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Abstract

This paper considers adaptive estimation in nonstationary autoregressive
moving average models with the noise sequence satisfying a generalised autore-
gressive conditional heteroscedastic process. The locally asymptotic quadratic
form of the log-likelihood ratio for the model is obtained. It is shown that the
limit experiment is neither LAN nor LAMN, but is instead LABF. Adaptivity
is discussed and it is found that the parameters in the model are generally not
adaptively estimable if the density of the rescaled error is asymmetric. For
the model with symmetric density of the rescaled error, a new efficiency crite-
rion is established for a class of defined M, -estimators. It is shown that such
efficient estimators can be constructed when the density is known. Using the
kernel estimator for the score function, adaptive estimators are constructed
when the density of the rescaled error is symmetric, and it is shown that
the adaptive procedure for the parameters in the conditional mean part uses
the full sample without splitting. These estimators are demonstrated to be
asymptotically efficient in the class of M,-estimators. The paper includes
the results that the stationary ARMA-GARCH model is LAN, and that the
parameters in the model with symmetric density of the rescaled error are
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1 Introduction

Suppose that the observations yi, - - -, ¥, are generated by the autoregressive moving
average (ARMA) model with errors generated by the generalized autoregressive

conditional heteroscedasticity (GARCH) process:

p q
(1.1) yr = Z PoiYt—i T Z Yoi€t—i + Ets
i=1 i=1
T S
(12) & = nt\/h7t7 ht = oo + ZUOigtz_i + Z/UOihtfb
i=1 i=1

where 7, is a sequence of independent and identically distributed (i.i.d.) random
variables, with mean zero, variance one and a common density f; and agy >
0, wo1, "+ ,Uor, Vo1,*-*,V0s > 0. Models (1.1)-(1.2) is called the nonstationary
ARMA-GARCH model if the characteristic polynomial ¢g(2) = 1 — Y°F_; g;2" has
one unit root taking the value +1, with the remaining roots lying outside the unit
circle.

In the traditional ARMA model, the errors ¢; are assumed to be i.i.d.. Common
time series practice has provided substantial evidence that these assumptions are
usually inadequate. For example, the conditional variance of the errors may contain
much useful information. Engle (1982) proposed the autoregressive conditional het-
eroscedasticity (ARCH) model, that is, model (1.2) with s = 0, which can capture
such information. Subsequently, Bollerslev (1986) generalised the ARCH model to
the popular GARCH model (1.2). This is a very important class of time series mod-
els and has been widely investigated and applied in the finance and econometric
literature (see the surveys by Bollerslev, Engle and Nelson (1994), and Li, Ling and
McAleer (1999)). For ARCH-type time series, there are already some theoretical
results for the quasi—maximum likelihood estimator (QMLE) in Weiss (1986) and
Ling and Li (1997, 1998). However, when 7, is not normal, the QMLE is not efficient.

For various models with i.i.d. non-normal errors, much effort has been expended

in obtaining efficient estimators. Such efficiency can usually be achieved by adap-



tive estimation. A comprehensive account of the theory and method can be found in
Bickel (1982) and Bickel, Klaassen, Ritov and Wellner (1993) (henceforth BKRW),
with a valuable survey in Robinson (1988). In the time series context, Kreiss (1987a)
investigated the stationary ARMA model, and proved the locally asymptotic nor-
mality (LAN) of the model and constructed adaptive estimators. Unlike Bickel
(1982), Kreiss” adaptive procedure uses full samples without splitting and hence is
quite useful in practical applications (see also Kreiss (1987b)). Koul and Schick
(1997) developed a general theoretical framework for nonlinear AR models with
i.i.d. errors, clearly discussed the efficiency and adaptivity, and especially showed
that Stein’s necessary condition can be satisfied in some models with asymmetric
errors. They also investigated several methods of constructing efficient estimators.

Recently, several authors have examined efficient estimation for ARCH-type time
series. Engle and Gonzalez-Rivera (1991) proposed a semiparametric estimator for
models (1.1)-(1.2) without a unit root and argued, through simulation, that the semi-
parametric approach does not seem to capture the total potential gain in efficiency.
Linton (1993) considered adaptive estimation for the fixed design regression with
ARCH errors. Koul and Schick (1996) investigated adaptive estimation for a ran-
dom coefficient AR model, which is an ARCH-type time series model. Jeganathan
(1995) and Drost, Klaassen and Werker (1997) (henceforth DKW) developed general
frameworks suitable for stationary ARCH-type times series. However, apart from
the simple ARCH model in DKW (1997) and the GARCH (1,1) model in Drost and
Klaassen (1997), these conditions have not been established for the general-order
GARCH model or the stationary ARMA-GARCH model. As Drost and Klaassen
(1997) argued, greater technical details may be required for more general cases.
These general stationary GARCH and ARMA-GARCH models are included in this
paper as special cases.

The above authors considered only stationary time series. There is a growing in-

terest in efficient estimation for nonstationary time series (see, for example, Koul and



Pflug (1990), Philips (1991), and Elliott, Rothenberg and Stock (1996)). Jeganathan
(1995) developed a general framework for nonstationary time series models, specif-
ically, a complete optimal inference procedure for nonstationary time series with
ii.d. errors.

In this paper, we discuss adaptive estimation for the nonstationary ARMA-
GARCH models (1.1)-(1.2), where we allow the ARMA model to have at most one
unit root. We generalise the frameworks in Jeganathan (1995), DKW (1997) and
Koul and Schick (1997). Under this framework, the locally asymptotic quadratic
(LAQ) form of the log-likelihood ratio for the model is obtained. It is shown that
the limit experiment is neither LAN nor locally asymptotic mixed normal (LAMN),
but is instead the locally asymptotically Brownian functional (LABF) defined in
Jeganathan (1995). The adaptivity is discussed and it is found that the parameters
in the model are generally not adaptively estimable if the density f is asymmetric.
For the nonstationary ARMA-GARCH model, the efficient estimator defined in
Fabian and Hannan (1982) is inappropriate. We define efficient estimators in a class
of M, -estimators and present a new efficiency criterion for the model with symmetric
density f. It is shown that such efficient estimators can be constructed when f
is known. Using the kernel estimator for the score function, adaptive estimators
are constructed for the model with unknown symmetric density f. It is shown
that these estimators are asymptotically efficient in the class of M, -estimators. In
DKW (1997), the split sample method proposed by Schick (1986) is used for all
the adaptively estimable parameters. In contrast, our adaptive estimation of the
parameters in the ARMA part uses the full sample without splitting and hence may
be more useful in practice. The full sample adaptive procedure can be seen as an
extension of the method in Kreiss (1987a). However, since the ARMA model is
nonstationary and the error is not i.i.d., his proof cannot easily be extended to the
current situation.

Our adaptive estimation for the ARMA part depends heavily on the symme-



try assumption. Without this assumption, some different methods of constructing
adaptive estimates were given in Kreiss (1987b), DKW (1997) and Koul and Schick
(1997) for the stationary ARMA model with i.i.d. errors. The research in this
paper can be considered as a first step in exploring optimal inference problems in
nonstationary time series with ARCH errors. Along this route, similar theories and
methods can be developed for the nonstationary ARMA model with alternative
ARCH-type errors, such as E-GARCH and threshold ARCH, among many others.
Another important extension is towards cointegrating time series with multivariate
ARCH-type errors.

This paper proceeds as follows. Section 2 presents a general framework for the
LAQ. Section 3 obtains the LABF form of the log-likelihood ratio, and discusses
adaptivity and efficiency for the nonstationary ARMA-GARCH model. Section 4
develops the efficient and adaptive estimators. Sections 5-6 provide the proofs of
the main theorems.

Throughout this paper, we will use the following notation. B’ denotes the trans-
pose of the vector B; o(1) (O(1)) denotes a series of numbers converging to zero
(being bounded); 05(1) (Ox(1)) denotes a series of random numbers converging to
zero (being bounded) in P j— probability; Py r and E), are abbreviated as Py and
E, respectively; || - || denotes the Euclidean norm; and —, denotes convergence in

distribution.

2 A General LAQ Criterion

In this section, we present a general LAQ) criterion which is a generalization of
the criteria in Jeganathan (1995), DKW (1997) and Koul and Schick (1997). Our
discussion follows the fashion of Koul and Schick (1997).

Let D be a class of Lebesgue densities, © be an open subset of the k—dimensional
real space R*, and B = {P,, : (\,x) € © x D} be a family of probability measures,

Y1,Y2,**,Yn be observable random variables, Yy be a pg x 1 initial (unobservable)



vector, and Z;_1(\) = Z;_1(Y;_1, ) and hy()\) = hy(Y;i_1, ) be measurable functions
of the variables Y;_; and A, where Y; = (Yo, y1,---,%) and A € ©. Suppose that,
under P, ,, Yp has a Lebesgue density gy, and the time series 3, have the following

structure:
(21) nt(A) = [yt - Zt—l(A)]/ ht(A)’ = 1a 27 )

where the rescaled errors n;(\), 72(A), - -+ are i.i.d. with density x € D and inde-
pendent of Yy, and the true parameter is (Ao, f).

For the nonstationary AR model with i.i.d errors, the LAQ form of the log-
likelihood ratio (LR) was given in Jeganathan (1995). However, he did not accom-
modate the perturbation of the unknown density and whether or not the parameters
in the nonstationary AR model are adaptively estimable. By parameterizing the den-
sity, Koul and Schick (1996, 1997) gave some clear explanations as to the adaptivity
of the parameters in the random AR and nonlinear AR models. This technique
requiring the parameterization of densities is discussed carefully in BKRW (1993).
As in Koul and Schick (1996, 1997), we introduce the following definition.

Definition 2.1. Let ¢ — f. be a map from a neighbourhood A\ of the origin in R
into D such that fo = f. We say that ¢ — f. is a reqular path if there exists a mea-
surable function ¢ from R to R such that [ ||((2)|]?f(z)dz < oo, [ {(z)'(z)f(x)dx

15 nonsingular, and

[ Vi@ - i@ )~ 5¢C@F@)

Let PY, be the restriction of Py s, to F,, a o—field generated by {Yo,y1," -+, yn}

2
dz = o||c]]*).

Denote Pﬁn by Pyn. Define A, (A1, A2, ¢) as the log-LR of Py, 10 Py p:

D1 dn(¥D)
Anld, 22, ) Zl a]“ 8 s (¥)’

where s.:(\) = \/ fe(me(N)/ \/ hi(A) and s;(A) = so(A). The following assumption

ensures that the Fisher information is finite for both scale and location parameters.



