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Abstract

This paper investigates regression quantiles (RQ) for unstable autoregres-
sive models. The uniform Bahadur representation of the RQ process is ob-
tained. The joint asymptotic distribution of the RQ process is derived in
a unified manner for all types of characteristic roots on or outside the unit
circle. Unlike the results already available for the regression and station-
ary autoregression quantiles, the joint asymptotic distribution involves sto-
chastic integrals in terms of a series of independent and identically distrib-
uted multivariate Brownian motions with correlated components. The related
L−estimator is also discussed. As an auxiliary theorem, a weak convergence
of a randomly weighted residual empirical process to the stochastic integral of
a Kiefer process is established. The results obtained in this paper provide an
asymptotic theory for nonstationary time series processes, which can be used
to construct robust unit root tests.

1 Introduction

An autoregressive (AR) time series process {yt} of order p is unstable if

yt = φ0 + φ1yt−1 + · · ·+ φpyt−p + εt, (1.1)

∗The authors would like to acknowledge the financial support of the Australian Research Coun-
cil. This paper was revised while the second author was visiting the Institute of Social and Eco-
nomic Research at Osaka University.
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where φ0 = 0; {εt} is a sequence of independent and identically distributed (i.i.d.)
random disturbances with a distribution F (x), zero mean and a finite variance σ2;

yt is the observation with starting values (y0, y−1, · · · , y−p+1) independent of {εt};
and the characteristic polynomial φ(z) = 1−φ1z− · · ·−φpz

p has the decomposition

φ(z) = ψ(z)(1− z)a(1 + z)b
lY

k=1

[(1− zeiθk)(1− ze−iθk)]dk ,

where a, b, l, dk, k = 1, · · · , l, are non-negative integers, 0 < θk < π and ψ(z) is a

polynomial of degree q = p − [a + b + 2(d1 + · · · + dl)] with all roots outside the
unit circle. Model (1.1) is a general nonstationary autoregressive (AR) time se-

ries, which may include real or complex unit roots with various different multiples.

Such a model without drift was investigated by Chan and Wei (1988), Jeganathan

(1991), Truong-Van and Larramendy (1996), and van der Meer, Pap and van Zuijlen

(1999). Recently, Ling and Li (1998, 2001) considered an unstable ARMA model

with GARCH errors and an unstable fractionally integrated ARMA model. Such

research on unstable time series models is important because it provides a compre-

hensive understanding of the nature of nonstationary time series processes.

Nonstationary time series have played an important role in both econometric

theory and applications over the last fifteen years, and a substantial literature has

developed in this field ( see Dickey and Fuller (1979), Dickey, Hasza and Fuller

(1984), Phillips and Durlauf (1986) and Phillips (1987)). A detailed set of references

is given in Phillips and Xiao (1998). Recently, there has been increasing interest

in exploring robust estimation methods for nonstationary time series. For example,

Cox and Llatas (1991) considered maximum likelihood (ML)-type estimation for a

near unit root process; Lucas (1995) investigated M-estimators and related unit root

tests for the unit root process with drift; Herce (1996) considered least absolute

deviation (LAD) estimation, and showed through simulation that unit root tests

based on mixing LAD and lease squares estimators (LSE) are more robust than those

based on LSE alone for non-Gaussian unit root processes; and Hasan and Koenker

(1997) proposed robust rank tests based on the regression score rank process.
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Note that the LAD estimator is a special quantile estimator and the regression

score rank process is also related to the regression quantiles (RQ) process (see Koul

and Saleh (1995)). According to the same robustness principle, it would be expected

that quantile estimators, as well as the L-estimator based on the RQ, will retain the

robustness of non-Gaussian nonstationary time series processes. The RQ first de-

veloped by Koenker and Bassett (1978) have been popularly accepted as a powerful

approach for the robust analysis of linear models, and have led to a number of in-

teresting extensions [cf. Ruppert and Carroll (1980), Bassett and Koenker (1982),

Koenker and Bassett (1982), Koenker and D’Orey (1987), and Portnoy and Koenker

(1989)]. Recently, Koul and Saleh (1995) extended RQ to stationary AR models,

and obtained the uniform Bahadur representation of the autoregression quantile

process, and some related asymptotic distributions.

This paper investigates RQ for unstable AR models. The uniform Bahadur

representation of the RQ process is obtained. The joint asymptotic distribution of

the RQ process is derived in a unified manner for all types of characteristic roots

on or outside the unit circle. Unlike the results already available for the regression

and stationary AR quantiles, the joint asymptotic distribution involves stochastic

integrals in terms of a series of i.i.d. multivariate Brownian motions with correlated

components. The related L−estimator is also discussed and it is shown that the
asymptotic distribution involves the stochastic integrals in terms of a series of i.i.d.

bivariate Brownian motions. This is different from the analysis based on the LSE, for

which the result depends only on a series of i.i.d. univariate Brownian motions. In

Koul and Saleh (1995), an important technique is to apply the uniform closeness of

the randomly weighted residual empirical process (RWREP) in Koul and Ossiander

(1994) for the RQ process in the stationary AR model. In this paper, we also

establish a weak convergence of a RWREP to the stochastic integral of a Kiefer

process, so that the uniform closeness can be applied to the RQ process in model

(1.1).

The paper proceeds as follows. Section 2 develops two auxiliary theorems. Sec-
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tion 3 presents the main results. Section 4 uses our results to construct unit root

tests for some special nonstationary AR models. Section 5 provides the proofs of

the main results. Throughout this paper, the following notation is used: A0 denotes

the transpose of the matrix or vector A; Op(1) (or op(1)) denotes a series of ran-

dom variables that are bounded (or converge to zero) in probability;
p−→ (or

L−→ )

denotes convergence in probability (or in distribution); || · || denotes the Euclidean
norm; Ik denotes a k×k identity matrix; D = D[0, 1] denotes the space of functions
on [0, 1] which is defined and equipped with the Skorokhod topology [Billingsley

(1968)]; Dn = D ×D · · · ×D (n factors); and D2 denotes the space of functions on

[0, 1]2 which is defined and equipped with the Skorokhod topology in Straf (1970)

and Bickel and Wichura (1971).

2 Auxiliary Theorems

This section introduces two auxiliary theorems. The first theorem is the weak con-

vergence of a RWREP, which will be used to establish Theorem 3.1 in Section 3.

