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Abstract: We examine whether cooperation in R&D leads to product market collusion.

Suppose that firms engage in a stochastic R&D race while maintaining the collusive

equilibrium in a repeated-game framework. Innovation under competitive R&D creates

inter-firm asymmetries, which destabilizes the collusive equilibrium. Innovation sharing

through cooperative R&D preserves symmetries, thereby facilitating collusion. Sharing

an efficient technology also increases industry profit, which contributes to the collusion

stability but also raises social welfare. Interestingly, a welfare improvement is less likely

if innovation leads to a large cost reduction. The effect of licensing under competition

R&D is also examined.
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1. Introduction

This paper evaluates the age-old suspicion that cooperation in R&D leads to

product market collusion. Prior to the 1960s this suspicion was so strong in the U.S. that

antitrust authorities threatened to punish any form of research joint ventures (RJVs) with

full forces of antitrust laws. The sentiment abated during the 1960s and early 1970s,

when key American industries were losing the competitive edge to foreign rivals that had

made considerable technological progress through formation of RJVs.1 Although today

joint R&D activities among firms are encouraged everywhere, the same old suspicion

lingers: does cooperation in R&D facilitate product market collusion?2

To investigate this question analytically, suppose that a group of ex ante

symmetric firms manage implicitly to maintain a collusive equilibrium in an infinitely

repeated-game framework. In such an environment, a firm that discovers a cost-cutting

technology has a strong incentive to lower the price to increase its market share, thereby

destabilizing the collusive arrangement. Further, the prospect that collusion breaks down

with a discovery of new technology destabilizes collusion in pre-discovery periods.

Suppose that firms are allowed to form an RJV to share innovations. Cooperation

in R&D generates two effects that facilitate collusion. First, innovation sharing eliminates

the inter-firm asymmetry, the source of collusion instability mentioned above. Second,

innovation sharing gives all firms access to new technology and increases industry profit,

the prospect of which contributes to the stability of collusion.3

                                                  
1 See Caloghirou, Ioannides and Vonortas (2003).
2 For example, see the Federal Trade Commission’s Comment and Hearings on Joint Venture Project to
witness its continuing ambivalence towards RJVs (http//www.ftc.gov/os/1997/jointven.htm).
3 I am grateful toYeon-koo Che for this insight.
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To separate these two effects, we consider the intermediate case in which firms

license new technology without forming an RJV. Licensing allows industry to capture as

much total surplus as it could as an RJV, but does not eliminate the asymmetry that exists

between licensor and licensee. This asymmetry makes it more difficult for firms to

maintain collusion relative to when they form an RVJ.

Welfare and policy implications of cooperative R&D are also considered.

Although it facilitates collusion, an RJV also increases production efficiency, so social

welfare need not fall. With licensing possibilities, however, an RJV never increases

social welfare because industry productivity is already high with licensing.

These results are established in a model under the assumptions that innovation is

non-drastic, the innovator has exclusive rights to the innovation for an indefinite period,

and the collusive equilibrium is maintained with threats to Nash reversion. These

assumptions are relaxed and the implications discussed later in the analysis.

There is a scanty literature on the relationship between cooperation in R&D and

product market collusion.4 Martin (1995) uses a continuous-time version of a repeated-

game framework with stochastic innovation to show, as in this paper, that cooperative

R&D facilitates collusion. Contrary to our result, he finds that formation of RJVs reduces

social welfare. The difference in welfare assessments lies with his assumption that

collusion ends with a discovery.5 If innovation is non-drastic, collusion need not end with

                                                  
4 There is a huge literature on the relative effect of competitive and cooperative R&D, most of which
studies atemporal models, see, e.g., D’Aspremont and Jacquemin (1988), and Kamien, Muller and Zang
(1992). An intertemporal model is developed in Miyagiwa and Ohno (2002).
5 Cabral (2000) considers a similar model under the assumption that firms cannot observe each other’s
effort, and shows that firms may set the price below the monopoly price to sustain collusion under
cooperative R&D.
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a discovery of new technology, in which case welfare can be increased by formation of

RJVs as we show below.

While Martin (1995) focuses exclusively on the stability of collusion before

innovation, the stability of collusion after innovation takes center stage in the work of

Lambertini, Poddar and Sasaki (2002, 2003). In the 2002 article, which more relates to

the present paper, the authors consider a three-stage game, in which two firms first decide

whether to form a joint venture, then choose horizontal locations in the Hotelling-style

product space, and finally choose to compete or collude in prices over time. R&D is

deterministic, and corresponds to product location selection. In the second stage, firms

can select a product location freely when acting competitively in R&D but are

constrained to choose a single location when acting as an RJV. When competitive in

R&D, collusive firms have no incentive to locate near the center of the product space,

because that would only increase profits from a deviation without increasing the

equilibrium profit.6 Therefore, an RJV, which constrains firms to select an identical

product location (at the center), makes collusion more difficult to maintain. Their model

however offers no analysis of collusion in pre-discovery periods or the linkages between

behaviors in pre-discovery and post-discovery periods.7

                                                  
6 Locating at the center, each firm covers half the interval, but the same result obtains if each firm locates at
the midpoint between the center and the end point of the interval. However, in the latter case profit from a
deviation is less due to product differentiation.
7 Lambertini, Poddar and Sasaki (2003) develop a non-spatial model of product differentiation, where
formation of an RJV is assumed and focus is on the firms’ (costly) choice of product substitutability for the
maintenance of collusion in post-discovery periods.
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A major difficulty that arises in the analysis of collusion in post-discovery periods

is that there is no natural focal equilibrium due to cost asymmetries.8 There is a small but

growing literature on collusion under cost heterogeneity, which typically assumes that

firms maximize joint profits, and determines the unique equilibrium price and market-

sharing rule by an appeal to the notion of balanced temptation equilibrium of Friedman

(1971)9. Bae (1987) initiates this approach in his analysis of Bertrand duopoly, while

Verboven (1997), Rothschild (1999) and Collie (2004) examine Cournot cases. This

approach however is not without criticism. Harrington (1991), for example, argues that

the hypotheses of joint profits maximization and balanced temptation equilibrium are

both ad hoc, and develops an alternative approach based on Nash bargaining.