Assumption 2.1. The density f is absolutely continuous with a.e.-derivative

f" and
/fl x)dr < oo and Ip(f /52 r)dr < oo,

where &1(z) = f'(z)/ f(z) and & () =1 + 261 (x).

Denote g;(A) = (e¢(A), /he(N)), where e,(\) = yi—Z;_1 (). Let G,, be a sequence
of diagonal non-random £ x k matrices depending on n but independent of A and ¥,
0,, and 9,, be two bounded sequences in R*, \, = \g + G0, and Ao = A\ + G 19,
and X;(\) = h;l/z(/\)Ut()\), where Uy(\) = (u¢(Yi—1, ) )kx2 and u;;; is a measurable

function from RP°**=! x © to R. Furthermore, let

1 n
lZXt WCn _%ZC
1
lZXt G_l SC” —G

~ [ Wa(A) ~ B Sn(A) S n()\)V
W"”‘(W@m)’ S"“)‘(vgsgm Y “)’

where £ = (&1, &), J = EEm)E ()], Vee = ElE(n)¢ ()] and V' = E[C(n:)
¢'(n¢)]. We make the following assumptions.

Assumption 2.2. For any sequences 6,, and 9, it follows that:

(i) [inf ht(An)]_leAn(l),

(i) Z [0) = ) = G = A TUA] = 08, (1),
(i) liltlgnHG )| = 0r (1),

(iv) ; |G| = 0s.0).

Assumption 2.3. [|qn7.(2) — @ r(x)|dz = 0(1) as ||]X — Ao|| = o(1) and
llc|]| = o(1), where f.(x) is defined as in Definition 2.1.

Now, we give the general LAQ criterion and its proof can be found in Appendix.

Theorem 2.1. Suppose that the path ¢ — f. is reqular and that Assumptions
2.1-2.3 hold. Let u, = (V!

L,uh) and vy, be a bounded sequence in R'. Then:
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(@) ANy Ans 0/ /1) = 1 Wi (An) = 1,0 (M)t /2 + 01, (1),

(b) Py, and Py, , are contiguous,

() Sa(An) = Sn(Xo) + 0x(1) and Wi (An) = Wa(Xo) = Sn(No)( "g ) +0x(1).

Remark 2.1. If the LAQ of A, (A, An, vn/+/n) is LAN, LAMN or LABF, then
(b) automatically holds (see Kallianpur 1980, Ch. 7, and Jeganathan 1995, p. 850).

In this case, it is sufficient to verify Assumption 2.2 with A, = A\g and that
n _ 2

(2.2) S GRHTO) = L)) = oxe(1).
t=1

Assumption 2.3 means that the starting conditions have a negligible effect. If Yj
is assumed to be independent of (), x), as in the next section, then this assump-
tion holds. Koul and Schick (1997) discussed this assumption carefully for some
stationary nonlinear AR models.

Remark 2.2. When the LAQ is LAN or LAMN, the error model D has a
two-dimensional least favorable path: &.(z) = —&(x) + VeV (z) with ((z) =
(x,2% — 1)". Along this path, one can obtain the optimal estimates and discuss the
efficiency and adaptivity. For the stationary nonlinear AR model, Koul and Schick
(1997) showed that the LAQ is LAN, and especially, they found a one-dimensional
least favourable path and generalized the criterion of efficiency in Fabian and Hannan
(1982) and Schick (1988). When the LAQ is LABF, as in the next section, under
which sense the path is least favorable and the estimator is efficient need to be
defined. After defined efficiency, the efficient estimator can be constructed by the
split-sample method similarly as in DKW (1997) and Koul and Schick (1997). For

models (1.1)-(1.2), the efficiency and adaptivity will be discussed in the next section.

3 The LABF, Adaptivity and Efficiency for Non-
stationary ARMA-GARCH Model

First, it is necessary to isolate the unit root in model (1.1). Note that ¢g(z) can

be decomposed as (1 — z)¢o(z), where ¢o(2) = 1 — Y21 ¢oiz'. Let wy = (1 — B)y,



where B is the backshift operator. Model (1.1) can be rewritten as

p—1 q
Yt = YoYt—1 + We, W = Z Gojwi—; + Z%z’f:‘t—i + &,
i=1 i=1

where 79 = 1. In (1.2), we assume that the variance of 7, is one. In this case, all the
parameters in (1.2) can be estimated by the QMLE method, as in Ling and Li (1998).
However, the parameters in (1.2) are not adaptively estimable (see the discussion
below). As in Drost and Klaassen (1997), model (1.2) needs to be reparameterized.

Thus, we assume that, under Py, y,t = 1,---,n, satisfy the following structure:

(3-1) wt()‘) =Yt — VY1, Et()\> = wt()\) - 2 ¢z‘wt—i(>\) - Zl/%é?t—i()\),

q
=1
s

(32)  m) =)/, () = aofl+ 3 aie? () + 3 Ak ()],

i=1 i=1

with the initial (unobservable) vector Yo = (yo, -, Y1-p, €0, == -, E1-¢*> R0y - -+, ha—s)
and ¢* = max {r, ¢}, where the rescaled errors n1(\), 72(A), - - - are i.i.d. with density
x € D and independent of Yo, A = (y,m’, &), m = (¢/,¢) with ¢ = (¢1, - - - , Op—1)’
and ¢ = (Y1, -,1,), 6 = (ao,8') with § = (ag,---, o, B1,- -+, 0s), and the true
parameter (Mg, f) € © x D. We assume that, for simplicity, Yy is a constant or
random vector independent of (), x), and for each A € ©, it follows that:

Assumption 3.1. All the roots of ¢(z) = 1—322] ¢;z* and 1h(z) = 14+ 39, ;2
are outside the unit circle, with ¢,_1 # 0 and v, # 0, and ¢(z) and ¢ (z) having no
common root.

Assumption 3.2. ao(Xi—; a; + Xi2; 5;) < 1 with oy > a positive constant,
a; >0and 3; >0, and ap Y '—; ;2" and 1 — ap Y j—; ;2" having no common root.

Assumption 3.3. p[E)\(A:(A) @ A¢(N))] < 1, where ® denotes the Kronecker
product, p(B) = max{|z| : z is an eigenvalue of B} for some matrix B, E\ denotes

the expectation under Py ¢, and

aanf(A) - aaiF(N) [aoBinf(A) - aoBanf(N)
I, O@¢-1)x1 O@—1)xs
At(A) = )

Qo o QpQy, aofr e aof3s
O(sfl)xr Isfl O(sfl)xl
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in which I; is the ¢ x 7 identity matrix and O;y; denotes the ¢ x j zero matrix.

Remark 3.1. Assumption 3.1 is the usual second-order stationary condition of
the process {w;} in model (3.1). Assumptions 3.2 and 3.3 are the necessary and
sufficient conditions, respectively, for the finite second- and fourth-order moments
of model (3.2) (see Ling and Li (1997), Ling (1999), and Ling and McAleer (2000)).
Assumption 3.2 is not a necessary condition for strict stationarity of model (3.2),
see Nelson (1990).

To state our main result in this section, we need the following notation:

6 (2)(z) = :iovmzé b 2)(z) = :iovw¢<i>zi, bHz) = im

(I—aod B:2) = (i)', 1—a0d Biz") Haod ') =3 vap(i)2
= = i=1 i=1 i=1
where Vgopo () and vy, y, (1) denote vgy (i) with A = Ag and A, respectively. Simi-

larly, define vyqgo(7), Vyng, (); Vi (1), Uy, (4), V5o (), U, (1), Vaoo (1) and va,g,, (7).

Let (w?, €9, h?) be unobservable processes generated by the following equations:
0 = 0 ! 0 0
wy = Z Gojwy_; + Z Yoigr_1 + &5
=1 i=1
ey = nu/hY, hi = ano(1+ " aoier?; + > Boihg_;),
i=1 i=1

where t = 0, £1, 42, ---. Then (w?, €2, k) is a fixed function of the {n;}. We define:

0 [e%¢) 0
&et B Z Oh; _o Z o Ogi;
U'¢’O wt i—1» a - Uaoﬂo €t —1 8 )
=0 m
8h0 o)
~0’ !/ ~0 02 0 0 !
= Zvﬁo uOt iéri1)s & = aooles, - Et s ey By o)
Z
~0 __ (.0 0 0 0 ' 0 _ r 02 s 0
where Wy = (wy, -+, Wy_p40, 5, 75t—q+1) and ug, = 143> 1y a0igy =+ 7721 Poihy;-

Using the same notation as those in Section 2 with U; = [0g(\)/OA, (Ohe(N\)/ON)/
hi(AN)],k=p+q+r+s+1and G, = diag(n, /nlx_1), our theorem is as follows.
Theorem 3.1. Suppose that Assumptions 2.1 and 3.1-3.3 hold and the map
¢ — f. is a reqular path such that Q below is positive definite. Let u, = (9

n? ’I’L)

and v, be a bounded sequence in R'. Then: (a) the conclusions of Theorem 2.1 hold,

9



and (b) the matriz S below is almost surely positive definite and, under Py,

M(r)dB(r), /

0

1 1

M(T)ZM/(T)dT} :

(W $)(20) —2 (W.8) = [ [

where k = [1 — ¢o(1)] Fbo(1), M(7) = diag(kwi(7), Is_1, 1), B(1) = (kwy, N -,
N'(7), (w1, w2, NI = N{)'(7) is a k + 1 + 1—dimensional Brownian motion with

mean zero and covariance TS,

- ([ Q C B h9? () X2 €0 B XPIXY XV,
2= ( v ) =8 ( X0%(m)e?  Xx2IXxY )0 x=b V&»XO' 1%

C = BlC(m)ed, VeeXT), XP = (uSy us u)'s uy = (02, S22 vagso (1) €01/ 1Y),
w0, = (hY 209 /am, (2h0)~10R0 /Om), and ul, = (0, (2h)~10R% /06).

