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Abstract

This paper studies the problem of information revelation in a multi-stage tournament

where the agents’ effort in each stage gives rise to a stochastic performance signal privately

observed by the principal. The principal controls the agents’ effort incentive through the

use of a feedback policy, which transforms his private information into a public announce-

ment. The optimal feedback policy is one that maximizes the agents’ expected effort.

The paper identifies when the principal should use the no-feedback policy that reveals no

information, or the full-feedback policy that reveals all his information.
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1. Introduction

As a prominent form of relative performance evaluation, tournaments have attracted

considerable attention in economic theory. The main focus of the theory is on the size and

allocation of rewards that would maximize the performance of the competing agents, and

on the comparison of the relative incentive schemes against more general forms of con-

tracts. Beginning with the seminal work of Lazear and Rosen (1981), a partial list of the

literature on this subject includes Green and Stokey (1983), Nalebuff and Stiglitz (1983),

Glazer and Hassin (1988), Gradstein and Konrad (1999), Moldovanu and Sela (2001), and

others. In most models, a tournament is described as a static mechanism in which the

agents’ one-time effort decision determines their performance and hence the winner. In

reality, however, many tournaments are more appropriately described as dynamic games:

Agents make sequential effort decisions in multiple stages and the winner is determined by

their overall performance. When a tournament is designed as a dynamic mechanism, one

important issue arises concerning the control of information during the course of play. In

other words, the design of a dynamic tournament should include strategic considerations

on how information is revealed to the competing agents. In general, the timing and content

of such information feedback should have a significant impact on the agents’ effort incen-

tive. Consider, for example, a tournament for job promotion within a firm. First, such a

tournament is dynamic in nature and spans multiple stages. Second, workers’ performance,

which is typically measured by the combination of such factors as leadership, originality,

ability to work in teams, etc., is often subjective and considered private information of his

boss or the firm’s personnel division. Research on performance management well recog-

nizes that the effective inducement of the work incentive requires careful designing of a

scheme through which such performance information is fed back to the worker.1

In this paper, we formulate a model of a dynamic tournament in which the principal

receives private information about agents’ performance, and then reveals as a feedback

some or all of his information to the agents. The analysis is dual to that in the standard

contest literature in that we fix prizes and focus exclusively on the effects of information.

While strategic transmission of private information is a much studied subject in economic

theory, no general understanding exists about how a mechanism should incorporate the

use of the designer’s private information. Existing theories provide varying intuitions as

follows.

1See, for example, Williams (1998).
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In auction theory, the so-called linkage principle by Milgrom and Roberts (1982)

asserts that under the affiliated distribution of signals, the seller’s expected revenue is the

highest when he is committed to revealing all of his private information to the bidders.2 In

a related framework, Milgrom (1981) shows that the seller of a good maximizes his payoff

by revealing all his private information to the buyer if it is affiliated with the quality

of his good. In some other situations, however, it is shown that the intuition furnished

by the linkage principle fails to hold: Kaplan and Zamir (2000) analyze the problem of

an auctioneer privately informed about bidders’ valuations. In an independent private

values framework, they find that the auctioneer is better off revealing the maximum of the

valuations than fully revealing his information. In a model of twice-repeated common-value

auctions with affiliated signals, de-Frutos and Rosenthal (1998) show that the auctioneer’s

expected revenue (over two auctions) is lower when information about stage 1 bids is made

public than when it is not.3

The literature on dynamic models of a race also provides a closely related observation

in the discussion of the closed- and open-loop formats.4 The open-loop format reveals no

information to the players during a competition, whereas the closed-loop format reveals

one another’s move publicly and instantaneously. It is often argued that the players tend

to slack off in the closed-loop format since, when one player has a small lead over the

others, the followers cannot catch up (in expected terms) with the leader by making the

same level of effort as him. In some circumstances, players stop making effort as soon as

a small lead is established.5

It is important to understand that information feedback has two separate effects on

the agents’ incentives. First, the revealed information influences the agents’ incentives

by changing their beliefs. This is true irrespective of whether the principal’s private in-

formation is given exogenously as in the case of the linkage principle, or is generated

endogenously by the agents’ own actions as in our model. We call this the ex post effect of

information feedback. On the other hand, when the private information is generated en-

dogenously, each agent will choose their actions strategically so as to influence the content

2A probability distribution is affiliated if the joint density function is log-supermodular.
3Perry and Reny (1999) report the failure of the linkage principle in a multi-object auction
based on an entirely different logic.
4See, for example, Harris and Vickers (1985), and Fudenberg et al. (1983). Radner (1985)
also makes a related observation in the context of a repeated principal-agent game.
5Such a phenomenon is referred to as ²-preemption in Fudenberg et al. (1983).
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of the revealed information. For example, agents may exert extra effort in early stages

to take the leading position and discourage opponents. We call this the strategic effect of

information feedback. One interpretation of the finding of de-Frutos and Rosenthal (1998)

is that these two effects may offset each other.

In our model of a multi-stage tournament, agents’ performance in each stage is stochas-

tically related to their effort in that stage. The principal privately observes their perfor-

mance realization after each stage, and reveals some or all of his private information to

the agents before the next stage. The principal’s feedback policy transforms the raw ob-

servation of the agents’ performance into a public announcement. In our terminology, the

closed-loop and open-loop formats described above correspond to the full-feedback and

no-feedback policies, respectively.6 The principal is free to choose any feedback policy and

publicly announces its use before the tournament. For example, he may use a hybrid policy

that reveals full information for some signal realizations but no information for others.7

We assume that the principal is committed to his feedback policy for any realization of the

private signal. The optimal feedback policy is one that maximizes the principal’s payoff

which is an increasing function of the agents’ efforts. As discussed below, we find that

whether he should reveal more information or not depends critically on the functional

form of the agents’ disutility of effort.

A more detailed description of our model is as follows: Two agents compete in a

tournament over T stages. The agent with the higher performance at the end of stage T

wins and is awarded a prize of a fixed value such as a promotion to a higher job rank. In

each stage t, two agents each choose an effort level at, which is observed by neither the

principal nor the opponent. The agents’ cost function of effort is time-separable and can be

expressed as the sum of stage-cost functions, which are assumed to be all strictly convex.

The score in stage t is the difference between the performance levels of the two agents and

equals the sum of the difference between their effort levels and a random noise term. The

principal privately observes the score, and makes a public announcement about it at the

end of stage t. Conditional on the announcement, the agents update their inference about

the score and decide on their effort levels in subsequent stages. We study how the choice

of a feedback policy affects the agents’ effort levels in a pure perfect Bayesian equilibrium

(PBE) of this dynamic game.

6Alternatively, the no-feedback policy can be interpreted as the simultaneous implemen-
tation of multiple one-shot tournaments.
7Under such a policy, of course, “no announcement” also has an informational content.
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The main differences between the present model and the models of auctions and

dynamic races mentioned above are as follows. First, effort is a continuous variable chosen

from the set of real numbers. This in particular implies that an agent can make high effort

in any single stage and leapfrog his opponent. This possibility is often precluded in models

of a race. Second, agents are symmetric in ability and performance is a noisy outcome of

effort. This is in contrast to the incomplete information approach in the auction literature

where the agents’ performance level (bid) is a deterministic function of their private type

(value or signal).8

The paper presents sufficient conditions for the existence of a perfect Bayesian equilib-

rium and derives effort levels on the equilibrium path. It then proceeds to characterize the

optimal feedback policy. In short, revealing more information is better for the principal

when the marginal cost of effort is concave, and the converse is true when the marginal

cost is convex. More specifically, the following observations are made for the basic model

with two stages (T = 2): When the stage 2 marginal cost function of effort is convex, the

no-feedback policy is optimal in the class of feedback policies that admit a symmetric PBE.

On the other hand, the full-feedback policy is optimal in the same class when the marginal

cost function is concave. Under a stronger condition on the distribution of the noise, the

optimality of the no-feedback and full-feedback policies in the respective cases is extended

for a possibly asymmetric PBE. The similar conclusion holds for a symmetric PBE of a

general T -stage tournament. When the marginal cost of effort is convex in each stage, the

no-feedback policy is optimal. When it is concave, on the other hand, the optimal policy

is one that reveals the most information within the class of feedback policies that admit a

symmetric PBE.9

The intuition for the above results for the two-stage model is as follows: As is stan-

dard, the agents’ effort choice in each stage is such that its marginal disutility is balanced

by the marginal increment in the probability of winning. It can be readily verified that

the marginal increment in the probability of winning from stage 2 effort equals the condi-

tional expectation of a function of the stage 1 score given the public announcement. Note

in particular that the principal’s feedback policy determines the coarseness of the condi-

8In this case, the main emphasis would be on strategic signaling of the private type through
the revealed information.
9The full-feedback policy does not admit a symmetric equilibrium when T ≥ 3. How-
ever, there exists a policy admitting a symmetric PBE that reveals effectively as much
information as the full-feedback policy.
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tioning filtration. As for the stage 2 effort, its expected value equals the (unconditional)

expectation of the above conditional expectation inverted by the stage 2 marginal cost

function. When (the inverse of) the stage 2 marginal cost function is convex or concave,

therefore, Jensen’s inequality yields an ordering over various feedback policies according

to the expected effort they induce. As for the stage 1 effort, on the other hand, it can be

seen that its marginal disutility in equilibrium equals the expected marginal disutility from

stage 2 effort.10 In other words, the marginal disutility of stage 1 effort is set equal to the

unconditional expectation of the above function of the stage 1 score, which is independent

of the feedback policy by the law of iterated expectation. Therefore, the stage 1 effort is

constant under any feedback policy. Combination of these observations leads to the desired

conclusion.

As seen from the above discussion, the optimal feedback policy often takes a simple

but extreme form. What is important to note is the sensitivity of the optimal solution to

the specification of the parameters of the model. For example, revealing no information is

optimal in some cases, but is least desirable in others. Such sensitivity may in part explain

the variations in the intuitions obtained from the existing models of information revelation

as discussed above. On the other hand, it is also interesting to note that information

feedback does not matter under the common assumption of quadratic cost functions, or

equivalently, linear marginal cost functions. In this case, not only are the no-feedback

and full-feedback policies optimal, but also any feedback policy induces the same expected

effort.

In line with the standard assumption of the mechanism design literature, we assume

that the principal is publicly committed to his feedback policy for any realization of the

performance score.11 The conclusion would be very different without such commitment as

a feedback policy must then be chosen subject to the sequential rationality requirement.12

We also assume that the principal’s announcement is public. In some applications, it may

be more appropriate to suppose that he can send a private message to each agent. Mares

and Harstad (2002) show in their common-value auction model that an auctioneer may

10Although intuitive, this cannot be assumed a priori because of the strategic effect of
stage 1 effort mentioned above. For example, agents may choose to exert larger effort in
stage 1 in order to preempt the leading position.
11For example, an auctioneer does not sell his good below the reserve price even if no bid
exceeds it.
12For example, Kaplan and Zamir (2000) find that the auctioneer without a commitment
power cannot exploit his private information.

5



be better off revealing his private information in a non-public way. Such might as well be

the case in the present model. However, the analysis of private feedback of information is

difficult as it induces a fundamental asymmetry in the agents’ effort choice. This is left as

a future exercise.

The paper is organized as follows: In the next section, we develop the basic framework

for the two-stage model. Section 3 characterizes a PBE and provides sufficient conditions

for its existence. In Section 4, the analysis of the optimal feedback policy is given. An

extension to the general T -stage model is presented in Section 5.

2. Model of a Tournament

Two risk neutral agents i = 1, 2 compete in two stages. In each stage, the agents’

effort gives rise to a stochastic “score,” which indicates their relative performance. At

the end of stage 2, the principal aggregates the scores from both stages to determine the

winner.13

Formally, suppose that agent i’s effort ait in stage t is chosen from the set R+ of

non-negative real numbers. The stage t score xt is a random variable whose distribution

depends on the effort levels a1t and a
2
t of both agents in stage t. More specifically, we

assume that xt = a1t − a2t + ζt for a real-valued random variable ζt. In other words,

the score xt represents agent 1’s lead over agent 2, and is stochastically related to the

difference between their effort levels. Let φt be the density of ζt over R, and denote by Φt

the corresponding cumulative distribution. We assume that φt is strictly positive and twice

continuously differentiable, and symmetric around zero in the sense that φt(x) = φt(−x)
for any x ∈ R. We also assume that ζ1 and ζ2 are independent. Note that the density of
xt under the action profile at = (a

1
t , a

2
t ) is given by

φt(xt − a1t + a2t ).