However, the Harrington (1991) approach may also be subject to a subtler

criticism that it does not model the negotiation process explicitly. If it takes long and hard

negotiations to come to an agreement, such a process is likely to raise suspicion in the

watchful eyes of antitrust authorities, thereby affecting the equilibrium outcome.

Furthermore, when applied to the current situation, both the Nash bargaining and the

joint-profit maximization approach turn out intractable because of ambiguous

comparative-statics results with respect to cost changes. Therefore, in this paper we

propose another approach, which may be called the price leadership hypothesis. Under

this hypothesis, an innovator chooses a price and a market-share rule to maximizes his

individual profit and makes a take-it-or-leave-it offer to the non-innovator. The price

                                                  
8 This difficulty is absent in Martin (1995) because collusion ends with a discovery in his model, and in
Lambertini, Poddar and Sasaki (2002) because R&D is non-stochastic and R&D decisions are made
simultaneously.
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leadership hypothesis is robust to the Harrington (1991) criticism and is more tractable

than his or the joint-profit maximization approach.

The remainder of this paper is organized in six sections. In section 2 we give an

overview of the model and discuss the non-cooperative equilibrium. Section 3 establishes

the conditions for the collusive equilibrium under competitive R&D. Section 4 is devoted

to the analysis of firms’ incentives to collude as an RJV. Section 5 examines the case in

which firms can license new technology without forming an RJV. In Section 6, we extend

the model to cases of drastic innovation, finite-period patent protection, and optimal

punishment schemes. Section 7 concludes.

2. Model

2.1 Setup

We consider repeated interactions between two a priori symmetric firms over an

infinite time horizon. Time is discrete and indexed by t ≥ 1. At t = 1 firms possess the

common technology that enables them to produce homogeneous goods at the constant

unit cost of c–. In any period t ≥ 1, each firm decides whether to invest in R&D for the

discovery of a new technology that will reduce the unit cost to c– (< c–). Investing in R&D

requires a fixed cost k per period.10 R&D investment is risky in the sense that it fails with

probability φ < 1 per period. If both firms invest in R&D, a discovery occurs to either

                                                                                                                                                      
9 This requires that the ratios of the per-period losses due to the breakdown of collusion over the maximum
one-period gains from deviations be the same among firms.
10 The assumption of fixed-intensity R&D, adopted in Bloch and Markowitz (1996), Lambertini, Poddar
and Sasaki (2002, 2003) and others, simplifies the analysis.
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firm with probability 2φ(1 – φ) and to both with probability (1 – φ)2. In the case of

simultaneous discoveries each firm has an equal chance of obtaining patent protection.11

Call a firm with the patent an innovator, and the other firm a non-innovator. Assume

permanent patent protection for simplicity.

Firms are price-setters. Consumers buy from a firm offering a lower price. In case

of ties, they buy from both firms equally so each firm captures half the market. Demand

is stationary and is written D(p), where p is price. D(p) is differentiable, with first and

second derivatives denoted by D’(p) < 0 and D”(p) ≤ 0. Let pm(c) be the unconstrained

monopoly price when the unit cost is c, i.e., pm(c) ≡ argmax D(p)(p – c). The conditions

on demand make industry profit strictly concave so pm(c) is unique. It is easy to check

that pm(c–) < pm(c–).

Lastly, if innovation is drastic, an innovator becomes a monopoly unthreatened by

the non-innovator and hence has no incentive to collude in post-discovery periods. To

study the linkages between pre-discovery and post-discovery behaviors, assume that

innovation is non-drastic, i.e., c– < pm(c–).

2.2 Non-collusive equilibrium

In the non-collusive game, each firm setting prices equal to c– in every period

regardless of histories is a subgame-perfect Nash equilibrium (SPNE). Denote this

                                                  
11 This assumption is often adopted in the literature; see Cardon and Sasaki (1998), for example.
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strategy profile by λ. Adopting this strategy, firms earn zero profit (excluding the

investment cost k) before a discovery. After a discovery the innovator limit-prices the

non-innovator and earns the per-period profit of

πL = D(c–)(c– – c–) > 0

while the non-innovator receives zero profits.12

Assuming that both firms invest in R&D, with probability (1 – φ2)/2 each firm has

the chance of obtaining the exclusive right to use the new technology and earning the per-

period profit πL. With probability φ2 investments flop for both firms, putting them in

exactly the same state the next period as they are currently. This recursive structure of the

model leads to the following equation:

(1) Vλ = – k + δ(πL/2)(1 – φ2)/(1 – δ) + δφ2Vλ,

where Vλ denotes the present discounted sum of equilibrium profits, and δ (< 1) denotes

the common discount factor. Collecting terms,

Vλ = 
−k + δ (1−φ 2 )(π L / 2) / (1− δ )

1− δφ 2
.

Assume Vλ > 0 so investing in R&D is worthwhile for each firm.

3. Collusion with non-cooperative R&D

                                                  
12 Strictly speaking, the innovator sets a price slightly below c– to capture the entire market.
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We now consider a class of trigger strategies with Nash threats that induce

implicit collusion in pre-discovery and post-discovery periods. We begin with non-

cooperative R&D.

3.1. Collusion in post-discovery periods

In post-discovery periods firms have asymmetric costs. As stated in section 1 we

focus on the equilibrium based on the price leadership hypothesis, under which the

innovator chooses a price and a market-share rule to maximize his profit and makes a

take-it-or-leave-it offer to the non-innovator.13 Let (pc, s) denote such an offer, where s (0

< s < 1) is the fraction of market served by the innovator.

The price leadership hypothesis amounts to the following. As soon as he has

discovered new technology, the innovator communicates his optimal price and market-

share rule to the non-innovator and executes this decision in the first post-discovery

period. If the non-innovator responds with the same price and the prescribed sales, then

the collusion is on. Otherwise, the innovator believes that the non-innovator is

uninterested in colluding, and starts behaving competitively. Formally, we consider the

following strategy profile. Given that there is a discovery in period τ ≥ 1, in period τ + 1

firms set a price equal to pc and split the market according to the market-sharing rule s. In

t ≥ τ + 2, they choose (pc, s) if no other outcomes than (pc, s) have been observed since τ

+ 1; otherwise they adopt the non-collusive strategy λ forever. Denote this strategy

profile by a (a mnemonic for “after” a discovery).
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We look for the condition that makes a subgame-perfect in post-discovery games.