Remark 3.2. From the above theorem, we see that the LAQ form of the log-
LR An(An, A, v/+/n) is neither LAN nor LAMN, but is instead LABF. The score
function and information matrix of the unit root may be correlated with those of
the other parameters in the stationary mean part and the GARCH part. This
phenomenon is new in the literature and results in the complicated limiting dis-
tribution (W, g) Using Assumptions 3.1-3.3, we can show that © > 0, as in
Weiss (1986) and Ling and Li (1997). Furthermore, for Q > 0, one of the suffi-
cient conditions is E(®;R;) > 0 with R, = [, (), ('(m¢)]’. However, this con-
dition excludes the normal density. If we further assume that the path satisfies:
lim. o [(1+2*) f.(x)dz = [(1+2%) f(x)dx, then some two-dimensional regular paths
such that Q > 0 can be constructed. Since the argument becomes more involved,
we refer to Koul and Schick (1996, 1997) for the one-dimensional regular paths.

Remark 3.3. When D includes only densities that are symmetric about zero,

the limiting distribution in Theorem 3.1 (b) can be simplified as follows:

K fo wi(T)dwa(T) K2, [pw?(T)dr 0 0 0

. N, 0 Qn 0 0
(W, 5) = N, 0 0 o Vi |
N 0 0 Vi V

where (w1, w)(7) is a bivariate Brownian motion with mean zero and covariance

0
™ =7 Ehi 1 ; Ny and N are (p+q¢—1)—and (r+s+1+1)—
1 Q N,

10



0 V2
V{g‘i &C ), respectively,

and independent of (wp,w)(7); and Q, = E(ugtJug;), Q= B0, Jul,), Q5 =

normal vectors with mean zero and covariances €2,,, and <

E(ugtJu%;) with J = diag(l1(f), I2(f)), and Vg’c = Eug V.. In this case, the LR is
the product of a LABF and a LAN (a special LABF). If we assume that the unit
root in (1.1) is known and not estimated, then from Theorem 3.1, we see that models
(3.1)-(3.2) belong to the LAN family. Using slightly stronger conditions, this result
is a generalization of Drost and Klaassen (1997) and DKW (1997) for stationary
ARCH-type time series.

The LABF in Theorem 3.1 can assist in understanding the adaptivity of para-
metric estimation for models (3.1)-(3.2). In LAN models, various definitions based
on the locally asymptotic minimax risk for adaptivity were given in Bickel (1982),
Fabian and Hannan (1982), and Koul and Schick (1997), among others. Roughly
speaking, these definitions are equivalent to saying that a sequence of adaptive esti-
mates has the same asymptotic information matrix as the estimates in the case with
known density. The information matrix can completely explain the perturbation of
the unknown density to the score function in LAN and LAMN models. However,
in the LABF model, the information matrix does not have this advantage. This
motivates us to define adaptivity directly by the asymptotic distribution.

In the following definition, we suppose that Assumptions in Theorem 3.1 hold
and the v : © — RM_ k; < k, has a total differential 7()\), a k; x k matrix, such
that there is a k; x ky matrix G satisfying G*(M\o)G,t = 2(No). v(N), v(X) and
v(\g) are abbreviated as v, 1y and g, respectively.

Definition 3.1. Let , be a sequence of estimates of vg and Q be the set of all
reqular paths ¢ — f. such that [(Dn, — 10)'G* , /nc.) = diag(io, 1) S (Ao) Wi (Ao) +

0x(1). Uy is called adaptive or, precisely, (Q, D)—adaptive if, for every path in Q,
G (D — 1) —¢ S IW under Py,

where (W, S) is the k x (k + 1) upper left corner of (W, S).

11



This definition stresses only the fact that the estimator of vy without the knowl-
edge of the true density can achieve the same asymptotic distribution as its estimator
when f is known. In this sense, the adaptive estimates have the same asymptotic
distribution as the MLE, if the latter is available. The optimality of adaptive esti-
mates will be discussed later. By Theorem 3.1, the necessary and sufficient condition
for \n, i.e. b, with v = ), to be adaptive is C' = 0 for each path in Q.

When f is asymmetric, An is nOt (Q, D,)— adaptive, where D, denotes the
set of all densities that have zero means and finite variances. In fact, let [*(z) =
&(x) +2(2? —1)/(ug — 1) with ug = En?, and f. = fU(cl*)/ [ V[cl*(z)]f(z)dx with
U(y) =2(1+e %)L It is easy to show that the map ¢ — f. is a regular path from
(—¢, €) to Dy, with ¢ = [* and ¢ sufficiently small. Since E[(n? — 1)&(n:)] = —2, it
can be shown that E[((n:)&(n:)] = L(f) —4/(us — 1) > 0 and E(R:R;) > 0. Along
this path, C' # 0 and hence our claim holds.

When D includes only densities that are symmetric about zero, from Remark
3.3, we can show that %, and m, are adaptive. However, b0 is not adaptively
estimable in terms of (Q,D) as V3 # 0 along the same path as for the above
case with asymmetric densities. Similarly, we can show that agy is not adaptively
estimable. After projecting the score functions for 6 and ¢ into that for ag, we have

V(b — 80) = S5 (Xo)Win(Xo) + 03 (1) —2 N(0,95?) under Py,, where

mww:§%im (V)] & (N),
50) = (a0 %W—@%ﬁMéWWMm

and Qs = [B(I31%) — E(§)EU)L(f)/4, with Is(A) = hy ' (\)oh(N)/06, 13, =
hO719R0 /06, and fis(\) = n~t S0, [y L (A\)Ohe(X)/D8]. That is, b, is adaptive. Simi-
lar findings were given in DWK (1997) and Drost and Klaassen (1997) for the ARCH
(p) and GARCH (1,1) models, respectively. In addition, this indicates that the pa-

rameters in model (1.2) are not adaptively estimable if it is not reparameterised as

model (3.2).
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Basing on the above discussion, we are interested in the case with symmetric
density and make the following assumption:

Assumption 3.4. The density f is symmetric and D includes only densities
that are symmetric about zero.

The optimal properties of our adaptive estimator are as yet unknown. In LAN
models, Hajek (1972), Fabian and Hannan (1982) and Koul and Schick (1997) es-
tablished the precise notion of efficiency. Jeganathan (1995, Section 3) discussed the
efficiency of the estimators in LAMN models. However, the definition and discussion
they gave are inappropriate for the current case. As in Jeganathan (1995), in order
to obtain some useful optimality properties, we need to restrict the competing class
of estimators. We first define a class of estimators, namely M,-estimators. Note
that our focus is on the symmetric density f, so that the corresponding restrictions
are made for the m—function in the following definition.

Definition 3.2. Let w(x) = [m(z), m(x)] be a bivariate real function with odd
m1(x) and even my(x), such that E[m(n)] = 0, E[n(n)7' ()] = diag(ly,, I,) > 0,
a1 = Elmi(m)é(n)] > 0 and ¢ = E[ma(n)&(n)] > 0. An estimator v, of vy is
said to be an M, —estimator, regardless of whether f is known or unknown, if it has
the asymptotic representation: G (0n, — 19) = Sy, (Ao)Warm(Ao) + 0x,(1), where

Wim(A) = G213, X, (N m(m:(\) and Sam(N) = S0y GoLX (N JXHNGL with

n
J. = diag(cy, c2).

M, -estimation is a very wide class and includes the QMLE, adaptive estimation
and MLE (if available). Now, we define the optimality properties of M, -estimators
and present an efficiency criterion for estimates in the class M, below. Under
this criterion, the adaptive estimates 7, in Definition 3.1 are efficient in M,,. In the
following definition, we suppose that Assumptions 2.1 and 3.1-3.4 hold, under which
every M, -estimator has a limiting distribution under Py, (see the proof of Theorem

3.2 in Section 5).

Definition 3.3. Let M, be the set of all M, -estimators. We say that v, 1is

13



efficient if v, € M, with limiting distribution G under Py,, such that E [GG'] is the
smallest covariance matriz of the limiting distributions of M, -estimators in M,,.
Theorem 3.2. Suppose that Assumptions 2.1 and 3.1-8.4 hold. If a sequence of

estimators U, of vy has the following asymptotic representation:
G (0 — 10) = 265, (A0) Wi (Xo) + 0xo(1),

then the estimator U, belongs to M,, and is efficient.

4 Efficient and Adaptive Estimates

In order to construct the efficient estimator, we need to assume that a G,,- or G-
consistent initial estimator is available. In fact, the QMLE in Ling and Li (1998) can
be taken as such an initial estimator. For technical reasons, we also need to restrict
the initial estimator to be discrete. The idea of discretization was first proposed
by LeCam (1960), and has become an important technical tool in the construction
of efficient estimators. Some further applications of the technique can be found
in Bickel (1982), Kreiss (1987a), Jeganathan (1995), and Koul and Schick (1997),
among others. We now provide the following definition and lemma.

Definition 4.1. A sequence of estimators {v,,} measurable in terms of F, is
called discretized G - consistent if, for any small e > 0, there exists a constant A > 0
and an integer K > 0 such that Py, (||GL(0n —10)|| < A) > 1—¢ uniformly inn and,
for each n, v, takes on at most K different values in ©F = {v € R* : ||G%(v — vp)||
< A}

Lemma 4.1. Assume I'y(v),n =1,2,---, to be a sequence of random variables
which depends on v € ©*, an open subset in R*. If, for each sequence {v,} €
©* satisfying G (v, — o) is bounded by a constant A > 0, T',(v,) = 0x,(1), then
L) (D) = 06, (1) for discretized G} -consistent estimators .

The proof of this lemma is similar to Lemma 4.4 in Kreiss (1987a), and hence

is omitted. Based on the initial estimator, the efficient estimator can be obtained
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by a one-step Newton-Raphson iteration if the density f is known. This gives the
following theorem which comes directly from Theorem 2.1(c), Theorem 3.1(a) and
Lemma 4.1 with v(\) = A.

Theorem 4.1. Suppose that \, is a discretized G,—consistent estimator, and

Assumptions 2.1 and 3.1-8.4 hold. Let

A= A+ GRS L) WL ().

Then Gp(An—Xo) = S5 A)Wi(Xo) 401, (1), and hence N, is an efficient estimator-

In practice, the density is usually unknown. In the following, we will construct an
adaptive estimator which does not depend on the density but has the same efficiency
as when the density is known. As in the discussion in Section 3, only the parameters
Y0, Mo and &g are adaptively estimable. We merge ago into f, which is equivalent to
assuming that 7; has a finite variance agg and that the true parameter agg in model
(3.2) is equal to 1. In the remainder of this section and Section 6, denote (y, m’, ")’

by A. Similarly, define \g and An. We introduce the notation:

W\ == &Gm() - &(m(N)),
ni=1 b h(N) O 2hi(X) Oy

Win(A) NG ; { Oy Om &a(m(A) — WW&(%(A))},
12 1 85,; A)\2 1 8ht A)\2

Smn(A) = %i [hf%)\) 63753 ) 8227(?)11“ )+ 4h21(>\) agﬁ) ag;(;)b(f )

t

W) S.0 00
Wln<)‘) = ( Wmn()‘) ) ) Sln()‘) = ( 0 Smn()‘) 0 ) )

0 0 Sen(A)
where Wy, (A) and Ss,(\) are defined as in Section 3.

