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1. INTRODUCTION

In duration analysis, we often face a situation with continuous models and discrete

data. It is natural to think of real time as continuous and that events can occur at any

moment in time. However, duration is often measured in intervals, not the exact time

elapsed, by the nature of the observation scheme. For example, many economic duration

variables constructed from longitudinal surveys are at most known only up to weekly

intervals.

The proportional hazard model (PHM) is one of the most widely used continuous-time

duration models (Cox 1972, 1975, Cox and Oakes 1984, Kalbfleisch and Prentice 1980).

Under the PHM with unobserved heterogeneity, the hazard rate is specified as a product

of three separate terms: a baseline hazard function describing the overall shape of the

hazard rate over time, a proportionality factor capturing the covariate (regression) effects

across different individuals, and a random variable representing unobserved heterogeneity

(hereafter, heterogeneity).

Maximum likelihood estimation (MLE) of the grouped duration models has been sug-

gested by Thompson (1977), Prentice and Gloeckler (1978), Kiefer (1988), and Sueyoshi

(1991). The first paper views a grouped duration as a sequence of binary survival indi-

cators that follow an independent Logit probability model. As discussed in Ryu (1994b),

Thompson’s parameterization is quite different from the conventional proportional hazard

model. The other three papers consider MLE of the PHM using grouped duration data.

Additionally, Kiefer and Sueyoshi develop likelihood ratio and Lagrange multiplier tests

for the proportionality assumption.

In this article, we develop a maximum likelihood estimation method of the PHM

for the case in which durations are grouped and unmeasured heterogeneity exists. The

motivation is that for much of the available survey data, duration variables are often

interval-censored, while many of the covariates are unobserved. This article also extends

Ryu’s (1994b) specification tests for proportionality. The suggested tests are easy to use,
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take alternative hypotheses into account to increase their power, and identify the source

and direction of non-proportionality without imposing a priori restrictions.

In addition, this article suggests a flexible, and tractable parameterization of the

baseline hazard function. In the grouped duration context, the suggested parameterization

can nest the non-parametric baseline hazard function as a special case. This article also

investigates the nature of the bias resulting from neglected heterogeneity. It is essentially

a sample selection bias, well-known in the literature. Gamma and discrete distributions

are used to capture heterogeneity.

Let us briefly sketch the estimation and specification test ideas. Grouped duration can

be viewed as a sequence of binary variables indicating whether the duration survives each

interval or not. By constructing a synthetic binary data set treating each combination

(individual, interval) as a new unit of indexation, we can reduce a grouped duration

analysis to a sequential binary choice analysis.

If there exists heterogeneity, one needs to integrate the random variable representing

heterogeneity out of each interval survival probability. Here, one has to take into account

selection over time of the underlying heterogeneity. It is because the sixth year graduate

students cannot be the same as the entering graduate students in terms of their underlying

type distribution. This selection should be accounted for to avoid sample selection bias, a

bias due to neglected heterogeneity.

To test the proportionality assumption, we can further aggregate the already grouped

data. If proportionality holds, the two estimators, one from the further grouped data and

the other from the original grouped data, will converge to the same quantity; however,

if proportionality is violated, they will diverge from each other. Therefore, a test of the

equality of these two sets of estimators will offer a test for the proportionality assumption.

Finally, to illustrate the detailed aspects of the new suggested estimation and test

procedures, this article explicitly considers the following five combinations regarding (i)

whether to use parametric or non-parametric baseline hazard specification and (ii) whether

and how to allow for unobserved heterogeneity: (parametric baseline, Gamma heterogene-
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ity), (parametric baseline, discrete heterogeneity), (non-parametric baseline, no hetero-

geneity), (non-parametric baseline, Gamma heterogeneity), and (non-parametric baseline,

discrete heterogeneity).

The rest of the article is organized as follows. In Section 2, after setting up a frame-

work for discussion, the relationship between group duration analysis and sequential binary

choice analysis is shown. Also, the basics of MLE are provided in the grouped duration

context. In Section 3, heterogeneity is introduced, and operationalized within the se-

quential binary choice representation of the grouped duration. Proportionality tests are

developed in Section 4. With flexible specification of the baseline hazard function, estima-

tion and test procedures are illustrated in detail in Section 5. In Section 6, left-censoring

will be addressed using the suggested framework. Concluding remarks follow in Section 7.

2. FRAMEWORK

Let T ∈ R+ represent a duration variable of interest. Let

h(t|x, v) = h0(t) exp(x0β)v, v ∼ g(v), v > 0, (1)

be the hazard rate of duration T , where h0(t) is a baseline hazard function, exp(x
0β) is

a proportionality factor, x and β are k × 1 vectors of observed covariates and regression
coefficients, and v captures unmeasured heterogeneity through density g(v). This model

can be termed as a PHM with unobserved heterogeneity.

To complete the model, one has to specify the baseline hazard function and the het-

erogeneity distribution. A simple way of treating the baseline hazard function is to make

a parametric assumption. In the literature, exponential and Weibull functional forms have

been most popular. In this article, we offer an alternative flexible parameterization to-

gether with the so called non-parametric treatment. Within the current grouped duration

setting, our suggested parameterization can nest the non-parametric baseline as a special

case.
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The proportionality of the specification (1) refers to the constancy of β. That is,

the covariate x increases or decreases the hazard rate by the same proportion throughout

duration. This assumption may be too strong in some situations. Ryu (1994b) examines

two empirical studies where the proportionality assumption is skeptical, and proposes

a new proportionality test within a minimum χ2 estimation context. The test in this

article extends Ryu’s (1994b) by generalizing the observation and aggregation schemes, by

introducing heterogeneity, and by considering general covariate types.

If v degenerates to a constant, there is no unobserved heterogeneity. It is well known

in the literature that neglected or mis-specified heterogeneity leads to biased estimation.

To capture heterogeneity, Gamma and discrete distributions have been most widely used

(see Heckman and Singer 1984 and Nickel 1979). These distributions are easy to use

within the proportional hazard specification in (1). In particular, the discrete distribution

can approximate any unknown distribution as the number of mass points increases with

sample size.

For the identification of level in the hazard specification in (1), we need to fix level

for two of three terms in the specification, h0(t), exp(x
0β), and v. We will leave h0(t) free,

and fix a level for the other two terms by (i) excluding a constant term from x0β, and by

(ii) imposing one restriction on g(v) (For details, see Section 4.)