The second theorem is an invariance principle, which will be used to establish the

limiting distribution in Theorem 3.2.

Let et(x) be one of the random variables, I(εt ≤ x) − F (x), (−1)t[I(εt ≤ x) −
F (x)], sin tθ[I(εt ≤ x) − F (x)] and cos tθ[I(εt ≤ x) − F (x)], where x ∈ R and

θ ∈ (0,π). Define

Un(x) = 1√
n

nX
t=1

Sn(
t

n
)et(x+ ξnt) and U∗n(x) =

1√
n

nX
t=1

Sn(
t

n
)et(x),

where Sn(t/n) and ξnt are two sequences of Ft−1−measurable random variables,

and Ft = σ{εt, · · · , ε0, y0, · · · , y−p+1}. The following theorem shows the weak con-

vergence of the RWREPs, Un(x) and U∗n(x).
Theorem 2.1. Suppose that: (i) Sn(τ)

L−→ S(τ) in D and S(τ) is contin-

uous in τ ∈ [0, 1]; (ii) the finite-dimensional distributions of {U∗n(F−1(α)),α ∈
[0, 1]} converge to those of {R 10 S(τ )dK(τ,α),α ∈ [0, 1]} in distribution; and (iii)
max1≤t≤n |ξnt| = op(1). Assume that F (x) has a uniformly continuous and a.e.
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positive density f(x) on {x : 0 < F (x) < 1}. Then

(a) sup
x∈R

|Un(x)− U∗n(x)| = op(1),

(b) Un(F−1(α)) L−→
Z 1

0
S(τ )dK(τ,α) in D,

(c) U∗n(F−1(α)) L−→
Z 1

0
S(τ)dK(τ,α) in D,

where K(τ,α) is a Kiefer process in D2, a two-parameter Gaussian process with zero

mean and covariance cov(K(τ1,α1)K(τ2,α2)) = (τ1 ∧ τ2)(α1 ∧ α2 − α1α2).

Koul and Ossiander (1994) studied the weak convergence of the RWREP, Un(x) =
n−1/2

Pn
t=1 γnt[I(εt ≤ x + ξnt) − F (x + ξnt)] and U∗n(x) = n−1/2

Pn
t=1 γnt[I(εt ≤

x)− F (x)]. Under the assumption that Pn
t=1 γ

2
nt/n converges to a positive random

variable γ2 in probability, they obtained the asymptotic distribution of Un(x) and
U∗n(x), which is the product of γ and a Brownian bridge on D. Here we provide a

different condition set, i.e. condition (i) replaces their condition that
Pn
i=1 γ

2
ni/n =

γ2+ op(1) with γ2 being a positive random variable and n−1/2max1≤i≤n γ2ni = op(1),

and obtain a different weak convergence of a RWREP. In Theorem 2.1, if con-

clusions (a)-(c) are modified as follows: (a) supx∈{x:F (x)∈[ω1,ω2]} |Un(x) − U∗n(x)| =
op(1), (b) Un(F−1(α)) L−→ R 1

0 St(τ )dK(τ,α) in D[ω1,ω2], and (c) U∗n(F−1 (α)) L−→R 1
0 St(τ )dK(τ,α) in D[ω1,ω2], where [ω1,ω2] ⊂ (0, 1), then the uniform continuity of
F (x) can be weakened as the assumptions in Theorem 3.1 in the next section. The

proof of this theorem is similar to those of Koul and Ossiander (1994), and hence is

omitted.

Before giving the second theorem, we need the following notation: At = [εt,B
0
t]
0

and Bt = [I(εt ≤ F−1(α1)) − α1, · · · , I(εt ≤ F−1(αm)) − αm]
0, where 0 < α1 <

· · · < αm < 1. Furthermore, define Wi(τ,α) = [Bi(τ),K
0
i(τ,α)] as a sequence of

i.i.d. (m+ 1)-dimensional Brownian motions with mean zero and covariance

τ Ω̃ = τ

Ã
σ2 Ω11
Ω011 Ω

!
, (2.1)

Ω = (σij)m×m, σij = αi − αiαj , 1 ≤ i ≤ j ≤ m, Ω11 = (σ1, · · · , σm) and σi =R αi
0 F−1(s)ds, where Ki(τ,α) = [Ki(τ,α1), · · · , Ki(τ,αm)]

0, and i = 1, · · · , 2l + 2.
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Here, each Ki(τ,α) is a Kiefer processes with varying τ in [0, 1] and fixed set

{α1, · · · ,αm}.
Theorem 2.2. Let {zt : t = 1, · · · , n} be generated by the AR(q) model, zt =Pq

i=1 ψizt−i+εt, with all roots of the polynomial 1−Pq
i=1 ψiB

i outside the unit circle.

Denote St = [A
0
t, (−1)tA0

t, sin tθ1A
0
t, cos tθ1A

0
t, · · · , sin tθlA0

t, cos tθlA
0
t,B

0
t ⊗ Z 0

t−1]
0
,

where θi ∈ (0, π), θi 6= θj if i 6= j, i, j = 1, · · · , l, and Zt−1 = (zt−1, · · · , zt−q)0. Then

1√
n

[nτ ]X
t=1

St
L−→W (τ,α) in D2(m+1)(l+1)+qm, (2.2)

where W (τ,α) = [W
0
1(τ,α), W

0
2(τ,α), · · ·, W 0

2l+1(τ,α), W
0
2l+2(τ,α), N

0
(τ )]

0
, and

N(τ) is an mq−dimensional Brownian motion independent of Wi(τ,α), and has

mean zero and covariance τΩ⊗ Σ, with Σ = E(Zt−1Z 0t−1).