Now we construct adaptive estimators for Ag. As in Kreiss (1987a), we use the
usual kernel density estimator for &;(z). First, define
1 n
> lg(@+m(N).a)+g(z —m(N),a)],

i=1,i%j

(41)  fa(z,N) =
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where j = 1,---,n, g(z,a) = (2ma®) Y ?exp(—2?/2a?), x € R,

{ fan,j(ff7)\) Z dna

an j(x A)

3 72 <
(42) gln,j(fﬁ, )\) = fan,j (@A) |'I| > Gn,

|fc/Ln,j(xa )‘)| < Cnfan,j(xa >‘)a
0 otherwise,

and ézw(x, ) = xfl,,w-(x, A) + 1, with a,, ¢,, d,, and g, satisfying:

1,-3.2 3 :
a,°c.g. — 0; and

Assumption 4.1. a,, d, — 0; ¢,, g, — ; apc, — 0; n~
n~tgt =0(1).

We also define Iy,(\) and I, ()), where
= S ), 0 + 1]

t=1

§|*—‘

. 1.
B = = Y&, 1), 2) and Lu()
t=1

Denote [Won(X), Wi, (A)] by [Wan(X), Wy, (N)] with & (m:(X)) replaced by & 7:(N),
A), and diag[Syn(A), Smn(N)] by diag[Syn(A), Smn(N)] with I(f) replaced by I, (\),
where i = 1,2. W (A), Win(A), Syn(A) and Sy, () are estimated by W, (X),
Wi (A), Syn(A) and S (N), respectively.

To estimate the score function of §, we need the split sample technique. This
technique was proposed by Schick (1986) and was also used by DKW (1997). Let
k. be an integer such that k,/n — 7 € (0,1). Split the residual ny(X), - -, 7, (N)

into two parts, namely (n1()\), - -+, mx, (A)) and (n,+1(A), - -+, 7.(X)). Denote

A(1 1 kn T+ (A x —n;(A
1N = gy 2 () ()

2 1 n T+ A r —T1; A
O = Sa(n —F —1) i:k;,iﬁ [K( ;7< ))+K(_ ;7< ))}’

where K (z) = e ®/(1 4+ e%)? is the logistic kernel. Define fzm( A) = FOr (z,\)/

ain,Jj

b, + f(l) (z,\)], where i = 1,2 and n~tag, b;* = o(1). W;,()\) is estimated by

W) = =3 [t 28 ]2 ).
1 1 Oh())
- mt:k%:ﬂ () 96 —ua(k)} %)t(m(A) A

where fis(\) is defined as in Section 3.
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The main result in this section is the following theorem, which indicates that the
parameter \g is adaptively estimable.

Theorem 4.2. Suppose that \, is a discretized G, —consistent estimator, and
that Assumptions 2.1, 3.1-3.4 and 4.1 hold. Let

An = Ao+ GHLSE ) Wi ().
Then Gn(j\n—)\o) = S5 (M) Win(Xo)+0x, (1), and hence M\, is an adaptive estimator,
where G, = diag(n, /ili—2), Win(\) = [Won(A), Wi, (X), Wi, (N)]' and S, (\) =
diag[Syn(N); Smn(N), Ssn(N)].

Remark 4.1. In Theorem 4.2, we use the full sample without splitting for
(70, mg)’. This method is different from that used in DKW (1997) and may be more
useful in practical applications, as in the simulation evidence in Koul and Schick
(1997). This method is also different from that in Koul and Schick (1997), where
they need to truncate the variable H ;. The adaptive estimate of § is constructed by
the split sample method, because no symmetry can be used in the score function of
6. If we make a suitable truncation to h;*(A\)0hy())/06 — jis, as in Koul and Schick
(1997, sections 5-6) and use the results in Schick (1987) and Schick and Susarla
(1988), it is possible to avoid splitting the sample.

Remark 4.2. Theorem 4.2 includes the new results that, by deleting the cor-
responding component for the unit root, the adaptive procedure above can be used
for the stationary ARMA-GARCH model, and that the adaptive estimators achieve
the smallest asymptotic covariance matrix in LAN models.

To see how well the adaptive estimator (AE) performs in finite samples com-

pared with the QMLE and LSE for both the nonstationary and stationary cases, we
simulate the following simple AR-GARCH model:

(4.3) Yt = YoYi-1 + €, &t = Ut\/hj, hy = ago(1 + aoef + Bohi-1),

where 7, is 1.i.d. with density f(z) = [0.5e=@3*/2/\/27 + 0.5e~@*3?/2/,/27] /\/10,

and agg = 1. This density has been frequently used for investigating the finite-
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sample behaviours of adaptive estimates, as in Kreiss (1987a) and Shin and So
(1999). In the simulation, 7vo = —0.5, 0.5, and 0.8 for the stationary case, and 1.0 for
the nonstationary case; and (ag, fo) = (0.57,0.02). Weset ¢, = 5.0, d,, = e2%/3 /6,
and g, = 15. The sample size is n = 250, and 1000 replications are used. Since
the performance of the AE for (ap,3) in finite samples has been investigated in
Drost and Klaasen (1997), we report here only the results for 7o in Table 1. In this
table, the efficient estimator (EE) is constructed as in Theorem 4.1 and the QMLE
is described as in Ling and Li (1998). From these results, we can see that the AE
and EE are much more efficient than the LSE and QMLE, while the AE and EE are
very similar. Meanwhile, the biases of the AE and EE are generally smaller than

those of the LSE and QMLE, except when o = 0.5.
TABLE 1

The Empirical Bias and Standard Deviation of LSE, QMLE, AE and EE
n=250, 1000 Replications, and the smoothing parameter a,, = 0.35

Yo = —0.5 Yo =0.5 Yo =0.8 Yo =1.0
Bias SsD Bias SD Bias SD Bias SD
LSE .0088 .0640 —.0042 .0625 —.0079 .0444 .0075 .0151
QMLE .0043 .0403 —.0004 .0408 —.0036 .0289 .0046 .0100
AE | —.0014 .0180 .0022 .0182 .0009 .0118 .0001 .0028
EE | —.0005 .0175 .0018 .0184 .0001 .0117 —.0009 .0035

Remark 4.3. The adaptive estimator 4, of 7o can be used to construct a unit
root test. From Theorems 3.1 (b) and 4.2, we have n(§, —1) — ¢ Jo w1(7)dwa(7)/k
Q, fg wi(r)dr. Let

1 o?
By(1) = U_Ewl(T) and By (7 O'ZQ —V —0397 —qwalT

where 02 = Fe%. Then Bi(7) and B,(7) are two independent standard Brownian
motions. As shown in Ling and Li (1998), we can show that

. 3 Bi()dBy(T \/JZQ — 1 [} By(7)dBs(7)
R Bt v vy

The second term in (4.4) can be simplified to [,/a2Q, — 1/(02Q.x)] (Jg B3 (1) d)~Y/2%¢,

where ¢ is a standard normal random variable independent of [3 B2(7)dr (see

18



Phillips, 1989). Let 7apn = S5,7/%[n(%, — 1)]. Then we have

Jo Bi(7)dBy(7)
fol B%(T)dT

(4.5) TAEn —L + /1 — p?¢E,

where p = 1/ \/E € (0,1). The asymptotic distribution of 74, depends on a
nuisance parameter p. Its critical values can be obtained through the simulation
method, with the estimated p as given in Hansen (1995) and Shin and So (1999).

Testing for unit roots has been a mainstream topic in econometrics for quite some
time, so it is important to find more powerful tests for both theory and application.
For the AR model with i.i.d. errors, the popular Dickey-Fuller (henceforth DF)
test based on LSE has been widely used. For the AR-GARCH model, the DF-
test still is valid for the hypothesis Hy : 7o = 1 (see Ling, Li and McAleer(1999)).
The QMLE in Ling and Li (1998) may be used to construct the unit root test:
Tomn = (02K2p) (X1, y2 1)Y2(4gmn—1), which has the same asymptotic distribution
as (4.5) with p = (02K,)~Y/2, where 4gp, denotes the QMLE of o, K, = E(1/h?)+
uwed Y020, BE D EE2, /h%2), and ¢ = En? — 1. Since QMLE is more efficient than
LSE, 7og, should be more powerful than the DF-test. Note that the AE is more
efficient than both the QMLE and LSE. It is expected that the T4, test is more
powerful than both the DF-test and 7ggy.

To confirm our conjecture, we present a small simulation experiment for these
unit root tests. Using the same model as in (4.3) with the same sample size, repli-
cations, c,, d, and g,, we investigate the size for 79 = 1.0, and local powers for
7%=0.95, 0.97, 0.98 and 0.99. The critical values of the DF-test come from Table

TABLE 2

The Power and Size of Lower Tail Unit Root Tests for AR(1)-GARCH(1,1) Models
1000 replications, and the smoothing parameter a,, = 0.35

Significance Level 5% Significance Level 10%
Y= .950 .970 .980 .990 1.000 950 .970 .980 .990 1.000
DF-test | .904 .549 .319 .166 .055 974 775 534 285 120

Torn | 997 894 643 219 .038 1.000 .973 .839 437 .078
Tapn | 1.000 999 993 .860 .040 1.000 .999 .997 .923  .092
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8.5.3 in Fuller (1976). The critical values of Tgg, and Tag, are generated through
20000 replications of an i.i.d. bivariate N(0, ;) process. From Table 2, it is clear
that the sizes of the three tests are very close to the nominal 5% and 10% levels,

and that their powers are consistent with our expectations.

5 Proofs of Theorems 3.1-3.2

For simplicity, we assume that the initial values are y; = 0, ¢, = 0 and h; = wyp for
1 < 0, which does not make any essential difference to the proof. We first introduce
some lemmas. Lemma 5.1 comes from Bai (1993) and will be used to evaluate the
coefficients in various infinite expansions. Lemma 5.2 comes directly from Theorem
2.1 in Ling and Li (1997) and Theorem 6.2 in Ling (1999), which gives the basic
properties of the process (w?, h?). Lemma 5.3 gives the expansion of (wy, hs)(A).
These three lemmas are used often in this section and in Section 6. Lemma 5.4 is a
basic result for verifying Assumption 2.2.

