΩγκ

R 1
0 B1(τ)dB2(τ)R 1

0 B
2
1(τ)dτ

.(4.4)

The second term in (4.4) can be simplified to [
q
σ2
εΩγ − 1/(σ2

εΩγκ)] (
R 1

0 B
2
1(τ) dτ)

−1/2ξ,

where ξ is a standard normal random variable independent of
R 1

0 B
2
1(τ)dτ (see
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Phillips, 1989). Let τ̂AEn = S
−1/2
γn [n(γ̂n − 1)]. Then we have

τ̂AEn −→L ρ

R 1
0 B1(τ)dB1(τ)qR 1

0 B
2
1(τ)dτ

+
q
1− ρ2ξ,(4.5)

where ρ = 1/
q
σ2
εΩγ ∈ (0, 1). The asymptotic distribution of τ̂AEn depends on a

nuisance parameter ρ. Its critical values can be obtained through the simulation

method, with the estimated ρ̂ as given in Hansen (1995) and Shin and So (1999).

Testing for unit roots has been a mainstream topic in econometrics for quite some

time, so it is important to find more powerful tests for both theory and application.

For the AR model with i.i.d. errors, the popular Dickey-Fuller (henceforth DF)

test based on LSE has been widely used. For the AR-GARCH model, the DF-

test still is valid for the hypothesis H0 : γ0 = 1 (see Ling, Li and McAleer(1999)).

The QMLE in Ling and Li (1998) may be used to construct the unit root test:

τ̂QEn = (σ
2
εK2ρ)(

Pn
i=2 y

2
t−1)

1/2(γ̂QEn−1), which has the same asymptotic distribution
as (4.5) with ρ = (σ2

εKc)
−1/2, where γ̂QEn denotes the QMLE of γ0, Ku = E(1/h

0
t )+

uα2
0

P∞
k=1 β

2(k−1)
0 E(ε2

t−k/h
02
t ), and c = Eη

4
t − 1. Since QMLE is more efficient than

LSE, τ̂QEn should be more powerful than the DF-test. Note that the AE is more

efficient than both the QMLE and LSE. It is expected that the τ̂AEn test is more

powerful than both the DF-test and τ̂QEn.

To confirm our conjecture, we present a small simulation experiment for these

unit root tests. Using the same model as in (4.3) with the same sample size, repli-

cations, cn, dn and gn, we investigate the size for γ0 = 1.0, and local powers for

γ0=0.95, 0.97, 0.98 and 0.99. The critical values of the DF-test come from Table

TABLE 2

The Power and Size of Lower Tail Unit Root Tests for AR(1)-GARCH(1,1) Models

1000 replications, and the smoothing parameter an = 0.35

Significance Level 5% Significance Level 10%

γ0 = .950 .970 .980 .990 1.000 .950 .970 .980 .990 1.000
DF -test .904 .549 .319 .166 .055 .974 .775 .534 .285 .120

τ̂QEn .997 .894 .643 .219 .038 1.000 .973 .839 .437 .078
τ̂AEn 1.000 .999 .993 .860 .040 1.000 .999 .997 .923 .092
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8.5.3 in Fuller (1976). The critical values of τ̂QEn and τ̂AEn are generated through

20000 replications of an i.i.d. bivariate N(0, I2) process. From Table 2, it is clear

that the sizes of the three tests are very close to the nominal 5% and 10% levels,

and that their powers are consistent with our expectations.

5 Proofs of Theorems 3.1-3.2

For simplicity, we assume that the initial values are yi = 0, εi = 0 and hi = ω0 for

i ≤ 0, which does not make any essential difference to the proof. We first introduce
some lemmas. Lemma 5.1 comes from Bai (1993) and will be used to evaluate the

coefficients in various infinite expansions. Lemma 5.2 comes directly from Theorem

2.1 in Ling and Li (1997) and Theorem 6.2 in Ling (1999), which gives the basic

properties of the process (w0
t , h

0
t ). Lemma 5.3 gives the expansion of (wt, ht)(λ).

These three lemmas are used often in this section and in Section 6. Lemma 5.4 is a

basic result for verifying Assumption 2.2.

Lemma 5.1. If all the roots of Ψ$(z) = 1 +$1z + · · · +$qzq = 0 lie outside
the unit circle, then there exists a neighbourhood V$ of $, M > 0, C > 0 and

0 < % < 1, such that: (a) for every u ∈ V$, ψi(u) ≤ M%i; (b) for any δ > 0, if

u, u0 ∈ V , and ||u−u0|| ≤ δ, then |ψi(u)−ψi(u
0)| ≤ δCi%i−1, where i = 0, 1, · · ·, and

Ψ−1
$ (z) =

P∞
i=0 ψi($)z

i.

Lemma 5.2. Under Assumptions 3.1-3.2, the process (w0
t , h

0
t ) is strictly sta-

tionary and ergodic, and almost surely has the following causal expansions:

(a) w0
t =

∞X
i=0

υφ0ψ0(i)ε
0
t−i and (b) h0

t = ι0ζt + ι0
∞X
i=1

i−1Y
i=0

At−iζt−i,

where ε0
t = ηt

q
h0
t , At = At(λ0), ι = (0, · · · , 0, 1, 0, · · · , 0)0(r+s)×1 with the (r+1)th el-

ement being 1, ζt = ζt(λ0) and ζt(λ) = (α0η
2
t (λ), 0, · · · , 0,α0, 0, · · · , 0)0, with the first

and (r+1)th elements being α0η
2
t and α0, respectively. Furthermore, if Assumption

3.3 holds, then ε0
t and w

0
t have finite fourth moments.
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Lemma 5.3. If Assumptions 3.1-3.2 hold, then under Pλ, (wt, ht)(λ) has the

following expansions:

(a) wt(λ) =
t−1X
i=0

υφψ(i)εt−i(λ),

(b) ht(λ) = ι0ζt(λ) + ι0
t−1X
j=1

j−1Y
i=0

At−i(λ)ζt−j(λ) + ι0
t−1Y
i=0

At−i(λ)ε̃0,

where εt(λ) = ηt(λ)
q
ht(λ), ι and ζt(λ) are defined as in Lemma 5.2, and ε̃0 =

(0, · · · , 0,ω0, · · · , ω0)
0 with the last s elements being ω0. Furthermore, if Assumption

3.3 holds, then E(ht(λ0) −h0
t )

2 = O(%t), E (εt(λ0)− ε0
t )

2
= O(%t) and E(wt(λ0)−

w0
t )

2 = O(%t), where O(·) holds uniformly in all t, t ≥ 1, and 0 < % < 1.
Proof. Under Pλ, model (3.2) can be rewritten as

ε̃t(λ) = ζt(λ) +At(λ)ε̃t−1(λ),(5.1)

where ε̃t(λ) = [ε2
t (λ), · · · , ε2

t−r+1(λ), ht(λ), · · · , ht−s+1(λ)]
0. After iterating (5.1) t-

steps, we show that (b) holds. Similarly, it can be shown that (a) holds. By

expansion (b) of this lemma and Assumption 3.3, we can show that:

E
³
ht(λ0)− h0

t

´2
= E

h
ι0
t−1Y
i=0

At−iε̃0 − ι0
∞X
j=t

j−1Y
i=0

At−iζt−j
i2
= O(%t).(5.2)

By (5.2) and expansion (a) of this lemma, the other cases can be proved. This

completes the proof. 2.

Lemma 5.4. If Assumptions 3.1-3.3 hold, then it follows that:

(a) max1≤t≤n |n−1/2yt| = Oλ0(1) and (b) n−1/2max1≤t≤nw2
t (λn) = oλ0(1).