The (aggregate) score x is the sum of scores in stages 1 and 2: x = x1 + x2. Agent 1

wins if x > 0, and agent 2 wins if x < 0. Each agent wins with equal probability in the

(probability zero) event of a tie x = 0.

Each agent derives one unit of positive utility from the winning prize (e.g., promotion

to a higher job rank), and incurs disutility from effort. The cost of effort in stage t is

13While this is a special case of the more general model discussed in Section 5, the two-stage
setting allows for a clearer prensetation and more permissive conditions.
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described by a twice differentiable cost function ct : R+ → R+. Accordingly, agent

i’s overall utility equals 1 −P2
t=1 ct(a

i
t) if he wins, and −

P2
t=1 ct(a

i
t) otherwise. The

principal’s payoff, on the other hand, is a function of each agent’s effort levels in the

two stages: V (a11, a
2
1, a

1
2, a

2
2). The function V : R4

+ → R is assumed to be increasing

(V (â) ≥ V (a) if âit ≥ ait for each t, i = 1, 2) and symmetric with respect to the agents

(V (â) = V (a) if â1t = a
2
t and â

2
t = a

1
t for t = 1, 2). Note that the principal’s payoff may

in general contain more information than his private signal x about the agents’ efforts.

In line with our assumption that the winner is determined based only on x, we suppose

that the principal observes his payoff only after the winner has been determined. Each

agent’s effort ait is his private information and observed by neither the principal nor the

other agent. On the other hand, the principal privately observes the score xt in each stage

t and can credibly reveal either whole or part of his private information x1 after stage 1.

Specifically, suppose that the principal makes a public announcement y about x1 at the

end of stage 1. Let Y be the set of possible announcements. A feedback policy (or simply a

policy) is a measurable mapping f : R→ Y , which chooses the announcement y = f(x1)

as a function of the score x1. The announcement y is credible in the sense that the principal

publicly announces f at the beginning and is committed to it for any realization of x1. The

principal chooses a feedback policy so as to maximize his expected payoff. For simplicity,

our analysis will be restricted to deterministic feedback policies. The paper’s conclusions

do not change with the introduction of a stochastic feedback policy, which chooses the

announcement y as a function of x1 and some (exogenous) random variable.

Little restriction is placed on the nature of the public announcement y. For example,

each announcement y ∈ Y may simply contain the name of the leader, or it may be an

interval in R which indicates the range of x1. Without loss of generality, we assume that

f is a surjection by choosing Y = {f(x1) : x1 ∈ R}.
As mentioned in the Introduction, some simple feedback policies will play an import

role in our analysis. In particular, the no-feedback policy sends the same message regardless

of x1, and the full-feedback policy reveals x1 completely. Given any announcement y ∈ Y ,
let f−1(y) = {x1 ∈ R : f(x1) = y} denote the inverse image of {y} under f . The feedback
policy f is regular if for any y ∈ Y , f−1(y) ⊂ R either has positive (Lebesgue) measure, or

is countable. Most “natural” policies, including the full-feedback and no-feedback policies,

are regular.14 In what follows, we will restrict attention to regular feedback policies.

14Feedback policy f fails to be regular if f−1(y) is, for example, the Cantor set for some

7



Given any policy f , agent i’s history hi after stage 1 is the information available

to agent i at the end of stage 1: hi consists of his own effort choice ai1, and the public

announcement y by the principal. Agent i’s (pure) strategy σi is a pair (σi1,σ
i
2), where

σi1 ∈ R+ is the effort choice for stage 1, and σ
i
2 : R+×Y → R+ is a mapping that specifies

the stage 2 effort after each possible history hi = (ai1, y). Given the starategy profile σ, let

πi2(a
i
2 | σ, hi1) denote agent i’s expected payoff in stage 2 when he chooses ai2 in stage 2,

his history in stage 1 is hi1, and agent j plays according to the strategy σ
j in both stages.

Likewise, let πi1(a
i
1 | σ) denote agent i’s expected payoff in stages 1 and 2 when he chooses

ai1 in stage 1 and plays according to σ
i
2 in stage 2, and agent j plays according to σ

j in both

stages. In view of the fact that the distribution φ1 has full support, we define a strategy

profile σ = (σ1,σ2) to be a (pure) perfect Bayesian equilibrium (PBE) if for i = 1, 2,

πi1(σ
i
1 | σ) ≥ πi1(a

i
1 | σ) for any ai1 ∈ R+, and

πi2(σ
i
2(h

i
1) | σ, hi1) ≥ πi2(a

i
2 | σ, hi1) for any ai2 ∈ R+ and h

i
1 ∈ R+ × Y .

3. A Perfect Bayesian Equilibrium

We assume that the marginal cost of effort in each stage is increasing:

Assumption 1: For t = 1, 2, the cost function ct : R+ → R+ satisfies c0t(0) = 0 and

infa∈R+ c
00
t (a) > 0.

Let a regular feedback policy f be given. We denote by gσ1 (x1 | y) the conditional
density of x1 given the stage 1 effort profile σ1 = (σ

1
1 ,σ

2
1) and the public announcement y.

For x1 ∈ f−1(y), it can be expressed as

gσ1 (x1 | y) =
φ1(x1 − σ11 + σ21)R

f−1(y) φ1(x
0
1 − σ11 + σ21) dx

0
1

or
φ1(x1 − σ11 + σ21)P

x01∈f−1(y) φ1(x
0
1 − σ11 + σ21)

depending on whether f−1(y) has positive measure or is countable.15 Recall that the

convolution of φ1 and φ2, denoted φ1 ∗ φ2, is defined by

(φ1 ∗ φ2)(x) =
Z
R

φ1(x− u)φ2(u) du.

For any strategy profile σ, let σi2,0(y) = σi2(σ
i
1, y) for y ∈ Y . In other words, σi2,0(y) is

agent i’s stage 2 effort along the path of play. The following theorem characterizes the

effort level chosen in any pure PBE.

y.
15Note that gσ1 depends only on the stage 1 profile σ1 and not on the stage 2 profile σ2.
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Theorem 1. Suppose that Assumption 1 holds and that supx∈R |φ02(x)| < infa∈R+ c
00
2(a).

If σ is a pure PBE under any feedback policy f , then for any y ∈ Y ,

(1) σ12,0(y) = σ22,0(y) = α2(σ1, y) ≡ (c02)−1
³
Eσ[φ2(x̃1) | y]

´
.

If, in addition, σ11, σ
2
1 > 0, then

(2)


c01(σ

1
1) = (φ1 ∗ φ2)(σ11 − σ21) +

Z
R

c2
¡
α2(σ1, f(x1))

¢
φ01(x1 − σ11 + σ21) dx1,

c01(σ
2
1) = (φ1 ∗ φ2)(σ11 − σ21)−

Z
R

c2
¡
α2(σ1, f(x1))

¢
φ01(x1 − σ11 + σ21) dx1.

Proof: See the Appendix. //

It should be noted that in any PBE, the agents’ stage 2 efforts are symmetric for any

realization of the public announcement whether the stage 1 efforts are symmetric or not.

It should be noted that the stage 2 effort is determined through the standard marginal

consideration: It balances the increment in the probability of winning and the cost of

one additional unit of effort. (1) has the following implication. Suppose for simplicity

that f is the full-feedback policy: f(x1) = x1. In this case, σ
i
2,0(x1) = (c02)

−1¡φ2(x1)¢
as is readily verified. It follows that the agents make the highest stage 2 effort when

x1 is such that φ2(x1) is the largest. When φ2 is a unimodal distribution such as the

normal distribution, this means that the stage 2 effort is maximal when the stage 1 score

is x1 = 0 and decreases with |x1|. This supports the standard intuition that the closer the
competition, the more effort the agents exert. Note, however, that this intuition no longer

holds when, for example, φ2 is bimodel so that φ2(x) = φ2(−x) > φ2(0) for some x > 0.

The next theorem identifies a sufficient condition for the existence of a pure PBE.

Theorem 2. Suppose that Assumption 1 holds. There exists ² > 0 such that if

(∗) sup
x∈R

φ2(x), sup
x∈R

|φ02(x)|,
Z
R

|φ001(x)| dx, and
Z
R

φ01(x)
2

φ1(x)
dx < ²,

then given any feedback policy f , there exists a pure PBE under f if (2) has a solution

σ1 = (σ
1
1, σ

2
1) ≥ 0.

Proof: See the Appendix. //

The conditions involving φt in Theorems 1 and 2 all indicate that the performance

score is a noisy signal of agents’ effort. If, for example, ζt has the normal distribution

9



N(0, σ2t ) (t = 1, 2), then these conditions hold whenever the variances σ21 and σ22 are

sufficiently large: In fact, note that supx∈R φ2(x) =
1√
2πσ2

, supx∈R |φ02(x)| = 1√
2π σ22

e−1/2,

Z
R

|φ001(x)| dx =
1√
2πσ1

Z
R

¯̄̄
− 1

σ21
e−x

2/2σ21 +
x2

σ41
e−x

2/2σ21

¯̄̄
dx ≤ 2

σ21
,

and Z
R

φ01(x)
2

φ1(x)
dx =

1

σ21
.

It should be noted that high noise is a standard requirement for the existence of an equi-

librium in a tournament model where performance is stochastically related to effort.16

Intuitively, if the noise is too small, then any infinitesimal increase in effort results in

almost sure winning, making it impossible for the marginal equation to hold.

It should also be emphasized that in Theorem 2, the noise level required for the

existence of an equilibrium is independent of a particular feedback policy f .

In what follows, we assume for simplicity that Y is a vector space and normalize

f(0) = 0 ∈ Y . With this standardization, we say that a feedback policy f is odd if

f(x) = −f(−x) for any x ∈ R and even if f(x) = f(−x) for any x ∈ R. Intuitively, if f is
odd, then the inference drawn from the announcement when agent i leads agent j in stage

1 is the exact opposite of that when their positions are reversed. On the other hand, if f

is even, then the announcement is the same regardless of the identity of the leader as long

as the size of the lead is the same. For example, the full-feedback policy f(x) = x is odd

(but not even), whereas the no-feedback policy f(x) ≡ 0 is the only policy that is both
odd and even.

We say that a strategy profile σ is symmetric if the two agents always choose the same

effort level on the path: σ11 = σ21 and σ
1
2,0(y) = σ22,0(y) for any y ∈ Y . We now show that

every even or odd policy admits a symmetric PBE. By summing the two equations of (2),

we see that the only solution to (2) (if any) compatible with σ11 = σ21 is

(3) σ11 = σ21 = a
∗
1 ≡ (c01)−1((φ1 ∗ φ2)(0)).

The following theorem shows that this indeed corresponds to an equilibrium when f is

either odd or even.

16See, for example, Nalebuff and Stiglitz (1983).
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Theorem 3. Suppose that Assumption 1 holds and that (*) holds for a sufficiently small

² > 0. If f is either odd or even, then there exists a unique symmetric pure PBE σ.

Furthermore, for α2 defined in (1) and a
∗
1 defined in (3), σ satisfies

σ11 = σ21 = a
∗
1,

and

σ12,0(y) = σ22,0(y) = α2(σ1, y) for any y ∈ Y .

Proof: See the Appendix. //

It should be noted that the stage 1 effort a∗1 in the symmetric pure PBE is independent

of the feedback policy f . Furthermore, the expected marginal cost in stage 2 equals the

marginal cost in stage 1 since

Eσ
£
c02(α2(σ1, ỹ))

¤
= Eσ

h
Eσ
£
φ2(x̃1) | ỹ

¤i
= Eσ[φ2(x̃1)]

= (φ1 ∗ φ2)(0)
= c01(a

∗
1)

by the law of iterated expectation. The following facts about the no-feedback and full-

feedback policies are immediate consequences of the above theorem.