Lemma 5.1. If all the roots of ¥ (2) = 14+ w1z + -+ + wyz? = 0 lie outside
the unit circle, then there exists a neighbourhood Vg, of w, M > 0, C' > 0 and
0 < o < 1, such that: (a) for every u € Vg, w;i(u) < Mg'; (b) for any § > 0, if
w,u' €V, and ||u—u'|| <6, then |;(u) — ()| < 6Cio*2, wherei=0,1,---, and
U Hz) = T2 Yi(w) 2"

Lemma 5.2. Under Assumptions 5.1-3.2, the process (w?, h9) is strictly sta-

tionary and ergodic, and almost surely has the following causal expansions:

[e%) oo 1—1
(a) w? = Z Ugoro (i)gg—i and (b) h,? =1JG+ Z H Ap_iCi—i,
=0 i=1i=0

where €9 = nt\/hTB, Ar = Ai(Xo), = (0,-++,0,1,0, -+, 0)( 4 g)x1 with the (r+1)th el-
ement being 1, ¢ = (o) and G(\) = (aon?(N), 0, -+, 0, a0,0, - -+, 0)’, with the first
and (r +1)th elements being aon? and g, respectively. Furthermore, if Assumption

3.3 holds, then €2 and w? have finite fourth moments.
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Lemma 5.3. If Assumptions 3.1-3.2 hold, then under Py, (wg, hi)(X) has the

following expansions:

(a) Z%w L]

t—15-1 t—1
®) (A =GN+ T Ami(NG— (V) + ¢ HAt i
7=1i=0

where €;(A) = n(A)\/he(N), ¢ and G(X) are defined as in Lemma 5.2, and & =
(0,--+,0,wo, -, wo) with the last s elements being wy. Furthermore, if Assumption
8.8 holds, then E(hi(Xo) —h?)? = O(0"), E (g/(Xo) — 8t) = 0(0") and E(wy(Xo)—
w?)? = O(a"), where O(+) holds uniformly in all t, t > 1, and 0 < ¢ < 1.

Proof. Under Py, model (3.2) can be rewritten as

(5-1) 5t()\) = Ct()\) + At<)‘)gt71<)‘)7

where C:t()‘) = {55()‘)7 T ’557r+1()‘)7 ht(/\)v ) ht—8+l(>‘)],'

Similarly, it can be shown that (a) holds. By

After iterating (5.1) ¢-

steps, we show that (b) holds.

expansion (b) of this lemma and Assumption 3.3, we can show that:
oo j—1

[ HAt Z€O_LZHAt iGe— J} = 0(0").

(5.2) E(hi(Xo) - )
j=t i=0
By (5.2) and expansion (a) of this lemma, the other cases can be proved. This
completes the proof. 2.
Lemma 5.4. If Assumptions 3.1-3.3 hold, then it follows that:

(a) maxi<i<y, |n_1/2yt| = Ox (1) and (b) n~1/2 mMaxy<t<n w2 (M) = 0, (1).

Proof. By Lemma 5.3 (a), under P,

1 S STIREE 35 )
——Ynr wz )\0 Vg 1/) 52 )\O
\/ﬁ o) =1 z =1 4=0 °r K

[nT] [n7]

Z Ud)odlo

[1 = ¢o(1)]

(1)

25] (o)) \}ERM(T)

[n7]
1
- = RZn (7-) )

1 Rln(T)'f‘ \/ﬁ

1
%;Ej()\o) + %
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where Rin = 515 Ugouo (1) (5 my 4125 (A0)) and Ron = (SZjuryes Voo () (350
£i(A)). By Lemma 5.3 (a), we have n~Y2maxj<ic, le:(Mo)| = n Y2 maxi<i<n
€9+ 0, (1). Since £? is strictly stationary with a finite variance, n=1/2 max;<;<,, |€?|
= 0),(1) (see Chung (1968, p.93)). Thus, by Lemma 5.1, it is easy to show that

Y2 maxgcr<1 |Rin(T)] = 0a(1) and n~Y2maxoc,<1 |Ron(T)| = 0(1). Further-

n
more, by Lemma 5.5 below and the continuity theorem, (a) holds.

Now we show that (b) holds. Under Py,, we have wy(\,) = wi(Ao) — O1nyi—1/1,
1/2

where 6y, is the first component of 6,,. By (a) of this lemma, n™"/* max<;<,(01,Y:-1/

n)? = 0y,(1). By Lemma 5.3 (a), we have n™%/? maxj<i<, w?(A\o) = n~ Y2 maxj<i<p

92 1 0),(1). Since w22

is strictly stationary with a finite variance (see Lemma
5.2), n7Y2 max)<i<p w? = 0y,(1) (see Chung (1968, p.93)). Thus, (b) holds. This
completes the proof. 2

Proof of Theorem 3.1 (a). Since it is assumed that Y is independent of
(A, x), Assumption 2.3 is obviously satisfied. By Theorem 2.1 and Remark 2.1, it is
sufficient to verify Assumption 2.2 with A, = A\g and (2.2). First, (i) obviously holds.
The proofs of (ii)-(iv) and (2.2) mainly use Lemmas 5.1 and 5.4, and some basic

inequalities. Since the techniques are similar, only the proof of (2.2) is presented.

We need to prove that

(53) > [a& Ba) _ Geldaly_

(5.4)

) G_l 8ht )\0 H .

> |2
1 \/he(A hi(Xo) oA

where, from Assumptions 3.1-3.2 and Lemma 5.1,

O (A =1 , 19)
% = _Zvdl(z)ytﬁfl; 5,; Z% 0)We—i—1(N),
i= 0

. 1 .
P 23 vl a’ft-z” 5’“ = i )

om = Qofi—i-1(A)
where m = (v, m')/, wi(A) = [wt(A),"'ywt—p+2(A)78t(A)w',8t—q+1(>\)]’7 ugr(A) =
1+ 30 aue? [(N) + iy Bihi—s(N), and &()) is defined as in (5.1). Again, since

these proofs are similar, we prove only (5.4).
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By Taylor’s expansion, and noting that h;(\) has a lower bound uniformly in all
t and in a neighbourhood of Ao, it can be shown that (5.4) is bounded by

B2 hy(\*,
INON

where \*,, = Ao + R,Gr0, with |k,| < 1, and O(1) holds uniformly in all ¢t. By

55 [le Gt + 6.5 0w = (+ o)

Lemma 5.1, it can be obtained directly that

85t 2 aet(A*n) 2 *
(56) ’ < O ) 1<t<n X It ‘ am H S 0(1) fgfig% Wi <>\ )
(5.7) )‘;}—WH < 0<1>[1rgg<>; i+ o Wi (V)]
8ht * aht *
59 [P < 00 e wtova), [P < 00) s i),
where O(1) holds uniformly in all ¢. Denote D,, = [(n_l maxi<i<n Y2) + Maxi<i<p

w?(\*,)]/v/n. By (5.6)-(5.8) and Lemma 5.4, we can show that

(5.9) S I, < D,0(1) = 0y,(1) and Y Iy < DZO(1) = 0y,(1).
t=1 t=1

By (5.5) and (5.9), we can show that (5.4) holds. This completes the proof.2
Denote Xu(A) = [, (\), e (V) s, ()] with w,u(X) = —[hy 2(0), () 522

Vas(i)er-i(N)], ume(A) = [he 2 (X)0ei(N)/Om, (2h(N))"20hy(N)/Om], and ug(N) =

[0, (2hs(X))~20hy(X)/6]. The following is an invariance principle for Theorem 3.1(b).

Lemma 5.5. Suppose the assumptions of Theorem 3.1 hold. Then,

[n7]
\/_ Z
under Py,, where (wi,wz, N! =, N¢)'(T) are defined as in Theorem 3.1, and D [0, 1]

[5t; Xt )) 7</(7]t)}, ()‘O) - (wl;w27Nm57N§) ( ) in Dk+l+l {07 1] )

denotes the Skorokhod space.
Proof. By Lemma 5.3, it follows that

er(Mo) — ) = Ox,(0") and X; (o) — X7 = Oz, (o),

where 0 < ¢ < 1, X? is defined as in Theorem 3.1, and Oy,(+) holds uniformly in all
t. Thus,

[n7]

(5.10) % S [fe (e ] o) = % > [£2, (X060, )] + o1,
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where 0y,(1) holds uniformly in all 7 € [0, 1]. Denote W;© = [€9, (X2¢(n,))’, ¢' ()] .
Then W;? is a strictly stationary and ergodic martingale difference with £(W;°W;)
= . It is easy to verify that n—1/2 ZEZ] W9 satisfies the conditions of Theorem
4.1 in Hall and Heyde (1980), and hence n=2 S0 converges to (wq, ws, N’ ~ ! %
N{)'(7) in D¥**1[0,1]. Furthermore, by (5.10), we complete the proof. 2
Proof of Theorem 3.1 (b). Since Q > 0, it is obvious that S > 0 a.s.. As in

the proof of Theorem 4.1 in Ling and Li (1998), we can show that

89t

Z
(5.11) —r K/()l w1 (7)dw, (1),

1 n
) = - ; Yr—1uE (1) + 00 (1)

where the last step holds by Theorem 2.2 in Kurtz and Protter (1991) and Lemma

5.5. Similarly, we have

dg 1 )\o 59'7 (Mo) Ly /
nzz — t817 - F;yfflugtjugt—i_o’@(l)'

Denote 0 = uf)ytJ uglt Using a similar technique as in Theorem 3.4 in Ling and Li

(1998), we can show that, under Py,

1 1
(5.12) n Z ‘th - Eth‘ = O (1), \/ﬁ fg?g% ’071? Eavt’ = 0x(1),
t=1
and
1 n X X 1 [n7]
(513) ;E{ZOT% Eo-vt)] — Oy, \/— Z O~ — Eo'vt) —L O'o(,do( ) m D
t=1

where g is a nonnegative constant and wp(7) is a standard Brownian motion. By
Theorem 3.1 in Ling and Li (1998), (5.12)-(5.13), Lemma 5.5 and the continuity

theorem, it follows that

agt 1 >\o 39271()\0) ant

nzz Dy = 2 ; p_1 T zzyt 1utJ“2/t_E07t]+0>\o(1)
FEo 1
(5.14) B nw Z?Jt 1+ 05 (1) —1 ”UZE‘W/O wi(7)dr.
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Similarly, we can show that, under Py,

1 (M) —1(A / 1

(5.15) ng/zzagt 16) agtajé, ) s BB [ ()i
1 8g 89 A , 1

510 Lyt p, g [ wntr)ar
1 agt 1( )\0

1
(5.17) 373 2. Z VEC —r Bl Vﬁcm/ wy (7)dT.