Proof. By Lemma 5.3 (a), under Pλ0,

1√
n
y[nτ ] =

1√
n

[nτ ]X
i=1

wi(λ0) =
1√
n

[nτ ]X
i=1

i−1X
j=0

υφ0ψ0(j)εi−j(λ0)

=
1√
n
(

[nτ ]X
i=0

υφ0ψ0(i))(
[nτ ]X
j=1

εj(λ0)) +
1√
n
R1n(τ)

= [1− φ0(1)]
−1 ψ0(1)

1√
n

[nτ ]X
j=1

εj(λ0) +
1√
n
R1n(τ) +

1√
n
R2n(τ),
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where R1n =
P[nτ ]
i=0 υφ0ψ0(i)(

P[nτ ]
j=[nτ ]−i+1 εj(λ0)) and R2n = (

P∞
i=[nτ ]+1 υφ0ψ0(i))(

P[nτ ]
j=1

εj(λ0)). By Lemma 5.3 (a), we have n−1/2max1≤t≤n |εt(λ0)| = n−1/2max1≤t≤n

|ε0
t |+oλ0(1). Since ε

0
t is strictly stationary with a finite variance, n

−1/2max1≤t≤n |ε0
t |

= oλ0(1) (see Chung (1968, p.93)). Thus, by Lemma 5.1, it is easy to show that

n−1/2max0≤τ≤1 |R1n(τ)| = oλ0(1) and n
−1/2max0≤τ≤1 |R2n(τ)| = oλ0(1). Further-

more, by Lemma 5.5 below and the continuity theorem, (a) holds.

Now we show that (b) holds. Under Pλ0 , we have wt(λn) = wt(λ0)− θ1nyt−1/n,

where θ1n is the first component of θn. By (a) of this lemma, n
−1/2 max1≤t≤n(θ1nyt−1/

n)2 = oλ0(1). By Lemma 5.3 (a), we have n
−1/2 max1≤t≤nw2

t (λ0) = n
−1/2max1≤t≤n

w02
t + oλ0(1). Since w

02
t is strictly stationary with a finite variance (see Lemma

5.2), n−1/2max1≤t≤nw02
t = oλ0(1) (see Chung (1968, p.93)). Thus, (b) holds. This

completes the proof. 2

Proof of Theorem 3.1 (a). Since it is assumed that Y0 is independent of

(λ,χ), Assumption 2.3 is obviously satisfied. By Theorem 2.1 and Remark 2.1, it is

sufficient to verify Assumption 2.2 with λn = λ0 and (2.2). First, (i) obviously holds.

The proofs of (ii)-(iv) and (2.2) mainly use Lemmas 5.1 and 5.4, and some basic

inequalities. Since the techniques are similar, only the proof of (2.2) is presented.

We need to prove that

nX
t=1

°°°G−1
n

h∂εt(λn)
∂λ

− ∂εt(λ0)

∂λ

i°°°2
= oλ0(1),(5.3)

nX
t=1

°°° G−1
nq

ht(λn)

∂ht(λn)

∂λ
− G−1

nq
ht(λ0)

∂ht(λ0)

∂λ

°°°2
= oλ0(1),(5.4)

where, from Assumptions 3.1-3.2 and Lemma 5.1,

∂εt(λ)

∂γ
= −

t−1X
i=0

υψ(i)yt−i−1,
∂εt(λ)

∂m
= −

t−1X
i=0

υψ(i)w̃t−i−1(λ),

∂ht(λ)

∂m̃
= 2

t−1X
i=1

υαβ(i)εt−i(λ)
∂εt−i(λ)

∂m̃
,

∂ht(λ)

∂δ̃
=

t−1X
i=0

υβ(i)
³ u0t−i(λ)
α0ε̃t−i−1(λ)

´
,

where m̃ = (γ,m0)0, w̃t(λ) = [wt(λ), · · · , wt−p+2(λ), εt(λ), · · · , εt−q+1(λ)]
0, u0t(λ) =

1 +
Pr
i=1 αiε

2
t−i(λ) +

Ps
i=1 βiht−i(λ), and ε̃t(λ) is defined as in (5.1). Again, since

these proofs are similar, we prove only (5.4).
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By Taylor’s expansion, and noting that ht(λ) has a lower bound uniformly in all

t and in a neighbourhood of λ0, it can be shown that (5.4) is bounded byh°°°Gn∂2ht(λ
∗
n)

∂λ∂λ0
Gn
°°°2
+
°°°Gn∂ht(λ∗n)

∂λ

°°°4i
O(1) ≡ (I1t + I2t)O(1),(5.5)

where λ∗n = λ0 + κ̃nGnθn with |κ̃n| < 1, and O(1) holds uniformly in all t. By

Lemma 5.1, it can be obtained directly that¯̄̄∂εt(λ∗n)
∂γ

¯̄̄2 ≤ O(1) max
1≤t≤n y

2
t ,

°°°∂εt(λ∗n)
∂m

°°°2 ≤ O(1) max
1≤t≤nw

2
t (λ

∗
n),(5.6)

°°°∂ht(λ∗n)
∂γ

°°°2 ≤ O(1)[max
1≤t≤n y

2
t + max

1≤t≤nw
2
t (λ

∗
n)],(5.7)

°°°∂ht(λ∗n)
∂m

°°°2 ≤ O(1) max
1≤t≤n

w2
t (λ

∗
n),

°°°∂ht(λ∗n)
∂δ̃

°°°2 ≤ O(1) max
1≤t≤n

w2
t (λ

∗
n),(5.8)

where O(1) holds uniformly in all t. Denote Dn = [(n
−1max1≤t≤n y2

t ) + max1≤t≤n

w2
t (λ

∗
n)]/
√
n. By (5.6)-(5.8) and Lemma 5.4, we can show that

nX
t=1

I1t ≤ DnO(1) = oλ0(1) and
nX
t=1

I2t ≤ D2
nO(1) = oλ0(1).(5.9)

By (5.5) and (5.9), we can show that (5.4) holds. This completes the proof.2

Denote X̃t(λ) = [u0γt(λ), u
0
mt(λ), u

0̃
δt
(λ)]0 with uγt(λ) = −[h−1/2

t (λ), h−1
t (λ)

Pt−1
i=1

υαβ(i)εt−i(λ)], umt(λ) = [h
−1/2
t (λ)∂εt(λ)/∂m, (2ht(λ))

−1∂ht(λ)/∂m], and uδ̃t(λ) =

[0, (2ht(λ))
−1∂ht(λ)/∂δ̃]. The following is an invariance principle for Theorem 3.1(b).

Lemma 5.5. Suppose the assumptions of Theorem 3.1 hold. Then,

1√
n

[nτ ]X
t=1

h
εt, (X̃tξ(ηt))

0, ζ 0(ηt)
i0
(λ0) −→L

³
w1, w2, N

0
mδ̃
, N 0

ζ

´0
(τ) in Dk+l+1 [0, 1] ,

under Pλ0, where (ω1,ω2, N
0
mδ̃
, N 0

ζ)
0(τ) are defined as in Theorem 3.1, and D [0, 1]

denotes the Skorokhod space.

Proof. By Lemma 5.3, it follows that

εt(λ0)− ε0
t = Oλ0(%

t) and X̃t(λ0)−X0
t = Oλ0(%

t),

where 0 < % < 1, X0
t is defined as in Theorem 3.1, and Oλ0(·) holds uniformly in all

t. Thus,

1√
n

[nτ ]X
t=1

h
εt, (X̃tξ(ηt))

0, ζ 0(ηt)
i0
(λ0) =

1√
n

[nτ ]X
t=1

h
ε0
t , (X

0
t ξ(ηt))

0, ζ 0(ηt)
i0
+ oλ0(1),(5.10)
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where oλ0(1) holds uniformly in all τ ∈ [0, 1]. Denote W ∗0
t = [ε0

t , (X
0
t ξ(ηt))

0, ζ 0(ηt)]
0
.