Proof. Let λ = (λ1, · · · ,λ2(m+1)(l+1),λ0mq)0 be a [2(m+ 1)(l + 1) +mq]− dimen-
sional constant vector with λ0λ 6= 0, where λmq is an mq−dimensional constant.
Denote S∗t = λ0St =

P[nτ ]
t=1 at. It is straightforward to show that Ω̃ is positive definite

and

1

n

[nτ ]X
t=1

E(a2t |Ft−1) −→ τλ0Ω∗λ > 0 a.s., (2.3)

where Ω∗ = diag(I2(l+1) ⊗ Ω̃,Ω⊗ Σ). Denote ãt = c0 + c1|εt| + c2Pq
i=1 |zt−i|, where

c0, c1 and c2 are constant such that a
2
t ≤ ã2t . Since Eã2t <∞, for any small η,

1

n

[nτ ]X
t=1

E[a2t I(|at| >
√
nη)] ≤ 1

n

nX
t=1

E[ã2t I(|ãt| >
√
nη)]

= E[ã2t I(|ãt| >
√
nη)] =

Z ∞
x>
√
nη
x2dP → 0, (2.4)

where P is the distribution of ãt. Applying the invariance principle in Helland (1982,

Theorem 3.2) and the Gramer advice completes the proof. 2

3 Main Results

Denote Xt−1 = (1, yt−1, · · · , yt−p)0 and hα(s) = αsI(s > 0)− (1−α)sI(s ≤ 0), where
s ∈ R, α ∈ (0, 1) and I(·) is the indicator function. Following Koenker and Bassett
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(1978) and Koul and Saleh (1995), define the α−th regression quantile (RQ) as any
member φ̂n(α) of the set

R̂n(α) =
n
λ ∈ Rp+1 :

nX
t=1

hα(yt −X 0
t−1λ) = minimum

o
,

and refer to {φ̂n(α) : 0 < α < 1} as an RQ process. In practice, φ̂n(α) can be

obtained using a linear programming version of the minimization problem above, as

given in Koenker and D’Orey (1987, 1993). φ̂n(1/2) is the important LAD estimator

of φ, where φ = (φ0,φ1, · · · ,φp)0. Denote φ(α) = φ+ (F−1(α), 0, · · · , 0)0 and q(α) =
f(F−1(α)). Define

Tn(s,α) =
nX
t=1

Xt−1[I(εt ≤ F−1(α) + s0δ0nXt−1)− α], (3.1)

where α ∈ [0, 1], δn = G0J−1n , Jn = diag(
√
n,N1, · · · , Nl+2,√nIq), N1 = diag(na,

na−1, · · · , n), N2 = diag(nb, nb−1, · · · , n), Nk+2 = diag(nI2, · · · , ndkI2), k = 1, · · · , l,1
and G is a constant matrix defined as in (5.2) in Section 5.

The following theorem gives the Bahadur representation of the RQ φ̂n(α).

Theorem 3.1. Under model (1,1), if it is assumed that F (x) has a continuous

and positive density function f(x) on {x : 0 < F (x) < 1}, then

φ̂n(α)− φ(α) = −[q(α)
nX
t=1

Xt−1X 0
t−1]

−1Tn(0,α) + op(δn),

where op(·) holds uniformly for α ∈ ω(²) = [², 1− ²] with any ² ∈ (0, 1/2].
The following notation is needed to state the limiting distribution of φ̂n(α)−φ(α):

ξ(α) = (
Z 1

0
Γa−1(s)dK0

1(s,α), · · · ,
Z 1

0
Γ0(s)dK

0
1(s,α))

0
,

Γ0(τ ) = B1(τ), Γj(τ) =
Z τ

0
Γj−1(s)ds, Γ = (ϑij)a×a, ϑij =

Z 1

0
Γi(s)Γj(s)ds;

η(α) = −(
Z 1

0
Γ̃b−1(τ )dK0

2(τ,α), · · · ,
Z 1

0
F̃0(τ)dK

0
2(τ,α))

0
,

Γ̃0(τ ) = B2(τ), Γ̃j(τ ) =
Z τ

0
Γ̃j−1(s)ds, Γ̃ = (ϑ̃ij)a×a, ϑ̃ij =

Z 1

0
Γ̃i(s)Γ̃j(s)ds;

ζk = (ξ1, · · · , ξ2dk)
0
, Hk = (σij)2dk×2dk , f0(τ ) = B2k+1(τ ), g0(τ ) = B2k+2(τ ),

fj(τ) =
1

2 sin θ
{sin θ

Z τ

0
fj−1(s)ds− cos θ

Z τ

0
gj−1(s)ds},
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gj{τ ) = 1

2 sin θ
{cos θ

Z τ

0
fj−1(s)ds+ sin θ

Z τ

0
gj−1(s)ds},

ξ2j−1 =
1

2 sin θ
{
Z 1

0
fj−1(s)dK0

2k+2(s,α)−
Z 1

0
gj−1(s)dK0

2k+1(s,α)},

ξ2j =
1

2 sin θ
{cos θ[

Z 1

0
fj−1(s)dK0

2k+2(s,α)−
Z 1

0
gj−1(s)dK0

2k+1(s,α)]

− sin θ[
Z 1

0
fj−1(s)dK0

2k+1(s,α) +
Z 1

0
gj−1(s)dK0

2k+2(s,α)]},

σ2i−1,2j−1 = σ2i,2j =
1

4 sin2 θ
{
Z 1

0
fi−1(s)fj−1(s)ds+

Z 1

0
gi−1(s)gj−1(s)ds},

σ2i−1,2j = σ2j,2i−1 =
1

4 sin2 θ
{cos θ[

Z 1

0
fi−1(s)fj−1(s)ds +

Z 1

0
gi−1(s)gj−1(s)ds]

− sin θ[
Z 1

0
fj−1(s)gi−1(s)ds−

Z 1

0
gj−1(s)fi−1(s)ds]},

where i, j = 1, · · · , dk, k = 1, · · · , l, and [Bi,Ki(s,α)] is defined in Theorem 2.2.

Theorem 3.2. Under the assumption of Theorem 3.1,

δ−1n [φ̂n(α1)− φ(α1), · · · , φ̂n(αm)− φ(αm)]
L−→ [ (K1(1,α), ξ

0
(α))

³ 1 ξ∗

ξ∗
0

Γ

´−1
,

(Γ̃−1η(α))0, (H−1
1 ζ1(α))

0
, · · · , (H−1

l ζl(α))
0
,N

0
α ]

0
diag[

1

q(α1)
, · · · , 1

q(αm)
],

for any 0 < α1 < α2 < · · · < αm < 1, where ξ
∗ = (

R 1
0 Γa−1(s)ds, · · · ,

R 1
0 Γ0(s)ds)

0 and

Nα is a q ×m−variate normal matrix independent of [Bi(τ ), K0
i(α, τ )], and has a

null mean matrix and covariance matrix Ω⊗Σ−1, with Ω and Σ defined in Theorem

2.2.

Let ν be a finite signed measure with compact support on (0,1). The L−estimator
of φ is defined by

φ̂ν
n =

Z 1

0
φ̂n(α)dν(α).