If firms adopt a, every (post-discovery) subgame belongs to one of the two classes; one in

which all past outcomes have been (pc, s), and one in which another outcome has been

observed at least in one post-discovery period. In the latter, λ is subgame-perfect, so we

need only to show that a is subgame-perfect in the first class of subgames.

Along this collusive equilibrium path, the innovator earns the per-period profit of

πi = sD(pc)(pc – c–)

while the non-innovator earns

πn = (1 - s)D(pc)(pc – c–).

Since pc maximizes πi, put pc = pm(c–). Then, we can write the above profits as

πi  = sm–, and πn = (1 – s)D[pm(c–)][pm(c–) - c–],

where m– denotes the monopoly profit under the new technology:

m– ≡ D[pm(c–)][pm(c–) - c–].

Let vi and vn denote the sums of equilibrium profits for the innovator and the non-

innovator, respectively. The recursive structure implies

vi = πi + δvi,  and vn = πn + δvn,

and hence:

                                                                                                                                                      
13 As explained in section 1 the main reason for this hypothesis is in its analytical tractability. By design,
this scheme maximizes total profit for the innovator supported by Nash threats but is not optimal in the
sense of Abreu (1986, 1988). The optimal collusion scheme is considered in section 6.



10

vi = πi/(1 - δ) and vn = πn/(1 - δ).

Now consider a one-period deviation. A non-innovator can set the price slightly

below pm(c–) to capture the entire market for the one-period profit of D[pm(c–)][pm(c–) - c–]

but will lose all future profits when it gets limit-priced. He thus has no incentive to

deviate if vn  ≥ D[pm(c–)][pm(c–) - c–], which simplifies to

(2) δ ≥ s.

On the other hand, a deviating innovator can earn m– one period and πLin all subsequent

periods. Therefore, the innovator has no incentive to deviate if

vi ≥ m–  + δπL/(1 - δ),

or

δ ≥ (1 – s)m–/(m– – πL)

Thus, a is subgame-perfect in post-discovery games if

(3) δ ≥ max {(1 – s)m–/(m– – πL), s}.

Now, the innovator chooses s to maximize sm– subject to the non-innovator’s

incentive compatibility condition (2). This puts s = δ. Substituting s = δ in (3) and

rearranging yields

(4) δ ≥ m–/(2m– – πL) ≡ δA(c–) > 1/2.



11

The strategy profile a is a SPNE if (4) is satisfied. Observe that δA(c–) > 1/2. Given the

standard result that symmetric Bertrand firms can maintain collusion for δ ≥ 0, (4)

indicates that a cost asymmetry makes collusion more difficult to maintain.

Define cd by c– = pm(cd). Then c– > cd implies innovation is non-drastic. The next

proposition summarizes what we have found so far.

Proposition 1: Assume non-drastic innovation (c– > cd).

(i) The strategy profile a is a SPNE for δ ≥ m–/(2m– – πL) ≡ δA(c–) > 1/2.

(ii) The collusive equilibrium price and market-sharing rule are

pc = pm(c–) and s = δ > 1/2.

Since s > 1/2, the innovator has a greater market share than the non-innovator, a result

that is consistent with the findings of Bae (1987) and Harrington (1991). The per-period

equilibrium profits are

πi = δm– and πn = (1 - δ)D[pm(c–)][pm(c–) - c–].

Observe that the equilibrium profits to each firm are sensitive to the prevailing discount

factor, whereas in Bae (1987) and Harrington (1991) they are independent of it as long as

the discount factor exceeds the threshold level.
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The locus AA in Figure 1 plots δA(c–) against c–.14 The depiction reflects the fact

that:

∂δA(c–)/∂c– = D(c–)D[pm(c–)][c– - pm(c–)]/(2m– - πL)2 < 0

for pm(c–) > c– (i.e., non-drastic innovation). It is easy to check that δA(c–) increases

towards unity as c– falls towards cdwhile in the other direction it approaches 1/2 as c–

approaches c–. The intuition is straightforward. The greater a cost reduction, the more of

an incentive to deviate the innovator has. To curb this incentive the threshold discount

factor δA(c–) must rise.

Proposition 1 says that if δ < δA(c–) firms cannot collude at the monopoly price

pm(c–), but it leaves open the question whether they can collude at another price.

However, such partial collusion is impossible as stated in the next lemma. Intuitively,

because the market-sharing rule is sensitive to the discount factor in the present model,

the innovator cannot commit credibly to his offer when the discount factor falls below the

critical level δA(c–). (The proof in Appendix A.)

Lemma 1. If δ < δA(c–), partial collusion is impossible in post-discovery subgames.

                                                  
14 We limit analysis to δ ≥ 1/2.
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3.2. Collusion in pre-discovery periods

We now turn to the stability of collusion in pre-discovery periods. Consider the

following symmetric strategy: In t = 1, set a price equal to pm(c–), the monopoly price

under the old technology. In any pre-discovery period t ≥ 2, there are four possible states

of nature.

(i) No other prices than pm(c–) have been observed and there was a discovery in t – 1.

(ii) No other prices than pm(c–) have been observed and there has been no discovery to

date.

(iii) Prices other than pm(c–) have been observed at least once in the past and there was a

discovery in t – 1.

(iv) Prices other than pm(c–) have been observed at least once in the past and there has

been no discovery to date.

In state (i), adopt a. In state (ii) set the price equal to pm(c–). In states (iii) and (iv) adopt

λ. Call this strategy profile b (a mnemonic for “before” a discovery).