ThenW ∗0
t is a strictly stationary and ergodic martingale difference withE(W ∗0

t W
∗00
t )

= Ω̃. It is easy to verify that n−1/2 P[nτ ]
t=1 W

∗0
t satisfies the conditions of Theorem

4.1 in Hall and Heyde (1980), and hence n−1/2 P[nτ ]
t=1 W

∗0
t converges to (w1, w2, N

0
mδ̃
,

N 0
ζ)
0(τ) in Dk+l+1 [0, 1]. Furthermore, by (5.10), we complete the proof. 2

Proof of Theorem 3.1 (b). Since Ω̃ > 0, it is obvious that S̃ > 0 a.s.. As in

the proof of Theorem 4.1 in Ling and Li (1998), we can show that

1

n

nX
t=1

∂gt−1(λ0)

∂γ
ξ0(ηt) =

1

n

nX
t=1

yt−1u
0
γtξ

0(ηt) + oλ0(1)

−→L κ
Z 1

0
w1(τ)dw2(τ),(5.11)

where the last step holds by Theorem 2.2 in Kurtz and Protter (1991) and Lemma

5.5. Similarly, we have

1

n2

nX
t=1

∂gt−1(λ0)

∂γ
J
∂g0t−1(λ0)

∂γ
=

1

n2

nX
t=1

y2
t−1u

0
γtJu

00
γt + oλ0(1).

Denote σγt = u
0
γtJu

00
γt. Using a similar technique as in Theorem 3.4 in Ling and Li

(1998), we can show that, under Pλ0 ,

1

n

nX
t=1

|σγt −Eσγt| = Oλ0(1),
1√
n
max
1≤t≤n |σγt −Eσγt| = oλ0(1),(5.12)

and

1

n
E[

nX
t=1

(σγt −Eσγt)]2 → σ2
0,

1√
n

[nτ ]X
t=1

(σγt −Eσγt) −→L σ0ω0(τ) in D,(5.13)

where σ0 is a nonnegative constant and ω0(τ) is a standard Brownian motion. By

Theorem 3.1 in Ling and Li (1998), (5.12)-(5.13), Lemma 5.5 and the continuity

theorem, it follows that

1

n2

nX
t=1

∂gt−1(λ0)

∂γ
J
∂g0t−1(λ0)

∂γ
=

Eσγt
n2

nX
t=1

y2
t−1 +

1

n2

nX
t=1

y2
t−1[u

0
γtJu

00
γt −Eσγt] + oλ0(1)

=
Eσγt
n2

nX
t=1

y2
t−1 + oλ0(1) −→L κ2Eσγt

Z 1

0
w2

1(τ)dτ.(5.14)
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Similarly, we can show that, under Pλ0 ,

1

n3/2

nX
t=1

∂gt−1(λ0)

∂γ
J
∂gt−1(λ0)

∂m0 −→L E(u0
γtJu

00
mt)κ

Z 1

0
w1(τ)dτ,(5.15)

1

n3/2

nX
t=1

∂gt−1(λ0)

∂γ
J
∂gt−1(λ)

∂δ̃0
−→L E(u0

γtJu
00
δ̃t
)κ
Z 1

0
w1(τ)dτ,(5.16)

1

n3/2

nX
t=1

∂gt−1(λ0)

∂γ
V 0ξζ −→L Eu0

γtV
0
ξζκ

Z 1

0
w1(τ)dτ.(5.17)

Denote umδ̃ =

Ã
umt
uδ̃t

!
(λ0) and u

0
mδ̃
=

Ã
u0
mt

u0
δ̃t

!
. By Lemma 5.3 and the ergodic

theorem, we can show that:

1

n

nX
t=1

(umδ̃Ju
0
mδ̃
) =

1

n

nX
t=1

(u0
mδ̃
Ju00

mδ̃
) + oλ0(1) = E(u

0
mδ̃
Ju00

mδ̃
) + oλ0(1),(5.18)

1

n

nX
t=1

umδ̃V
0
ξζ =

1

n

nX
t=1

u0
mδ̃
V 0ξζ + oλ0(1) = Eu

0
mδ̃
V 0ξζ + oλ0(1).(5.19)

By Theorem 2.2 in Kurtz and Protter (1991) and Lemma 5.5, all the limiting

distributions involved in W̃n(λ0) and S̃n(λ0) are jointly convergent. Finally, by

Lemma 5.5, (5.11), (5.14)-(5.19), we can show that (W̃n, S̃n)(λ0) converges weakly to

(W̃ , S̃) = [
R 1

0 M(τ)dB(τ),
R 1

0 M(τ)ΣM
0(τ)dτ ] under Pλ0 . This completes the proof.2

Proof of Theorem 3.2. It is obvious that the estimator ν̂n belongs to Mν .

Let ν̄πn be any Mν-estimator corresponding to the functional π(x). Denote ε
∗
πt(λ0)=

uγt(λ0)[π1(ηt),π2(ηt)]
0. As in the proof of Lemma 5.5, we can show that, under

Pλ0 , n
−1/2 P[nτ ]

t=1(εt, ε
∗
πt)(λ0) converges to (ω1,ωπ2)(τ) in D

2[0, 1], where (ω1,ωπ2)(τ)

is a bivariate Brownian motion with mean zero and covariance τ

Ã
Eh0

t 1
1 Ω∗πγ

!
,

and Ω∗πγ = E(u0
γtJπu

00
γt) with Jπ = diag(Iπ1 , Iπ2). Denote Ω∗πm = E(u0

mtJπu
00
mt),

Ω∗
πδ̃
= E(u0

δ̃t
Jπu

00
δ̃t
), Ωπγ = E(u

0
γtJcu

00
γt), Ωπm = E(u

0
mtJcu

00
mt), and Ωπδ̃ = E(u

0
δ̃t
Jcu

00
δ̃t
).

Under Assumptions 2.1 and 3.1-3.4, as in Weiss (1986) and Ling and Li (1997),

we can show that the matrices Ω∗πm, Ω
∗
πδ̃
, Ωπm, and Ωπδ̃ are positive definite, and

(WMn, SMn)(λ0) converges weakly to (WM , SM) under Pλ0 , where

(WM , SM) =

 κ
R 1

0 ω1(τ)dωπ2(τ) κ2Ωπγ

R 1
0 ω2

1(τ)dτ 0 0
Nπ1 0 Ωπm 0
Nπ2 0 0 Ωπδ̃

 ,
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with Nπ1 and Nπ2 being two independent normal vectors with mean zero and covari-

ances Ω∗πm and Ω∗
πδ̃
, respectively, independent of (ω1,ωπ2)(τ). Thus, G

∗
n(ν̄πn − ν0)

converges weakly to Gπ = ν̇0S
−1
M WM under Pλ0 , and

E(GπG
0
π) = ν̇0 diag(Σπγ, Σπm, Σπδ̃) ν̇

0
0,

where Σπγ = κ−2Ω−2
πγE

hR 1
0 w1(τ)dwπ2(τ)/

R 1
0 w

2
1(τ)dτ

i2
, Σπm = (c1P+c2Q)

−1(PIπ1+

QIπ2)(c1P + c2Q)
−1 and Σπδ̃ = Iπ2c

−2
2 R

−1, with

P = E

Ã
1

h0
t

∂ε0
t

∂m

∂ε0
t

∂m0

!
, Q =

1

4
E

Ã
1

h0
t

∂h0
t

∂m

∂h0
t

∂m0

!
and R =

1

4
E

Ã
1

h02
t

∂h0
t

∂δ̃

∂h0
t

∂δ̃0

!
.

Denote G as the limiting distribution of ν̇0S
−1
n (λ0)Wn(λ0). From Theorem 3.1(b)

and Remark 3.3, we obtain

E(GG0) = ν̇0 diag(Σγ, Σm, Σδ̃) ν̇
0
0,

where Σγ = κ−2Ω−2
γ E[

R 1
0 w1(τ)dw2(τ)/

R 1
0 w

2
1(τ)dτ ]

2, Σm = (PI1(f)+QI2(f))
−1 and

Σδ̃ = I−1
2 (f) R−1. By the Cauchy inequality and the definition of c1 and c2, we

know that I1(f)Iπ1 ≥ c21 and I2(f)Iπ2 ≥ c22. It is obvious that Σδ̃ ≤ Σπδ̃. After some

algebra, we have

Σm − Σπm = (c1P + c2Q)
−1[P (PIπ1 +QIπ2)

−1P (c1P + c2Q)
−1(c21 − I1(f)Iπ1)

+Q(PIπ1 +QIπ2)
−1Q(c1P + c2Q)

−1(c22 − I2(f)Iπ2)

+P (PIπ1 +QIπ2)
−1Q(c1P + c2Q)

−1(c1c2 − I1(f)Iπ2)

+Q(PIπ1 +QIπ2)
−1P (c1P + c2Q)

−1(c1c2 − I2(f)Iπ1)]

≤ (c1P + c2Q)
−1[P (PIπ1 +QIπ2)

−1Q(c1P + c2Q)
−1(c1c2 − I1(f)Iπ2)

+Q(PIπ1 +QIπ2)
−1P (c1P + c2Q)

−1(c1c2 − I2(f)Iπ1)]

≤ (c1P + c2Q)
−1(Q−1Iπ1 + P

−1Iπ2)
−1(c1P + c2Q)

−1(5.20)

·
h
2c1c2 − 2(I2(f)Iπ1I1(f)Iπ2)

1/2
i
≤ 0.