Denote φ(ν, F ) = φ
R 1
0 dν(α) + (

R 1
0 F

−1(α)dν(α), 0, · · · , 0)0. The following theorem
follows directly from Theorems 3.1-3.2.

Theorem 3.3. Under the assumption of Theorem 3.1,

(a) φ̂ν
n − φ(ν, F ) = −[

nX
t=1

Xt−1X 0
t−1]

−1
Z 1

0
[Tn(0,α)/q(α)]dν(α) + op(δn);

(b) δ−1n [φ̂
ν
n − φ(ν, F )]

L−→
[ (Kν

1 (1), ξ
0
(ν))

³ 1 ξ∗

ξ∗
0

Γ

´−1
, (Γ̃−1η(ν))

0
, (H−1

1 ζ1(ν))
0
, · · · , (H−1

l ζl(ν))
0
, N

0
ν ]

0
,
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where ξ(ν), η(ν) and ζk(ν) are defined as ξ(α), η(α) and ζk(α) in Theorem 3.2, with

[Bi(τ,α),K
0
i(τ,α)] replaced by [B

ν
i (τ), K

ν
i (τ)] which are a series of i.i.d. bivariate

Brownian motions with mean zero and covariances given by τΩν = τ
³ σ2 σεν
σεν σ2ν

´
,

σεν = −
Z 1

0
[
Z α

0
F−1(s)ds/q(α)]dν(α), (3.2)

σ2ν =
Z 1

0

Z 1

0
[(s ∧ α− sα)/q(α)q(s)]dν(α)dν(s), (3.3)

and Nν is a q-dimensional normal random vector with mean zero and covariance

σ2νΣ
−1.

The assumptions and the joint asymptotic distribution of the RQ process corre-

sponding to the stationary componentwise argument in Theorem 3.2 are the same

as those given in Koul and Saleh (1995). The joint asymptotic distributions corre-

sponding to the nonstationary componentwise arguments are new results and involve

a series of i.i.d. m−dimensional Brownian motions. The asymptotic distribution of
the L−estimator involves a series of i.i.d. bivariate Brownian motions. It is differ-
ent from the asymptotic distributions of the LSE given by Chan and Wei (1988),

Jeganathan (1991), Truong-Van and Larramendy (1996), and van der Meer, Pap

and van Zuijlen (1999), which depend only on a series of i.i.d. univariate Brownian

motions. The result here is similar to that given by Ling and Li (1998) for ML

estimators, which also involves a series of i.i.d. bivariate Brownian motions, but

with a different covariance.

4 Two Special Cases

In this section, we apply the results in Section 3 to two special nonstationary AR

models and construct corresponding unit root tests.

4.1 AR(1) model

Consider the AR(1) model,

yt = φ0 + φyt−1 + εt, (4.1)
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where φ0 = 0 and φ = 1. This model is a special case of model (1.1) with a = 1,

b = l = 0 and ψ(z) = 1. Suppose that φ̂n(α) and φ̂ν
n are the α−th RQ and the

L−estimator of φ, respectively, and R 10 dν(α) = 1. Then we can obtain directly from
Theorem 3.1-3.3,

n[φ̂n(α)− 1] L−→ ρ(α) ≡
R 1
0 B(τ)dK(τ,α)−K(1,α)

R 1
0 B(τ )dτR 1

0 B
2(τ)dτ − (R 10 B(τ)dτ)2 (4.2)

and

n(φ̂ν
n − 1) L−→ ρ(ν) ≡

R 1
0 B(τ)dK(τ, ν)−K(1, ν)

R 1
0 B(τ )dτR 1

0 B
2(τ )dτ − (R 10 B(τ)dτ)2 , (4.3)

where (B(τ ), K(τ,α)) and (B(τ ),K(τ, ν)) are two bivariate Brownian motions with

covariances τΩ̃ and τΩν, Ω̃ =
³ σ2 σ1
σ1 σ211

´
with σ1 =

R α
0 F

−1(s)ds/ q(α) and σ211 =

(α− α2)/q2(α), and Ων is defined as in Theorem 3.3.

Let

w1(τ) =
1

σ
B(τ ) and w2(τ) = −σ1

σ2

s
σ2

σ2σ211 − σ21
B(τ ) +

s
σ2

σ2σ211 − σ21
K(τ,α).

Then w1(τ ) and w2(τ ) are two independent standard Brownian motions. As shown

in Herce (1996), we have

n[φ̂n(α)− 1] L−→ σ1[
R 1
0 w1(τ)dw1(τ)− w1(1)

R 1
0 w1(τ)dτ ]

σ2[
R 1
0 w

2
1(τ)dτ − (

R 1
0 w1(τ)dτ)

2]
(4.4)

+

q
σ2σ211 − σ21

σ2

R 1
0 w1(τ )dw2(τ )− w2(1)

R 1
0 w1(τ)dτ

[
R 1
0 w

2
1(τ)dτ − (

R 1
0 w1(τ )dτ)

2]
.

The second term in (4.4) can be simplified to [
q
σ2σ211 − σ21/σ

2] [
R 1
0 w

2
1(τ )dτ−(

R 1
0 w1(τ)

dτ)2]−1/2Φ, where Φ is a standard normal random variable independent of
R 1
0 w

2
1(τ)dτ

−(R 10 w1(τ )dτ )2 (see Phillips, 1989). Thus, n[φ̂n(α)− 1] can be approximated by
n[φ̂n(α)− 1] L−→ σ1[

R 1
0 w1(τ)dw1(τ)− w1(1)

R 1
0 w1(τ )dτ ]

σ2[
R 1
0 w

2
1(τ)dτ − (

R 1
0 w1(τ)dτ)

2]
(4.5)

+

q
σ2σ211 − σ21

σ2
[
Z 1

0
w21(τ)dτ − (

Z 1

0
w1(τ )dτ)

2]−1/2Φ.

If it is further assumed that εt has median zero, then σ211 = 1/[4f 2(0)] and σ1 =

E(|εt|)/[2f(0)]. In this case, n[φ̂n(1/2) − 1], as well as its asymptotic distribution
above, are the same as those given by Herce (1996).
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Similarly, let

w1(τ ) =
1

σ
B(τ ) and w̃2(τ) = −σεν

σ2

vuut σ2

σ2σ2ν − σ2εν
B(τ) +

vuut σ2

σ2σ2ν − σ2εν
K(τ, ν).