Since b is subgame-perfect in states (i), (iii) and (iv), we need only to check state

(ii). In state (ii) the equilibrium payoff, denoted by Vc, satisfies this recursive equation

(5) Vc = m–/2 − k + δ(1 − φ2)(vi + vn)/2 + δφ2Vc,

where m– denotes the monopoly profit under the old technology; i.e.,

m– = D[pm(c–)][pm(c–) – c–).
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The right-hand side of (5) states that in every period before a discovery each firm earns

half the monopoly profit m– less the R&D cost, and that each is equally likely to be the

innovator or the non-innovator the next period, given probability of discovery (1 − φ2).

Collecting terms in (5) yields

Vc = m/2 −  k + δ(1−φ 2 )(vi  + vn )/2
1 - δφ 2 .

Consider now a one-period deviation. By lowering the price infinitesimally below

the monopoly price pm(c–), a deviating firm earns (m– – k) in the current period but finds

itself in state (iii) or state (iv) the next period, with a switch to λ. Thus, the following is

the expected profits from a deviation:

m– − k + δ(1 − φ2)(πL/2)/(1 − δ) + δφ2Vλ = m– + Vλ

where the equality follows from (1). A deviation is unprofitable if this profit is less than

Vc, i.e.,

(6) Vc – Vλ ≥  m–,

where

(7) Vc – Vλ = 
δ(1 – φ2)[vi + vn - πL/(1 – δ)]/2 + m–/2

1 – δφ2 .

The difference in profits, Vc – Vλ, between the collusive and the competitive paths

increases without bounds as δ goes to unity. Then, (6) holds with strict inequality for a

high enough δ < 1. On the other hand, when δ is sufficiencly close to 1/2,  (6) fails, as
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shown in Appendix B. Therefore, there exists a unique δ ∈(1/2, 1) at which (6) holds with

strict equality. Denote this threshold discount factor by δB(c–).

The locus BB (comprising the thick and dotted segments) in Figure 1 plots δB(c–)

against c–, assuming that firms maintain the collusive equilibrium in post discovery

periods and that φ2 ≥ 1/2. The depiction is based on the following lemma (see Appendix

C for a proof):

Lemma 2: Given that cd < c– <  c–

(i) ∂δB(c–)/∂c– < 0

(ii) 1/2 < δB(c–) < 1/(2φ2).

(iii) If φ2 ≥ 1/2, there is a point (c–, δ(c–)) at which the loci AA and BB intersect.15

Thus, the locus BB curves upward as c– falls but stays strictly between 1/2 and 1/(2φ2). If

φ2 < 1/2, however, the upper bound exceeds unity, implying that the locus BB may stay

above the locus AA for all c– > cd.

                                                  
15 This establishes the existence. There may be more than one such point. However, the results we show
below do not depend on the uniqueness.
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Finally, the analysis of this subsection is predicated on there being collusion in

post-discovery periods, i.e., δ ≥ δA(c–). Thus, we have

Proposition 2: If δ ≥  max {δA(c–), δB(c–)} > 1/2, the strategy profile b is subgame-perfect

and entails collusion in pre-discovery and post-discovery periods.

The prospect that a cost asymmetry can destabilize collusion in post-discovery

periods makes collusion more difficult to maintain in pre-discovery periods, during which

costs are symmetric. In Figure 1, collusion is sustainable before and after a discovery if

the (δ, c–) pair is in region 1 defined by the set {(δ, c–)| δ ≥  max {δA(c–), δB(c–)}}. Outside

region 1, the strategy profile b cannot support full collusion. In region 2 defined by the

set {(δ , c–)| δA(c–) ≤ δ  < δB(c–)}, for example, firms can maintain collusion after a

discovery but cannot before a discovery, because the monopoly price pm(c–) cannot

satisfy the no-deviation condition (6). The question is: can firms collude partially, that is,

at a price different from the monopoly price pm(c–) until there is a discovery? As in the

post-discovery game, the next lemma shows they cannot (the proof in Appendix D).

Lemma 3. If δA(c–) ≤ δ < δB(c–) there is no partial collusion in pre-discovery periods.
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Thus, in region 2, although they cannot collude in pre-discovery periods, firms can fully

collude in post-discovery periods by playing a competitive one-shot game until there is a

discovery and then switch to playing a. This is a SPNE, yielding zero profits (minus

investment cost k) until a discovery and m–/2 per period afterwards.

Outside of regions 1 and 2, firms cannot collude partially after a discovery. Given

that they play a limit-price game after a discovery, however, firms may still be able to

collude up to a discovery by playing (the pre-discovery components of) b until a

discovery and then switching to λ. Since firms adopting this strategy play the limit-

pricing game after a discovery, the first term in the numerator of (7) vanishes, and the

condition to support collusion in pre-discovery period is given by

(m–/2)/(1 − δφ2) > m–,

instead of by (6). This inequality holds if δ ≥ 1/(2 φ2). This condition is satisfied if the

(δ, c–) pair is in region 3 of Figure 1 defined by {(δ, c–)| 1/(2 φ2) ≤ δ < δA(c–)}, which is

non-empty if φ is greater than 2 /2. Outside all these regions firms cannot collude at all.

4. Research joint ventures

We interpret the RJV broadly to encompass any technology-sharing arrangement

including a royalty-free cross-licensing agreement, under which each firm runs its own

research lab, incurs own R&D costs and gains free access to any innovations made by
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partners. We thus assume that each firm retains its R&D facility and shares technology

with each other, as is commonly assumed in the RVJ literature.16

4.1 Collusion in post-discovery periods

Suppose there is a discovery in period τ ≥ 1 and the firms adopt the following

post-discovery strategy, denoted by α.  In τ + 1, set a price equal to the monopoly price

pm(c–) under the new technology. In all t + τ,  (t ≥ 2), choose pm(c–) if no other prices than

pm(c–) have been observed since τ + 1; otherwise set a price to c–. Thus, α is a standard

collusive strategy profile for symmetric price-setting duopoly and is a SPNE for δ ≥ 1/2.

Compared with Proposition 1, this result shows that formation of an RJV facilitates

collusion in post-discovery periods by preventing a cost asymmetry from arising. The

question is how low the threshold discount factor falls in pre-discovery periods. We turn

to this question next.

4.2 Collusion in pre-discovery periods

Consider the following collusive strategy denote by β: In t = 1, set a price equal to

the monopoly price pm(c–) under the old technology. In any pre-discovery period t ≥ 2,

there are four possible states of nature.