Now, we show that Σγ ≤ Σπγ. Let ε
∗∗
t (λ0) = ε∗t (λ0)/Ωγ and ε

∗∗
πt(λ0) = ε∗πt(λ0)/Ωπγ,

where ε∗t (λ0) = uγt(λ0)ξ(ηt). As in the proof of Lemma 5.5, we can show that,
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in D2 [0, 1], n−1/2 P[nτ ]
t=1(ε

∗∗
t , ε

∗∗
πt)(λ0) converges to the bivariate Brownian motion

(ω∗2,ω
∗
π2)(τ), which has mean zero and covariance

τ

Ã
Ω−1
γ Ω−1

γ

Ω−1
γ Ω∗πγΩ

−2
πγ

!
.(5.21)

Denote Wγn and Wπγn as the first elements of Wn(λ0) and WMn(λ0), respectively,

and Sγn and Sπγn as the (1, 1)th elements of Sn(λ0) and SMn(λ0), respectively. From

the proof of Theorem 3.1 (b), we see that the asymptotic distributions of S−1
γnWγn and

S−1
πγnWπγn are the same as

h
κ
R 1

0 ω2
1(τ)dτ

i−1 R 1
0 ω1(τ)dω

∗
2(τ) and

h
κ
R 1

0 ω2
1(τ)dτ

i−1 R 1
0 ω1

(τ)dω∗π2(τ), respectively, which are denoted by Gγ and Gπγ, respectively. Let ∆ =

Ω∗πγΩ
−2
πγ −Ω−1

γ . As in the proof of (5.20), we can show that ∆ ≥ 0. Using (5.21) and
Lemma 3.1 of Phillips (1989), we can show that the distribution of Gπγ is the same

as that of Gγ+κ−1∆1/2
hR 1

0 ω2
1(τ)dτ

i−1/2
Φ, where Φ is standard normal and indepen-

dent of Gγ and
R 1

0 ω2
1(τ)dτ . Thus, Σπγ = E[G

2
πγ] = E[G

2
γ] +κ−2∆E[

R 1
0 ω2

1(τ)dτ ]
−1 ≥

E[G2
γ] = Σγ. Finally, we have that E(GG

0) ≤ E(GπG
0
π). This completes the proof.2

6 Proof of Theorem 4.2

From Bickel (1982), Kreiss (1987a) and Linton (1993), we know that Îin(λ) is a

consistent estimator of Ii(f), where i = 1, 2. Furthermore, by Lemma 4.1, it is

sufficient to prove the following theorem for Theorem 4.2.

Theorem 6.1. Let λn be defined as νn in Lemma 4.1. Then, under Assumptions

2.1, 3.1-3.4 and 4.1, Ŵ1n(λn)−W1n(λn) = oλ0(1).

Proof. By Theorem 2.1(b) and Theorem 3.1(a), Pλ0,n and Pλn,n are contiguous.

Note that Ŵ1n(λn) andW1n(λn) are measurable in terms of Fn. Thus, it is sufficient
to prove this theorem under Pλn. For simplicity, we denote ξ̂in,t(ηt(λn),λn) as ξ̂it,

i = 1, 2. By the triangle inequality,

Eλn

h
Ŵγn(λn)−Wγn(λn)

i2

≤ 2Eλn

n1
n

nX
t=1

h 1q
ht(λn)

∂εt(λn)

∂γ
(ξ̂1t − ξ1(ηt(λn)))

io2
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+
1

2
Eλn

n1
n

nX
t=1

h 1

ht(λn)

∂ht(λn)

∂γ
(ξ̂2t − ξ2(ηt(λn)))

io2

= 2B1n +
1

2
B2n, say.(6.1)

Note that ξ̂1t and ξ1(ηt(λn)) are odd functions of ηt(λn). As in Kreiss (1987a)

and Bickel (1982), we have

B1n =
1

n2

nX
t=1

Eλn

n 1

ht(λn)

h
ξ̂1t − ξ1(ηt(λn))

i2
¯̄̄̄
¯∂εt(λn)∂γ

¯̄̄̄
¯
2 o
.(6.2)

Since h−1
t (λn) is bounded and ∂εt(λn)/∂γ =

Pt−1
j=0 υψn(j)yt−j−1, by Lemma 5.1, we

can show that

B1n ≤ O(1) 1
n2

nX
t=1

max
1≤j≤n

Eλn

½
y2
j

h
ξ̂1t − ξ1(ηt(λn))

i2
¾
.(6.3)

Under Pλn, yj =
Pj
i=1(1 − θ1n/n)

j−iwi(λn) and wi(λn) =
Pi−1
j=0 υφnψn(j) εi−j(λn).

Thus, we can show that

B1n ≤ O(1) 1
n

nX
t=1

max
1≤j≤nEλn

½
ε2
j(λn)

h
ξ̂1t − ξ1(ηt(λn))

i2
¾
= o(1),(6.4)

where the last equation holds by Proposition 6.1 (a) below.

Now we show that B2n = o(1). Note that ξ̂2t and ξ2(ηt(λn)) are symmetric

functions of ηt(λn). Here we have to use the symmetry of f and consider the cross-

terms in the expansion of B2n. Denote ξ∗t = ηt(λn)ξ̂1t − ηt(λn)ξ1(ηt(λn)). Using

Assumption 3.4, we can show that

Hnti ≡ Eλn

h 1

ht+i(λn)ht(λn)

∂ht+i(λn)

∂γ

∂ht(λn)

∂γ
ξ∗t+iξ

∗
t

i
= Eλn

n 2

ht+i(λn)ht(λn)
[
iX
j=1

υαnβn(j)εt+i−j(λn)yt+i−j−1]
∂ht(λn)

∂γ
ξ∗t+iξ

∗
t

+
4

ht+i(λn)ht(λn)
[
t+i−1X
j=i+1

υαnβn(j)εt+i−j(λn)yt+i−j−1]

·[
t−1X
j=1

υαnβn(j)εt−j(λn)yt−j−1]ξ
∗
t+iξ

∗
t

o

= Eλn

n 4

ht+i(λn)ht(λn)
[
t−1X
j=1

υαnβn(j + i)υαnβn(j)ε
2
t−j(λn)y

2
t−j−1]ξ

∗
t+iξ

∗
t

o
.
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Since υαnβn(i) = O(%
i) with % ∈ (0, 1) and independent of λn, we have

|Hnti| ≤ O(1)%i max
1≤j≤nEλn

h
ε2
j(λn)y

2
j−1|ξ∗t+iξ∗t |

i
,(6.5)

where O(1) holds uniformly in all t. By Lemma 5.1, (6.5), and the inequality,

2|ξ∗t+iξ∗t | ≤ ξ∗2t+i + ξ∗2t , we have

B2n =
1

n2

nX
t=1

Eλn

n 1

h2
t (λn)

[
∂ht(λn)

∂γ
]2ξ∗2t

o
+
2

n2

n−1X
t=1

n−tX
i=1

Hnti

≤ O(1)

n2

n nX
t=1

max
1≤j≤nEλn[ε

2
j(λn)y

2
j−1ξ

∗2
t ] +

n−1X
t=1

n−tX
i=1

%i max
1≤j≤nEλn [ε

2
j(λn)y

2
j−1ξ

∗2
t+i]

o
.(6.6)