A discrete observation scheme can often be represented as an equi-spaced partition

Q of the support R+: Q = {0, l, 2l, · · · , rl,∞}. Under Q, the researcher keeps a record of
individuals’ status at every l time units, until time rl elapses. Without loss of generality,

let us assume l = 1. This assumption corresponds to taking l as the measurement unit

for duration. Let Ij = [j − 1, j), j = 1, · · · , r, and Ir+1 = [r,∞). For each observation
falling within one of r non-right-censored intervals I1, · · · , Ir, we know its duration up to a
unit interval; for each observation falling within the right-censored interval Ir+1, we only

knows its lower bound.

Let αj(x, v) be the probability that T survives Ij conditional on that it has already
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survived all previous intervals. Then we have

αj(x, v) = exp[−
Z j

j−1
h(t|x, v) dt] = exp[− exp(x0β + γj)v], (2)

where

γj = log[

Z j

j−1
h0(t) dt], j = 1, · · · , r. (3)

These formulas were originally provided by Prentice and Gloeckler (1978) for the case

v = 1 with probability one.

Under a parametric baseline hazard specification, the γj ’s will be functionally related.

On the other hand, under a non-parametric baseline, the γj ’s will be treated as r free pa-

rameters. Sometimes, grouped duration data involve intervals of unequal length, typically

with wider intervals at longer durations. Our method are easily extended to this case by

redefining the γj ’s in equation (3).

Let us assume that there are n independent observations. Let i index each different

observation: i = 1, · · · , n. Define Ti as the ith duration variable, xi as the covariate of
individual i, and dji = 1 if Ti survives Ij conditional on Ti > j − 1, dji = 0 otherwise,

j = 1, · · · , r. Then, a grouped duration can be considered as a sequence of binary indicator
variables, that is, Ti ⇐⇒ (d1i, · · · , dri). The effective number of terms in the sequence
varies depending on at which interval the individual dies. Note that d2i’s are meaningfully

defined only for those who have survived I1. By constructing a synthetic binary data set

treating each combination (individual, interval) as a new unit of indexation, we can reduce

a grouped duration analysis to a sequential binary choice analysis (Kiefer 1988; Prentice

and Gloeckler 1978; Ryu 1994b; Sueyoshi 1991; Thompson 1977). For each combination

(individual, interval), a survivor of the jth interval receives the probability

αj(x) = P (T > j|T > j − 1, x) = Ejαj(x, v) (4)

if he or she has covariate x, where Ej denotes taking expectation over v using the jth

stage heterogeneity density, say, gj(v). Since αj(x) is only defined for those who satisfy

T > j − 1, the jth stage density gj(v) should take this selection into account.
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The log-likelihood contribution of the ith individual is:

li =

rX
j=1

sji[dji logαji + (1− dji) log(1− αji)], (5)

where sji is defined by sji = d1i × · · · × dj−1i with the convention s1i = 1, and αji is a

short-hand notation for αj(xi). This representation shows a similarity between grouped

duration analyses and sequential binary choice analyses. Passing I1, one of two outcomes

occurs: to survive or not; Conditional on that the individual has survived I1 (conditional

on d1i = s2i = 1), again one of the same binary outcomes happens, and so forth. Here,

the cumulative survival indicator sji controls whether or not the jth interval is effective

for the ith individual: effective if sji = 1 and not effective otherwise.

By adding li over i, we derive the log-likelihood function for the whole sample:

L(θ) =

nX
i=1

li =

nX
i=1

rX
j=1

sji[dji logαji + (1− dji) log(1− αji)], (6)

where θ denotes the collection of all model parameters such as β, and parameters in

h0(t) and g(v). The maximum likelihood estimator of θ, say θ̂, is defined as the argu-

ment maximizing (6), or alternatively as the argument solving the first-order condition:

∂L(θ̂)/∂θ = 0. By expanding the first-order condition through Taylor series and rearrang-

ing terms, we derive

θ̂ − θ
D
= −[ ∂

2L

∂θ∂θ0
]−1

∂L(θ)

∂θ
, (7)

where ‘=D’ means that both hand sides of =D have the same asymptotic distribution as

n→∞ up to
√
n order (for details, see Amemiya 1985).

By taking the derivative of (5) and adding up, we obtain the score function as

∂L

∂θ
(θ) =

nX
i=1

∂li
∂θ

=

nX
i=1

rX
j=1

sji
dji − αji

αji(1− αji)

∂αji
∂θ

. (8)

By exploiting (i) information matrix equality, (ii) law of large numbers, (iii) E(dji−αji)2 =
αji(1− αji), and (iv) independence of dji across both j and i, we can derive

− ∂2L

∂θ∂θ0
p
=

nX
i=1

∂li
∂θ

∂li
∂θ0

p
=

nX
i=1

rX
j=1

sji
1

αji(1− αji)

∂αji
∂θ

∂αji
∂θ0

, (9)
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where ‘=p’means that both sides of ‘=p’ have the same probability limit as n→∞ after

being divided by n.

By plugging in (8) and (9) into (7), we can represent the maximum likelihood estima-

tor θ̂ in an asymptotically equivalent form. As is clear from the above calculation, all we

have to know is the interval survival probability αji and its derivative ∂αji/∂θ. For this

purpose, we need to complete the model by specifying the heterogeneity density g(v) and

the baseline hazard function h(t).

The next section introduces heterogeneity within the sequential binary choice frame-

work. This offers an operationally convenient way of dealing with heterogeneity. Also, this

treatment will make clear the nature of the bias resulting from neglected heterogeneity.

The bias is a sample selection bias, well-known in the literature.