Then w1(τ ) and w̃2(τ) are two independent standard Brownian motions. It can be

shown that

n(φ̂ν
n − 1) L−→ σεν[

R 1
0 w1(τ )dw1(τ )− w1(1)

R 1
0 w1(τ )dτ ]

σ2[
R 1
0 w

2
1(τ )dτ − (

R 1
0 w1(τ)dτ )

2]
(4.6)

+

q
σ2σ2ν − σ2εν

σ2
[
Z 1

0
w21(τ )dτ − (

Z 1

0
w1(τ)dτ)

2]−1/2Φ.

As the limiting distributions in (4.5) and (4.6) include nuisance parameters. there

are two methods of constructing unit root tests.

The first method is to combine the LSE so that the nuisance can be cancelled.

Denote φ̂LS as the LSE of φ. It is well known that n(φ̂LS − 1) L−→ [
R 1
0 w1(τ)dw1(τ)

−w1(1) R 10 w1(τ)dτ ]/ [R 10 w21(τ)dτ − (R 10 w1(τ)dτ)2]. Define
Mα =

σ2q
σ2σ211 − σ21

{n[φ̂n(α)− 1]− (σ1/σ2)[n(φ̂LS − 1)]},

Mν =
σ2q

σ2σ2ν − σ2εν
{n(φ̂ν

n − 1)− (σεν/σ2)[n(φ̂LS − 1)]},

Mα,t = (
1

n2

nX
i=1

(yi−1 − ȳ)2)1/2Mα and Mν,t = (
1

n2

nX
i=1

(yi−1 − ȳ)2)1/2Mν,

where ȳ =
Pn
i=1 yi−1/n. It is straightforward to show that

Mα
L−→ [

Z 1

0
w21(τ )dτ − (

Z 1

0
w1(τ)dτ)

2]−1/2Φ,

Mν
L−→ [

Z 1

0
w21(τ )dτ − (

Z 1

0
w1(τ )dτ)

2]−1/2Φ,

Mα,t
L−→ Φ and Mν,t

L−→ Φ.

Herce (1996) derived the limiting distributions ofM1/2 andM1/2,t. The results above

provide a more general asymptotic theory. The statistics Mα, Mα,t, Mν and Mν,t

can be used to test for a unit root in model (4.1). From the simulation results given

in Lucas (1995) and Herce (1996), these tests should be more robust, especially

for a non-Gaussian unit root process. Note that these asymptotic distributions are
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invariant to α and ν, so that the critical values given by Herce (1996) can still be

used.

As the LSE is used in the above method, it may not be quite robust. Another

method of accommodating the nuisance parameters is given in Hansen (1995). Let

M̃α = n[φ̂n(α)− 1]σ/σ11 and M̃ν = n[φ̂
ν
n − 1]σ/σν. Then

M̃α
L−→ rα[

R 1
0 w1(τ )dw1(τ )− w1(1)

R 1
0 w1(τ)dτ ]

[
R 1
0 w

2
1(τ)dτ − (

R 1
0 w1(τ)dτ)

2]

+
q
1− r2α[

Z 1

0
w21(τ )dτ − (

Z 1

0
w1(τ)dτ)

2]−1/2Φ,

M̃ν
L−→ rν[

R 1
0 w1(τ)dw1(τ )− w1(1)

R 1
0 w1(τ )dτ ]

[
R 1
0 w

2
1(τ)dτ − (

R 1
0 w1(τ)dτ)

2]

+
q
1− r2ν[

Z 1

0
w21(τ)dτ − (

Z 1

0
w1(τ )dτ )

2]−1/2Φ.

where rα = σα/σσ11 and rν = σ²ν/σσν. It is easy to see that rα and rν ∈ (0, 1). Sim-
ilarly, let M̃t = n[φ̂n(α)−1]Pn

i=1(yi−1− ȳ)2)1/2/σ11 and M̃ν,t = n[φ̂
ν
n−1]

Pn
i=1(yi−1−

ȳ)2)1/2/σν, so that we can write down their limiting distributions. These distribu-

tions include a nuisance parameter so that the critical values can be determined by

the simulation method for different rα and rν (see Hansen (1995)).

4.2 AR(p) model with one unit root

Consider the model

φ(B)yt = φ0 + εt, (4.7)

where φ0 = 0 and φ(B) = (1−B)φ∗(B), with all the roots of φ∗(B) outside the unit
circle. Reparameterize (4.7) as

yt = φ0 + γ1yt−1 +
pX
i=2

γi(yt−i+1 − yt−i) + εt,

where γ1 =
Pp
i=1 φi and γj = −Pp

i=j φi, j = 2, · · · , p. Suppose that φ̂n(α) and

φ̂ν
n are the α−th RQ and the L−estimator of the parameter φ = (φ1, · · · ,φp)0,
respectively, and

R 1
0 dν(α) = 1. Denote γ = (γ1, · · · , γp)0 and γ̂n(α) = (γ̂1, · · · , γ̂p)0,

with γ̂1 =
Pp
i=1 φ̂i and γ̂j = −Pp

i=j φ̂i, j = 2, · · · , p, where φ̂i is the i−th element
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of φ̂n(α), and similarly define γ̂νn . Then, by Theorems 3.1-3.2, as in Ling and Li

(1998), we can show that

G−1n [γ̂n(α)− γ]
L−→ [cρ(α), N

0
α]

0
and G−1n (γ̂

ν
n − γ)

L−→ [cρ(ν),N
0
ν ]
0
,

where Gn = diag(1/n, I(p−1)×(p−1)/
√
n), c = 1/(1 − Pp

i=2 γi), ρ(α) and ρ(ν) are

defined as in (4.2)-(4.3), and Nα and Nν are normal random vectors with zero

means and covariances σ2αE(Zt−1Z
0
t−1) and σ2νE(Zt−1Z

0
t−1), respectively, Zt−1 =

(zt−1, · · · , zt−p+1)0 and zt = yt − yt−1. As in Section 4.1, the asymptotic distrib-
utions, ρ(α) and ρ(ν), can be used to construct robust unit root tests of γ1 = 1.

5 Proofs

Let ut = φ(B)(1 − B)−ayt, vt = φ(B)(1 + B)−byt, zt = φ(B)ψ−1(B)yt, and xt =

φ(B)(1 − 2B cos θk + B2)−dkyt, where B is the backward shift operator and k =

1, · · · , l. Then (1 − B)aut = εt, (1 + B)
bvt = εt, and (1− 2B cos θk + B2)dkxt = εt.