(i) No other prices than pm(c–) have been observed, and there was a discovery in t – 1.

(ii) No other prices than pm(c–) have been observed and there has been no discovery to

date.

                                                  
16 See Kamien, Muller and Zang (1992) and Miyagiwa and Ohno (2002), for example.
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(iii) Prices other than pm(c–) have been observed at least in one period in the past and

there was a discovery in t – 1.17

(iv) Prices other than pm(c–) have been observed at least once in the past and there has

been no discovery to date.

In state (i) adopt α. In state (ii) set a price equal to pm(c–). In state (iii) set a price equal to

c– in every period. In state (iv), withdraw from the RJV and switch to playing λ forever.

The strategy profile β is subgame-perfect in states (i), (iii) and (iv), so we only

need to check state (ii). In that state, VJ, the equilibrium profit per firm, satisfies the

following recursive equation:

VJ = m–/2 – k + δ(1 − φ2)(m–/2)/(1 - δ) + δφ2VJ,

which indicates that each firms earn half the monopoly profit m– less the R&D cost before

a discovery and also splits the post-discovery profit. Collecting terms, we obtain

VJ = m / 2 − k + δ (1−φ
2 )(m / 2) / (1− δ )

1− δφ 2
.

A one-period deviation before a discovery raises a deviating firm’s profit to m– but

puts firms in states (iii) or (iv) the next period, depending on whether there is a discovery

during the period in question. In state (iii), which occurs with probability (1 − φ2), firms

share the innovation but a switch to playing the one-shot symmetric Bertrand game

                                                  
17 Here, a subtle question arises: who owns the innovation when a deviation occurs. We assume that
innovation is shared since it has occurred before breakup of the RJV.
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forever wipes out all future profits. In state (iv), which arises with probability φ2, firms

switch to the non-collusive strategy λ, which has the prevent value of Vλ. Thus, a

deviation yields the profit of

m–  – k + δφ2Vλ.

A firm therefore has no incentive to deviate if

 VJ ≥ m–  – k + δφ2Vλ.

After arranging terms, this condition can be rewritten

(8) δ(1 - φ2)(m–/2)/(1 - δ) + δφ2(VJ – Vλ) ≥ m–/2

where

VJ – Vλ = 
δ(1 - φ2)(m–/2 - πL/2)/(1 - δ) + m–/2 

1 - δφ2 .

Differentiation shows that the left-hand side of (8) is increasing in δ  for the same

reason explicated in the case of non-cooperative R&D. Further, we prove, in Appendix E,

that (8) holds with strict inequality at δ = 1/2 . Thus, (8) holds with strict inequality for all

δ ≥ 1/2. Hence,

Proposition 3. The strategy β is subgame perfect for δ ≥  1/2

Thus, formation of an RJV lowers the threshold discount factors both in pre-discovery

and in post-discovery periods to 1/2 for all c– > cd. A comparison with the non-
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cooperative case, in which the threshold discount factor exceeds 1/2, indicates that

cooperative R&D leads to collusion everywhere outside region 1. It is in this sense that

formation of an RJV facilitates collusion.

Proposition 4. Formation of an RJV facilitates collusion for all c– > cd  if

1/2 ≤ δ <  max {δA(c–), δB(c–)}.

4.3 Welfare implications

Collusion reduces social welfare as firms set the monopoly price. However, it

should not be inferred that cooperation in R&D should be banned or penalized, for

sharing of new can increase social welfare by making not just the innovator but both

firms more efficient. The net welfare impact of cooperation in R&D thus depends on both

these factors.

In region 1 of Figure 1, firms collude before and after a discovery without

cooperation in R&D. Therefore, formation of an RJV does not exacerbate the market

distortions, and the technology-sharing effect raises welfare. In region 2, without

cooperation in R&D firms manage to maintain collusion only after a discovery. Then, by

the efficiency argument, welfare must rise with formation of an RJV in post-discovery

periods. However, welfare falls in pre-discovery periods as firms collude as an RJV. The

net welfare impact is in general ambiguous.

In region 3, without cooperation in R&D firms can collude only before a

discovery. Thus, formation of an RJV generates no welfare change before a discovery. In
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post-discovery periods, firms collude only as an RJV. While monopoly pricing reduces

welfare, technology sharing increases welfare. In this particular case, however, industry

without an RJV is just as efficient as with an RJV, because due to limit-pricing only the

innovator is active. Therefore, formation of an RJV results only in monopoly pricing,

reducing welfare.18 To show this formally, let p(x) = D-1(p) be the inverse demand

function. Then social welfare without formation of the RJV is given by

WC = p(x)dx − D(c)c + D(c)(c
0

D(c)

∫ − c)

where the first two terms on the right is consumer surplus and the third is industry profit.

Similarly, social welfare with the RJV is written

WJ = p(x)dx − D[pm (c)]pm (c) + D[pm (c)][pm (c)
0

D[ pm (c)]

∫ − c] .

Taking the difference,

WJ – WC = − p(x)dx + {D(c) − D[pm (c)]}
D[ pm (c)]

D(c)

∫ c .

Since p(x) between the limits of integration is greater than c–, we have

p(x)dx
D[ pm (c)]

D(c)

∫ > cdx
D[ pm (c)]

D(c)

∫ = {D(c) − D[pm (c)]}c .

Therefore, WJ – WC < 0; although having no welfare effect in the pre-discovery phase,

formation of an RJV reduces post-discovery welfare. Similarly, welfare falls

unambiguously outside the three regions.

                                                  
18 As observed by Yeon-Koo Che, this is strictly due to price competition. If the non-innovator also
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  To sum, an RJV increases welfare only by making the whole industry more

efficient instead of just the innovator through innovation sharing. Although a large cost

reduction can therefore result in a greater welfare improvement, with a large cost

reduction we are likely to be in regions 3 and 4 initially, where formation of an RJV

lowers welfare as we saw above. Thus we have a counterintuitive result: sharing a cost-

cutting technology under R&D cooperation drives welfare improvements, but with a

large cost reduction welfare is likely to fall with formation of an RJV. In contrast, with a

small cost reduction, firms are likely to be collusive anyway, so formation of an RJV has

only the beneficial technology-sharing effect. This observation has the obvious policy

implication for antitrust authorities: firms should be more closely monitored for

anticompetitive behavior when an RJV aims at a major technological breakthrough.