Note that Eλn

h
ε2
j(λn)εi(λn)εi1(λn)ξ

∗2
t

i
= 0 for any i 6= i1. In a similar manner to

the arguments of (6.4), we can show that

B2n ≤ O(1)

n

n nX
t=1

max
1≤j≤n

Eλn[ε
4
j(λn)ξ

∗2
t ] +

n−1X
t=1

n−tX
i=1

%i max
1≤j≤n

Eλn[ε
4
j(λn)ξ

∗2
t+i]

o

=
O(1)

n

n nX
t=1

max
1≤j≤nEλn[ε

4
j(λn)ξ

∗2
t ] +

n−1X
i=1

%i
nX

t=i+1

max
1≤j≤nEλn[ε

4
j(λn)ξ

∗2
t ]
o

≤ O(1)

n

nX
t=1

max
1≤j≤nEλn[ε

4
j(λn)ξ

∗2
t ] = o(1),(6.7)

where the last equation holds by Proposition 6.1 (b) below. By (6.1), (6.4) and

(6.7), we can obtain Eλn

h
Ŵγn(λn)−Wγn(λn)

i2
= o(1). In a similar manner, we

can obtain that Eλn

°°°Ŵmn(λn)−Wmn(λn)
°°°2
= o(1). To complete the proof, it is

sufficient to show that

Eλn

°°°Ŵδn(λn)−Wδn(λn)
°°°2
= o(1).(6.8)

Since the logistic kernel K(x) for Ŵδn(λn) satisfies the conditions in Theorem 4.1

in Koul and Schick (1997), the proof of (6.8) is similar to that of Theorem 3.1 in

DWK (1997) and hence is omitted. This completes the proof. 2

Proposition 6.1. Under the assumptions of Theorem 6.1,

(a)
1

n

nX
i=1

max
1≤j≤n

Eλn

h
ε2
j(λn)

Z ½h
ξ̂1n,i(x,λn)− ξ1(x)

i2
f(x)

¾
dx
i
= o(1),

(b)
1

n

nX
i=1

max
1≤j≤nEλn

h
ε4
j(λn)

Z ½h
ξ̂1n,i(x,λn)− ξ1(x)

i2
x2f(x)

¾
dx
i
= o(1).
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In the following, we introduce six lemmas. Lemma 6.1 is a basic result for Lem-

mas 6.2-6.3, while Lemmas 6.2-6.3 are used in Lemma 6.5. The proof of Proposition

6.1 comes directly from the following Lemmas 6.4-6.6. The routine of the proof is

similar to Bickel (1982) and Kreiss (1987a), but the technique is more complicated.

Lemma 6.1. Denote fan(x) = Eλn

h
g(x + ηi(λn), an)

i
, g∗i = g(x + ηi(λn), an)−

2fan(x) + g(x− ηi(λn), an), and G(x) = Eλn [g
∗2
i η4

i (λn)] + Eλn [g
∗2
i η2

i (λn)] + Eλng
∗2
i .

Under the assumptions of Theorem 6.1, it follows that:

(a) when i+ 1 ≤ Q ≤ j and 0 ≤ i1 ≤ j − i,

Eλn[g
∗2
i+i1
(ι̃0

jY
t1=Q

Ant1ζQ−1)(ι̃
0

jY
t1=i+1

Ant1ζi)] ≤M%j−iG(x);

(b) when i+ 1 ≤ Q ≤ j and 0 ≤ i1 ≤ j − i,

Eλn [g
∗2
i+i1
(ι̃0

jY
t1=Q

Ant1ζQ−1)(ι̃
0
jY

t1=i

Ant1 ε̃i−1(λn))] ≤M%j−iG(x),

(c) when 0 ≤ i1 ≤ j − i,

Eλn[g
∗2
i+i1
(ι̃0

jY
t1=i

Ant1 ε̃i−1(λn))
2] ≤M%j−iG(x),

where % ∈ (0, 1), % and M are constants and independent of i, j, x and λn, ι̃ is an

(r+s)−dimensional constant vector, Ani = Ai(λn) ζi = ζi(λn), and ζi(λ) and ε̃i−1(λ)

are defined, respectively, as in Lemma 5.2 and (5.1) with α0 = 1.

Proof. First, we illustrate the following facts.

(i) Denote %λ = min {ρ [Eλ(Ai(λ)⊗Ai(λ))] , ρ [Eλ(Ai(λ)⊗ Ir+s)]}. By Assump-
tion 2, which is equivalent to ρ [Eλ(Ai(λ))] < 1 (see Ling (1999)), and Assumption

3, we have %λ0 ∈ (0, 1). Let ² be a positive constant so that % ≡ %λ0 + ² < 1. Since

Eλnη
2
t (λn) = Eη

2
t , Eλnη

4
t (λn) = Eη

4
t , and λn−λ0 = O(n

−1/2), there exists an integer

N so that %λn ≤ % for all n > N .
(ii) It is obvious that there is a constant M1 independent of i, x and λn so that°°°Eλn(g

∗2
i ζiζ

0
i)
°°° ≤M1G(x),

°°°Eλn(g
∗2
i ζi)

°°° ≤M1G(x),°°°Eλn

h
g∗2i (Ani ⊗ ζi)

i°°° ≤M1G(x),°°°Eλn

h
g∗2i (Ani ⊗ Ir+s)

i°°° ≤M1G(x) and
°°°Eλn

h
g∗2i (Ani ⊗Ani)

i°°° ≤M1G(x).
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For (a), we first consider the case with i1 > 0. Denote Dij = Eλn[g
∗2
i+i1
(ι̃0
QQ
t1=j

Ant1ζQ−1)(ι̃
0Qi+1

t1=j Ant1ζi)]. When i+ i1 + 2 ≤ Q ≤ j,

Dij = (ι̃0 ⊗ ι̃0) [Eλn(Ani ⊗Ani)]j−Q+1Eλn(AnQ−1 ⊗ ζQ−1)

· [Eλn(Ani ⊗ Ir+s)]Q−2−(i+i1+1)+1Eλn

h
g∗2i+i1(Ani+i1 ⊗ Ir+s)

i
· [Eλn(Ani ⊗ Ir+s)]i1−1Eλn [vec(ζi)] ≤M%j−iG(x);(6.9)

when Q = i+ i1 + 1,

Dij = (ι̃0 ⊗ ι̃0) [Eλn(Ani ⊗Ani)]j−(i+i1+1)+1Eλn

h
g∗2i+i1(Ani+i1 ⊗ ζi+i1)

i
· [Eλn(Ani ⊗ Ir+s)]i1−1Eλn [vec(ζi)] ≤M%j−iG2(x);(6.10)

when i+ 2 ≤ Q ≤ i+ i1,

Dij = (ι̃0 ⊗ ι̃0) [Eλn(Ani ⊗Ani)]j−(i+i1+1)+1Eλn

h
g∗2i+i1(Ani+i1 ⊗Ani+i1)

i
· [Eλn(Ani ⊗Ani)](i+i1−1)−Q+1Eλn(AnQ−1 ⊗ ζnQ−1)

· [Eλn(Ani ⊗ Ir+s)]Q−2−(i+1)+1Eλn [vec(ζi)] ≤M%j−iG(x);(6.11)

when Q = i+ 1,

Dij = (ι̃0 ⊗ ι̃0) [Eλn(Ani ⊗Ani)]j−(i+i1+1)+1Eλn

h
g∗2i+i1(Ani+i1 ⊗Ani+i1)

i
· [Eλn(Ani ⊗Ani)]i1−1Eλn [vec(ζiζ

0
i)] ≤M%j−iG(x),(6.12)

where M is some constant and independent of i, j, x and λn. By (6.9)-(6.12), we

know (a) holds when i1 > 0. Note that, in (6.9)-(6.12), we have used the facts (i)

and (ii). Similarly, we can show that (a) holds when i1 = 0. Note that, by Lemmas

5.2-5.3, we can show that
°°°Eλn

h
ε̃i−1(λn)ε̃

0
i−1(λn)

i°°° is bounded uniformly in i. In
a similar manner, we can show that (b) and (c) hold. This completes the proof.