3. UNOBSERVED HETEROGENEITY

We keep the sequential binary choice representation of the grouped duration. Accord-

ingly, we are interested in updating the heterogeneity density gj(v) as time passes, and in

computing each interval survival probability αj(x) using the jth stage (interval Ij) density

gj(v), j = 1, · · · , r.
Given a density specification for the heterogeneity v ∼ g(v), we can use this density

to integrate out the heterogeneity v from those unconditional quantities such as survival

function, distribution function, and density function. However, we cannot use the same

density g(v) to integrate out the heterogeneity term v from those conditional quantities

such as hazard rate, and interval survival probability. It is because the information con-

tained in the conditioning statement has an implication on the heterogeneity. For example,

those who are staying in the graduate program longer will be different from the entering

class in terms of their latent type distribution, that is heterogeneity. Over time, “diligent”

students will finish the program, whereas “lazy” students will still hang around, so called

weeding out effect. This effect reflects selection over time.
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Defining cj = exp(x
0β + γj), we have from (2)

αj(x, v) = P (T > j|T > j − 1, x, v) = exp[− exp(xβ + γj)v] = exp(−cjv). (10)

Due to the selection over time, the jth stage heterogeneity density gj(v) will be different

from the initial density, g(v). The conditional density gj(v) is given by

gj(v) = g(v|T > j − 1, x) = P (T > j − 1|x, v)g(v)R∞
0 P (T > j − 1|x, v)g(v) dv =

e−(c1+···+cj−1)vg(v)
Mv(c1 + · · ·+ cj−1) , (11)

where Mv(t) = Ev(e
−tv) is the moment generating function of g(v). Note that g1(v) =

g(v). Since, each cj is positive, we can easily see that gj(v) is first-order stochastically

decreasing in j. Let vj be a random variable having density function gj(vj). Then, vj

captures the heterogeneity in the jth interval, and vj first-order stochastically dominates

vj0 for all j < j
0.

Alternative way of deriving gj(v) is to rely on a pure mathematical identity. Let

S(j|x, v) and S(j|x) be the survival probability that T exceeds j, conditional on (x, v) and
x, respectively. One has (i) S(j|x, v) = α1(x, v)×· · ·×αj(x, v), (ii) S(j|x) = EvS(j|x, v) =R∞
0 S(j|x, v)g(v) dv, and (iii) S(j|x) = E1α1(x, v)×· · ·×Ejαj(x, v), where Ej denotes the
expectation taken with respect to gj(v). Using (i) and (ii) and arranging terms, we derive

S(j|x) =
Z ∞
0

[α1(x, v)× · · · × αj(x, v)]g(v) dv

=

Z ∞
0

α1(x, v)g(v) dv × · · · ×
Z ∞
0

αj(x, v)
α1(x, v)× · · · × αj−1(x, v)g(v)R∞

0
α1(x, v)× · · · × αj−1(x, v)g(v) dv

dv.

(12)

Now, by matching (iii) and (12) term by term, we can easily see that

gj(v) = α1(x, v)× · · · × αj−1(x, v)g(v)/
Z ∞
0

α1(x, v)× · · · × αj−1(x, v)g(v) dv

= exp[−(c1 + · · ·+ cj−1)v]g(v)/
Z ∞
0

exp[−(c1 + · · ·+ cj−1)v]g(v) dv
= exp[−(c1 + · · ·+ cj−1)v]g(v)/Mv(c1 + · · ·+ cj−1).

(13)
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Using the updated heterogeneity density in (13), we can compute the marginal (with

respect to v) interval survival probability αj(x):

αj(x) = Ejαj(x, v) =

Z ∞
0

αj(x, v)gj(v) dv

=

Z ∞
0

exp[−(c1 + · · ·+ cj−1 + cj)v]g(v) dv/Mv(c1 + · · ·+ cj−1)
=Mv(c1 + · · ·+ cj−1 + cj)/Mv(c1 + · · ·+ cj−1)

(14)

with α1(x) =Mv(c1). The interval survival probability in (14) is represented as a ratio of

the moment generating functions of g(v), evaluated at two different points. Therefore, we

readily notice that any heterogeneity density g(v) will yield an analytical solution for the

interval survival probability αj(x) insofar as g(v) admits an analytical moment generating

function.

Now, we would like to specialize the above formulas (13) and (14) for the Gamma

and discrete distributions. Let us consider the Gamma heterogeneity first. Assume

that v follows a Gamma distribution with parameters a and b, denoted Gamma(a, b):

v ∼ g(v) = bava−1e−bv/Γ(a), where Γ(a) =
R∞
0 ta−1e−t dt. It is easy to show that the

moment generating function is Mv(t) = (
b
b+t )

a. In particular, the mean and variance are

Ev = a/b and V ar(v) = a/b2. To fix the level of v, let us assume that Ev = 1. This

identification condition imposes a = b. That is, the heterogeneity is modeled through a

Gamma distribution with mean one and variance 1/b.

From (13),

gj(v) =
e−(c1+···+cj−1)vg(v)
Mv(c1 + · · ·+ cj−1) =

bbe−(b+c1+···+cj−1)vvb−1

Γ(b)Mv(c1 + · · ·+ cj−1) =
bbjv

b−1e−bjv

Γ(b)
, (15)

where bj = b+c1+ · · ·+cj−1 with b1 = b. Note that gj(v) is the density corresponding to a
Gamma distribution with parameters b and bj , denoted Gamma(b, bj). Since Ej(v) = b/bj

and V arj(v) = b/b2j , we observe that gj(v) exhibits decreasing mean and variance as j

increases. That is, adverse but homogenizing selection is going on over time in terms of

heterogeneity distribution. Now, from (14),

αj(x) =
Mv(c1 + · · ·+ cj−1 + cj)
Mv(c1 + · · ·+ cj−1) =

µ
b+ c1 + · · ·+ cj−1

b+ c1 + · · ·+ cj−1 + cj

¶b
. (16)
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Next, let us consider a discrete heterogeneity distribution following Heckman and

Singer (1984). Assume that v takes M finite values v1, · · · , vM with probabilities

p1, · · · , pM . This distribution describes that there are M unobserved types. For level

identification, let us fix vM = 1. For vm, the following parameterization is convenient:

vM = 1 (level normalization), vm = e
wm , m = 1, · · · ,M − 1, (17)

where wm’s are unrestricted, −∞ < wm < ∞. For pm, the following parameterization is
again useful:

pM =
1

1 +
PM−1

m=1 e
πm
, pm =

eπm

1 +
PM−1

m=1 e
πm
, m = 1, · · · ,M − 1, (18)

where πm’s are unrestricted too, −∞ < πm <∞. The moment generating function of this
discrete distribution is Mv(t) = Eve

−tv =
PM

m=1 e
−tvmpm.