Proposition 4. Suppose that Assumption 1 holds. If σ is the (unique) symmetric pure

PBE under the no-feedback policy, then σ11 = σ21 = a
∗
1 and

σ12,0(y) = σ22,0(y) = a
∗
2 ≡ (c02)−1

¡
(φ1 ∗ φ2)(0)

¢
for any y ∈ Y .

Likewise, if σ is the (unique) symmetric pure PBE under the full-feedback policy, then

σ11 = σ21 = a
∗
1 and

Eσ[σi2,0(ỹ)] =

Z
R

(c02)
−1(φ2(x1))φ1(x1) dx1.

When (c02)−1 is concave or convex, Proposition 4 allows us to rank the no-feedback and

full-feedback policies in terms of the expected stage 2 effort they induce in the symmetric

PBE: When (c02)
−1 is concave, Jensen’s inequality implies thatZ

R

(c02)
−1(φ2(x1))φ1(x1) dx1 ≤ (c02)−1

³Z
R

φ2(x1)φ1(x1) dx1
´
= a∗2.

11



The reverse inequality holds when (c02)
−1 is convex. The next section presents a general-

ization of these observations.

4. Optimal Feedback Policy

In this section, we will study the principal’s expected payoff in the pure PBE as

identified in Theorems 1-3. For this, we need to make the following assumption about the

principal’s payoff function:

Assumption 2: V (a1, a
1
2 = a

2
2 = u) is linear in u. In other words, for any a1 ∈ R2

+, there

exist A ≥ 0 and B such that V (a1, a
1
2 = a

2
1 = u) = Au+B.

In view of the fact that the stage 2 efforts in any PBE are always symmetric between

the two agents by (1), Assumption 2 ensures that the principal’s expected payoff is mono-

tonically related to the expected effort in stage 2.17 The class of payoff functions V for

which Assumption 2 holds includes V (a) =
P

t (a
1
t + a

2
t ), V (a) =

P
t min {a1t , a2t}, and

more generally, the CES family V (a) =
P

t

©
(a1t )

m + (a2t )
m
ª1/m

(m ∈ R \ {0}).
Let v(σ, f) denote the principal’s expected payoff in a PBE σ under the feedback

policy f :

v(σ, f) = Eσ
h
V
³
σ1,σ2,0(ỹ)

´i
.

4.1. Symmetric Equilibrium

Define

v̄∗(f) = sup
©
v(σ, f) : σ is a symmetric pure PBE under f

ª
with the convention that v̄∗(f) = −∞ if no such equilibrium exists.

Theorem 4. Suppose that Assumptions 1 and 2 hold and that (*) holds for a sufficiently

small ² > 0. If the marginal cost function c02 for stage 2 is convex, then the no-feedback

policy maximizes v̄∗ among all policies.

Proof: Take any policy f with a symmetric pure PBE σ. Since (c02)
−1 is concave, it

follows from Jensen’s inequality and the law of iterated expectation that the expected

17In the consideration of a symmetric PBE in Section 4.1, we only need the linearity of
V (a1, a

1
2 = a

2
2 = u) in u for a1 such that a

1
1 = a

2
1.

12



stage 2 effort level in equilibrium satisfies

Eσ[α2(σ1, ỹ)] = E
σ
h
(c02)

−1
³
Eσ[φ2(x̃1) | ỹ]

´i
≤ (c02)−1

³
Eσ
h
Eσ[φ2(x̃1) | ỹ]

i´
= (c02)

−1
³
Eσ
£
φ2(x̃1)

¤´
= (c02)

−1¡(φ1 ∗ φ2)(0)¢
= a∗2.

Assumption 2 hence implies that for some A ≥ 0 and B,
Eσ
h
V
¡
σ1, a

1
2 = a

2
2 = α2(σ1, ỹ)

¢i
= Eσ

h
Aα2(σ1, ỹ) +B

i
= AEσ

£
α2(σ1, ỹ)

¤
+B

≤ Aa∗2 +B
= V (a∗1, a

∗
1, a
∗
2, a
∗
2).

The desired conclusion follows since the last term equals the principal’s expected payoff in

the symmetric PBE under the no-feedback policy. //

Theorem 5. Suppose that Assumptions 1 and 2 hold and that (*) holds for a sufficiently

small ² > 0. If the marginal cost function c02 for stage 2 is concave, then the full-feedback

policy maximizes v̄∗ among all policies.

Proof: As in the proof of Theorem 4, take any policy f which admits a symmetric PBE

σ. Since (c02)
−1 is convex, Jensen’s inequality now implies that

Eσ[α2(σ1, ỹ)] = E
σ
h
(c02)

−1
³
Eσ[φ2(x̃1) | ỹ]

´i
≤ Eσ

h
Eσ
£
(c02)

−1¡φ2(x̃1)¢ | ỹ¤i
= Eσ

£
(c02)

−1¡φ2(x̃1)¢¤.
Since σ is symmetric, σ11 = σ21 = a

∗
1 by (2), and hence the far right-hand side of the above

inequality equals

a∗∗2 =

Z
R

(c02)
−1(φ2(x1))φ1(x1) dx1,

which is the expected stage 2 effort in the symmetric PBE under the full-feedback policy.

It therefore follows from Assumption 2 that for some A ≥ 0 and B,
Eσ
h
V
¡
σ1, a

1
2 = a

2
2 = α2(σ1, ỹ)

¢i
= Eσ

h
Aα2(σ1, ỹ) +B

i
= AEσ

£
α2(σ1, ỹ)

¤
+B

≤ Aa∗∗2 +B.

13



Since the last term equals the principal’s expected payoff in the symmetric PBE under the

full-feedback policy, the desired conclusion follows. //

The proofs of Theorems 4 and 5 also show that when c02 is concave (resp. convex), the

no-feedback (resp. full-feedback) policy yields the lowest expected payoff to the principal.

On the other hand, when the marginal cost function c02 for stage 2 is linear (and hence

both concave and convex), the induced effort in either stage is not affected by the feedback

policy. The following corollary is an immediate consequence of Theorem 1.

Corollary 6. Suppose that the stage 2 cost function is quadratic: c2(a) =
1
2 ka

2 for

some k > 0. Suppose also that Assumption 1 holds and that supx∈R |φ02(x)| < k. If σ

is a symmetric pure PBE under any feedback policy f , then σi1 = a∗1 and E
σ[σi2,0(ỹ)] =

1
k (φ1 ∗ φ2)(0). In particular, the principal’s expected payoff v(σ, f) is independent of f .

4.2. Asymmetric Equilibrium

Define now

v̄(f) = sup
©
v(σ, f) : σ is a pure PBE under f and satisfies (2)

ª
,

with v̄(f) = −∞ if the corresponding strategy profile does not exist. We will make some

additional assumptions in order to evaluate the principal’s expected payoff when the agents’

effort levels are asymmetric.

Assumption 3: (φ1 ∗ φ2)(0) = maxx∈R (φ1 ∗ φ2)(x).
Assumption 4: For any a = (a11, a

2
1, a

1
2, a

2
2) ∈ R4

+ such that a
1
1 < a

2
1 and a

1
2 = a

2
2, we have

(4)
c001(a

1
1)− 2(φ1 ∗ φ2)0(a11 − a21)

c001(a
2
1) + 2(φ1 ∗ φ2)0(a11 − a21)

<

∂V
∂a11
(a)

∂V
∂a21
(a)
.

Note that the left-hand side of (4) represents the slope of the curve

(5) h(a11, a
2
1) ≡ c01(a11) + c01(a21)− 2(φ1 ∗ φ2)(a11 − a21) = 0

in the (a11, a
2
1)-plane, while the right-hand side represents that of the principal’s iso-payoff

curve. (4) is a single-crossing condition asserting that the iso-profit curve always has a

steeper slope than (5). Plainly, Assumption 4 requires that the two agents’ efforts be

complementary to each other from the point of view of the principal’s payoff. To see this,

14



suppose that V has the CES form: V (a) =
P

t

©
(a1t )

m+(a2t )
m
ª1/m

(m ∈ R\ {0}). In this
case, the right-hand side of (4) equals (a11/a

2
1)
m−1. Hence, (4) is easy to satisfy when m−1

is negative and large in absolute value. In particular, it will hold for any c1 as m→ −∞,
or V (a) =

P
t min {a1t , a2t}. On the other hand, the inequality fails if m > 1 and c01 is

concave.

Assumptions 3 and 4 together guarantee that along (5), the principal’s payoff is maxi-

mized at the symmetric point (a∗1, a
∗
1) (provided that the second-stage efforts are symmet-

ric).

Lemma 7. Suppose that Assumptions 1, 3 and 4 hold and that lima→∞ c01(a) > 2(φ1 ∗
φ2)(0) for i = 1, 2. Then for any σ1 that solves (2) and any a2 such that a

1
2 = a22, the

principal’s payoff function satisfies

V (a∗1, a
∗
1, a2) ≥ V (σ1, a2).

Proof: See the Appendix.

Theorem 8. Suppose that Assumptions 1-4 hold and that (**) holds for a sufficiently

small ² > 0. If the marginal cost function c02 for stage 2 is convex, then the no-feedback

policy maximizes v̄(·) among all policies.

Proof: See the Appendix. //

Assumption 5: φ2 is unimodal in the sense that φ2 is strictly increasing over (−∞, 0)
and strictly decreasing over (0,∞).

Note that Assumption 5 implies Assumption 3.

Theorem 9. Suppose that Assumptions 1, 2, 4, and 5 hold, and that (*) holds for a

sufficiently small ² > 0. If the marginal cost function c02 for stage 2 is concave, then the

full-feedback policy maximizes v̄(·) among all policies.

Proof: See the Appendix. //

As in Section 4.1, we can show that the principal’s payoff is independent of a particular

feedback policy when the stage-cost function c2 is quadratic.

Consider now the feedback policy f that reveals the absolute value of the score:

f(x1) = |x1| for every x1. In other words, this policy reveals the exact size of the lead,
but not the identity of the leader. In the two-stage model, this policy is equivalent to the

15



full-feedback policy in terms of the induced effort level. To see this, note that if f is as

defined above, then

Eσ
£
φ2(x̃1) | ỹ = f(x1)

¤
=
φ2(x1) + φ2(−x1)

2
= φ2(x1)

by the symmetry of φ2. It follows that the stage 2 effort under f equals that under the full-

feedback policy. It follows that this feedback policy is also optimal under the conditions

of Theorems 5 and 9.

5. T -Stage Tournament

Suppose now that the tournament game is played over T stages. Let ait denote agent

i’s effort in stage t. The score xt in stage t equals a
1
t −a2t+ζt, where ζt is a random variable

with the strictly positive density φt over R. We assume that φt is symmetric around zero,

and twice continuously differentiable. For each t = 1, . . . , T , denote by ωt = (x1, . . . , xt)

the sequence of scores in stages 1, . . . , t, and by ∆t the aggregate score at the end of stage

t:

∆t =
tX

s=1

xs.

Given ωt and s < t, we also use ωs to denote the s-length truncation of ωt.

The feedback policy f in the T -stage tournament is a sequence of (measurable) map-

pings f1, . . . , fT−1 such that

ft : R
t → Yt for t = 1, . . . , T − 1,

where Yt is the set of possible announcements after stage t. Note that the announcement

yt = ft(ωt) after stage t may in general depend on all past scores and not just the stage

t score. This reflects the fact that a feedback policy in the general T -stage model is a

significantly more complicated object than that in the two-stage model. For example, the

principal may wish to withhold some information for some stages before releasing it with

a lag conditional on some subsequent developments, etc.

We say that the feedback policy f is even if ft(ωt) = ft(−ωt) for every ωt and t.