5. Licensing without RJVs19

In this section, we allow firms to license innovation without forming an RJV. As

mentioned in section 1, formation of an RJV in preceding sections facilitates collusion

through two effects. One is the asymmetry story. Innovation sharing eliminates inter-firm

asymmetry, a source of instability. The other is the efficiency story; the prospect of a

greater industry profit in post-discovery periods makes collusion easier to maintain in

pre-discovery periods.

Licensing allows both firms to use innovation, thereby making industry as

efficient as with an RJV. However, with licensing there remains an inter-firm asymmetry

                                                                                                                                                      
produced, an RJV improves production efficiency so the welfare might increase.
19 I thank Yeon-koo Che for his suggestion to explore this issue.
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in profit between the innovator (licensor) and the non-innovator (licensee). We show that

this asymmetry makes collusion more difficult to maintain with licensing than with an

RJV in pre-discovery periods but not in post-discovery periods.

The analysis of this section follows that of section 3. However, to save space we

replicate only the relevant part from that section. With licensing, a rich taxonomy of

cases may also arise, depending on the legal environments; for example, the durations of

licensing and conditions for discontinuation or annulment of licenses. For simplicity, we

suppose that a licensing agreement is good only for one period but extendable

indefinitely as long as both parties agree to keep it.

Let a licensing contract be represented by a triplet {p, s, F}, where p is a price, s is

a market share to the innovator and F is a licensing fee or transfer from the non-innovator

to the innovator. Suppose that the innovator makes a take-it-or-leave-it offer to the non-

innovator, and firms share innovation if the non-innovator accepts the offer. On the

collusive equilibrium path with an licensing agreement, the non-innovator enjoys the

profit (1 – s)D(p)(p - c–) – F and the non-innovator sD(p)(p - c–) + F per period.

We characterize the optimal contract in three steps. First, if the non-innovator

refuses licensing, firms can still collude as in subsection 3.1, yielding to the non-

innovator the equilibrium profit (1 - δ)D[pm(c–)][pm(c–) - c–] per period. The optimal

licensing fee extracts any gain to the non-innovator; i.e., F is given by

F = (1 – s)D(p)(p - c–) - (1 - δ)D[pm(c–)][pm(c–) - c–].

Using this, the profit to the innovator is written
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D(p)(p - c–) - (1 - δ)D[pm(c–)][pm(c–) - c–].

Since the second term is independent of p, the innovator sets p = pm(c–) to maximize the

above profit. With this pricing, the optimal licensing fee is written

(9) F* = (1 – s)m– - (1 - δ)D[pm(c–)][pm(c–) - c–].

Next, with the optimal price pm(c–), a one-period deviation allows the non-

innovator to capture the entire market less the licensing fee for just one period, after

which it gets limit-priced and loses all the future profits. Therefore, a deviation would

yield

D[pm(c–)][pm(c–)- c–] – F* = sm– + (1 - δ)D[pm(c–)][pm(c–) - c–].

On the other hand, since the optimal licensing fee F* extracts any increase in profit,

keeping his equilibrium profit per period at (1 - δ)D[pm(c–)][pm(c–) - c–] as in subsection

3.1. Thus, the non-innovator has no incentive to deviate if

D[pm(c–)][pm(c–) - c–] ≥ sm– + (1 - δ)D[pm(c–)][pm(c–) - c–].

This simplifies to

δD[pm(c–)][pm(c–) - c–] ≥ sm–.

The optimal market share must satisfy this constraint, and hence we have

s* = δD[pm(c–)][pm(c–) - c–]/m–.
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Since the right-hand side expression of the above equation is less than δ, a comparison

with the counterpart in proposition 1 indicates that licensing results in a smaller market

share for the innovator. In equilibrium, however, due to the licensing fee the innovator

earns a greater net profit equaling:

s*m– + F* = m– - (1 - δ)D[pm(c–)][pm(c–) - c–].

Finally, the licensing agreement must be incentive-compatible for the innovator.

A one-period deviation would yield m– + F* in the current period. As the innovator

switches to limit-pricing in the next period, with the license annulled, the stream of

discounted profits from the next period on sums to δπL/(1 - δ). Thus, a deviation yields

m– + F* + δπL/(1 - δ) = 2m– - D[pm(c–)][pm(c–) - c–] + δπL/(1 - δ)

where (9) is used to get the right-hand side. The innovator has no incentive to deviate if

this sum is less than the equilibrium profits; i.e.,

(s*m– + F*)/(1 - δ) ≥ 2m– - D[pm(c–)][pm(c–) - c–] + δπL/(1 - δ).

Substituting for s* and F* and canceling terms simplifies this to

δ ≥ m–/(2m– - πL) ≡ δA(c–),

the condition identical to (4) in section 3.1. Thus, the condition for collusion in post-

discovery periods is unaffected by licensing. It follows that a greater industry profit due

to cooperation in R&D has no role in the incentive to collude in post-discovery periods.

However, a greater equilibrium industry profit after a discovery raises the

expected profit before a discovery from (vi + vn)/2 to m–/2 in the expression Vc. That is,
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with licensing the collusive equilibrium profit before a discovery is equal to VJ instead of

Vc. On the other hand, the profit from a deviation before a discovery is unaffected by

licensing and equals Vλ. Then, following the procedure of section 4, we can show that

collusion can be maintained in pre-discovery periods for δ ≥ max{δA(c–), 1/2} = δA(c–). In

terms of figure 1, licensing enables firms collude before and after a discovery in regions 1

and 2, while without licensing they could not collude before a discovery in region 2, as

shown in section 3.1. The analysis for regions 3 and 4 is unaffected by licensing.