Denote ut = (ut, · · · , ut−a+1)0, vt = (vt, · · · , vt−b+1)0, Zt = (zt, · · · , zt−q+1)0, and
xt(k) = (xt, · · · , xt−dk+1)0, k = 1, · · · , l. As shown in (3.2) of Chan and Wei (1988),
abbreviated hereafter as CW, there exists a non-singular matrix Q such that

QX̃t = (u
0
t,v

0
t,x

0
t(1), · · · ,x0t(l), Z 0t)0, (5.1)

where X̃t = (yt, · · · , yt−p+1)0. Furthermore, let Ut(j) = (1 − B)a−jut for j =
0, 1, · · · , a, Ut = (Ut(a), · · · , Ut(1))0, Vt(j) = (1 + B)b−jvt for j = 0, 1, · · · , b, Vt =
(Vt(b), · · · , Vt(1))0, Yt(k, j) = (1 − 2B cos θk + B2)dk−jxt for j = 0, 1, · · · , dk, and
Yt(k) = (Yt(k, 1), Yt−1(k, 1), · · · , Yt(k, dk), Yt−1(k, dk))0, where k = 1, · · · , l. Then
there exist non-singular matrices M , M̃ and Ck, such that

Mut = Ut, M̃vt = Vt, Ckxt(k) = Yt(k), k = 1, · · · , l.

Denoting G = diag(1,M, M̃,C1, · · · , Cl, Iq)diag(1, Q), then

GXt = (1, U
0
t, V

0
t , Y

0
t (1), · · · , Y 0t (l), Z 0t)0. (5.2)
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Thus, Xt has been decomposed into various nonstationary componentwise argument

vectors corresponding to the locations of unit roots and the stationary componen-

twise argument vector. Before giving the proofs of our results, we will need the

following seven lemmas.

Lemma 5.1. Suppose that {yt} is generated by model (1.1). Then

(a) sup
1≤t≤n

||δ0nXt−1|| = op(1),

(b)
1√
n

nX
t=1

||δ0nXt−1|| = Op(1),

(c)
nX
t=1

||δ0nXt−1||2 = Op(1).

Proof. A direct application of Lemma 2.1 in Ling (1998) completes the proof.2

Let γnt be an Ft−1-measurable random variable and assume that the following

condition is satisfied:

nX
t=1

[|γnt| · ||δ0nXt−1||] = Op(1). (5.3)

Denote R² = R
T{x : ² ≤ F (x) ≤ 1− ²}, γ+nt = max{0, γnt}, γ−nt = γ+nt − γnt,

gt(s,λ) = s
0δ0nXt−1 + λ||δ0nXt−1|| (5.4)

and

Z̃±n (x, s,λ) =
nX
t=1

γ±nt[I(εt ≤ x+ gt(s,λ))
− F (x+ gt(s,λ))− I(εt ≤ x) + F (x)], (5.5)

where ² ∈ (0, 1/2], s ∈ Rp+1 and λ ∈ R.
Lemma 5.2. Let Z±n (x, s) = Z̃±n (x, s, 0) and Zn(x, s) = Z+n (x, s) − Z−n (x, s).

Under the assumption of Theorem 3.1 and (5.3), if supx∈Rε
|Z̃±n (x, s,λ)| = op(1) for

any s ∈ Rp+1 and λ ∈ R, then

sup
s∈D∆

sup
x∈R²

|Zn(x, s)| = op(1),
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where D∆ = [−∆,∆]p+1 ⊂ Rp+1.
The proof of Lemma 5.2 is similar to that of Lemma 3.2 in Koul (1996) (also see

Koul (1991)). The main difference is to use Lemma 5.1 to replace Koul’s Lemma

3.1, and hence the details are omitted. In the following, we will state three lemmas.

Lemmas 5.1-5.2 and these three lemmas are used to prove Lemma 5.6. In addition,

these three lemmas will be used to derive the limiting distribution in Theorem 3.2.

Denote U+t (j) = max{0, Ut(j)}, U−t (j) = U+t (j)− Ut(j), Γ+j (τ ) = max{0,Γj(τ )}
and Γ−j (τ) = Γj(τ) − Γ+j (τ). For the process {Ut} defined in (5.2), we have the
following lemma.

Lemma 5.3. Under the assumption of Theorem 3.1,

(a)
1√
n
N−1
1

nX
t=1

Ut−1
L−→ ξ∗,

(b) N−1
1

nX
t=1

Ut−1B0t
L−→ ξ(α),

(c)
nX
t=1

N−1
1 Ut−1U

0
t−1N

−1
1

L−→ Γ,

(d) n−j
nX
t=1

U±t−1(j)Bt
L−→

Z 1

0
Γ±j−1(τ)dK1(τ,α), j = 1, · · · , a.

Proof. For (a), note that

Ut(1) =
tX
i=1

Ui(0) =
tX
i=1

εi, Ut(j + 1) =
tX

k=1

Uk(j),

where j = 0, · · · , a− 1. By Theorem 2.3 of CW and Theorem 2.2,

n
1
2
−jU[nτ ](j)

L−→ Γj−1(τ) in D for j = 1, · · · , a. (5.6)

Again, by Theorem 2.3 of CW, we obtain

√
nN−1

1 U[nτ ]
L−→ (Γa−1(τ), · · · ,Γ0(τ))0 in Da. (5.7)

By (5.7) and the continuous mapping theorem (Billingsley, 1968, Theorem 5.1),

1√
n

nX
t=1

N−1
1 Ut−1 =

1

n

nX
t=1

(
√
nN−1

1 Ut−1)
L−→ ξ∗ in Da, (5.8)
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so that (a) holds. By (5.7) and Theorem 2.2, applying Theorem 2.4 of CW, (b)

holds. By (5.7) and the continuous mapping theorem, it is easy to show that (c)

holds. Again by (5.7) and the continuous mapping theorem, we have

n
1
2
−jU±[nτ ](j)

L−→ Γ±j−1(τ) in D for j = 1, · · · , a. (5.9)

Furthermore, by Theorem 2.4 of CW and Theorem 2.2, we know that (d) holds.