Belonging to this class is the no-feedback policy which has ft(ωt) = ft(ω
0
t) for every ωt, ω

0
t

and t. Note that the full-feedback policy is not in this class and will be excluded from the

following analysis. We will, however, show that there exists an even feedback policy that

effectively reveals all the information in a symmetric equilibrium.

16



Given any feedback policy f , let

Zt(f) = {zt = (y1, . . . , yt) : ys = fs(ωs) for s = 1, . . . , t for some ωt}

be the set of sequences of possible announcements after stages 1, . . . , t, and for each zt ∈
Zt(f), let

Xf
t (zt) = {ωt : fs(ωs) = ys for s = 1, . . . , t}

be the set of sequences of scores compatible with zt. In the T -period model, we say that

f is regular if Xf
t (zt) has positive measure or is countable for every zt and t.

In order to avoid technical complications arising from boundary problems, we assume

that efforts can take negative values.

Assumption 6: For each t = 1, . . . , T , the cost function ct in stage t is a mapping from

R to R+ and satisfies ct(0) = c
0
t(0) = 0, and infa∈R c

00
t (a) > 0.

Under Assumption 6, the cost of negative effort is positive and increases (at an in-

creasing rate) with its absolute size. As seen below, however, only positive efforts are

observed along any symmetric equilibrium path.

Agent i’s history after stage t, denoted hit, is the sequence of his effort choices

bit ≡ (ai1, . . . , a
i
t) in stages 1, . . . , t along with the sequence of public announcements

zt = (y1, . . . , yt) after stages 1, . . . , t. Agent i’s strategy σi is a sequence (σ1, . . . ,σT ),

where σt : R
t−1 × Zt−1(f) → R specifies the effort level in stage t as a function of his

history hit−1 after stage t− 1.
Let πi1(a

i
1 | σ) be agent i’s expected payoff in the entire game when he chooses ai1 in

stage 1 and then plays according to σi in stages 2, . . . , T , and agent j plays according to

σj in stages 1, . . . , T . Likewise, let πit(a
i
t | σ, hit−1) be agent i’s expected payoff over stages

t, . . . , T when he chooses ait in stage t and plays according to σ
i in stages t+ 1, . . . , T , his

history equals hit−1, and agent j plays according to σ
j . A strategy profile σ is a perfect

Bayesian equilibrium (PBE) under policy f if for i = 1, 2,

πi1(σ
i
1 | σ) ≥ πi1(a

i
1 | σ) for every ai1 ∈ R, and

πit(σ
i
t(h

i
t−1) | σ, hit−1) ≥ πit(a

i
t | σ, hit−1)

for every ait ∈ R, hit−1 ∈ Rt−1 × Zt−1(f), and t = 2, . . . , T .

As before, denote by σit,0(zt−1) agent i’s effort level in stage t along the sequence of public

announcements zt−1. A PBE is symmetric if the effort levels are symmetric on the path,

i.e., σ1t,0(zt−1) = σ2t,0(zt−1) for any zt−1 ∈ Zt−1(f) and t = 1, . . . , T .
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Let gt−1(ωt−1 | zt−1) denote the density of ωt−1 = (x1, . . . , xt−1) conditional on the
sequence of public announcements zt−1 = (y1, . . . , yt−1), provided that both agents play

according to a symmetric strategy profile. When Xf
t−1(zt−1) has positive measure, it can

be written as

gt−1(ωt−1 | zt−1) =
Qt−1
s=1 φs(xs)R

Xf
t−1(zt−1)

Qt−1
s=1 φs(x

0
s) dω

0
t−1

if ωt−1 ∈ Xf
t−1(zt−1) and gt−1(ωt−1 | zt−1) = 0 otherwise. The similar expression applies

when Xf
t−1(zt−1) is countable. Note that gt−1(ωt−1 | zt−1) is independent of any particular

symmetric strategy profile σ.

The following theorem provides sufficient conditions for the existence of a PBE for

any even feedback policy in the T -stage model and characterizes the effort levels on the

equilibrium path.

Theorem 10. Suppose that Assumption 6 holds. Then there exists ² > 0 such that if

φT (x), |φ0T (x)| < ² for any x ∈ R, and(∗∗)
|φ0t(x)|, |φ00t (x)|,

¯̄̄φ0t(x)
φt(x)

¯̄̄
,
¯̄̄φ00t (x)
φt(x)

¯̄̄
< ² for any x ∈ R and t = 1, . . . , T − 1,

then for any even feedback policy f , (i) there exists a unique symmetric pure PBE σ =

(σ1, . . . , σT ) of the T -stage tournament, and (ii) the stage t effort on the equilibrium path

in any symmetric PBE is given by

(6) σit,0(zt−1) = (c
0
t)
−1
µ
Eσ
h
φT (∆̃T−1)

¯̄̄
zt−1

i¶
for any zt−1 ∈ Zt−1(f) and t = 1, . . . , T .

Proof: See the Appendix. //

As is true with the two-stage model in Theorem 2, the existence of an equilibrium in

the T -stage model requires the noise level to be sufficiently high through condition (**),

and the level ² of noise can be taken independent of the particular feedback policy f . Note

that (**) for T = 2 is more restrictive than (*). For example, the normal distribution,

which is allowed under (*), is excluded by (**).18

18On the other hand, (**) allows a version of the exponential distribution f(x) = γe−γ|x|

(γ > 0).
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We can rewrite (6) more explicitly as

σit,0(zt−1) = (c
0
t)
−1
µZ

RT−1
φT (∆T−1)

T−1Y
s=t

φs(xs) gt−1(ωt−1 | zt−1) dωT−1
¶

when Xf
t−1(zt−1) has positive measure. This shows that the PBE effort level in the T -stage

model is a direct extension of that in the two-stage model.

We now study the implication of (6) on the principal’s payoff. For this, assume that

the principal’s payoff function V : R2T → R is monotone (V (â) ≥ V (a) if â ≥ a) and
symmetric (V (a) = V (â) if a1 = â2 and a2 = â1). We also assume that it is monotonically

related to the expected efforts when they are symmetric between the agents:

Assumption 7: V (a11 = a21 = u1, a
1
2 = a22 = u2, . . . , a

1
T = a2T = uT ) is linear in

(u2, . . . , uT ). In other words, for any u1 ∈ R+, there exist A2, . . . , AT ∈ R+ and B ∈ R
such that V (a11 = a

2
1 = u1, a

1
2 = a

2
2 = u2, . . . , a

1
T = a

2
T = uT ) =

PT
t=2 At ut +B.

As in Section 4, let v(σ, f) = Eσ
£
V
¡
σ1,σ2,0(z̃1), . . . ,σT,0(z̃T−1)

¢¤
, and

v̄∗(f) = sup
©
v(σ, f) : σ is a symmetric PBE under f

ª
.

Theorem 11. Suppose that Assumptions 6 and 7 hold and that (**) holds for a sufficiently

small ². If c0t is convex for t = 2, . . . , T , then the no-feedback policy f maximizes v̄∗ among

all policies.

Proof: Let a∗t denote the (deterministic) stage t effort in the symmetric PBE σ under the

no-feedback policy f . Under f , we have Xf
t−1(zt−1) = Rt−1 so that gt−1(ωt−1 | zt−1) =Qt−1

s=1 φs(xs). By Theorem 10, hence

c0t(a
∗
t ) = E

σ
£
φT (∆̃T−1)

¤
=

Z
RT−1

φT (∆T−1)
T−1Y
s=1

φs(xs) dx1 · · · dxT−1

= (φ1 ∗ · · · ∗ φT )(0),

where φ1 ∗ · · · ∗φT denotes the convolution of φ1, . . . ,φT . It follows that a∗t = (c0t)−1((φ1 ∗
· · · ∗ φT )(0)). Now let σ0 be a symmetric PBE under any feedback policy f 0. Denote

y0t = f
0
t(ωt) and z

0
t = (y

0
1, . . . , y

0
t). Since (c

0
t)
−1 is concave, Jensen’s inequality implies that
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agent i’s stage t effort under (σ0)i satisfies

Eσ
0h
(σ0)it(z

0
t−1)

i
= Eσ0

·
(c0t)
−1
³
Eσ

0h
φT (∆̃T−1)

¯̄̄
z̃0t−1

i´¸
≤ (c0t)−1

µ
Eσ0

h
Eσ0£φT (∆̃T−1) | z̃0t−1¤i¶

= (c0t)
−1
³
Eσ

0£
φT (∆̃T−1)

¤´
= (c0t)

−1¡(φ1 ∗ · · · ∗ φT )(0)¢ = a∗t .
This completes the proof. //

When c0t is concave, we expect the optimal policy to be the one that reveals the most

information. As mentioned earlier, however, the full-feedback policy does not admit a

symmetric PBE when T ≥ 3. We instead consider the even policy f that reveals the

absolute value of the aggregate score at the end of each stage:

(7) ft(ωt) = |∆t| t = 1, . . . , T − 1.

Note that the discussion at the end of Section 4 shows that such a policy induces the same

effort level as the full-feedback policy in the two-stage model. The next theorem shows

that f given in (7) is indeed optimal.

Theorem 12. Suppose that Assumptions 6 and 7 hold and that (**) holds for a sufficiently

small ² > 0. If c0t is concave for t = 2, . . . , T , then the feedback policy f in (7) that reveals

the absolute value of the aggregate score after every stage maximizes v̄∗ among all policies.

Proof: See the Appendix. //

Appendix

When the distinction is necessary, equations in the Appendix assume for simplicity

that the set of compatible scores f−1(y) or Xf
t−1(zt−1) has positive measure. When it is

countable, any integral with respect to the conditional density should be replaced by the

summation over f−1(y) or Xf
t−1(zt−1).

Proof of Theorem 1: Fix any PBE σ. With slight abuse of notation, let gσ1 (x1 | ai1, y)
denote the density of x1 conditional on the public announcement y when the stage 1 actions

are ai1 for agent i and σ
j
1 for agent j: For example, when f

−1(y) has positive measure, we
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have for x1 ∈ f−1(y),

gσ1 (x1 | a11, y) =
φ1(x1 − a11 + σ21)R

f−1(y) φ1(x
0
1 − a11 + σ21) dx

0
1

, and

gσ1 (x1 | a21, y) =
φ1(x1 − σ11 + a21)R

f−1(y) φ1(x
0
1 − σ11 + a21) dx01

.

Note in particular that gσ1 (x1 | σ11, y) = gσ1 (x1 | σ21 , y) = gσ1 (x1 | y). Recall that πi2(ai2 |
σ, ai1, y) represents agent i’s expected payoff in stage 2 when he chooses a

i
2 in stage 2, his

history after stage 1 is hi1 = (a
i
1, y), and agent j plays according to the equilibrium strategy

σj. For simplicity, write πi2(a
i
2 | ai1, y) for πi2(ai2 | σ, ai1, y). It can be seen that πi2(ai2 | aii, y)

is written as

(a1) π12(a
1
2 | a11, y) =

Z
R

Φ2(a
1
2 − σ22,0(y) + x1) gσ1 (x1 | a11, y) dx1 − c2(a12)

for agent 1, and

π22(a
2
2 | a21, y) =

Z
R

Φ2(−σ12,0(y) + a22 − x1) gσ1 (x1 | a21, y) dx1 − c2(a22)

for agent 2. Differentiating π12 with respect to a
1
2, we obtain

(a2)
∂π12
∂a12

(a12 | a11, y) =
Z
R

φ2(a
1
2 − σ22,0(y) + x1) gσ1 (x1 | a11, y) dx1 − c02(a12).