Again, from (13), we derive

gj(vm) =
e−(c1+···+cj−1)vmpmPM
m=1 e

−(c1+···+cj−1)vmpm
, m = 1, · · · ,M. (19)

Also, from (14), we obtain

αj(x) =
Mv(c1 + · · ·+ cj−1 + cj)
Mv(c1 + · · ·+ cj−1) =

PM
m=1 e

−(c1+···+cj−1+cj)vmpmPM
m=1 e

−(c1+···+cj−1)vmpm
, j = 1, · · · , r. (20)

We can carry out the maximum likelihood estimation of the grouped PHM with het-

erogeneity by maximizing the log-likelihood function (6) after plugging in αji = αj(xi).

Under a set of quite general regularity conditions (see Amemiya 1985, ch. 4), the maximum

likelihood estimator will converge to a normal distribution with mean equal to true param-

eters and variance matrix equal to the inverse of the information matrix. The information

matrix can be consistently estimated using (9) by replacing the unknown parameters with

their estimates.

4. TEST FOR PROPORTIONALITY
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The popularity of the PHM has made the issue of model checking extremely important.

This section extends Ryu’s (1994b) test for proportionality to the general grouped duration

framework with discrete/continuous covariates and observed/unobserved heterogeneity.

Ryu’s (1994b) framework is rather limited in the sense that it only considers observed

categorical covariates, neglecting unmeasured heterogeneity and continuous covariates.

By further aggregating the already grouped duration data, we can artificially generate

another coarser set of grouped duration data. The aggregation can be represented as

a contiguous grouping of integers, {1, · · · , r}. Let Q∗ = {G1, · · · , Gr∗}, where Gk =
{g1 + · · · + gk−1 + 1, · · · , g1 + · · · + gk−1 + gk} with gk being the number of elements in
the subset Gk, gk ≥ 1, k = 1, · · · , r∗. Then, Q∗ corresponds to the following aggregation
scheme: aggregate the first g1 intervals into a big interval, say I

∗
1 ; aggregate the next g2

intervals into a big interval, say I∗2 ; continue in the same way until we obtain the last big

interval I∗r∗ . At least one of the gk’s must be greater than one. Otherwise, no aggregation

occurs. Under Q∗, the duration data will take the form d∗ki = Πj∈Gk
dji. Here, d∗ki

takes value one if individual i survives the big interval I∗k = ∪j∈Gk
Ij and zero otherwise.

Moreover, α∗ki = Πj∈Gkαji = exp[− exp(xβ + γ∗k)] is the survival probability of the big

interval I∗k , where γ
∗
k = log

R
t∈I∗

k
h0(t) dt = log(

P
j∈Gk

eγj ), k = 1, · · · , r∗. Obviously, the
new coarser data set Q∗ contains less information than the original finer data set Q. Let β̂

be the estimate of β obtained by using the original data Q, and β̂∗ the estimate obtained

by using the further aggregated data Q∗. By comparing these two estimates, we can design

a new proportionality test statistic.

If the PHM holds, both β̂ and β̂∗ will converge to the same β. However, if the PHM

fails to hold, β̂ and β̂∗ will converge to different quantities. To see this, let us consider a

simple case where r = 2, r∗ = 1, Q = {0, 1, 2,∞}, Q∗ = {G1}, and G1 = {1, 2}. Assume
that all covariates have decreasing impacts on the hazard rates:

h(t, x) =

½
h0(t) exp(xβ

1), for t ∈ I1;
h0(t) exp(xβ

2), for t ∈ I2,

with β1 > β2 > 0. Here, heterogeneity is assumed away by taking v = 1 with probability
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one. The aggregate estimator β̂∗, obtained from the coarser data I∗1 = I1 ∪ I2, is symmet-
rically affected by β1 and β2 since I∗1 is the symmetric aggregation of I1 and I2. On the

other hand, the disaggregate estimator β̂, obtained from the finer data set I1 and I2, is

asymmetrically affected by β1 and β2 since there are more observations in I1 than in I2

(note that some individuals have died in I1). Therefore, the influence of β
1 relative to β2

is stronger on β̂ than on β̂∗. Since β1 is larger than β2, β̂ should be stochastically larger

than β̂∗. As a result, the difference between β̂ and β̂∗ converges to a zero vector under

the PHM, but to a non-zero vector under non-proportionality. The proposed test statistic

uses this disparate convergence pattern: if the difference β̂∗ − β̂ is significantly different

from zero, reject the PHM; otherwise, do not.

The test statistic

R = (β̂ − β̂∗)0[V ar(β̂ − β̂∗)]−1(β̂ − β̂∗) (21)

follows a chi-square distribution with degrees of freedom equal to the number of parameters

in β, say k. The variance inside the bracket can be expanded as

V ar(β̂ − β̂∗) = V ar(β̂) + V ar(β̂∗)−Cov(β̂, β̂∗)−Cov(β̂, β̂∗)0. (22)

In calculating the above test statistic, the difficulty usually lies in computing the covariance

matrix between the two estimators. It is so because variances can be easily estimated

through the inverse of the observed information matrices.

Then, how to compute the covariance matrix? It depends on whether we adopt a

parametric baseline specification or not. Obviously, the original finer data set contains

bigger amount of information than the aggregated coarser data set. However, this ranking

in data information contents does not necessarily yield an efficiency ranking between β̂

and β̂∗. If we make parametric baseline hazard assumption and thus estimate the same

fixed number of baseline hazard parameters in both data set-ups, we obtain a result that

β̂ is more efficient than β̂∗ (Ryu 1993a) and that their covariance reduces to V ar(β̂)

(Hausman 1978). Obviously, the number of free parameters in the parametric specification
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should not exceed the number of non-right-censored intervals r∗ in the coarser data set

(see sub-section 5.5.). On the other hand, if we do not make a parametric functional

form assumption on the baseline hazard, the number of baseline hazard parameters being

estimated under the two data set-ups are different: when we are estimating the PHM using

the finer data set, we are estimating more steps regarding the baseline hazard function

(r > r∗). In this non-parametric case, the ranking in data information contents does not

imply an efficiency ranking between β̂ and β̂∗. This lack of efficiency ordering prohibits

one from using Hausman’s (1978) result to simplify the covariance between β̂∗ and β̂ in

the non-parametric baseline case. In the next section, we will explain how to compute the

covariance matrix in the non-parametric baseline case.

Besides the overall chi-square test, we can also conduct individual t-tests. Under the

proportionality assumption,

tj = (β̂j − β̂∗j )/σ(β̂−β̂∗)j , j = 1, · · · , k (23)

will have an asymptotic standard normal distribution, where β̂j and β̂
∗
j are the jth elements

of β̂ and β̂∗, and σ(β̂−β̂∗)j is the square root of the jth diagonal element of V ar(β̂ − β̂∗).