This completes the proof. 2

Denote V +t (j) = max{0, (−1)tVt(j)}, V −t (j) = V +t (j) − (−1)tVt(j), Γ̃+j (τ ) =
max{0, Γ̃j(τ)} and Γ̃−j (τ ) = Γ̃+j (τ) − Γ̃j(τ). For the process {Vt} defined in (5.2),
we have the following lemma.

Lemma 5.4. Under the assumptions of Theorem 3.1,

(a)
1√
n
N−1
2

nX
t=1

Vt−1
p−→ 0,

(b) N−1
2

nX
t=1

Vt−1B0t
L−→ η(α),

(c)
nX
t=1

N−1
2 Vt−1V

0
t−1N

−1
2

L−→ Γ̃,

(d) n−j
nX
t=1

V ±t−1(j)(−1)tBt L−→
Z 1

0
Γ̃±j−1(τ)dK2(τ,α), j = 1, · · · , b.

Proof. It is similar to the proof of Lemma 5.3, and hence is omitted. 2

In the following, we will show the asymptotic properties of the process {Yt(k)}
defined in (5.2), where k = 1, · · · , l. Let

St(k, j) =
tX
i=1

Yi(k, j) sin θk and Tt(k, j) =
tX
i=1

Yi(k, j) cos θk.

Denote S+t (k, j) = max{0, St(k, j)} and S−t (k, j) = S+t (k, j)−St(k, j), and similarly
define T±t (k, j), where k = 1, · · · , l, j = 0, · · · , dk.
Lemma 5.5. Under the assumption of Theorem 3.1,

(a)
1√
n
N−1
k+2

nX
t=1

Yt−1(k)
p−→ 0,

(b) N−1
k+2

nX
t=1

Yt−1(k)B0t
L−→ ζk(α),
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(c) N−1
k+2

nX
t=1

Yt−1(k)Y 0t−1(k)N
−1
k+2

L−→ Hk,

(d) n−j
nX
t=1

³ S±t−1(k, j)
T±t−1(k, j)

´
(cos tθkB

0
t, sin tθkB

0
t)

L−→
Z 1

0

³ f±kj(τ )
g±kj(τ )

´
d(K0

2k+1(τ,α),K
0
2k+2(τ,α)),

where f+kj(τ) = max{0, fkj} and f−kj(τ) = f+kj(τ )−fkj(τ ), and similarly define g±kj(τ).
Proof. By direct verification, we have

Yt(k, j) sin θk = St(k, j − 1) sin(t+ 1)θk − Tt(k, j − 1) cos(t+ 1)θk, (5.10)

where j = 1, · · · , dk. By Lemma 3.3.7 of CW,
√
2n−j−1/2(S[nτ ](k, j), T[ns](k, j))

L−→ (fkj(τ ), gkj(s)) in D
2, (5.11)

where k = 1, · · · , l, j = 0, · · · , dk − 1. By Proposition 8 of Jeganathan (1991), we
obtain

max
1≤i≤n |

1

n

iX
t=1

n−(j−1)−1/2St−1(k, j − 1) sin tθk| = op(1), (5.12)

max
1≤i≤n |

1

n

iX
t=1

n−(j−1)−1/2Tt−1(k, j − 1) cos tθk| = op(1), (5.13)

where j = 1, · · · , dk. By (5.10) and (5.12)-(5.13), we have

|| 1√
n

nX
t=1

N−1
k+2Yt−1(k)|| = op(1), k = 1, · · · , l,

so that (a) holds. By Theorem 2.2 and (5.12)-(5.13), the proofs of (b)-(c) are

similar to those given in CW, and hence are omitted. By Theorem 2.4 of CW,

(5.11), Theorem 2.2, and the continuous mapping theorem, we can show that (d)

holds. This completes the proof. 2

Lemma 5.6. Under the assumption of Theorem 3.1, for any constant M ≥ 0,

(a) sup
α∈ω(²),||s||≤M

||δ0n[Tn(s,α)−Tn(0,α)−
nX
t=1

Xt−1X 0
t−1δnsq(α)]|| = op(1),

(b) sup
α∈ω(²)

||δ0nTn(0,α)|| = Op(1).
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Proof. By (5.2),

δ0nXt =
h
n−1/2, (N−1

1 Ut)
0, (N−1

2 Vt)
0, (N−1

3 Yt(1))
0, · · · , (N−1

l+2Yt(l))
0, n−1/2Z 0t

i0
. (5.14)

Let Sn(τ) = n
1/2−jU±[nτ ](j) and ξnt = gt(s, 0). By (5.9), Lemma 5.3 (d), and Lemma

5.1 (a), {Sn(τ ), τ ∈ [0, 1]} and ξnt satisfy the conditions of Theorem 2.1. Thus, by

Theorem 2.1, for any s ∈ Rp+1,

sup
α∈ω(²)

¯̄̄̄
¯n−j

nX
t=1

U±t−1(j)[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]

¯̄̄̄
¯ = op(1), (5.15)

n−j
nX
t=1

U±t−1(j)[I(εt ≤ F−1(α))− α]
L−→

Z 1

0
Γ±j−1(τ )dK1(τ,α) in D[ω(²)], (5.16)

where K1(τ,α) is a Kiefer process in D2 with the finite-dimensional distribution

K1(τ,α). Let γnt = n
−jUt−1(j). By Lemma 5.1 (c), we know that (5.3) is satisfied.

By Lemma 5.2, we have

sup
α∈ω(²),||s||≤M

|n−j
nX
t=1

Ut−1(j)[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]| = op(1). (5.17)

By (5.16) and the continuous mapping theorem,

sup
α∈ω(²)

|n−j
nX
t=1

Ut−1(j)[I(εt ≤ F−1(α))− α]| L−→ sup
α∈ω(²)

|
Z 1

0
Γj−1(τ)dK1(τ,α)|,

that is,

sup
α∈ω(²)

|n−j
nX
t=1

Ut−1(j)[I(εt ≤ F−1(α))− α]| = Op(1), (5.18)

where j = 1, · · · , a. By the triangle inequality and (5.17)-(5.18), we obtain

sup
α∈ω(²),||s||≤M

||N−1
1

nX
t=1

Ut−1[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]|| = op(1), (5.19)

sup
α∈ω(²)

||N−1
1

nX
t=1

Ut−1[I(εt ≤ F−1(α))− α]|| = Op(1). (5.20)
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Similarly, by Lemma 5.4 (d), Theorem 2.1 and Lemmas 5.1-5.2, we can show

that

sup
α∈ω(²),||s||≤M

||N−1
2

nX
t=1

Vt−1[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]|| = op(1), (5.21)

sup
α∈ω(²)

||N−1
2

nX
t=1

Vt−1(k)[I(εt ≤ F−1(α))− α]|| = Op(1). (5.22)