2

Lemma 6.2. Under the assumptions of Theorem 6.1:

(a) max
1≤j≤nEλn

½
f−1
an (x)

h
f̂an,t(x,λn)− fan(x)

i2
ε2
j(λn)

¾
≤ a

−1
n

n
(κ1 + κ2x

2),

(b) max
1≤j≤nEλn

½
x2f−1

an (x)
h
f̂an,t(x,λn)− fan(x)

i2
ε4
j(λn)

¾
≤ x

2a−1
n

n
(κ1 +

κ2x
4

n
),
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where 1 ≤ t ≤ n, κ1 and κ2 are constants and independent of n and x, and fan(x)

is defined as in Lemma 6.1.

Proof. We prove only (b) since the proofs of (a) and (b) are similar.

Eλn

n
x2f−1

an (x)[f̂an,t(x)− fan(x)]2ε4
j(λn)

o
≤ 1
2
Eλn{x2f−1

an (x)[
1

n− 1
nX

i=j+1,i6=t
g∗i ]

2ε4
j(λn)}

+
1

2
Eλn{x2f−1

an (x)[
1

n− 1
jX

i=1,i6=t
g∗i ]

2ε4
j(λn)} =

1

2
(B1 +B2), say,(6.13)

where g∗i is defined as in Lemma 6.1. By Lemmas 5.2-5.3, we can show that max1≤j≤n

Eλn

h
ε4
j(λn)

i
is bounded. Thus, we have

B1 = O(1)Eλn{x2f−1
an (x)[

1

n

nX
i=j+1,i6=t

g∗i ]
2}

= O(1)
x2f−1

an (x)

n2

nX
i=j+1,i6=t

Eg∗2i = O(1)
x2a−1

n

n
,(6.14)

where the last equation holds by (6.7) of Bickel (1982) and O(1) holds uniformly in

all x. Moreover,

B2 =
x2f−1

an (x)

(n− 1)2 [
jX

i=1,i6=t
Eλn(g

∗2
i ε4

j(λn)) + 2
j−1X

i=1,i6=t

j−iX
i1=1

Eλn(g
∗
i+i1
g∗i ε

4
j(λn))].

Note that η2
j (λn)ι

0Anj = (α1, · · · ,αr, β1, · · · ,βs)η2
j (λn) = ι̃0Anj, where ι̃0 = (1, 0, · · · ,

0)0(r+s)×1 and Anj is defined as in Lemma 6.1. From Lemma 5.3, we can show that

ε2
j(λn) = [ι̃0ζj + ι̃0Anjζj−1 + · · ·+ ι̃0

jY
t1=i+2

Ant1ζi+1]

+[ι̃0
jY

t1=i+1

Ant1ζi + ι̃0
jY

t1=i

Ant1 ε̃i−1(λn)] = Rj,i+1 + Sj, say,

Since Rj,i+1 is a function of {ηj(λn), · · · , ηi+1(λn)}, g∗i is independent of Rj,i+1, and

hence we have

Eλn(g
∗2
i ε4

j(λn)) = Eλng
∗2
i ·EλnR

2
j,i+1 +Eλn

h
g∗2i (2Rj,i+1Sj + S

2
j )
i

= O(1)
h
Eλng

∗2
i + (j − i)%j−iG(x)

i
,
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where the last equation holds because maxj,iEλnRj,i+1 ≤ maxj Eλnε
4
j(λn) <∞ and

Lemma 6.1. Similarly, since Eλng
∗
i = 0, by Lemma 6.1, we have,¯̄̄

Eλn(g
∗
i+i1
g∗i ε

4
j(λn))

¯̄̄
=

¯̄̄
Eλn

h
g∗i+i1g

∗
i (2Rj,i+1Sj + S

2
j )
i¯̄̄

≤ 1

2
Eλn

h
(g∗2i+i1 + g

∗2
i )(2Rj,i+1Sj + S

2
j )
i

= O(1)
h
(j − i)%j−iG(x)

i
,

where i1 > 0. Thus,

B2 = O(1)
x2f−1

an (x)

n2

jX
i=1,i6=t

Eλng
∗2
i

+O(1)
x2f−1

an (x)

n2
[

jX
i=1,i6=t

(j − i)%j−i +
j−1X

i=1,i6=t

j−iX
i1=1

(j − i)%j−i]G(x)

= O(1)
x2a−1

n

n
+O(1)

x2f−1
an (x)

n2
G(x).(6.15)

Note also that, when an < 1, y4g(x + y, an) ≤ O(1) (a−1
n x

4 + x2 + a3
n), y

2g(x

+y, an) ≤ O(1) (an + x2a−1
n ), and g(x+ y, an) ≤ O(1)a−1

n . Thus, it follows that

B2 = O(1)
x2a−1

n

n
+O(1)

x2

n2
(a−1
n x

4 + a−1
n x

2 + a−1
n )f

−1
an (x)Eλn |g∗i |

= O(1)
x2a−1

n

n
+O(1)

x2a−1
n

n2
(x4 + x2 + 1) =

x2a−1
n

n
[O(1) +

O(1)x4

n
],(6.16)

where O(1) holds uniformly in all x. By (6.13), (6.14) and (6.16), result (b) holds.

This completes the proof. 2

Lemma 6.3. Under the assumptions of Theorem 6.1:

(a) max
1≤j≤n

Eλn

n
f−1
an (x)

h
f̂ 0an,t(x,λn)− f 0an(x)

i2
ε2
j(λn)

o
≤ a

−3
n

n
(κ1 + κ2x

2),

(b) max
1≤j≤nEλn

n
x2f−1

an (x)
h
f̂ 0an,t(x,λn)− f 0an(x)

i2
ε4
j(λn)

o
≤ x

2a−3
n

n
(κ1 +

κ2x
4

n
),

where 1 ≤ t ≤ n, and κ1 and κ2 are constants independent of n and x.

Proof. The proof is similar to that for Lemma 6.2, and hence it is omitted.2

Lemma 6.4. Under the assumptions of Theorem 6.1:

(a)
1

n

nX
i=1

max
1≤j≤nEλn

n
ε2
j(λn)

Z
[
f 0an(x)q
fan(x)

− f 0(x)q
f(x)

]2dx
o
= o(1),

(b)
1

n

nX
i=1

max
1≤j≤nEλn

n
ε4
j(λn)

Z
[
f 0an(x)q
fan(x)

− f 0(x)q
f(x)

]2x2dx
o
= o(1).
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Proof. Since Eλnε
4
i (λn) is bounded by a constant which is independent of i, the

results follow from Lemma 6.2 of Bickel (1982) and Lemma 5.3 of Linton (1993).

This completes the proof. 2

Lemma 6.5. Suppose that assumptions of Theorem 6.1 hold. Then:

(a)
1

n

nX
t=1

max
1≤j≤n

Eλn

n
ε2
j(λn)

Z
[ξ̂1n,t(x,λn)− f

0
an(x)

fan(x)
]2fan(x)dx

o
= o(1),

(b)
1

n

nX
t=1

max
1≤j≤n

Eλn

n
ε4
j(λn)

Z
[ξ̂1n,t(x,λn)− f

0
an(x)

fan(x)
]2x2fan(x)dx

o
= o(1).

Proof. The proof is similar to that in Kreiss (1987a). However, as we have the

additional factor x2 in (b), we need to avoid the requirement of higher moments.