Since c02(0) = 0 implies
∂π12
∂a12
(0 | a11, y) > 0, the equilibrium action σ12(a

1
1, y) (if any) must

satisfy
∂π12
∂a12

(σ12(a
1
1, y) | a11, y) = 0,

or equivalently,

(a3) c02
¡
σ12(a

1
1, y)

¢
=

Z
R

φ2(σ
1
2(a

1
1, y)− σ22,0(y) + x̃1) gσ1 (x1 | a11, y) dx1

for every a11. By our assumption that infa∈R+ c
00
2(a) > supx∈R |φ02(x)|, we have ∂2π12

∂(a12)
2 (a12 |

a11, y) < 0, which shows that σ12(·, y) is differentiable as a function of a11 by the implicit
function theorem. For agent 2, we have

(a4) c02
¡
σ22(a

2
1, y)

¢
=

Z
R

φ2(−σ12,0(y) + σ22(a
2
1, y)− x̃1) gσ1 (x1 | a21, y) dx1
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for every a21. Noting σ
i
2(σ

i
1, y) = σi2,0(y) and g

σ
1 (x1 | σi1, y) = gσ1 (x1 | y), we substitute

ai1 = σi1 (i = 1, 2) into (a3) and (a4) to obtain

(a5) σ12,0(y) = σ22,0(y) = α2(y) ≡ (c02)−1
³
Eσ
£
φ2(x̃1) | y

¤´
.

Now let πi1(a
i
1) = πi1(a

i
1 | σ) be agent i’s (overall) expected payoff when he takes ai1 in

stage 1 and σi2(a
i
1, y) in stage 2, while agent j plays according to his equilibrium strategy

σj. For i = 1, we have

π11(a
1
1) = −c1(a11)(a6)

+

Z
R

n
Φ2(σ

1
2(a

1
1, f(x1))− σ22,0(f(x1)) + x1)− c2(σ12(a11, f(x1)))

o
× φ1(x1 − a11 + σ21) dx1.

In view of the differentiability of σ12 in a
1
1 noted above, we can differentiate π

1
1 using the

envelope theorem to obtain

(π11)
0(a11) = −

Z
R

Φ2
³
σ12(a

1
1, f(x1))− σ22,0(f(x1)) + x1

´
φ01(x1 − a11 + σ21) dx1(a7)

+

Z
R

c2(σ
1
2(a

1
1, f(x1)))φ

0
1(x1 − a11 + σ21) dx1 − c01(a11).

If the equilibrium stage 1 action a11 = σ11 is strictly positive, the FOC (π
1
1)
0(σ11) = 0 must

hold. Since σ12,0(y) = σ22,0(y) for any y ∈ Y by (a5), this FOC is equivalent to

c01(σ
1
1) = −

Z
R

Φ2(x1)φ
0
1(x1 − σ11 + σ21) dx1 +

Z
R

c2
¡
α2(σ1, f(x1))

¢
φ01(x1 − σ11 + σ21) dx1.

Changing variables of the first integral, and then integrating it by parts, we see that this

is equivalent to the first line of (2). The symmetric argument shows that the second line

of (2) is equivalent to the FOC for agent 2.

Proof of Theorem 2: Choose ² > 0 such that ² < κ/2, where

κ = min
©
1, inf

a∈R+

c001(a), inf
a∈R+

c002(a), lima→∞ c
0
2(a)

ª
.

Suppose that σ1 = (σ
1
1,σ

2
1) solves (2) and consider the equations

ϕ12(a
1
2 | a11, y) ≡

Z
R

φ2(a
1
2 − α2(σ1, y) + x1) gσ1 (x1 | a11, y) dx1 − c02(a12) = 0, and

ϕ22(a
2
2 | a21, y) ≡

Z
R

φ2(α2(σ1, y)− a22 + x1) gσ1 (x1 | a21, y) dx1 − c02(a22) = 0,

22



for each a11, a
2
1 ∈ R, and y ∈ Y . We have ϕ12(0 | a11, y) > 0 by c02(0) = 0 and φ2 > 0,

and ϕ12(a
1
2 | a11, y) < 0 for a12 large enough since lima→∞ c02(a) > ² > supx∈R φ2(x).

Furthermore, it follows from infa∈R c002(a) > ² > supx∈R |φ02(x)| that
∂ϕ12
∂a12

(a12 | a11, y) = −c002(a12) +
Z
R

φ02(a
1
2 − σ22,0(y) + x1) gσ1 (x1 | a11, y) dx1 < 0.

Hence, there exists a unique solution to ϕ12(a
1
2 | a11, y) = 0, and we define a12 = σ12(a

1
1, y) > 0

to be this solution. In the same manner, σ22(a
2
1 | a21, y) is defined to be the unique solution

to ϕ22(a
2
2 | a21, y) = 0. Note now that when a11 = σ11 and a

2
1 = σ21, σ

1
2(σ

1
1, y) = σ22(σ

2
1, y) =

α2(σ1, y) solves the two equations. This implies that ϕ
1
2(a

1
2 | a11, y) = 0 is equivalent to

the FOC
∂π12
∂a12
(a12 | a11, y) = 0 ((a3) in the proof of Theorem 1) of agent i’s stage 2 payoff

maximization problem. To see that it does maximize his payoff, it suffices to note that

∂2π12

∂(a12)
2 (a

1
2 | a11, y) = −c002(a12) +

Z
R

φ02(a
1
2 − σ22,0(y) + x1) gσ1 (x1 | a11, y) dx1

< −κ+ ² < 0.

The same observation holds for agent 2. As in the proof of Theorem 1, denote by πi1(a
i
1)

agent i’s overall payoff when he takes action ai1 in stage 1 and chooses σ
i
2(a

i
1, y) in stage

2, and agent j takes action σj1 in stage 1 and chooses σ
j
2(σ

j
1, y) in stage 2. Define

ϕ11(a
1
1) = −c01(a11) + (φ1 ∗ φ2)(a11 − σ21) +

Z
R

c2
¡
α2(a

1
1, σ

2
1, f(x1))

¢
φ01(x1 − a11 + σ21) dx1,

ϕ21(a
2
1) = −c01(a21) + (φ1 ∗ φ2)(σ11 − a21)−

Z
R

c2
¡
α2(σ

1
1, a

2
1, f(x1))

¢
φ01(x1 − σ11 + a21) dx1.

By assumption, ai1 = σi1 solves ϕ
i
1(a

i
1) = 0. Furthermore, ϕ

i
1(a

i
1) = (π

i
1)
0(ai1) as seen in the

proof of Theorem 1 so that σi1 is a solution to the FOC of agent i’s payoff maximization

problem. In what follows, We will show (ϕi1)
0 = (πi1)

00 < 0 and hence σi1 is indeed the

maximizer of π11.

Since σ12 is differentiable with respect to a
1
1, we can differentiate (a7) to obtain

(ϕ11)
0(a11) = −c001(a11)

−
Z
R

n
φ2
¡
σ12(a

1
1, f(x1))− σ22,0(f(x1)) + x1

¢− c02(σ12(a11, f(x1)))o
× ∂σ12
∂a11

(a11, f(x1))φ
0
1(x1 − a11 + σ21) dx1

+

Z
R

n
Φ2
¡
σ12(a

1
1, f(x1))− σ22,0(f(x1)) + x1

¢− c2(σ12(a11, f(x1)))oφ001(x1 − a11 + σ21) dx1.
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We have c02(σ
1
2) ≤ ² by (a4) and c2(σ12) ≤ 1 by the above observation that σ12 maximizes

π12. Hence, ¯̄
φ2(σ

1
2 − σ22,0 + x1)− c02(σ12)

¯̄ ≤ ²,
and ¯̄

Φ2(σ
1
2 − σ22,0 + x1)− c2(σ12)

¯̄ ≤ 1.
It follows that

(ϕ11)
0(a11) ≤ −c001(a11) + ²

Z
R

¯̄̄̄
∂σ12
∂a11

(a11, f(x1))

¯̄̄̄ ¯̄
φ01(x1 − a11 + σ21)

¯̄
dx1(a8)

+

Z
R

¯̄
φ001(x1 − a11 + σ21)

¯̄
dx1.

Now take y ∈ Y such that f−1(y) has positive measure. Then for x1 ∈ f−1(y),

∂gσ1
∂a11

(x1 | a11, y) =
−φ01(x1 − a11 + σ21)R

f−1(y) φ1(x̂1 − a11 + σ21) dx̂1

+
φ1(x1 − a11 + σ21)

R
f−1(y) φ

0
1(x̂1 − a11 + σ21) dx̂1©R

f−1(y) φ1(x̂1 − a11 + σ21) dx̂1
ª2 ,

and hence

Z
R

¯̄̄∂gσ1
∂a11

(x1 | a11, y)
¯̄̄
dx1 ≤ 2

R
f−1(y) |φ01(x1 − a11 + σ21)| dx1R
f−1(y) φ1(x1 − a11 + σ21) dx1

= 2E[q(x1) | a11,σ21, y],

where

q(x1) =

¯̄
φ01(x1 − a11 + σ21)

¯̄
φ1(x1 − a11 + σ21)

.

On the other hand,

∂ϕ12
∂a11

(a12 | a11, y) =
Z
R

φ2
¡
σ12 − σ22,0 + x1

¢ ∂gσ1
∂a11

(x1 | a11, y) dx1,

so that ¯̄̄̄
∂ϕ12
∂a11

(a12 | a11, y)
¯̄̄̄
< ²

Z
R

¯̄̄̄
∂gσ1
∂a11

(x1 | a11, y)
¯̄̄̄
dx1 ≤ 2²E[q(x1) | a11,σ21, y].
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Therefore,

1

2²

Z
R

¯̄̄̄
∂ϕ12
∂a11

¯̄̄̄ ¯̄
φ01(x1 − a11 + σ21)

¯̄
dx1

≤
Z
R

E[q(x̃1) | a11, σ21, ỹ = f(x1)] q(x1)φ1(x1 − a11 + σ21) dx1

= E
h
E[q(x̃1) | a11, σ21 , ỹ] q(x̃1)

¯̄̄
a11,σ

2
1

i
≤ E

h
E[q(x̃1) | a11, σ21 , ỹ]2

¯̄̄
a11,σ

2
1

i1/2
E
£
q(x̃1)

2
¯̄̄
a11,σ

2
1

¤1/2
≤ E

h
E[q(x̃1)

2 | a11,σ21, ỹ]
¯̄̄
a11,σ

2
1

i1/2
E
£
q(x̃1)

2
¯̄̄
a11,σ

2
1

¤1/2
= E

£
q(x̃1)

2
¯̄̄
a11,σ

2
1

¤
=

Z
R

¯̄̄̄
φ01(x1)
φ1(x1)

¯̄̄̄2
φ1(x1) dx1 < ²,

where the fourth line follows from Schwartz’ inequality and the fifth line from Jensen’s

inequality. Using the implicit function theorem, we see that the second term on the right-

hand side of (a8) can be evaluated as:

²

Z
R

¯̄̄̄
∂σ12
∂a11

(a11, f(x1))

¯̄̄̄ ¯̄
φ01(x1 − a11 + σ21)

¯̄
dx1

= ²

Z
R

¯̄̄
∂ϕ12
∂a11
(σ12(a

1
1, f(x1)) | a11, y)

¯̄̄
¯̄̄
∂ϕ12
∂a12
(σ12(a

1
1, f(x1)) | a11, y)

¯̄̄ ¯̄φ01(x1 − a11 + σ21)
¯̄
dx1

≤ ²

κ− ²
Z
R

¯̄̄̄
∂ϕ12
∂a11

(σ12(a
1
1, f(x1)) | a11, f(x1))

¯̄̄̄ ¯̄
φ01(x1 − a11 + σ21)

¯̄
dx1

≤ 2²3

κ− ²
Hence,

(ϕ11)
0(a11) ≤ −κ+

2²3

κ− ² + ² < 0.
This proves the claim. //

Proof of Theorem 3: Suppose that σ11 = σ21 . We first show that α2(σ1, f(x1)) =

α2(f(−x1)) for any x1. This would hold trivially if f is even since then f(x1) = f(−x1).
If f is odd, then gσ1 (x1 | y) = gσ1 (−x1 | −y), and hence the symmetry of φ2 implies that

α2(σ1, y) = (c
0
2)
−1
³Z

R

φ2(x1) g
σ
1 (x1 | y) dx1

´
= (c02)

−1
³Z

R

φ2(−x1) gσ1 (−x1 | −y) dx1
´

= α2(σ1,−y).
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It follows that α2(f(−x1)) = α2(σ1,−f(x1)) = α2(σ1, f(x1)). With this equality, σ
1
1 =

σ21 = a
∗
1 solves (2) sinceZ

R

c2(α2(σ1, f(x1)))φ
0
1(x1) dx1

=

Z ∞
0

c2(α2(σ1, f(x1)))φ
0
1(x1) dx1 +

Z 0

−∞
c2(α2(σ1, f(x1)))φ

0
1(x1) dx1

=

Z ∞
0

c2(α2(σ1, f(x1)))φ
0
1(x1) dx1 −

Z ∞
0

c2(α2(f(−x1)))φ01(x1) dx1
= 0.