0

Denote u, 3 = ( th > (Xo) and u? = = ( Z’gt ) By Lemma 5.3 and the ergodic
ot &t

theorem, we can show that:

1 12 /
(5.18) - Z(umgju' %) == Z ~Ju )+ 0x(1) = E(uglg(]u?ng) + 0y, (1),
t=1 t=1
1 n
(5.19) - > u5Vie = - Z u?ngVéC +0y)(1) = Eugmng'C + 0y, (1).
t=1 t=1

By Theorem 2.2 in Kurtz and Protter (1991) and Lemma 5.5, all the limiting
distributions involved in W, ()o) and S,(Xo) are jointly convergent. Finally, by
Lemma 5.5, (5.11), (5.14)-(5.19), we can show that (W,,, S,,)(Xo) converges weakly to
(W,S) = [Jd M(1)dB(7), o M(7)~M'(7)dr] under Py,. This completes the proof.2

Proof of Theorem 3.2. It is obvious that the estimator 7, belongs to M,,.
Let 7y, be any M, -estimator corresponding to the functional 7(z). Denote €%,(Ag)=
Uyt(Ao)[m1(ne), m2(me)]’. As in the proof of Lemma 5.5, we can show that, under

n~1/2 E"Tl](st, e*,)(Ao) converges to (w1, wy2)(7) in D?(0, 1], where (w1, wy2)(T)

ERY 1
1o )
and Q= E(ugtj,,uglt) with J, = diag(Iy,,I,). Denote Qf = E(ul,Ju?,),

Py

0

is a bivariate Brownian motion with mean zero and covariance 7 (

Qe = E(u%tJﬁu%;), Ny = E(ugthug;), Qe = E(umtjcu%t), and Q_z = E(ugthu%;).
Under Assumptions 2.1 and 3.1-3.4, as in Weiss (1986) and Ling and Li (1997),

we can show that the matrices €2, .

= Qrp, and () 5 are positive definite, and

(Warn, San)(Ao) converges weakly to (W, Spr) under Py, where

K fol w1 (7)dwy(T) /isz fol wi(t)dr 0 0
(WM7SM) = N7r1 0 me 0 5
Ny 0 0 Q3
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with N1 and N, being two independent normal vectors with mean zero and covari-
ances 2 and '~ respectively, independent of (w1, ws2)(7). Thus, G%(Urn — o)

w6’

converges weakly to G, = 1'/05;41WM under P,,, and
E(GWG;) =1 diag(27m/7 Yirms 275) V(l)a

2
where Xy = k202 E | [ wa(7)dwaa(7)/ o wl(7)d7|", Sam = (c1P+02Q) (Pl +
QL) (P + Q) and ¥ 5 = I,,c; 2R7Y, with

1 929 00 1 (1 0h2oh? 1 1 0h? On?
_p(=%t —F(==— =-FE|m—=—=].
P=E (h? om amf>’ =7 (h? omom ) "= hi? 96 08

Denote G as the limiting distribution of £S5, (Ag) W, (o). From Theorem 3.1(b)

and Remark 3.3, we obtain
E(GG") = ipdiag(X,, X, X3) 1,

where X, = ﬁ_ZQV_ZE[fol wy (7)dwy(7)/ fol wi(7)d7)?, ¥, = (PL(f)+QL(f))! and
Yy =1y Y(f) R™*. By the Cauchy inequality and the definition of ¢; and cp, we
know that [1(f)Ir, > ¢t and Ip(f)I,, > c3. It is obvious that Xz < ¥ = After some

algebra, we have

S = Zem = (P + Q) P(PLy, + QL) 'P(ciP + Q) M — L(f) )
+Q(PIr, 4+ QL) Q1P + 2Q) (& — L(f)Ix,)
+P(Ply + QL) Qe P + c2Q) Hcrco — Ii(f) I,)
+Q(Plyy + QL) *P(arP + 2Q) M (c1co — L(f) 1))
< (1P 4 Q) P(PLy + QL) *Q(ciP + c2Q) ™ (crea — Li(f)Ixy)
+Q(Plyy + QL) ' P(arP + 2Q) M (c1co — L(f) 1))
(5.20) < (aP+aQ) M (Q 'y + PL,) HaP + Q)

[2e102 = 2L (f) Iy i (£) 1) 2] < 0.

Now, we show that 3, < X,,. Let ;*(Xo) = € (Ao)/2, and €35 (Xo) = €5,(Aa)/Qrrys

where €f(Ao) = uyt(Ao)€(n:). As in the proof of Lemma 5.5, we can show that,
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in D?00,1], n Y2 (e e7)(X\o) converges to the bivariate Brownian motion

(w3, w?,)(T), which has mean zero and covariance

ot oot
(5.21) T( U *V_>.
Qvl QMQMZ

Denote W.,,, and W, as the first elements of W, (\g) and Wy, (Xo), respectively,
and S, and Sy, as the (1, 1)th elements of S,,(Ag) and Sy, (o), respectively. From
the proof of Theorem 3.1 (b), we see that the asymptotic distributions of S_ 1., and
SrWrm are the same as [KZ I5 wf(r)dr} - J3 wi(T)dws () and [KZ I5 wf(r)dT} - Jtw
(7)dwi,(T), respectively, which are denoted by G, and G, respectively. Let A =
Q.2 — Q1 As in the proof of (5.20), we can show that A > 0. Using (5.21) and
Lemma 3.1 of Phillips (1989), we can show that the distribution of G, is the same
as that of G, +x~1AL/?2 { I (,UJZ_(T)dT] e ®, where @ is standard normal and indepen-
dent of G, and [y w?(7)dr. Thus, ¥, = E[GZ] = E[G?] + K2AE[fy W3 (r)dr])™t >

E[G?] = %,. Finally, we have that E(GG') < E(G.GZ). This completes the proof.2

6 Proof of Theorem 4.2

From Bickel (1982), Kreiss (1987a) and Linton (1993), we know that I;,()) is a
consistent estimator of I;(f), where i = 1,2. Furthermore, by Lemma 4.1, it is
sufficient to prove the following theorem for Theorem 4.2.

Theorem 6.1. Let A\, be defined as v, in Lemma 4.1. Then, under Assumptions
2.1, 8.1-8.4 and 4.1, Win(An) — Win(An) = 0x(1).

Proof. By Theorem 2.1(b) and Theorem 3.1(a), Py, and P, , are contiguous.
Note that Wln()\n) and W1, (A,) are measurable in terms of F,,. Thus, it is sufficient
to prove this theorem under Py . For simplicity, we denote ém’t(nt()\n), An) as éit,

1 = 1,2. By the triangle inequality,

By, [Won(hn) = Wyn(A)]

1 1 0ci(An) , 2
<28 {13 [ 2a) 6 - almOn)]}
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+;E/\n{ 1 i [ht(l)\ )5hta(7 )(fzt —&(ne(A )))]}2

t=1

1
(6.1) = 2By, + §Bgn, say.

Note that &, and & (m(\,)) are odd functions of 7,(\,). As in Kreiss (1987a)
and Bickel (1982), we have

2 85t()\n) 2
oy

(6.2) By, = ZZ )\n{ )[flt §1<nt<>‘n))}

Since h; *(A,) is bounded and dey(X,)/0y = X5=g vy, (7)yt—j-1, by Lemma 5.1, we

can show that

(6.3) By, <01 Z max F), {yjz {élt _ 'fl<77t()\n))r} )

1<]<

Under Py, 95 = Slea(1 = /0 " wi(Aa) and wi(ha) = 3525 V6,0, () €img(Mn)-

Thus, we can show that

64)  Bu, %imax By, {2200) [éu ~ anO)] | = o),

=115

where the last equation holds by Proposition 6.1 (a) below.

Now we show that Bj, = o(1). Note that ,th and &(ni(\,)) are symmetric
functions of 7;(\,). Here we have to use the symmetry of f and consider the cross-
terms in the expansion of Bj,. Denote & = nt()\n)flt — ne(An)&(n(An)). Using

Assumption 3.4, we can show that

1 Opas () 8ht()\n)

H =F *ET
" o [htﬂ(An)ht(An) o Gt
2 Ohe(An) . .
= EAn{ht+i(>\n)ht Zvanﬂn Et+i— J(/\n)ytﬂfj*l]tigtﬂft
t+i— 1
+ Vann B, (J)Etwi—i (An) Ytarij
ht+i<)\n)ht ) ]Zl;l 6 (J)Et+i—j (An) Yeri—j1]
t—1
[ Vo (s An)y—j-1)60i65
j=1
= By { - [gva 5 (J + i)Vans (1)Er; ) ¥7 1507}
Ui he (V) 1 S
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Since v,, 5, (1) = O(0") with ¢ € (0,1) and independent of \,,, we have

(6.5) | Hyil < O(1)¢ max Bx, [0n)2l€61]

1<j<n
where O(1) holds uniformly in all ¢. By Lemma 5.1, (6.5), and the inequality,

206580 < 52:31 + ft*z, we have

]_ n 1 8ht(An) 2 2 2 n—ln—t
By, = =) E), L4 = H, i
2 nztzzl A {hg()\n){ 8”}/ ] t } TLZ;; t
O(1) [ & 2 2 2 | SR 2 2 2
(6.6) < N2 {Zl 112]32( Ej, [Ej ()‘n>yj—1 S+ l; Zl 0 féljag}; E\, [5j<)‘n)yj—l t+i]}‘

Note that E), [55()\”)51()\”)52-1()\”) ;‘2} = 0 for any i # 4;. In a similar manner to

the arguments of (6.4), we can show that

O<1) - 4 *2 = 7 4 *2
B = SR B0+ 3 36 s B0
= %{i max By, [e2(\n) *2]+"§gi i max E), [(\)67]}
n =1 1sisn Al ot P e Al o
O 1) - 4 *2]1 __
67) < T;fg%&n[%(kn) %] =o(1),

where the last equation holds by Proposition 6.1 (b) below. By (6.1), (6.4) and
. 2
(6.7), we can obtain Ej, {Ww()\n) - W,yn()\n)] = o(1). In a similar manner, we

. 2
can obtain that Ej, ||[Wn(An) — Wmn()\n)H = o(1). To complete the proof, it is

sufficient to show that

(6.8) B, | Wen(An) — Wn(An)

I* = o).