Now reconsider formation of an RJV. Since licensing enables firms to collude

before and after discovery in regions 1 and 2, formation of an RJV facilitates collusion

only in regions 3 and 4. Further, since firms share innovation with licensing and capture a

greater industry profit after a discovery, an RJV does not generate additional efficiency

gains, and hence does not increase welfare. In regions 3 and 4, an RJV facilitates

collusion and reduces welfare. Without licensing an RJV increased welfare in region 1

due to the efficiency gain and the net effect was ambiguous in region 2. With licensing,

however, an RJV causes no welfare changes in these regions.

In section 1 we indicated that an RJV can facilitate collusion by elimination of

inter-firm asymmetries and generation of a greater industry profit. The analysis of this

section can disentangle these two effects. First, both an RJV and licensing yields the

identical expected collusive equilibrium profits before a discovery equal to VJ. Yet, due

to the post-discovery asymmetry with licensing, firms cannot collude in regions 3 and 4

without forming an RJV. Thus, elimination of the post-discovery asymmetry is

responsible for successful collusion in regions 3 and 4 with an RJV. Second, in region 2
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firms could not collude before a discovery without licensing but can collude with

licensing or an RJV, both of which yields a greater surplus. Thus, collusion in region 2 is

facilitated by the prospect of a greater profit with an RJV.

6. Extensions

 In section we relax the following assumptions of the model. They are (i) non-

drastic innovation, (ii) permanent patent protection, and (iii) Nash threats (punishment by

reversions to repeated play of a one-shot game).

First, suppose innovation is drastic as in Martin (1995). With drastic innovation

an innovator becomes a monopoly so there is no collusion in post-discovery periods.

Thus, the analysis is similar to the one associated with region 3; namely, formation of an

RJV facilitates collusion in post-discovery periods and lowers social welfare, which is

exactly what Martin (1995) has argued.

Second, suppose that patent life is finite. If patent life is, say, T periods, the value

of new technology to the innovator falls from πL/(1 - δ)  under permanent patent

protection to πL(1 - δT)/(1 −  δ).20 In the collusive equilibrium finite patent life thus

decreases the value of a deviation, thereby making collusion easier to maintain both

before and after a discovery.

Third, it is well known in the implicit collusion literature that collusion can be

sustained for a lower range of discount factors if firms can commit to a severer

punishment scheme than Nash reversions. In a recent paper Thal (2006) considers such a
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scheme for Bertrand duopoly with asymmetric costs, and finds that a credible punishment

strategy with an Abreu (1986, 1988) stick-and-carrot structure reduces the payoff to the

firm with lowest cost to zero. Although not concerned with the uniqueness of equilibrium

selection, when applied to our model, her analysis implies that there is an optimal

punishment scheme that can reduce the threshold discount factor after a discovery to 1/2

without formation of an RJV. However, it is not clear whether the threshold discount

factor also falls to 1/2 in pre-discovery periods. Nonetheless, in Appendix F we show that

that is the case under the assumption of linear demand. In that case, firms can collude

before and after a discovery at any discount factor greater or equal to 1/2 without forming

an RJV, meaning that cooperation in R&D always improves social welfare through

efficiency gains.

7. Concluding remarks

We examine whether cooperation in R&D leads to product market collusion. Our

model has two firms managing implicitly to maintain the collusive equilibrium while

engaged in a stochastic R&D race. Under competitive R&D, innovation gives rise to an

inter-firm cost asymmetry and can destabilizes collusion when the discount factor is low

or the cost reduction under new technology is large. The prospect that collusion ends with

innovation further destabilizes collusion in pre-discovery periods. Innovation sharing

under cooperative R&D preserves a cost symmetry and also raises industry surplus, both

of which facilitate collusion in product markets. These two effects can be studied

                                                                                                                                                      
20 In period T + 1 the technology becomes public and competition wipes out profits for the innovator.



30

separately by considering the intermediate case, in which firms license without forming

an RJV.

Although facilitating collusion, cooperation in R&D does not necessarily decrease

social welfare in the absence of licensing, as sharing of new technology improves

efficiency in production. Although new technology is the driving force for a welfare

improvement, cooperation in R&D is more likely to decrease welfare if the cost falls too

much under new technology.

Our qualitative results are robust to alternative assumptions concerning the type

of innovation (drastic or non-drastic), patent length, and punishment mechanisms. Our

model can be extended further. For example, more complex licensing schemes such as

multi-period binding licensing contracts can be explored within out model. Another

interesting extension would be to the case of quantity-setting firms. Since quantity

competition is less competitive it is generally more difficult to maintain collusion than

with price competition. While we leave these extensions for future research, we believe

that our basic insight and results will remain valid and relevant.
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Appendices

Appendix A: Proof of Lemma 1. Let δ < δA(c–) be given. Suppose there is a pair (p*, s*),

where p* ≠ pm(c–), such that p* maximizes the innovator’s profit s*m–* = s*D(p*)(p* - c–)

and satisfies the no-deviation constraints for both the innovator and the non-innovator.

Case 1. p* < pm(c–)

Partial collusion is stable if

δ ≥ max {(1 – s*)m–*)/(m–* – πL), s*}

If δ ≥ (1 – s*)m–*)/(m–* – πL) > s*, s* can be increased up to δ, increasing the profit to the

innovator without violating the no-deviation constraint. So, at the optimum the innovator

sets s* = δ. Therefore, we have

δ ≥ (1 – δ)m–*/(m–* – πL)

or

δ ≥ m–*/(2m–* – πL).

But the right-hand side is decreasing in m* for 0 ≤ m–*≤ m–, and hence

δ ≥ m–*/(2m–* – πL) > m–/(2m– – πL) = δA(c–),

which contradicts the assumption δ < δA(c–).

Case: pm(c–) < p* < pm(c–)

There is no deviation if
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δ ≥ max {(m– - s*m–*)/(m– – πL), s*}.

Again, s* can be increased up to δ without violating this constraint so δ = s*. We can

write the above as

δ ≥ (m– - δm–*)/(m– – πL).

that is,

δ ≥ m–/(m– – πL + m–*).

But since m–* < m–

δ ≥ m–/(m– – πL + m–*) > m–/(2m– – πL) = δA(c–),

a contradiction.

Case 3: p* ≥ pm(c–).