This completes the proof. //

Proof of Lemma 7: Fix a2 ∈ R2
+ such that a

1
2 = a

2
2. Since h is continuous, the inverse

image h−1({0}) is closed. Furthermore, it is non-empty since (a∗1, a∗1) ∈ h−1({0}) and
bounded since for any aj1 ∈ R+, h(a

i
1, a

j
1) > 0 for a

i
1 > (c

0
1)
−1(2(φ1∗φ2)(0)) by assumption.

It follows that the continuous function V (·, a2) on the compact set h−1({0}) = {a1 ∈ R2
+ :

h(a1) = 0} achieves a maximum. Let ā1 = (ā11, ā
2
1) ∈ h−1({0}) be any maximizer of

V (·, a2) in h−1({0}). We show that ā1 = (a∗1, a∗1). Suppose that ā11 > ā21. Since ∂h
∂a21

6= 0
by (4), the implicit function theorem shows that there exists a function γ defined in a

neighborhood of ā11 such that h(a
1
1, γ(a

1
1)) = 0. Furthermore, γ is differentiable at ā

1
1 and

the derivative γ0(ā11) is given by the left-hand side of (4) with ā
i
1 replacing a

i
1. Now let

δ(a11) = V (a
1
1, γ(a

1
1), a2). δ is also differentiable at ā

1
1 and its derivative is given by

δ0(ā11) =
∂V

∂a11
(ā1, a2) +

∂V

∂a21
(ā1, a2) γ

0(ā11).

It can be readily verified that (5) implies δ0(a11) > 0. This contradicts our assumption that

V is maximized at ā1 in h
−1({0}) = 0. The symmetric argument shows that it cannot be

maximized at ā such that ā11 > ā
2
1 either. Hence, we must have ā

1
1 = ā

2
1 = a

∗
1. //

Proof of Theorem 8: By Assumption 4, (φ1 ∗ φ2)(a11 − a21) ≤ (φ1 ∗ φ2)(0). It then
follows from (3) that Eσ[α2(σ1, ỹ)] ≤ a∗2. By Assumption 3, we have

v(σ, f) = Eσ
£
V
¡
σ1, a

1
2 = a

2
2 = α2(σ1, ỹ)

¢¤
= A(σ1)E

σ
£
α2(σ1, ỹ)

¤
+B(σ1)

≤ A(σ1) a∗2 +B(σ1)
= V (σ1, a

1
2 = a

2
2 = a

∗
2).
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Since σ1 solves (2) by assumption, we have by Lemma 7

V
¡
σ1, a

∗
2, a
∗
2

¢ ≤ V ¡a∗1, a∗1, a∗2, a∗2¢.
Since the right-hand side equals the principal’s expected payoff in the symmetric PBE

under the no-feedback policy, the desired conclusion follows. //

Proof of Theorem 9: We first show that Assumption 5 implies

(a9) P (|ζ̃2| ≥ κ)) = min
δ∈R

P (|ζ̃2 + δ| ≥ κ)) for any κ > 0.

Let δ > 0 and κ > 0 be given. When δ < 2κ, we have

P (|ζ̃2| < κ))− P (|ζ̃2 + δ| < κ))

= −
Z −κ
−κ−δ

φ2(x) dx+

Z κ

κ−δ
φ2(x) dx

> −δ φ2(−κ) + δ φ2(κ)

= 0.

On the other hand, when δ > 2κ, we have

P (|ζ̃2| < κ))− P (|ζ̃2 + δ| < κ))

=

Z κ

−κ
φ2(x) dx−

Z κ−δ

−κ−δ
φ2(x) dx

> 2κφ2(κ)− 2κφ2(κ− δ)
> 0.

The similar argument proves (a9) when δ < 0.

We now show that the expected stage 2 effort implied by σ is less than or equal to

that implied by the symmetric PBE under the full-feedback policy:

(a10) Eσ
£
α2(σ1, ỹ)

¤ ≤ a∗∗2 ≡ Z
R

(c02)
−1(φ2(x1))φ(x1) dx1.

It would then follow from Lemma 7 and Assumption 2 that

Eσ
h
V
³
σ1, a

1
2 = a

2
2 = α2(σ1, ỹ)

´i
≤ Eσ

h
V
³
a∗1, a

∗
1, a

1
2 = a

2
2 = α2(σ1, ỹ)

´i
= A(a∗1, a

∗
1)E

σ[α2(σ1, ỹ)] +B(a
∗
1, a
∗
1)

≤ A(a∗1, a∗1) a∗∗2 +B(a∗1, a
∗
1).
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Since the far right-hand side equals the principal’s expected payoff in the symmetric PBE

under the full-feedback policy, the desired conclusion would follow.

Note that since Eσ
£
α2(σ1, ỹ)

¤ ≤ Eσ
£
(c02)

−1(φ2(x̃1))
¤
from the proof of Theorem 5,

(a10) is implied by

(a11) Eσ
£
(c02)

−1(φ2(x̃1))
¤ ≤ a∗∗2 .

Let η2 : [0,φ2(0)]→ R+ be the inverse of the restriction of φ2 to R+. In other words, for

each u ∈ [0,φ2(0)], η2(u) ≥ 0 is the unique number such that φ2(η2(u)) = u. Note that η2 is
well-defined under Assumption 5. Given any δ ∈ R, let the function G(· | δ) : [0,φ2(0)]→
R+ be defined by G(u | δ) = 1−Φ2(η2(u)− δ)+Φ2(−η2(u)− δ) = P

¡|ζ2+ δ| ≥ η2(u)
¢
. It

is easy to verify that G(· | δ) is a distribution function over [0,φ2(0)] since it is increasing,
and satisfies G(0 | δ) = 0 and G(φ2(0) | δ) = 1. If we write δ = a11 − a21 and u = φ2(x1),

then

E
£
(c02)

−1¡φ2(x1)¢ | a1¤
=

Z
R

(c02)
−1¡φ2(x1)¢φ1(x1 − δ) dx1

=

Z φ2(0)

0

(c02)
−1(u)φ1(η2(u)− δ) (−η02(u)) du

+

Z φ2(0)

0

(c02)
−1(u)φ1(−η2(u)− δ) (−η02(u)) du

=

Z φ2(0)

0

(c02)
−1(u) dG(u | δ).

By (a9), G(u | δ) = P ¡|ζ2+ δ| ≥ η2(u)
¢ ≥ P ¡|ζ2| ≥ η2(u)

¢
= G(u | 0) for any u ∈ [0,φ2(0)]

and δ ∈ R so that G(u | 0) first-order stochastically dominates G(u | δ) with δ 6= 0. Since
(c02)

−1 is increasing, it follows thatZ φ2(0)

0

(c02)
−1(u) dG(u | δ) ≤

Z φ2(0)

0

(c02)
−1(u) dG(u | 0).

Changing variables back to x1, we see that the right-hand side of this inequality equals

a∗∗2 . //

Proof of Theorem 10: The proof consists of three steps. In the first step, we specify

the effort level contingent on each possible history. The second step shows that this effort
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level must be chosen in any symmetric pure PBE. In the third step, it is shown that this

effort level is indeed optimal. Define

κ = min
n
1,
1

7
min
1≤t≤T

inf
at∈R

c00t (at)
o
> 0,

and take ² > 0 such that

max

½
ct
³
(c0t)
−1(²T )

´
, ct
³
(c0t)
−1(−²T )

´¾
< 1 for t = 1, . . . , T ,

² < 2−T κ, and(a12)

² <
1

T
min
1≤t≤T

min
n
lim
a→∞ c

0
t(a), lim

a→∞ |c
0
t(−a)|

o
.

Step 1. For each zt−1 ∈ Zt−1(f) and t = 1, . . . , T , define

αt(zt−1) = (c0t)
−1
µZ

RT−1
φT (∆T−1)

T−1Y
s=t

φs(xs) gt−1(ωt−1 | zt−1) dωT−1
¶
.

Let gαt−1(ωt−1 | b1t−1, zt−1) denote the density of ωt−1 conditional on zt−1 = (y1, . . . , yt−1)
and b1t−1 = (a11, . . . , a1t−1), provided that agent 2 chooses αs(zs−1) in stage s = 1, . . . , t− 1:

gαt−1(ωt−1 | b1t−1, zt−1) =
Qt−1
s=1 φs(xs − a1s + αs(zs−1))R

Xf
t−1(zt−1)

Qt−1
s=1 φs(x

0
s − a1s + αs(zs−1)) dω0t−1

if ωt−1 ∈ Xf
t−1(zt−1) and g

α
t−1(ωt−1 | b1t−1, zt−1) = 0 otherwise. Note that for any ωt−1 ∈

Xf
t−1(zt−1) and u = 1, . . . , t− 1,

∂gαt−1
∂a1u

(ωt−1 | b1t−1, zt−1)

= −φ
0
u(xu − a1u + αu(zu−1))
φu(xu − a1u + αu(zu−1))

Qt−1
s=1 φs(xs − a1s + αs(zs−1))R

Xf
t−1(zt−1)

Qt−1
s=1 φs(x

0
s − a1s + αs(zs−1)) dω0t−1

+

Qt−1
s=1 φs(xs − a1s + αs(zs−1))³R

Xf
t−1(zt−1)

Qt−1
s=1 φs(x

0
s − a1s + αs(zs−1)) dω0t−1

´2
×
Z
Xf
t−1(zt−1)

φ0u(x0u − a1u + αu(zu−1))
φu(x0u − a1u + αu(zu−1))

t−1Y
s=1

φs(x
0
s − a1s + αs(zs−1)) dω0t−1.

Hence, when (**) holds,Z
Xf
t−1(zt−1)

¯̄̄∂gαt−1
∂a1u

(ωt−1 | b1t−1, zt−1)
¯̄̄
dωt−1

≤ 2
R
Xf
t−1(zt−1)

¯̄̄
φ0u(xu−a1u+αu(zu−1))
φu(xu−a1u+αu(zu−1))

¯̄̄ Qt−1
s=1 φs(xs − a1s + αs(zs−1)) dωt−1R

Xf
t−1(zt−1)

Qt−1
s=1 φs(xs − a1s + αs(zs−1)) dωt−1

(a13)

≤ 2².
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Now for each b1T−1 = (a
1
1, . . . , a

1
T−1), zT−1 ∈ ZT−1(f), and a1T ∈ R, let

ϕ1T (a
1
T | b1T−1, zT−1) = −c0T (a1T ) +

Z
RT−1

φT
³
a1T − αT (zT−1) +∆T−1

´
× gαT−1(ωT−1 | b1T−1, zT−1) dωT−1.

Note that ϕ1T is continuous in a
1
T , and that

ϕ1T (−a1T | b1T−1, zT−1) > 0, and ϕ1T (a1T | b1T−1, zT−1) < 0 for a1T large enough

by (a12). Furthermore,

∂ϕ1T
∂a1T

(a1T | b1T−1, zT−1)

= −c00T (a1T ) +
Z
RT−1

φ0T
³
a1T − αT (zT−1) +∆T−1

´
× gαT−1(ωT−1 | b1T−1, zT−1) dωT−1(a14)

≤ −κ+ ² < 0

for any a1T ∈ R. Hence, there exists a unique a1T ∈ R that solves ϕ1T (a
1
T | b1T−1, zT−1) = 0.