The advantage of individual t-tests is to separately identify those covariates which exhibit

non-proportional effects, and to inform the direction of those non-proportional effects.

For instance, if tj is significantly positive (negative), then we can conclude that the jth

component of x has a non-proportional effect on the hazard rate and that its coefficient is

larger (smaller) in the early intervals than in the later intervals. If the individual t-tests

detect non-proportionality, then it would be a better idea to estimate a non-proportional

hazard model by allowing different β’s for those non-proportional covariates across different

intervals.

If we have more than two non-right-censored intervals in the original data set (r > 2),

we have a lot more flexibility in choosing a further aggregation. For testing purposes, the

selection of an optimal aggregation may be guided by whatever alternative hypothesis one

has in mind. For example, if there are three non-right-censored intervals in the original

13



data set (r = 3) and if one suspects that the covariate impact is weaker in the third interval

(if there is any difference), one may put the first two intervals together, leaving the third

interval alone. That is, take r∗ = 2, Q∗ = {G1, G2}, G1 = {1, 2}, G2 = {3}, I∗1 = I1 ∪ I2,
and I∗2 = I3. This aggregation will yield a higher power against the suspected alternative

than any other aggregation. Of course, without a clear alternative in mind, we cannot

design an optimal aggregation.

The suggested test is very easy to implement, and allows one to take into account the

form of suspected alternative hypothesis to increase power of the test. Most of all, the test

is much more convenient to use compared with other existing tests. To apply the likelihood

ratio test, one has to estimate the model under a non-proportional alternative. If there

are ten covariates (k = 10) and ten non-right-censored intervals (r = 10) in the original

data, the most general form of non-proportional hazard model will include 100(= 10× 10)
β’s, too many parameters! To reduce the number of parameters, one has to introduce

a priori restrictions by assuming either that some covariates have proportional effects or

that the non-proportional effects satisfy certain parametric restrictions. The situation

is practically no better for the Lagrange multiplier test. Even though we only need to

estimate the model under proportionality, we have to consider a very long vector of score

functions corresponding to 100 β’s. Again, we are forced to adopt the same a priori

assumptions as in the likelihood ratio test to solve the dimensionality problem. However,

our test identifies the source and nature of non-proportionality without imposing any a

priori restrictions, a useful property not shared by the existing tests.

5. BASELINE HAZARD FUNCTION

This section specifies the baseline hazard function, and details the estimation and

test procedures. Both parametric and non-parametric specifications are introduced and

compared with each other. We first introduces the general framework in sub-section 5.1.

In sub-sections 5.2 through 5.4, we specialize the general framework to the cases of (non-
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parametric baseline, no unmeasured heterogeneity), (non-parametric baseline, Gamma

heterogeneity), and (non-parametric baseline, discrete heterogeneity). Finally, parametric

specifications are studied in sub-section 5.5.

5.1. A general framework

In the nonparametric baseline case, γj ’s (γ
∗
k ’s) can be treated as r (r

∗) free parameters

in the finer (coarser, respectively) data set. It is because h0(t) is left unspecified. On

the other hand, in the parametric case, γj ’s (γ
∗
k ’s) are functionally related due to the

parametric restriction imposed on h0(t). To be able to use the same parametric baseline

hazard specification across the finer and the coarser data sets, we should restrict the

number of free parameters in the parametric specification not to exceed r∗, the number of

non-right-censored intervals in the coarser data set.

Let θ denote the vector of all model parameters in the finer data set, which include

β, parameters in unmeasured heterogeneity if any, and parameters in the baseline hazard

function. Let θ∗ denote the vector of all parameters in the model applicable to the coarser

data set. In the non-parametric baseline case, the number of parameters are reduced

due to aggregation in the coarser data set, resulting in dim(θ∗) < dim(θ). But, in the

parametric baseline case, we have θ = θ∗.

Under general regularity conditions (see Amemiya 1985, ch. 4), we have from (7)-(9)

in Section 2.

θ̂ − θ
D
= [

nX
i=1

rX
j=1

sji
1

αji(1− αji)

∂αji
∂θ

∂αji
∂θ0

]−1[
nX
i=1

rX
j=1

sji
dji − αji

αji(1− αji)

∂αji
∂θ

]

∼ N(0, [
nX
i=1

rX
j=1

sji
1

αji(1− αji)

∂αji
∂θ

∂αji
∂θ0

]−1).

(24)

where the variance-covariance matrix can be evaluated at the estimated parameter values

for practical use.

Next, let us consider the coarser data set Q∗ = {G1, · · · , Gr∗} introduced in Section
4. Note that d∗ki = Πj∈Gk

dji denotes the outcome whether the ith individual survives
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I∗k or not. Accordingly, α
∗
ki = Πj∈Gkαji denotes the probability of surviving the interval

I∗k . Now θ∗ is of a smaller dimension than θ due to aggregation, with the difference being

r − r∗. By a similar procedure, we obtain

θ̂∗ − θ
D
= [

nX
i=1

r∗X
k=1

s∗ki
1

α∗ki(1− α∗ki)
∂α∗ki
∂θ∗

∂α∗ki
∂θ∗0

]−1[
nX
i=1

r∗X
k=1

s∗ki
d∗ki − α∗ki

α∗ki(1− α∗ki)
∂α∗ki
∂θ∗

]

∼ N(0, [
nX
i=1

r∗X
k=1

s∗ki
1

α∗ki(1− α∗ki)
∂α∗ki
∂θ∗

∂α∗ki
∂θ∗0

]−1).

(25)

Finally, let us compute the covariance between θ̂ and θ̂∗. For this purpose, let us

rewrite the original estimator θ̂ as follows:

θ̂ − θ
D
= [

nX
i=1

rX
j=1

sji
1

αji(1− αji)

∂αji
∂θ

∂αji
∂θ0

]−1
nX
i=1

r∗X
k=1

X
j∈Gk

sji
dji − αji

αji(1− αji)

∂αji
∂θ

]. (26)

Now note that dji and d
∗
ki0 are independent either i 6= i0 or j /∈ Gk. This is due to

the independence of survival indicators either for different individuals or across non-

overlapping intervals. So, let us compute the covariance between dji and d
∗
ki0 for the

case i = i0 and j ∈ Gk. Observing that djid∗ki = d∗ki for all j ∈ Gk, we can easily obtain
cov(dji, d

∗
ki) = α∗ki(1− αji).