The innovator does not deviate if

δ ≥ [m– - (1 – s*)m–*]/m–,

and the non-innovator does not if

δ ≥ (m– – s*m–*)/(m– – πL).

Partial collusion is sustained if both conditions hold. The first must hold with equality,

for otherwise the innovator can increase profit by raising s*. Therefore, s* satisfies

(1 - δ)m– = (1 – s*)m–*.

Using this the second condition can be written

δ(m– – πL) ≥ (m– – s*m–*) = m– + (1 - δ)m– – m–*
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Collecting terms,

δ ≥ [m– + m– – m–*]/[(m– – πL + m–] > m–/(2m– – πL) = δA(c–),

a contradiction. ❏

Appendix B: We show that (6) fails at δ = 1/2. Assume the contrary, and evaluate (6) at δ

= 1/2 to obtain this equivalent condition:

(B1) m– + D[pm(c–)][pm(c–) – c–] – πL – 2m– ≥ 0.

However, we can express the left-hand side of (B1) as

D[pm(c–)][2pm(c–) – c– – c–] – D(c–)(c– – c–) – 2D[pm(c–)][pm(c–) – c–)

< 2D(c–)[pm(c–) – c–] – 2D[pm(c–)][pm(c–) – c–)

< 0,

where the first inequality is obtained from substitution of D(c–) for D[pm(c–)] while the

second follows the fact that pm(c–) is the profit-maximizing price at cost c–. This

contradiction is what we wanted. ❏

Appendix C: We prove Lemma 2. Proof of Result (i) dδB(c–)/dc– < 0. Write δB(c–) = δBto

save space. δB is implicitly defined by (6) or satisfies this implicit function

g(δB, c–) ≡ VJ – Vλ – m– = 0.
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where VJ – Vλ is given by (7). Write g(δB, c–) = g. Straightforward differentiation of (7)

shows that ∂g/∂δB > 0. On the other hand,

sgn {∂g/∂c–} = sgn {∂(VJ – Vλ)/∂c–} = sgn {∂(πi + πn – πL)/∂c–}

The last derivative is

– δBD[pm(c–)] + D(c–) > 0

since pm(c–) > c–. Therefore, by the implicit-function theorem we conclude that

dδB(c–)/dc– = – (∂g/∂c–)/(∂g/∂δB) < 0.

Proof of Result (ii): As c– approaches cd, Vc – Vλ approaches (m–/2)(1 − δφ2). Therefore, if

δ > 1/(2φ2),  (6) holds with strict inequality at the limit c– = cd, that is,

(m–/2)/(1 − δφ2) > m–.

This implies that δB(c–) is bounded from above by 1/(2φ2).

Proof of Result (iii). Suppose that φ2 ≥ 1/2. Then 1/(2φ2) ≤ 1. Hence, 1 > δB(c–) > 1/2 by

result (ii) of lemma 2. On the other hand, δA(c–) approaches unity as c– approaches cd, and

approaches 1/2 as c– nears c–. Thus, the two loci cross each other. ❏

Appendix D. We prove Lemma 3: Let δ be given such that δA(c–) ≤ δ < δB(c–). Suppose

there is a price p* ≠ pm(c–) and the total profit m–* = D(p*)(p* - c–) < m– satisfying
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δ(1 – φ2)[vi + vn - πL/(1 – δ)]/2 + m–*/2

1 – δφ2   ≥ m–*

But firms cannot collude fully so

m– >  
δ(1 – φ2)[vi + vn - πL/(1 – δ)]/2 + m–/2

1 – δφ2 .

Adding and simplifying

[m– - m–*]/[2(1 - δφ2)] ≥ m– - m–*

which holds only if

δ >1/ (2φ2).

By Lemma 2,

1/(2φ2) > δB(c–).

These two imply δ > δB(c–), a contradiction. ❏

Appendix E: We show that (8) holds with strict inequality at δ = 1/2. First we show:

(E1) m– – πL – m–

= D[pm(c–)][pm(c–) – c–] – D(c–)(c– – c–) – D[pm(c–)][pm(c–) – c–)

> D[pm(c–)][pm(c–) – c–] – D(c–)(c– – c–) – D(c–)[pm(c–) –c–)

= D[pm(c–)][pm(c–) – c–] – D(c–)[pm(c–) – c–) > 0.

Second, evaluate VJ – Vλ at δ = 1/2 to obtain
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VJ – Vλ = 
(1 - φ2)(m–  – πL) + m–  

2 - φ2 .

Subtract m– from it.

(E2) VJ – Vλ – m– = (1 - φ2)(m– – πL – m–)/(2 - φ2) > 0

by (E1). Finally, evaluate the left-hand side of (8) at δ = 1/2 to obtain

(E3) (1 – φ2)m–/2 + φ2(VJ – Vλ)/2

> (1 – φ2)m–/2 + φ2m–/2 

> m–/2,

where the first inequality uses (E2). But (E3) shows that (8) holds with strict inequality at

δ = 1/2. ❏

Appendix F: Since he receives zero profits following a deviation, the innovator has no

incentive to deviate if sm–/(1 – δ) ≥ m–, or s ≥ 1 – δ. Likewise, the non-innovator does not

deviate if s ≤ δ. Thus, 1 – δ ≤ s ≤ δ. At δ = 1/2, this means s = 1/2. Now, modify the pre-

discovery components of b as follows. In state (iv) firms set price equal to c– until a

discovery, after which they switch to the stick-and-carrot strategy described by Thal

(2006). Then, a one-period deviation before a discovery yields zero profits (excluding k)

past the period in which a deviation occurs, regardless of histories. It follows that a
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deviant firm chooses not to invest in R&D investment. With this modification, (6)

becomes

Vc ≥ m–.

Substituting δ = 1/2 and canceling terms, we can write this condition as

m– + D[pm(c–)][pm(c–) – c–] – 2m– ≥ 0.

This condition may or may not hold in general but it does hold under the assumption of

linear demand as can easily be confirmed by directly evaluation of the profits. If it does,

then firms can maintain collusion before and after innovation at any δ ≥ 1/2 as under

cooperative R&D. ❏
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