We will prove only (b), while (a) can be proved in a similar manner. Denote

In,t1 = ε4
j(λn)

Z
An,tBnCn,t

h
ξ̂1n,t(x,λn)− f

0
an(x)

fan(x)

i2
x2fan(x)dx,

In,t2 = ε4
j(λn)

Z
(An,tBnCn,t)c

h
ξ̂1n,t(x,λn)− f

0
an(x)

fan(x)

i2
x2fan(x)dx,

where An,t =
n
x|f̂an,t(x,λn) ≥ dn

o
, Bn = {x||x| ≤ gn} and Cn,t = {x|f̂ 0an,t(x,λn) ≤

cn f̂an,t(x,λn)}. From Lemmas 6.2-6.3 and Assumption 4.1, we have

1

n

nX
t=1

max
1≤j≤nEλnI

n,t
1 ≤

1

n

nX
t=1

max
1≤j≤nn

Eλn

³
ε4
j(λn)

Z
An,tBnCn,t

h f̂ 0an,t(x,λn)
f̂an,t(x,λn)

− f̂
0
an,t(x,λn)

fan(x)

i2
x2fan(x)dx

´

+Eλn

³
ε4
j(λn)

Z
An,tBnCn,t

h f̂ 0an,t(x,λn)
fan(x)

− f
0
an(x,λn)

fan(x)

i2
x2fan(x)dx

´o
= o(1).(6.17)

To show that n−1 Pn
t=1max1≤j≤nEλnI

n,t
2 = o(1), because of Lemma 6.4(b), it is

sufficient to show that n−1 Pn
t=1max1≤j≤nEλnJ

n,t
2 = o(1), where

Jn,t2 = ε4
j(λn)

Z
(An,tBnCn,t)c

"
f 0(x)
f(x)

#2

x2f(x)dx.

As in Kreiss (1987a), we choose tn ∈ {1, · · · , n}, so that EλnJ
n,tn
2 = max{EλnJ

n,t
2 , t

= 1, · · · , n}. First, we show that
Z "

f 0(x)
f(x)

#2

x2 max
1≤j≤n

Eλn

h
ε4
j(λn)I(A

c
n,tn)

i
f(x)dx = o(1).(6.18)
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Note that, for any positive constant M ,

max
1≤j≤nEλn

h
ε4
j(λn)I(A

c
n,tn)

i
= max

1≤j≤n

n
Eλn

h
ε4
j(λn)I(ε

4
j(λn) ≤M)I(Acn,tn)

i
+Eλn

h
ε4
j(λn)I(ε

4
j(λn) ≥M)I(Acn,tn)

io
≤MEλn

h
I(Acn,tn)

i
+ max

1≤j≤nEλn

h
ε4
j(λn)I(ε

4
j(λn) ≥M)

i
.

For any ² > 0, by Lemmas 5.2-5.3, we can show that there exists a large M0

such that max1≤j≤nEλn[ε
4
j (λn)I(ε

4
j( λn) ≥ M0)] < ²/2. For such an M0, since

Eλn(I(A
c
n,tn)) = o(1) by (6.11) of Bickel (1982), there exists an N such that, when

n > N , M0Eλn(I(A
c
n,tn)) < ²/2. Thus, as n > N , max1≤j≤nEλn

h
ε4
j(λn)I(A

c
n,tn)

i
<

², i.e. max1≤j≤nEλn[ε
4
j(λn) I(A

c
n,tn)] = o(1). Furthermore, by Assumption 2.1,

(6.18) holds.

Similarly, using the argument of (6.12) in Bickel (1982), we can show that

Z "
f 0(x)
f(x)

#2

x2 max
1≤i≤nEλn

h
ε4
j(λn)I(B

c
n,tn)

i
f(x)dx = o(1),(6.19)

Z "
f 0(x)
f(x)

#2

x2 max
1≤t≤n

Eλn

h
ε4
j(λn)I(C

c
n,tn)

i
f(x)dx = o(1).(6.20)

By (6.18)-(6.20), we can show that 1
n

Pn
i=1max1≤j≤nEλnI

n,t
2 = o(1). Furthermore,

combining (6.17), we have that (b) holds. This completes the proof. 2

Lemma 6.6. Suppose that assumptions of Theorem 6.1 hold. Then:

(a)
1

n

nX
t=1

max
1≤j≤n

Eλn

½
ε2
j(λn)

Z h
ξ̂2

1n,t(x,λn)(
q
fan(x)−

q
f(x))

i2
dx
¾
= o(1),

(b)
1

n

nX
t=1

max
1≤j≤n

Eλn

½
ε4
j(λn)

Z h
ξ̂2

1n,t(x,λn)(
q
fan(x)−

q
f(x))

i2
x2dx

¾
= o(1).

Proof. Since ξ̂2
1n,t(x,λn) ≤ c2n and Eλn

h
ε4
j(λn)

i
is bounded by some constant

M which is independent of j, the proof of (a) is identical to that of Lemma 6.3 in

Bickel (1982). The right-hand side of (b) is bounded by

c2nEλn

·
ε4
j(λn)

Z
(
q
fan(x)−

q
f(x))2x2dx

¸
.(6.21)
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In a similar manner to the arguments of Lemma 6.3 in Bickel (1982), we can show

that (6.21) is bounded by

Mc2na
2
n

4

Z 1

0

Z ∞
−∞

y2z2f
02(y − µanz)

f(y − µanz) g(z)dzdµ

≤ Mc
2
na

2
n

4

Z 1

0

Z ∞
−∞

Z ∞
−∞
(x+ µanz)

2z2ξ2
1(x)f(x)g(z)dxdzdµ.(6.22)

By Assumption 2.1, (6.22) is bounded by O(c2na
2
n). Furthermore, by Assumption

4.1, (b) holds. This completes the proof. 2

A Appendix: Proof of Theorem 2.1

Before giving the proof of Theorem 2.1, we introduce the following notation and

lemma. Let ξ̃ = (ξ0, ζ 0)0, G̃n =diag (Gn,
√
nIl), Ũt(λ) =diag(Xt(λ), Il), and Y (λ) =

[y − Zt(λ)]/
q
ht(λ). For simplicity, we denote Y (λn) by Y and Y (λ̃n) by Yn. Simi-

larly, denote ht, hnt, Zt, Znt, gt, gnt, ηt, ηnt, Ũt and Ũnt.

Lemma A.1. Under the assumptions of Theorem 2.1, it follows that:

(a)
nX
t=1

Eλn

h
(u0nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1

i
= Oλn(1),

(b)
nX
t=1

Eλn

h
(u0nG̃

−1
n Ũtξ̃(ηt))

2I(|u0nG̃−1
n Ũtξ̃(ηt)| > ε)|Ft−1

i
= oλn(1),

(c)
¯̄̄ nX
t=1

{(u0nG̃−1
n Ũtξ̃(ηt))

2 −Eλn[(u
0
nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1]}
¯̄̄
= oλn(1),

(d)
nX
t=1

Z nqfvn/√n(Yn)
4
√
hnt

−
q
f(Y )
4
√
ht
− 1
2
u0nG̃

−1
n Ũt

(ξ̃
√
f)(Y )

4
√
ht

o2
dy = oλn(1).

Proof. By Assumptions 2.1 and 2.2 (i) and (iv), and the finiteness of
R ||ζ(x)||2

f(x)dx, (a) holds. By Assumptions 2.1 and 2.2, and using similar argument as in

Koul and Schick (1997, p253), we can show that (b) holds. By (3.15) of McLeish

(1974) and (a)-(b) of this lemma, (c) holds.

The proof of (d) is similar to that for (2.15) in Koul and Schick (1997). The

right-hand side of (d) is bounded by 3(T1n + T2n + T3n), where

T1n =
nX
t=1

Z
h
− 1

2
nt (f

1
2

vn/
√
n − f

1
2 − v0n

2
√
n
ζf

1
2 )2(Yn)dy
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= n
Z
(f

1
2

vn/
√
n − f

1
2 − v0n

2
√
n
ζf

1
2 )2(x)dx = o(1)

by Definition 2.1;

T2n =
||vn||2
n

nX
t=1

Z °°°°h− 1
4

nt (ζf
1
2 )(Yn)− h−

1
4

t (ζf
1
2 )(Y )

°°°°2

dy

≤ O(1)R2
2n

Z
||(ζf 1

2 )(x)||2dx

+O(1) sup
|s1|≤R1n,|s2|≤R2n

Z
||(ζf 1

2 )(x(1 + s2) + s1)− (ζf 1
2 )(x)||2dx

= oλn(1),

where R1n = [max1≤t≤n(|Znt − Zt|h−
1
2

nt )
2]1/2 = oλn(1) and R2n = [max1≤t≤n(|

√
hnt

−√ht|h−
1
2

nt )
2]1/2 = oλn(1) by Assumption 2.2 (i)-(iii), and the above equation holds

by
R ||ζ(x)||2f(x)dx <∞ and Lemma 19 in Jeganathan (1995); and

T3n =
nX
t=1

Z ·
h
− 1

4
nt f

1
2 (Yn)− h−

1
4

t f
1
2 (Y )− 1

2
ϑ0nG

−1
n Uth

− 3
4

t (ξf
1
2 )(Y )

¸2

dy.