Therefore,

cov(θ̂, θ̂∗) = [
nX
i=1

rX
j=1

sji
1

αji(1− αji)

∂αji
∂θ

∂αji
∂θ0

]−1

×[
nX
i=1

r∗X
k=1

(
X
j∈Gk

sji
1

αji

∂αji
∂θ

)
1

1− α∗ki

∂α∗ki
∂θ∗0

][
nX
i=1

r∗X
k=1

s∗ki
1

α∗ki(1− α∗ki)
∂α∗ki
∂θ∗

∂α∗ki
∂θ∗0

]−1.

(27)

Using (24), (25), and (27), we can obtain the variance matrices of β̂, β̂∗, and their

covariance matrix, by figuring out the relevant blocks corresponding to β’s out of θ’s.

Then, these results can be used to compute the specification test statistics R and tj ’s in

Section 4.

5.2. Non-parametric baseline, no unmeasured heterogeneity
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This sub-section analyzes the case of non-parametric baseline hazard function without

unmeasured heterogeneity. Without imposing a parametric assumption on the baseline

hazard function h0(t), we can still estimate the integrated baseline hazard over each of r

non-right-censored intervals I1, · · · , Ir. In the current setting, we are able to consistently
estimate γ1, · · · , γr or, equivalently, exp(γ1) =

R 1
0 h0(t) dt, · · · , exp(γr) =

R r
r−1 h0(t) dt.

This means that we can approximate the unknown function h0(t) up to a step function

with r different steps, insofar as r is either finite or increasing at a rate slower than

the sample size n. The model parameters can be represented as a (k + r) × 1 vector,
θ = (β0, γ1, · · · , γr)0.

Note that

∂αji/∂θ = −αjiex0iβ+γjzji, (28)

where zji = (x0i, e
0
j)
0 is a (k + r) × 1 column vector and ej = (0, · · · , 0, 1, 0, · · · , 0)0 is an

r × 1 unit column vector with one occupying the jth location. Thus,

∂L

∂θ
(θ) = −

nX
i=1

rX
j=1

sji
dji − αji
1− αji

ex
0
iβ+γjzji = −

rX
j=1

Z0jSjΩ
−1
j uj , (29)

where Zj = (zj1, · · · , zjn)0 is an n × (k + r) matrix, Ωj is an n × n diagonal matrix of
(1− αji)/(αji(e

x0iβ+γj )2), Sj is an n× n diagonal matrix of sji, and uj is an n× 1 vector
of (dji −αji)/(αjie

x0iβ+γj ). Using V ar(uj) = Ωj , j = 1, · · · , r, the information matrix can
be approximated as

− ∂2L

∂θ∂θ0
p
=

∂L

∂θ

∂L

∂θ0
p
= [

rX
j=1

Z0jSjΩ
−1
j uj ][

rX
j=1

Z0jSjΩ
−1
j uj ]

0 p=
rX
j=1

Z0jSjΩ
−1
j Zj . (30)

Using these results, we have

θ̂ − θ
D
= −[

rX
j=1

Z0jSjΩ
−1
j Zj ]

−1
rX
j=1

Z0jSjΩ
−1
j uj

∼ N(0, [
rX
j=1

Z0jSjΩ
−1
j Zj ]

−1).

(31)
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Similarly for the coarser data set Q∗ = {G1, · · · , Gr∗}, we obtain

θ̂∗ − θ
D
= −[

r∗X
k=1

Z∗
0
k S
∗
kΩ
∗−1
k Z∗k ]

−1
r∗X
k=1

Z∗
0
k S
∗
kΩ
∗−1
k u∗k ∼ N(0, [

r∗X
k=1

Z∗
0
k S
∗
kΩ
∗−1
k Z∗k ]

−1), (32)

where Z∗k = (z
∗
k1, · · · , z∗kn)0 is an n×(k+r∗) matrix with z∗ki = (x0i, e∗

0
k )

0 being a (k+r∗)×1
vector (e∗k is an r

∗ × 1 unit vector with one in the kth location), Ω∗k is an n× n diagonal
matrix of (1 − α∗ki)/(α

∗
ki(e

x0iβ+γ
∗
k )2), S∗k is an n × n diagonal matrix of s∗ki, and u∗k is an

n×1 vector of (d∗ki−α∗ki)/(α∗kiex
0
iβ+γ

∗
k ). Again, note that S∗1 is an identity matrix of order

n, and that V ar(u∗k) = Ω
∗
k, k = 1, · · · , r∗.

Finally, the covariance between θ̂ and θ̂∗ is

cov(θ̂, θ̂∗)

=[
rX
j=1

Z0jSjΩ
−1
j Zj ]

−1[
r∗X
k=1

¡ X
j∈Gk

fjZ
0
jSj
¢
Ω∗−1k Z∗k ][

r∗X
k=1

Z∗
0
k S
∗
kΩ
∗−1
k Z∗k ]

−1,
(33)

where SjΩ
∗−1
k S∗k = SjΩ

∗−1
k (for all j ∈ Gk) has been used, a property resulting from

sjis
∗
ki = sji for all j ∈ Gk.

5.3. Non-parametric baseline, Gamma heterogeneity

This sub-section analyzes the case of non-parametric baseline with unmeasured het-

erogeneity modeled according to a Gamma distribution. Assume that vi follows a

Gamma distribution with parameters a and b, denoted Gamma(a, b): vi ∼ i.i.d. g(v) =
bava−1e−bv/Γ(a), where Γ(a) =

R∞
0 ta−1e−t dt. It is easy to show that the moment generat-

ing function is Mv(t) = (
b
b+t )

a. The mean and variance are Ev = a/b and V ar(v) = a/b2.

To fix the level of v, let us assume that Ev = 1, rendering a = b. That is, the unmeasured

heterogeneity is modeled through a Gamma distribution with mean one and variance 1/b.