We define σ1T (b
1
T−1, zT−1) to be this solution. Agent 2’s contingent action σ

2
T in stage T

is defined in a similar manner: For each b2T−1 = (a21, . . . , a
2
T−1), zT−1 ∈ ZT−1(f), and

a2T ∈ R, let σ2T (b2T−1, zT−1) be the unique solution to ϕ2T (a2T | b2T−1, zT−1) = 0, where

ϕ2T (a
2
T | b2T−1, zT−1) = −c0T (a2T ) +

Z
RT−1

φT

³
−αT (zT−1) + a2T −∆T−1

´
× gαT−1(ωT−1 | b2T−1, zT−1) dωT−1.

We now show that σiT defined above satisfies (i) and (ii) below.

(i) cT (σ
i
T (b

i
T−1, zT−1)) < 1 and |c0T (σiT (biT−1, zT−1))| < 1 for any (biT−1, zT−1).

(ii) For u = 1, . . . , T − 1, σiT is differentiable as a function of a1u, and¯̄̄∂σiT
∂a1u

(biT−1, zT−1)
¯̄̄
< 1 for any (biT−1, zT−1).

It is clear from the definition of σiT and (**) that |c0T (σiT )| ≤ ² < 1 and hence that

cT (σ
i
T ) ≤ max

n
cT
¡
(c0T )

−1(²)
¢
, cT

¡
(c0T )

−1(−²)¢o < 1.
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Since
∂ϕ1T
∂a1

T

(a1T | b1T−1, zT−1) > 0 as noted above, σ1T is differentiable with respect to a1u by
the implicit function theorem, and the derivative is given by

∂σ1T
∂a1u

(b1T−1, zT−1) = −
∂ϕ1T
∂a1u

(σ1T (b
1
T−1, zT−1) | b1T−1, zT−1)

∂ϕ1
T

∂a1
T

(σ1T (b
1
T−1, zT−1) | b1T−1, zT−1)

.

Since

∂ϕ1T
∂a1u

(b1T−1, zT−1) =
Z
RT−1

φT (σ
1
T − αT +∆T−1)

∂gαT−1
∂a1u

(ωT−1 | b1T−1, zT−1) dωT−1,

we have
¯̄̄
∂ϕ1T
∂a1u

¯̄̄
≤ 2²2 by (a13). Hence, it follows from (a14) that

¯̄̄∂σ1T
∂a1u

(b1T−1, zT−1)
¯̄̄
≤ 2²2

κ− ² < 1.

As an induction hypothesis, fix t < T and suppose that we have defined σiT , . . . ,σ
i
t+1

for which (i) and (ii) below hold (s = t+ 1, . . . , T ):

(i) cs(σ
i
s(b

i
s−1, zs−1)) < 1 and |c0s(σis(bis−1, zs−1))| < 1 for any (bis−1, zs−1).

(ii) For u = 1, . . . , s− 1, σis(bis−1, zs−1) is differentiable as a function of a1u, and¯̄̄̄
∂σis
∂a1u

(bis−1, zs−1)
¯̄̄̄
< 1 for any (bis−1, zs−1).

Let

(a15) σit+1,t(b
i
t, zt) = σit+1(b

i
t, zt),

and for each s = t+ 2, . . . , T , define σis,t recursively by

(a16) σis,t(b
i
t, zs−1) = σis

³¡
bit,σ

i
t+1,t(b

i
t, zt), . . . ,σ

i
s−1,t(b

i
t, zs−2)

¢
, zs−1

´
.

The interpretation is that σis,t(b
i
t, zs−1) is agent i’s action in stage s induced by σ

i
t+1, . . . , σ

i
s

after the sequence of actions bit in stages 1, . . . , t and announcements zs−1 after stages

1, . . . , s− 1. It can be verified that for any u ≤ t < s,

∂σis,t
∂aiu

=
s−t−1X
k=0

X
t<τ1<···<τk<s

∂σis
∂aiτk

∂σiτk
∂aiτk−1

· · · · · ∂σ
i
τ2

∂aiτ1

∂σiτ1
∂aiu

.
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We now define σ1t as follows. For b
1
t−1 = (a

1
1, . . . , a

1
t−1), zt−1 ∈ Zt−1(f), and a1t ∈ R, let

ϕ1t (a
1
t | bt−1, zt−1) = −c0t(a1t )

+

Z
RT−1

½
ΦT
³
σ1T,t((b

1
t−1, a

1
t ), zT−1)− αT (zT−1) +∆T−1

´
−

TX
s=t+1

cs

³
σ1s,t

¡
(b1t−1, a

1
t ), zs−1

¢´¾

× φ0t
¡
xt − a1t + αt(zt−1)

¢ T−1Y
s=t+1

φs
³
xs − σ1s,t

¡
(b1t−1, a

1
t ), zs−1

¢
+ αs(zs−1)

´
(a17)

× gαt−1(ωt−1 | b1t−1, zt−1) dωT−1,
where zs−1 = (zt−1, ft(ωt), . . . , fs−1(ws−1)) for s = t+ 1, . . . , T . By the induction hypoth-

esis, ϕ1t is differentiable in a
1
t , and the derivative is given by

∂ϕ1t
∂a1t

(a1t | b1t−1, zt−1)

= −c00t (a1t ) +
Z
RT−1

n
φT
¡
σ1T,t − αT +∆T−1

¢ ∂σ1T,t
∂a1t

−
TX

s=t+1

c0s(σ
1
s,t)

∂σ1s,t
∂a1t

o

× φ0t(xt − a1t + σ2t )

φt(xt − a1t + αt)

T−1Y
s=t

φs(xs − σ1s,t + αs) g
α
t−1(ωt−1 | b1t−1, zt−1) dωT−1

−
Z
RT−1

n
ΦT
¡
σ1T,t − αT +∆T−1

¢− TX
s=t+1

cs(σ
1
s,t)
o

×
½
φ00t (xt − a1t + αt) + φ0t(xt − a1t + αt)

T−1X
k=t+1

φ0k(xk − σ1k,t + αk)

φk(xk − σ1k,t + αk)

∂σk,t
∂a1t

¾

×
T−1Y
s=t+1

φs(xs − σ1s,t + αs) g
α
t−1(ωt−1 | b1t−1, zt−1) dωT−1.

Note first that by the induction hypothesis,¯̄̄∂σis,t
∂ait

¯̄̄
=

s−t−1X
k=0

X
t<τ1<···<τk<s

¯̄̄ ∂σis
∂aiτk

¯̄̄ ¯̄̄ ∂σiτk
∂aiτk−1

¯̄̄
· · · · ·

¯̄̄∂σiτ2
∂aiτ1

¯̄̄ ¯̄̄∂σiτ1
∂ait

¯̄̄

<
s−t−1X
k=0

X
t<τ1<···<τk<s

1(a18)

=
s−t−1X
k=0

µ
s− t− 1

k

¶
= 2s−t−1
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Hence, we can evaluate
∂ϕ1t
∂a1t

using (a12) as:

∂ϕ1t
∂a1t

(a1t | b1t−1, zt−1)

≤ −c00t (a1t ) + ²{²2T−t−1 +
TX

s=t+1

2s−t−1}+ ²{1+ T − t}{1+ ²
T−1X
s=t+1

2k−t−1}

= −c00t (a1t ) + ²(²2T−t−1 + 2T−t − 1) + ²(1+ T − t)(1+ ²2T−t−1 − ²)
≤ −c00t (a1t ) + ²(κ+ 2T−t − 1) + κ(1+ κ)

≤ −c00t (a1t ) + 3κ < 0.

This, along with the fact that

ϕ1t (−a1t | b1t−1, zt−1) > 0 and ϕ1t (a1t | b1t−1, zt−1) < 0 for a1t large enough,

implies that there exists a unique a1t for which ϕ
1
t (a

1
t | b1t−1, zt−1) = 0. Define σ1t (b1t−1, zt−1)

to be this solution.

For agent 2, for each b2t−1 = (a21, . . . , a2t−1), and zt−1 ∈ Zt−1(f), let σ2t (b2t−1, zt−1) be
the unique solution to ϕ2t (a

2
t | b2t−1, zt−1) = 0, where

ϕ2t (a
2
t | b2t−1, zt−1) = −c0t(a2t )

+

Z
RT−1

½
−ΦT

³
αT (zT−1) + a2t −∆T−1

´
−

TX
s=t+1

cs
³
σ2s,t((b

2
t−1, a

2
t ), zs−1)

´¾

× φ0t
¡
xt − αt(zt−1) + a2t

¢ T−1Y
s=t+1

φs
¡
xs − αs(zs−1) + σ2s,t((b

2
t−1, a

2
t ), zs−1)

¢
(a19)

× gαt−1(ωt−1 | b2t−1, zt−1) dωT−1.

To see that σ1t satisfies (i), note that (a17) and (**) together imply¯̄̄
c0t
¡
σ1t (b

1
t−1, zt−1)

¢¯̄̄ ≤ ² (1+ T − t) ≤ ²T < 1.
This further implies that (c0t)−1(−²T ) < σ1t (b

1
t−1, zt−1) < (c0t)−1(²T ). Hence,

ct
¡
σ1t (b

1
t−1, zt−1)

¢
< max

n
ct

³
(c0t)
−1(−²T )

´
, ct

³
(c0t)
−1(²T )

´o
< 1.

For (ii), since
∂ϕ1t
∂a1t
(a1t | b1t−1, zt−1) < 0, σ1t is differentiable as a function of a

1
u (u =

1, . . . , t − 1) by the implicit function theorem. Furthermore, differentiation of ϕ1t with
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respect to a1u yields

∂ϕ1t
∂a1u

(a1t | b1t−1, zt−1)

=

Z
RT−1

n
φT (σ

1
T,t − αT +∆T−1)

∂σ1T,t
∂a1u

−
TX

s=t+1

c0s(σ
1
s,t)

∂σ1s,t
∂a1u

o

× φ0t(xt − a1t + αt)
T−1Y
s=t+1

φs(xs − σ1s,t + αs) g
α
t−1(ωt−1 | b1t−1, zt−1) dωT−1

+

Z
RT−1

n
ΦT (σ

1
T,t − αT +∆T−1)−

TX
s=t+1

cs(σ
1
s,t)
o

×
½
∂gαt−1
∂a1u

(ωt−1 | b1t−1, zt−1)− gαt−1(ωt−1 | b1t−1, zt−1)
T−1X
k=t+1

φ0k(xk − σ1k,t + αk)

φk(xk − σ1k,t + αk)

∂σ1k,t
∂a1u

¾

× φ0t(xt − a1t + αt)
T−1Y
s=t+1

φs(xs − σ1s,t + αs) dωT−1.

By (**), (a12), (a13), (a18), and the induction hypothesis,
∂ϕ1t
∂a1u

can be evaluated as:¯̄̄̄
∂ϕ1t
∂a1u

(a1t | b1t−1, zt−1)
¯̄̄̄

≤ {²2T−t−1 +
TX

s=t+1

2s−t−1}²+ (1+ T − t)²2
T−1X
k=t+1

2k−t−1 + 2²(1+ T − t)²T−t

= ²(²2T−t−1 + 2T−t − 1) + ²2(1+ T − t)(2T−t−1 − 1) + 2²(1+ T − t)
≤ ²(κ+ 2T−t − 1) + κ²2T−t−1 + 2κ

≤ κ+ κ2 + 2κ

≤ 4κ.

Therefore, the derivative
∂σ1t
∂a1u

satisfies

¯̄̄̄
∂σ1t
∂a1u

(b1t−1, zt−1)
¯̄̄̄
=

¯̄̄
∂ϕ1t
∂a1u
(σ1t (b

1
t−1, zt−1) | b1t−1, zt−1)

¯̄̄
¯̄̄
∂ϕ1t
∂a1t
(σ1t (b

1
t−1, zt−1) | b1t−1, zt−1)

¯̄̄ < 4κ

c00t (a1t )− 3κ
≤ 1.

This advances the induction step and the desired conclusion follows.