In order to show that T3n = oλn(1), denote U
∗
nt = gnt − gt, Y ∗n = [y − Zt − u(Znt −

Zt)]h
∗− 1

2
nt and h∗nt = [h

1
2
t + u(h

1
2
nt − h

1
2
t )]

2. By Assumption 2.1 and using Cauchy’s

form of Taylor’s theorem to the function f∗(u) = h∗−1/4
nt f1/2(Y ∗n ), T3n is bounded by

nX
t=1

Z 1

0

Z ·
U∗nth

∗− 3
4

nt (ξf
1
2 )(Y ∗n )− ϑ0nG

−1
n Uth

− 3
4

t (ξf
1
2 )(Y )

¸2

dydu

≤
nX
t=1

Z 1

0

Z ½
ϑ0nG

−1
n Ut

·
h
∗− 3

4
nt (ξf

1
2 )(Y ∗n )− h−

3
4

t (ξf
1
2 )(Y )

¸¾2

dydu

+
nX
t=1

°°°U∗nt − ϑ0nG
−1
n Ut

°°°2
max{h−1

t , h
−1
nt }

Z °°°(ξf 1
2 )(x)

°°°2
dx,(A. 1)

where the second term is oλn(1) by Assumptions 2.1 and 2.2(i)-(ii), and the first

term is bounded by

h
O(1) sup

|s1|≤R1n,|s2|≤R2n

Z °°°(ξf 1
2 )(x(1 + s2) + s1))− (ξf 1

2 )(x)
°°°2
dx

+O(1)R2
2n

Z °°°(ξf 1
2 )(x)

°°°2
dx
i nX
t=1

°°°G−1
n Unt

°°°2
= oλn(1),

by Assumptions 2.1 and 2.2 (iv), and Lemma 19 in Jeganathan (1995). Thus,

T3n = oλn(1) and hence (d) holds. This complete the proof. 2

37



Now, we prove Theorem 2.1. The basic idea of the proof comes from LeCam

(1970), Fabian and Hannan (1982), BKRW (1993), and DKW (1997).

Proof of Theorem 2.1. Let Tnt = 2[svn/
√
n,t(λ̃n)/st(λn) − 1] and Bn =

{max1≤t≤n |Tnt| < ε} for some enough small ε > 0. Then, on the event Bn, the

log-LR has the Taylor expansion:

Λn(λn, λ̃n,
vn√
n
) = 2

nX
t=1

log(1 +
1

2
Tnt) + Λn0

=
nX
t=1

Tnt − 1
4

nX
t=1

T 2
nt +

1

6

nX
t=1

αntT
3
nt + Λn0,

where |αnt| < 1 and Λn0 = log[qλ̃n,fvn/√n
(Y0)/qλn,f(Y0)] = oλn(1) by Assumption 2.3.

To prove (a), it is sufficient to show that

nX
t=1

{Tnt − u0nG̃−1
n Ũtξ̃(ηt) +

1

4
Eλn[(u

0
nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1]} = oλn(1),(A. 2)

nX
t=1

{T 2
nt − Eλn[(u

0
nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1]} = oλn(1),(A. 3)

max
1≤t≤n

|Tnt| = oλn(1) and
nX
t=1

T 3
nt = oλn(1).(A. 4)

Note that
R
[syvn/

√
n,t(λ̃n)− syt (λn)]2dy = −Eλn(Tnt|Fn), where syt (λ) is defined as

st(λ) with ηt(λ) replaced by Y , and similarly define s
y
vn/

√
n,t(λ). By Lemma A.1 (a)

and (d), and the inequality |a2−b2| ≤ (1+α)(a−b)2+b2/α with α > 0 and a, b ∈ R,
¯̄̄ nX
t=1

{Eλn(Tnt|Ft−1) +
1

4
Eλn[(u

0
nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1]}
¯̄̄

≤ (1 + α)
nX
t=1

Z h
syvn/

√
n,t(λ̃n)− syt (λn)−

1

2
u0nG̃

−1
n Ũtξ̃(Yt)s

y
t (λn)

i2
dy

+
1

4α

nX
t=1

Eλn [(u
0
nG̃

−1
n Ũtξ̃(ηt))

2|Ft−1] = oλn(1 + α) +Oλn(
1

α
) = oλn(1),(A. 5)

where the last equation holds by first letting n→∞ and then letting α→∞.
Let Dnt = Tnt − u0nG̃−1

n Ũtξ̃(ηt).
Pn
t=1 Eλn{[Dnt − Eλn(Dnt|Fn)]2|Ft−1} ≤ Pn

t=1

Eλn(D
2
nt|Ft−1) = oλn(1) by Lemma A.1(d), and hence

Pn
t=1[Dnt − Eλn(Dnt|Fn)]

= oλn(1) by Remark 3.7 (iii) in Fabian and Hannan (1982). Note that Eλn ξ̃(ηt) = 0.

We have
Pn
t=1[Dnt − Eλn(Tnt|Fn)] = oλn(1). Furthermore, by (A.5), we know that
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(A.2) holds. To (A.3), by Lemma A.1 (c), it is sufficient to show that

¯̄̄ nX
t=1

{T 2
nt − [u0nG̃−1

n Ũtξ̃(ηt)]
2}
¯̄̄
= oλn(1).(A. 6)

Note that
Pn
t=1Eλn[D

2
ntI(|Dnt| > ε)|Ft−1] ≤ Pn

t=1Eλn(D
2
nt|Ft−1) = oλn(1) by Lemma

A.1(d). By (3.15) of McLeish (1974),
Pn
t=1D

2
nt = oλn(1). Now, by Lemma A.1 and

using a similar argument as for (A.5), we can show that (A.6) holds. By Lemma

A.1 (b) and (d), and following the steps in DKW (1997, p.794), we can show that

max1≤t≤n |Tnt| = oλn(1). By (A.3) and Lemma A.1(a), we have
Pn
t=1 T

2
nt = Oλn(1),

and hence
Pn
t=1 T

3
nt = oλn(1). Thus, (A.4) holds.

By (a) of this theorem, Λn(λ0,λn, 0) = u
0
nW̃n(λ0)− u0nS̃n(λ0)un/2 + oλ0(1), and

Λn(λ0,λn, 0) = −Λn(λn,λn+G0−1
n (−θn), 0) = −[ũ0nW̃n(λn)− ũ0nS̃n(λn)ũn/2]+oλn(1)

with ũn = (−θ0n, 0)0. By Assumptions 2.1 and 2.2, we can show that W̃n(λn) =

Oλn(1) and S̃n(λn) = Oλn(1). Note that W̃n(λn) and S̃n(λn) are measurable in terms

of Fn and hence they are bounded under Pλn,n. Thus, Λn(λ0,λn, 0) is bounded under

both Pλ0,n and Pλn,n, which implies (b). The first part of (c) holds by Assumption

2.2 and the second part holds by exploring the equation: Λn(λ0,λn, 0)+Λn(λn,λn+

G
0−1
n ϑn, vn/

√
n)− Λn(λ0,λn +G

0−1
n ϑn, vn/

√
n) = 0. This completes the proof. 2
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meters present. Sankhyā Ser. A, 50 , 249—268.

Schick, A. and Susarla, V.(1988). Efficient estimation in some missing data prob-

lems. J. Statist. Plann. Inf., 19, 217-228.

Shin, D.W. and So, B.S. (1999). Unit root tests based on adaptive maximum

likelihood estimation. Econometric Theory, 15, 1-23.

Weiss. A.A. (1986). Asymptotic theory for ARCH models: estimation and testing.

Econometric Theory, 2, 107-131.

Department Of Mathematics

Hong Kong University Of Science And Technology

Clear Water Bay

Hong Kong

Department of Economics

University of Western Australia

Perth

Australia

42