The model parameters can be represented as a (k + 1 + r) × 1 vector, θ = (β0 : b :

γ1, · · · , γr)0. Using the moment generating function, Mv(t) = (
b
b+t )

b, we obtain

αji = (
b+ c1i + · · ·+ cj−1i

b+ c1i + · · ·+ cj−1i + cji )
b, j = 1, · · · , r, (34)
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where cji = exp(x
0
iβ + γj). Now, it is straightforward to compute ∂αji/∂θ = (∂αji/∂β

0 :

∂αji/∂b : ∂αji/∂γ1, · · · , ∂αji/∂γr)0. We have
∂αji
∂β

= −b2[αji]
b−1
b

cji
(b+ c1i + · · ·+ cj−1i + cji)2 xi,

∂αji
∂b

=
αji
b
logαji + b[αji]

b−1
b

cji
(b+ c1i + · · ·+ cj−1i + cji)2 ,

∂αji
∂γk

= b[αji]
b−1
b

1

(b+ c1i + · · ·+ cj−1i + cji)2
× [cji(c1iδ1k + · · ·+ cj−1iδj−1k)− cjiδjk(b+ c1i + · · ·+ cj−1i)],

(35)

where δjk takes value one if j = k, and zero otherwise.

Under the coarser grouping, the model parameters becomes a (k+1+ r∗)× 1 vector,
θ∗ = (β0 : b : γ∗1 , · · · , γ∗r∗)0. Similarly, we have

α∗ki = (
b+ c∗1i + · · ·+ c∗k−1i

b+ c∗1i + · · ·+ c∗k−1i + c∗ki
)a, k = 1, · · · , r∗, (36)

where c∗ki = exp(x
0
iβ + γ∗k). From this, we obtain

∂α∗ki
∂β

= −b2[α∗ki]
b−1
b

c∗ki
(b+ c∗1i + · · ·+ c∗k−1i + c∗ki)2

xi,

∂α∗ki
∂b

=
α∗ki
b
logα∗ki + b[α

∗
ki]

b−1
b

c∗ki
(b+ c∗1i + · · ·+ c∗k−1i + c∗ki)2

,

∂α∗ki
∂γj

= b[α∗ki]
b−1
b

1

(b+ c∗1i + · · ·+ c∗k−1i + cki)2
× [c∗ki(c∗1iδ1j + · · ·+ c∗k−1iδk−1j)− c∗kiδkj(b+ c∗1i + · · ·+ c∗k−1i)],

(37)

where δkj takes value one if k = j and zero otherwise.

By combining the above results with the general framework introduced in sub-section

5.1, we can make inferences on θ and θ∗, and carry out the proportionality test.

5.4. Non-parametric baseline, discrete heterogeneity

This sub-section analyzes the case of non-parametric baseline hazard functionwith

unmeasured heterogeneity modeled according to a discrete distribution. Assume that vi

takes M finite values v1, · · · , vM with probabilities p1, · · · , pM . This distribution describes
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that there are M unobserved types. For level identification, let us fix vM = 1. For vm,

the following parameterization is convenient:

vM = 1 (level normalization), vm = e
wm , m = 1, · · · ,M − 1, (38)

where wm’s are unrestricted, −∞ < wm < ∞. For pm, the following parameterization is
useful:

pM =
1

1 +
PM−1

m=1 e
πm
, pm =

eπm

1 +
PM−1

m=1 e
πm
, m = 1, · · · ,M − 1, (39)

where πm’s are unrestricted too, −∞ < πm <∞.
The model parameters can be represented as a (k + 2M − 2 + r) × 1 vector, θ =

(β0 : w1, · · · , wM−1 : π1, · · · ,πM−1 : γ1, · · · , γr)0. Using the moment generating function,
Mv(t) = Eve

−tv =
PM
m=1 e

−tvmpm, we obtain

αji =
Mv(c1i + · · ·+ cj−1i + cji)
Mv(c1i + · · ·+ cj−1i) =

PM
m=1 e

−(c1i+···+cj−1i+cji)vmpmPM
m=1 e

−(c1i+···+cj−1i)vmpm
, j = 1, · · · , r. (40)

From this, we can compute ∂αji/∂θ = (∂αji/∂β
0 : ∂αji/∂w1, · · · , ∂αji/∂wM−1 :

∂αji/∂π1, · · · , ∂αji/∂πM−1 : ∂αji/∂γ1, · · · , ∂αji/∂γr)0. For notational convenience, let

us define aji = c1i + · · ·+ cji and δji =
PM
m=1 e

−ajivmpm, we have

∂αji
∂β

=
1

δji

MX
m=1

pmvm(αjiaj−1ie−aj−1ivm − ajie−ajivm),

∂αji
∂wk

=
1

δji
pkvk(αjiaj−1ie−aj−1ivk − ajie−ajivk),

∂αji
∂πk

=
1

δji
pk(e

−ajivk − αjie
−aj−1ivk) +

1

δji
pk

MX
m=1

pm(αjie
−aj−1ivm − e−ajivm)

∂αji
∂γk

=
cki
δji

MX
m=1

pmvm[αjie
−aj−1ivm1(k≤j−1) − e−ajivm1(k≤j)],

(41)

where a0i = 0.

Under the coarser grouping, the model parameters becomes a (k + 2M − 2 + r∗)× 1
vector, θ∗ = (β0 : w1, · · · , wM−1 : π1, · · · ,πM−1 : γ∗1 , · · · , γ∗r∗)0. Similarly, we have

α∗ki =
PM

m=1 e
−(c∗1i+···+c∗k−1i+c∗ki)vmpmPM

m=1 e
−(c∗

1i
+···+c∗

k−1i)vmpm
, k = 1, · · · , r∗, k = 1, · · · , r∗, (42)
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where c∗ki = exp(x0iβ + γ∗k). From this, we can compute ∂α∗ji/∂θ
∗ = (∂α∗ji/∂β

0 :

∂α∗ji/∂w1, · · · , ∂α∗ji/∂wM−1 : ∂α∗ji/∂π1, · · · , ∂α∗ji/∂πM−1 : ∂α∗ji/∂γ∗1 , · · · , ∂α∗ji/∂γ∗r )0. For
notational convenience, let us define a∗ji = c

∗
1i + · · ·+ c∗ji and δ∗ji =

PM
m=1 e

−a∗jivmpm. We

have

∂α∗ji
∂β

=
1

δ∗ji

MX
m=1

pmvm(α
∗
jia
∗
j−1ie

−a∗j−1ivm − a∗jie−a
∗
jivm),

∂α∗ji
∂wk

=
1

δ∗ji
pkvk(α

∗
jia
∗
j−1ie

−a∗j−1ivk − a∗jie−a
∗
jivk),

∂α∗ji
∂πk

=
1

δ∗ji
pk(e

−a∗jivk − α∗jie
−a∗j−1ivk) +

1

δ∗ji
pk

MX
m=1

pm(α
∗
jie
−a∗j−1ivm − e−a∗jivm)

∂α∗ji
∂γ∗k

=
c∗ki
δ∗ji

MX
m=1

pmvm[α
∗
jie
−a∗j−1ivm1(k≤j−1) − e−a

∗
jivm1(k≤j)],

(43)

where a∗0i = 0.