Step 2. We now show that the effort choice ait = σit(b
i
t−1, zt−1) in any symmetric PBE σ

must satisfy ϕit(a
i
t | bit−1, zt−1) = 0 for any (bit−1, zt−1) and t.
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Fix any symmetric PBE σ and recall that πit(a
i
t | σ, bit−1, zt−1) denotes agent i’s payoff

over stages t, . . . , T when (i) i’s history in stages 1, . . . , t − 1 equals hit−1 = (bit−1, zt−1),

(ii) i takes action ait in stage t and plays according to σ
i
s in stages s = t+ 1, . . . , T (given

hit−1 and a
i
t), and (iii) j plays according to σ

j
s in every stage s. Write π

i
t(a

i
t | bit−1, zt−1) =

πit(a
i
t | σ, bit−1, zt−1) for simplicity. Recall also that gσt−1(ωt−1 | bit−1, zt−1) is defined as

the density of ωt−1 conditional on i’s history (bit−1, zt−1) provided that agent j played

according to σjs in stage s = 1, . . . , t− 1. For agent 1, π1t (a1t | b1t−1, zt−1) can be expressed
as

π1t (a
1
t | b1t−1, zt−1)

= −ct(a1t )
+

Z
RT−1

½
P
³
ζ̃T + σ1T,t(b

1
t−1, a

1
t , zT−1)− σ2T,0(zT−1) > −∆T−1

´
−

TX
s=t+1

cs(σ
1
s,t(b

1
t−1, a

1
t , zs−1))

¾
(a20)

× φt

³
xt − a1t + σ2t,0(zt−1)

´
×

T−1Y
s=t+1

φs
³
xs − σ1s,t(b1t−1, a1t , zs−1) + σ2s,0(zs−1)

´
× gσt−1(ωt−1 | b1t−1, zt−1) dωT−1,

where zs =
¡
zt−1, ft(ωt), . . . , fs(ωs)

¢
for s = t, . . . , T − 1. Suppose first that t = T . In this

case, π1T can be expressed as

π1T (a
1
T | b1T−1, zT−1)

= −cT (a1T ) +
Z
RT−1

ΦT

³
a1T − σ2T,0(zT−1) +∆T−1

´
gσT−1(ωT−1 | b1T−1, zT−1) dωT−1.

Differentiating π1T with respect to a
1
T , we obtain

∂π1T
∂a1T

(a1T | b1T−1, zT−1)

= −c0T (a1T ) +
Z
RT−1

φT
³
a1T − σ2T,0(zT−1) +∆T−1

´
gσT−1(ωT−1 | b1T−1, zT−1) dωT−1.

Sequential rationality of σ1T implies

c0T (σ
1
T (b

1
T−1, zT−1)) =

Z
RT−1

φT
³
σ1T (b

1
T−1, zT−1)− σ2T,0(zT−1) +∆T−1

´
(a21)

× gσT−1(ωT−1 | b1T−1, zT−1) dωT−1.
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The corresponding FOC for agent 2 is given by

c0T (σ
2
T (b

2
T−1, zT−1)) =

Z
RT−1

φT

³
−σ1T,0(zT−1) + σ2T (b

2
T−1, zT−1)−∆T−1

´
(a22)

× gσT−1(ωT−1 | b2T−1, zT−1) dωT−1.

When biT−1 equals the action sequence induced by σ
i along zT−1, we have σiT (b

i
T−1, zT−1) =

σiT,0(zT−1) and g
σ
T−1(ωT−1 | biT−1, zT−1) = gT−1(ωT−1 | zT−1) by definition so that (a21)

and (a22) imply that the stage T effort on the equilibrium path should satisfy

(a23) σ1T,0(zT−1) = σ2T,0(zT−1) = (c
0
T )
−1
³
Eσ
£
φT (∆̃T−1) | zT−1

¤´
= αT (zT−1).

It follows from (a23) that (a17) and (a19) are equivalent to ϕ1T (a
1
T | b1T−1, zT−1) = 0 and

ϕ2T (a
2
T | b2T−1, zT−1) = 0, respectively.

As an induction hypothesis, fix t < T and suppose that the FOC for agent i’s payoff

maximization in stage s is given by ϕis(a
i
s | bis−1, zs−1) = 0 (s = t + 1, . . . , T ). By Step

1, σis,t (s = t+ 1, . . . , T ) (defined in (a15) and (a16)) is differentiable as a function of a
1
t ,

and hence so is π1t (· | b1t−1, zt−1). Using the envelope theorem, we can differentiate (a20)
to obtain

∂π1t
∂a1t

(a1t | b1t−1, zt−1)

= −c0t(a1t )
−
Z
RT−1

½
ΦT,t

³
σ1T,t(b

1
t−1, a

1
t , zT−1)− σ2T,0(zT−1)−∆T−1

´
−

TX
s=t+1

cs

³
σ1s,t(b

1
t−1, a

1
t , zs−1)

´¾

× φ0t
³
xt − a1t + σ2t,0(zt−1)

´ T−1Y
s=t+1

φs

³
xs − σ1s,t(b1t−1, a1t , zs−1) + σ2s,0(zs−1)

´
× gσt−1(ωt−1 | b1t−1, zt−1) dωT−1.
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Sequential rationality of σ1t implies

c0t(σ
1
t (b

1
t−1, zt−1)) = −

Z
RT−1

½
ΦT
³
σ1T,t−1(b

1
t−1, zT−1)− σ2T,0(zT−1) +∆T−1

´
−

TX
s=t+1

cs

³
σ1s,t−1(b

1
t−1, zs−1)

´¾
× φ0t

³
xt − σ1t (b1t−1, zt−1) + σ2t,0(zt−1)

´
(a24)

×
T−1Y
s=t+1

φs

³
xs − σ1s,t−1(b1t−1, zs−1) + σ2s,0(zs−1)

´
× gσt−1(ωt−1 | b1t−1, zt−1) dωT−1.

The corresponding FOC for agent 2 is given by

c0t(σ
1
t (b

1
t−1, zt−1)) = −

Z
RT−1

½
ΦT
³
−σ1T,0(zT−1) + σ2T,t−1(b

2
t−1, zT−1)−∆T−1

´
−

TX
s=t+1

cs

³
σ2s,t−1(b

2
t−1, zs−1)

´¾
× φ0t

³
xt − σ1t,0(zt−1) + σ2t (b

2
t−1, zt−1)

´
(a25)

×
T−1Y
s=t+1

φs

³
xs − σ1s,0(zs−1) + σ2s,t−1(b

2
t−1, zs−1)

´
× gσt−1(ωt−1 | b2t−1, zt−1) dωT−1.

When b1t−1 equals the action sequence induced by σ1 along zt−1, σ1s,t−1(b
1
t−1, z

1
s−1) =

σ1s,0(zs−1) (s = t, . . . , T ). Substituting this and the symmetry condition σ1s,0(zs−1) =

σ2s,0(zs−1) for each s into (a23), we obtain

c0t(σ
1
t,0(zt−1))

= −
Z
RT−1

ΦT (∆T−1)φ0t(xt)
T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

+

Z
RT−1

TX
s=t

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1(a26)

= Eσ
h
φT (∆̃T−1) | zt−1

i
+

Z
RT−1

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1,
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where the second equality follows from integration by parts over xt. When the feedback

policy f is even, we have

(a27)

Z
RT−1

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1 = 0.

To see this, for each subset J of {2, . . . , T − 1}, let

B(J) =
©
ωT−1 ∈ RT−1 : x1 > 0, xs > 0 if s ∈ J and xs < 0 if s /∈ J

ª
.

For example, B(J) = R+× (−RT−2
+ ) for J = φ and B(J) = RT−1

+ for J = {2, . . . , T − 1}.
It can be seen that for each J ⊂ {2, . . . , T − 1},Z

B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

+

Z
−B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

=

Z
B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

−
Z
−B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(−xt)

T−1Y
s=t+1

φs(−xs) gσt−1(−ωt−1 | zt−1) dωT−1

=

Z
B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

−
Z
B(J)

TX
s=t+1

cs
¡
σ1s,0(zs−1)

¢
φ0t(xt)

T−1Y
s=t+1

φs(xs) gt−1(ωt−1 | zt−1) dωT−1

= 0,

where the first equality uses φs(xs) = φs(−xs) and φ0t(xt) = −φ0t(−xt), and the sec-
ond uses the change of variables and the fact that zs−1 = (f1(ω1), . . . , fs−1(ωs−1)) =

(f1(−ω1), . . . , fs−1(−ωs−1)). (a27) follows if we noteZ
RT−1

=
X

J⊂{2,...,T−1}

nZ
B(J)

+

Z
−B(J)

o
.

From (a26) and (a27), we see that the stage t effort on the symmetric equilibrium path

should satisfy

(a28) σ1t,0(zt−1) = σ2t,0(zt−1) = (c
0
t)
−1
³
Eσ
h
φT (∆̃T−1) | zt−1

i´
= αt(zt−1).
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(a28) shows that (a24) and (a25) are equivalent to ϕ1t (a
1
t | b1t−1, zt−1) = 0 and ϕ2t (a

2
t |

b2t−1, zt−1) = 0, respectively.

Step 3. Finally, we show that the effort choice defined by ϕit(a
i
t | bit−1, zt−1) = 0 maximizes

each agent’s payoff. For this, it suffices to verify that we have from Steps 1 and 2,

∂2πit

∂(ait)
2 (a

i
t | bit−1, zt−1) =

∂ϕit
∂ait

(ait | bit−1, zt−1) < 0

for any ait and t. //

Proof of Theorem 12: Let σ be the symmetric pure PBE under f specified in (7). By

the symmetry of σ, we have

Pσ(∆̃t−1 = yt−1 | zt−1) = Pσ(∆̃t−1 = −yt−1 | zt−1) = 1

2
.

It hence follows from (7) that

c0t(σ
i
t(zt−1))

=

Z
RT−t

n1
2
φT
³
yt−1 +

T−1X
s=t

xs
´
+
1

2
φT
³
−yt−1 +

T−1X
s=t

xs
´o T−1Y

s=t

φs(xs) dxt · · · dxT−1

=
1

2
(φt ∗ · · · ∗ φT )(−yt−1) + 1

2
(φt ∗ · · · ∗ φT )(yt−1)

= (φt ∗ · · · ∗ φT )(yt−1).

Therefore,

σit(zt−1) = (c
0
t)
−1¡(φt ∗ · · · ∗ φT )(yt−1)¢.

Now take any symmetric pure PBE σ0 under any alternative feedback policy f 0. Denote

y0t = f 0t(x1, . . . , xt) and z
0
t = (y01, . . . , y

0
t). Since (c0t)

−1 is concave, Jensen’s inequality

implies that

Eσ
0£
(σ0)it(z̃

0
t−1)

¤
= Eσ

0
·
(c0t)
−1
³
Eσ0

h
φT (∆̃T−1)

¯̄̄
z̃0t−1

i´¸
= Eσ

0
·
(c0t)
−1
µ
Eσ

0h
Eσ

0£
φT (∆̃T−1) | ω̃t−1

¤ ¯̄̄
z̃0t−1

i¶¸
≤ Eσ0

·
Eσ

0h
(c0t)
−1
³
Eσ

0£
φT (∆̃T−1) | ω̃t−1

¤´ ¯̄̄
z̃0t−1

i¸
= Eσ

0h
(c0t)
−1
³
Eσ

0£
φT (∆̃T−1) | ω̃t−1

¤´i
.
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On the other hand,

Eσ
0h
φT (∆̃T−1)

¯̄̄
ωt−1

i
=

Z
RT−t

φT (∆t−1 +
T−1X
s=t

xs)
T−1Y
s=t

φs(xs) dxt · · · dxT−1

= (φt ∗ · · · ∗ φT )(∆t−1).

Substituting this into the above, we obtain

Eσ
0£
(σ0)it(z̃

0
t−1)

¤ ≤ Eσ0
h
(c0t)
−1
³
(φt ∗ · · · ∗ φT )(∆̃t−1)

´i
=

Z
Rt−1

(c0t)
−1
³
(φt ∗ · · · ∗ φT )(|∆t−1|)

´ t−1Y
s=1

φs(xs) dωt−1

= Eσ
£
σit(z̃t−1)

¤
.

We hence obtain the desired conclusion. //
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