Since the logistic kernel K(z) for W;,(\,) satisfies the conditions in Theorem 4.1
in Koul and Schick (1997), the proof of (6.8) is similar to that of Theorem 3.1 in
DWK (1997) and hence is omitted. This completes the proof. 2

Proposition 6.1. Under the assumptions of Theorem 6.1,

@ 73 max B (200 [ {[Eniter) - 6] o)} ] = o)
33 s B[00 [ {[fnste ) — @] 220} ] = o).
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In the following, we introduce six lemmas. Lemma 6.1 is a basic result for Lem-
mas 6.2-6.3, while Lemmas 6.2-6.3 are used in Lemma 6.5. The proof of Proposition
6.1 comes directly from the following Lemmas 6.4-6.6. The routine of the proof is
similar to Bickel (1982) and Kreiss (1987a), but the technique is more complicated.

Lemma 6.1. Denote f, (r) = E,, [g(JC + Ui(An),an)}, 97 = g9(x +ni(Mn), an) —
2fa, () + g(z —ni(Xn), an), and G(z) = By, [9720 (Mn)] + B, [9702(An)] + B, 9;°
Under the assumptions of Theorem 6.1, it follows that:

(a)wheni+1§@§jand0§i1§j—z’

E)\n g’L"'Zl H AnhCQ 1 H Antlcz ] < MQ7_ZG( )

t1=Q t1=i+1

(b)wheni+1§Q§j and 0 <iy < j —1,

j . .
E)\n g7,+7,l H Ant1<Q 1 ~, H Antlgi—l()\n»] S MQ]_ZG(:L‘),

t1=Q t1=1

(c) when 0 < i3 < j —1,

E)\n g1,+7,1 H Antlgz l ] S ngiZG<I)7

t1=1

where o € (0,1), 0 and M are constants and independent of i,j,x and X\, T is an
(r+s)—dimensional constant vector, Ay = Ai(An) G = G(An), and (X)) and £;,_1(N\)
are defined, respectively, as in Lemma 5.2 and (5.1) with ag = 1.

Proof. First, we illustrate the following facts.

(i) Denote o) = min {p[Ex(A;(X) @ A;(N)], p[Ex(Ai(N) @ I4+5)]}. By Assump-
tion 2, which is equivalent to p [E\(A;(A))] < 1 (see Ling (1999)), and Assumption
3, we have gy, € (0,1). Let € be a positive constant so that o = gy, + € < 1. Since
Exn?(\) = En?, Ex,nt(\,) = En?, and A, — \o = O(n~Y/2), there exists an integer
N so that gy, < pforalln > N.

(ii) It is obvious that there is a constant M; independent of i,z and A, so that

< MG < MiG(x),

HE}W (gg‘zgig) )E,\ Cz)
|Brn [0 (Ani 2 )] H < MG(x),
[Bn [572(Ans ® L) | < MiGla) and [|By, [572(A40s © Au9)]| < MiG(a).
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For (a), we first consider the case with i; > 0. Denote D;; = E), [g;’ﬁil (' ngj
AniCo1) (U TIHZ) A Gi)]- When i+ iy +2 < Q < j,
Dij = (I ®7)[Bx,(Aui ® Aw)l Y™ By, (Ang-1 ® (o-1)
) [EAn (Am' ® IT+S)]Q_2_(i+il+1)+l E)m [g;fil (Ani+i1 ® Ir+s)}

(6.9) B, (Aps @ L))" By, [vec()] < Mo 'G(x):;
when Q =i+ + 1,

Dy = ([ ®7)[Bx, (Aw ® Ay DR, [gﬁil (Apiviy ® le)}
(6.10) B, (Aps @ L)) ]* T Ey, [vec(()] < Mo TiG?(x);
when 1 +2 < Q <1+ 1q,
Dy = (7 ®7)[Ex,(Ani @A)V E, g2 (Apiviy, ® Aniny)|
(B, (A @ A)| TN, (A1 @ Guga)

(6.11) (B, (A @ L )]97 270D By lvec(G)] < Mo T'G(a);
when Q =7+ 1,

Dij = (Z/ ® Z/) [Ekn (Ani ® Am)]j—(i+i1+l)+1 EAn [gﬁil (Am-ﬂ-l (059 Am+i1)}

(6.12) B, (A @ Au)]* H By [vec(GC)] < Mo 'G(x),

where M is some constant and independent of i, j,z and A,. By (6.9)-(6.12), we
know (a) holds when i; > 0. Note that, in (6.9)-(6.12), we have used the facts (i)
and (ii). Similarly, we can show that (a) holds when i; = 0. Note that, by Lemmas
5.2-5.3, we can show that HEA" [éi,l()\n)égfl()\n)] H is bounded uniformly in 7. In
a similar manner, we can show that (b) and (c) hold. This completes the proof.
2

Lemma 6.2. Under the assumptions of Theorem 6.1:

-1

(@) g By, { £22(0) [Jonalw M) = fo, (@] 200) } < 2 (o1 + raa?),
R 2.—1 4
) e B, {221,20) [Fona(e. ) = Fon @] 250 } < oy + 220,
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where 1 <t <mn, k1 and Ky are constants and independent of n and x, and f,, (x)
is defined as in Lemma 6.1.

Proof. We prove only (b) since the proofs of (a) and (b) are similar.

{22320 ot @) = fun (@) Pe2(00)}

< AB RO 3 ardon)

n—1

i=j+1,i7t
1 2 ,—1 1 J *12_4 1
(6.13) +5Ex A2 [, (@)] Y g 1%ei (M)} = 5(Bi+ Ba), say,
2 n—1 =Tt 2

where ¢ is defined as in Lemma 6.1. By Lemmas 5.2-5.3, we can show that maxi<;<y,

E,, [5?()%)} is bounded. Thus, we have

1 n
Bi = OMWE\{22f. (@)= > g}
i=j+1,i#t
2,1 n 2, -1
(6.14) = O(I)L’;(ﬂ Z Eg;«ZZO(l)l‘ a, 7
n =L it n

where the last equation holds by (6.7) of Bickel (1982) and O(1) holds uniformly in
all . Moreover,

P fat @), & 2 4 Sl 4

B, = === > Ex(g7i () +2 D0 D Ex (9,07 (An)].

(n—1) i=1,it i=1,i7t i1=1
Note that njz()\n)L’Anj = (a1, -, B1, - ,ﬁs)njz()\n) = 1'Apj, where 7’ = (1,0, - -,
0)r+s)x1 and Ay is defined as in Lemma 6.1. From Lemma 5.3, we can show that

J
fM) = [FG+HTAyGat 47 [ AwGind]
t1=i+2

J J
+[[~,l H Antlgi + Z/ H Antlé’i—l(An)] = Rj,i+1 —+ S], say,

t1=i+1 t1=1
Since Rj;+1 is a function of {n;(\,), -, mi+1(An)}, ¢f is independent of R;,;+1, and

hence we have

Ex.(7%€i(0) =BG ExR 1+ By, [672(2R; 415 + 52))

= O(1) |[Brg7° + (j — i) 'G(=)]
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where the last equation holds because max;; Ey, Rj;+1 < max; Ey,e7(A\,) < oo and

Lemma 6.1. Similarly, since E), g = 0, by Lemma 6.1, we have,

‘E,\n (9ivin9i 5?(%))’ = ‘Exn {gfﬂlgf (2R;i+15; + 5% )”

1 . .
< 3B (92, + 97) (2R, 215 + S7)]

= 0()[(j -1 G()],

where i; > 0. Thus,

' = N
—=— Z?ﬁ G-+ Y Zl(j—wgﬂ]c:(x)
i=1,i#t i=1,i#t i1=
x2a;1 fofl
L O(1)—

6.15) = O(1)

Note also that, when a, < 1, y*g(x + y,a,) < O(1)(a,*z* + 2%+ ad), v?g(x
+y,a,) < O(1) (an + 2%a,,t), and g(x + y,a,) < O(1)a,;t. Thus, it follows that

r?a,? 72
By = O()—==+0(1)—(a,'2* +a,"2" + 0, ") f, }(z) Ex, |9
r?a,? z?a;? z2a;? O(1)z*
(6.16) = O(1) - +0(1)—*— — (z* +2%+1) = - [O(1) + - I,

where O(1) holds uniformly in all z. By (6.13), (6.14) and (6.16), result (b) holds.
This completes the proof. 2

Lemma 6.3. Under the assumptions of Theorem 6.1:
-3

@ max B {£:2a) [foie0) = fo,@)] S0} < B s + o),
) 2 -3 4
B)  goax By (o, 20) [Fi @ 0) = F, @) 00} < o + ),

where 1 <t <n, and k1 and Kk, are constants independent of n and x.
Proof. The proof is similar to that for Lemma 6.2, and hence it is omitted.2

Lemma 6.4. Under the assumptions of Theorem 6.1:

@ X PuE0n [l J_ da} =
1

(b) érga_x By, {ed0) /W(i) FZ 22dr} = of1).

ol1),




Proof. Since E), e}(),) is bounded by a constant which is independent of 7, the
results follow from Lemma 6.2 of Bickel (1982) and Lemma 5.3 of Linton (1993).
This completes the proof. 2

Lemma 6.5. Suppose that assumptions of Theorem 6.1 hold. Then:

(@) me By {500 [ stz ) - %—$]2fan ()dz} = o(1)

1
n
1
n

M:

max By, {e00) [l ) — 22

1<

(b)

Il
-

t

Proof. The proof is similar to that in Kreiss (1987a). However, as we have the
additional factor z? in (b), we need to avoid the requirement of higher moments.