Again, by combining the above results with the general framework introduced in

sub-section 5.1, we can make inferences on θ and θ∗, and carry out the proportionality

test.

5.5. Parametric baseline, Gamma and discrete heterogeneity

Once we parameterize h0(t) using m free parameters, we have a fully parametric

duration model. This article proposes one to use the following flexible specification.

γj = log

Z j

j−1
h0(t) dt = δ0 + δ1j + · · ·+ δm−1jm−1. (44)

This parameterization is polynomial in time, and it guarantees positivity of the integrated

baseline hazard over each interval, Ij . The exponential distribution (constant baseline

hazard) is a special case when m = 1. The monotonic hazard feature of the Weibull

distribution is well captured by choosing m = 2. As m increases, the resulting parametric

specification becomes more flexible.
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As a practical guide, if the baseline hazard function is expected to be monotone, use

m = 2. If U or inverted U-shaped, use m = 3. Without any clear idea on the shape, apply

model selection criteria to the choice of m. If data are rich enough, use the non-parametric

baseline specification.

If the number m of free parameters is equal to the number r of non-right-censored

intervals, then both the parametric and non-parametric baseline specifications would yield

the same results. This is because of the invariance property of the maximum likelihood

estimation. If m is greater than r, then we are not able to identify all these m parameters

from grouped duration data with just r non-right-censored intervals. We can only identify

r restrictions on m parameters, because the baseline hazard parameters enter only the

likelihood function through γ1, · · · , γr. On the other hand, if m is smaller than r, then we

are virtually imposing r−m parametric restrictions on those r integrated baseline hazard

rates. For identification of the parametric baseline hazard function (44), we readily note

that the number of free parameters in h0(t) should not exceed the number of non-right-

censored intervals in the data set, m ≤ r.
In the parametric baseline cases, the maximum likelihood estimation and specification

tests are straightforward: (1) obtain two sets of parametric maximum likelihood estima-

tors, one from the original data set and the other from the new coarser data set, (2)

estimate each variance as the inverse of the observed information matrix, and (3) estimate

their covariance as the variance of the estimator from the original data set, a result due

to Hausman (1978).

From the results in the non-parametric baseline case, we can derive the partial deriva-

tives of αji and α∗ki with respect to each model parameters. The partial derivatives with

respect to β and parameters in unmeasured heterogeneity are the same as before. Only

changes occur in the partial derivatives of αji and α∗ki with respect to the parameters in

the baseline hazard function. But, this can be handled easily using the chain rule of dif-

ferentiation. For example, ∂αji/∂δk = (∂γ1/∂δk, · · · , ∂γr/∂δk)(∂αji/∂γ1, · · · , ∂αji/∂γr)0.
Similarly for ∂α∗ji/∂δk.
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To allow maximum flexibility within the parametric baseline specification (44), one

can use m = r∗, resulting in

γj = log

Z j

j−1
h0(t) dt = δ0 + δ1j + · · ·+ δr∗−1jr

∗−1, j = 1, · · · , r. (45)

Under this parameterization, the coarser estimator β̂∗ is in fact equivalent to the

semi-parametric estimator, whereas the original estimator β̂ is an estimator obtained after

imposing r − r∗ restrictions on the baseline hazard function.

6. APPLICATION TO LEFT-CENSORING

The suggested framework can be used to deal with left-censoring issue in duration

analysis. If every individual is observed from the start of his or her episode (called, flow

sampling), there is no problem of left-censoring. Often, however, individuals are observed

to be already in the middle of an episode (called, stock sampling). The resulting duration

variable is said to be left-censored, and is known to complicate the estimation (see, for

example, Amemiya 1985, ch. 11).

Considering that a longer duration is more likely to be in progress at a random start

time of observation, the fact that an episode is left-censored implies that the corresponding

duration is more likely to be longer than a typical duration (described as length biased

sampling). We would like to address this problem by assuming that there is a latent

unobserved variable affecting duration, say v. The essential feature of left-censoring can

be described by the changing distribution of v over the duration process. Therefore, by

updating the distribution of v at each stage of the process as suggested in this article, we

can account for the selectivity, thus for the left-censoring.

To be concrete, for left-censored observations, we replace αj(x) in eq. (14) with the

following modified interval survival probability:

αj(x|s) = Es+jαj(x, v) =
Z ∞
0

αj(x, v)gs+j(v) dv, (46)
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where gs+j(v) is the s + jth stage heterogeneity density, gs+j(v) = g(v|T > s + j − 1, x)
(see eq. (11)). Note that to be able to compute αj(x|s), we need information on how long
the process has already been in progress, that is, elapsed duration s, by the time of first

observation.

7. CONCLUDING REMARKS

Often, duration data are available in a grouped form due to a certain discrete observa-

tion mechanism, while many covariates are unobservable. This article develops a general

sequential binary choice framework of grouped duration model with unobserved hetero-

geneity. Considering that many economic duration data are grouped and many variables

are missing, the proposed methods will prove useful in many situations.

This article introduces a new flexible parameterization of the baseline hazard func-

tion. Non-parametric baseline hazard function is covered as a special case of this flexible

parameterization. This article proposes a new, and operationally convenient, way of tack-

ling unobserved heterogeneity from a sample selection perspective. Gamma and discrete

distributions have been used to capture heterogeneity. By updating the heterogeneity

distribution, we can account for selection of type over duration, and thus can avoid the

neglected heterogeneity bias. In fact, the bias resulting from neglected heterogeneity is

essentially a sample selection bias. This interpretation allows us to keep the sequential

binary choice representation of the grouped duration model, and still enables us to es-

timate the model easily. Also, this article extends Ryu’s (1994b) proportionality test

to a general grouped duration setting. The test can detect the source and direction of

non-proportionality without adopting a priori restrictions, not shared by existing test pro-

cedures.

The general framework suggested in this article proves useful in addressing left-

censoring problem.
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