We will prove only (b), while (a) can be proved in a similar manner. Denote

@12 00 0
) fen (@)

12" =50 /(AntBncnt)c klm(x M) = jza E §] o o (@)

where A,,; = {x|fan,t(:r, An) > dn}, B, = A{z||z| < g,} and C,,; = {x|fc’bnt(a:, An) <

I;I’_Lt - 5;1()\71) /A B.C [éln,t(xv )\n) -

Cn famt(:z;, An)}. From Lemmas 6.2-6.3 and Assumption 4.1, we have

1& 1&
— Z max E, I} < — max
n n =1 1<j<n

N
IA
<
IA

3
3

! t(%)‘n) fr t(:g,)\n) 2

An,

{E)\n (5?()\71) /An,tBnCn,t [fAZ::t(l',)\n) - ];an(ilj) ] l’zfan(l')dl')

G0 B0 [, P ) )} <o)

To show that n~! Y™ maxj<j<, Ex,I3"" = 0(1), because of Lemma 6.4(b), it is

sufficient to show that n™! Y1) maxi< <, Fy, J3"" = o(1), where

fl(l‘)r 2
x°f(x)dz.

elG

As in Kreiss (1987a), we choose t,, € {1,---,n}, so that E\ J3"" = max{E,, J3"',t

=) |

(An,tBnCn,t)c

=1,---,n}. First, we show that

f(;L‘) 1<j<n

(6.18) / [f '@] 22 max By, [d0n)I(A2,)] f(a)de = o(1).
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Note that, for any positive constant M,

J

max By, [ef(A\)(A5,)| = max {By, [fO0W)T(f(0) < M)I(AS, )|

B, OO = M)I(AS, )|}
< ME), [I(45, )| + pmax By, O > M)

For any ¢ > 0, by Lemmas 5.2-5.3, we can show that there exists a large M

such that maxi<j<, Ex,[e] (An)I(5( An) > Mp)] < €/2. For such an My, since
By, (I(A5,,))) = o(1) by (6.11) of Bickel (1982), there exists an N such that, when
n > N, MoEy, (I(AS, ) < ¢/2. Thus, as n > N, maxi<j<n By, [e2(A) (A5, )] <

€, i.e. maX]_SanE)\n[g?()\) I(A7

= o(1). Furthermore, by Assumption 2.1,
(6.18) holds.

Similarly, using the argument of (6.12) in Bickel (1982), we can show that

@10 [[EOT 2 e 108 e = o)
(6.20) / [’;((x;] 72 max By, [50)I(Cs,, )] fl@)dz = o(1).

By (6.18)-(6.20), we can show that & "7 maxi<j<, E, I3 = o(1). Furthermore,
combining (6.17), we have that (b) holds. This completes the proof. 2

Lemma 6.6. Suppose that assumptions of Theorem 6.1 hold. Then:

(a) %igj&g E, {550\”)/ |:£]2_n7t(x7 An)(\/fan(gg) _ \/f(fﬂ))rdx} — o),
(b) %ilfg]ag% E)\n {5?()\71)/ [é%n,t(x; )\n)(\/fan(x) _ \/f(.%‘))} szdm} _ 0(1).

Proof. Since éfnyt(x, A) < ¢ and By, [5?()%)} is bounded by some constant
M which is independent of j, the proof of (a) is identical to that of Lemma 6.3 in
Bickel (1982). The right-hand side of (b) is bounded by

(6.21) 2E,. {s;(xn) / (VFurl) =/ f(x))Zdex] .
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In a similar manner to the arguments of Lemma 6.3 in Bickel (1982), we can show

that (6.21) is bounded by

2,2 2,2
MCZ(IZ 122
(6.22) / / / (2 4 pan2)? 2% (x) f(x)g(2)drdzdp.

By Assumption 2.1, (6.22) is bounded by O(c2a?). Furthermore, by Assumption
4.1, (b) holds. This completes the proof. 2

A Appendix: Proof of Theorem 2.1

Before giving the proof of Theorem 2.1, we introduce the following notation and
lemma. Let £ = (¢,¢'), G, =diag (G, v/nl)), Uy(\) =diag(X;(\),1;), and Y/(\) =
[y — Zi(N)]/1/he()). For simplicity, we denote Y (\,) by Y and Y (\,) by Y,,. Simi-
larly, denote Ry, hnt, Zi, Znt, Ges Guuts Tt Tty Up and Upy.

Lemma A.1. Under the assumptions of Theorem 2.1, it follows that:

i{( LG TEM)) — Bx (G D) P Fial}| = oa, (1),

(c)
WMMY) VIO 1, 6V
(d) Z/ 3 L Gt ST i) Ay =o(0)

Proof. By Assumptions 2.1 and 2.2 (i) and (iv), and the finiteness of [ ||¢(z)]]?
f(z)dz, (a) holds. By Assumptions 2.1 and 2.2, and using similar argument as in
Koul and Schick (1997, p253), we can show that (b) holds. By (3.15) of McLeish
(1974) and (a)-(b) of this lemma, (c) holds.

The proof of (d) is similar to that for (2.15) in Koul and Schick (1997). The
right-hand side of (d) is bounded by 3(74, + 12, + T3n>, where

= 3 U £ = ey
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= 0 [l a1 - \F

by Definition 2.1;

||vn||2 -

Ty, = Z/
< OWEE, [/ Pde
+0(1) s [0+ s2) +s2) — (CFH)()Pde

|s1|<Rin,|s2|<R2n

= oy, (1),

A CFH (V) = b5 (CFE)(Y)

1
where Ry, = [maxi<i<n(|Zn — Zt]hntz)z]l/z = 0),(1) and Ry, = [maxi<i<n(|vhnt
1
—Re|hni? )2]Y? = 0y, (1) by Assumption 2.2 (i)-(iii), and the above equation holds
by [||¢(2)||?f(z)dx < oo and Lemma 19 in Jeganathan (1995); and

w3 [ s

In order to show that T3, = o0y,(1), denote U}, = gne — g1, Y.' = [y — Zy — w(Zpt —

2

(V) — 30,6, by HerH)(Y)

NI

1
—h *f

NI~

el 1 1 1
Z) )y 2 and hY, = [hZ + u(hZ, — h?)]2. By Assumption 2.1 and using Cauchy’s
form of Taylor’s theorem to the function f*(u) = B YA £1/2 (Y.¥), T3, is bounded by

> [ [ oo - vevn e
S;/;/{ﬁ' 20 et o — ey
(A. 1) +§ |vz = oG 20 masctni gt [ s da

where the second term is oy, (1) by Assumptions 2.1 and 2.2(i)-(ii), and the first

term is bounded by

o) s [ s + ) - € @) do

|s1|<Rin,|s2|<R2n

+O()E, [ H@f%)(x)\\zdx} > |G ][ = on, (1),

by Assumptions 2.1 and 2.2 (iv), and Lemma 19 in Jeganathan (1995). Thus,
T3, = 0y, (1) and hence (d) holds. This complete the proof. 2
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Now, we prove Theorem 2.1. The basic idea of the proof comes from LeCam
(1970), Fabian and Hannan (1982), BKRW (1993), and DKW (1997).

Proof of Theorem 2.1. Let T,;, = 2[svn/ﬁ’t(5\n)/st()\n) — 1] and B, =
{maxj<i<, |Tht| < €} for some enough small € > 0. Then, on the event B,, the

log-LR has the Taylor expansion:

~ /Un

n 1
Ay (Any A, ) = QZlog(l + =Th) + Ano

i) = 2 lel
= Z Tnt Z + Z ant + AnO;
t=1

where || < 1 and Ano = loglgs, ;- /ﬁ(Yb)/q/\n,f(Yo)] =0, (1) by Assumption 2.3.

To prove (a), it is sufficient to show that

A2) ST = G D) + 3Bl )2 Fic} = 00, 1),

(A. 3) Z{ s — B [(un, G UE () 2| Foal} = 0a, (1),

(A. 4) max [T = 0y, (1) and Y T3 = oy, (1).

1<t<n =1

Note that [[s? M) — (M) ]2dy = —E, (Tt| Fr), where s¥()) is defined as

/vl
st(A) with n;(\) replaced by Y, and similarly define s Jymi(A). By Lemma A.1 (a)

and (d), and the inequality |a*—b?| < (1+a)(a—b)?+b*/a with @ > 0 and a,b € R,

BTl Pt + 355, 04, G D))

< +a>i / (5w Chn) = st ) — %u;énlﬁtgm)smn)rdy

(A 5) —|—4 ZlE)\n U G 1Ut (nt)) |ft 1] = 0)\71(14—0[) +O)\n(1) = 0)\n<1),

where the last equation holds by first letting n — oo and then letting o — oo.

Let Doy = Toe — up G Uk(m). Sy Exu{[Dnt — Bx, (Dt Fo)P|Fia} < S0y
E\, (D?,|Fi_1) = oy,(1) by Lemma A.1(d), and hence >1—;[Dp; — Ex, (Dpi|Fn)]
= 0y, (1) by Remark 3.7 (iii) in Fabian and Hannan (1982). Note that E\ &(n,) = 0.
We have Y1 [Dn: — E, (Thi| Fr)] = oa, (1). Furthermore, by (A.5), we know that
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(A.2) holds. To (A.3), by Lemma A.1 (c), it is sufficient to show that

(A. 6) \z{ — [u, G UE ()2 = 0x, (1).

Note that 37y B\, [D?I(|Dpt| > €)|Fia] < ey By, (D%, F;_1) = oy, (1) by Lemma
A.1(d). By (3.15) of McLeish (1974), 31, D2, = 0, (1). Now, by Lemma A.1 and
using a similar argument as for (A.5), we can show that (A.6) holds. By Lemma
A.1 (b) and (d), and following the steps in DKW (1997, p.794), we can show that
maxi<i<n |Tnte| = oa,(1). By (A.3) and Lemma A.1(a), we have >7_; 75, = Oy, (1),

and hence Y%, T3 = 0,,(1). Thus, (A.4) holds.

By (a) of this theorem, A, (Ao, An,0) = Wy (Ao) — 1, Sn(Xo)tin /2 + 02, (1), and
An(X0, Any 0) = =An(An, A+ G H(=00), 0) = —[i, W (An) = @, S (An)in /2] + 0, (1)
with @, = (—#,0)". By Assumptions 2.1 and 2.2, we can show that W,(\,) =
0,, (1) and Sn()\n) = 0,,(1). Note that Wn()\n) and Sn()\n) are measurable in terms
of F,, and hence they are bounded under P, ,,. Thus, A,,(Ao, Ay, 0) is bounded under
both Py, and Py, ,, which implies (b). The first part of (c) holds by Assumption
2.2 and the second part holds by exploring the equation: A, (Ao, An, 0) + Ap( Ay, A+
G, 00 /1) — Ao, A + G729, v, /y/1) = 0. This completes the proof. 2
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