In a similar manner to (5.17)-(5.18), by (5.11), Lemma 5.5 (d), Lemmas 5.1-5.2

and Theorem 2.1, we can show that

sup
α∈ω(²),||s||≤M

||n−j
nX
t=1

³ St−1(k, j)
Tt−1(k, j)

´
(cos tθk, sin tθk)[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]|| = op(1), (5.23)
sup

α∈ω(²)
||n−j

nX
t=1

³ St−1(k, j)
Tt−1(k, j)

´
(cos tθk, sin tθk)[I(εt ≤ F−1(α))− α]|| = Op(1), (5.24)

where k = 1, · · · , l and j = 1, · · · , dk. Using the equation:

Yt−1(k, j) sin θk = cos θk[St−1(k, j) cos(t+ 1)θk

−Tt−1(k, j) sin(t+ 1)θk]− sin θk[St−1(k, j) sin(t+ 1)θk + Tt−1(k, j) cos(t+ 1)θk]

for k = 1, · · · , l and j = 1, · · · , dk, and by (5.10), (5.23)-(5.24), and the triangle
inequality, we can show that

sup
α∈ω(²),||s||≤M

||N−1
k+2

nX
t=1

Yt−1(k)[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]|| = op(1), (5.25)

sup
α∈ω(²)

||N−1
k+2

nX
t=1

Yt−1(k)[I(εt ≤ F−1(α))− α]|| = Op(1). (5.26)

Let γ̃t be 1 or any element of Zt−1. Since {Zt−1} is stationary and ergodic, we
have (n−1

Pn
t=1 γ̃

2
t )
1/2 = γ̃+op(1), where γ̃ is a positive constant. By Lemma 5.1 (a),

n−1/2max1≤t≤n |γ̃t| = op(1) and max1≤t≤n |gt(s, 0)| = op(1). Now applying Theorem
1.1 of Koul and Ossiander (1994) and Lemma 5.2, we can show that

sup
α∈ω(²),||s||≤M

1√
n
|
nX
t=1

γ̃t−1[I(εt ≤ F−1(α) + gt(s, 0))

−F (F−1(α) + gt(s, 0))− I(εt ≤ F−1(α)) + α]| = op(1), (5.27)

sup
α∈ω(²)

1√
n
|
nX
t=1

γ̃t−1[I(εt ≤ F−1(α))− α]| = Op(1). (5.28)
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By (5.14), (5.19), (5.21), (5.25), (5.27) and the triangle inequality, we can show that

(a) holds. Similarly by (5.14), (5.20), (5.22), (5.26) and (5.28), we can show that

(b) holds. This completes the proof. 2

Lemma 5.7. Under the assumption of Theorem 3.1,

sup
α∈ω(²)

||δ0nTn(δ−1n [φ̂n(α)− φ(α)],α)|| = op(1).

Proof. Denote Wn = [X1, · · · , Xn]0 and Yn = [1, y1, · · · , yn]0. Under model
(1.1), the rows of Wn are linearly independent a.s. and the columns of Wn are also

linearly independent a.s. (otherwise, εt will be Ft−1−measurable). Let h be a subset
of {1, · · · , n} of size p+ 1 and Wh (or Yh) be the subdesign matrix (or subresponse
vector) with row X 0

i−1, i ∈ h (or coordinates yi, i ∈ h). Then Wh is invertible a.s..

By a linear programming algorithm given by Koenker and Bassett (1978) and Koul

and Saleh (1995), φ̂n(α) is a solution of the form b =W−1
h Yh. Furthermore, note that

Tn(δ
−1
n [φ̂n(α)−φ(α)],α) =

Pn
t=1Xt−1{I(εt ≤ [φ̂n(α)−φ(α)]0Xt−1+F−1(α))−α} =Pn

t=1Xt−1{I(yt − φ̂0n(α)Xt−1 ≤ 0) − α}. In a similar manner to Koul and Saleh
(1995), by the inequality in (3.1) of Theorem 3.3 of Koenker and Bassett (1978), we

can show that

sup
α∈ω(²)

||δ0nTn(δ−1n [φ̂n(α)− φ(α)],α)|| ≤ 2(p+ 1) max
1≤t≤n ||δ

0
nXt−1||.

By Lemma 5.1 (a), this completes the proof. 2.

Proof of Theorem 3.1. Denote Υn(α) = δ−1n [φ̂n(α)− φ(α)]. For any ε, η > 0,

by Lemma 5.7, there exists an integer n1 > 0 such that, when n > n1,

P
n
sup

α∈ω(²)
||δ0nTn(Υn(α),α)|| > η

o
< ε.

Thus, for a positive constant M , when n > n1,

P {||Υn(α)|| ≥M, ∀α ∈ ω(²)}
≤ P {||Υn(α)|| ≥M, ||δ0nTn(Υn(α),α)|| ≤ η, ∀α ∈ ω(²)}

+P {||δ0nTn(Υn(α),α)|| ≥ η, ∀α ∈ ω(²)}
≤ P

n
inf

||s1||≥M
||δ0nTn(s1,α)|| ≤ η,∀α ∈ ω(²)

o
+ ε. (5.29)
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Note that s01δ
0
nTn(λs1,α) is a non-decreasing function of λ for any α ∈ (0, 1) and

s1 ∈ Rp+1. Writing s1 as s1 = λs with λ ≥ 1 and ||s|| = M for any ||s1|| ≥ M , by
the Cauchy-Schwarz inequality, we have

inf
||s||=M

|s0δ0nTn(s,α)| ≤ inf
||s||=M,λ≥1

|s0δ0nTn(λs,α)| ≤M inf
||s1||≥M

||δ0nTn(s1,α)||.

Thus, by (5.29),

P {||Υn(α)|| ≥M, ∀α ∈ ω(²)}
≤ P

n
inf

||s||=M
||s0δ0nTn(s,α)|| ≤ ηM, ∀α ∈ ω(²)

o
+ ε. (5.30)

Denote

Ωn = δ0n
nX
t=1

Xt−1X 0
t−1δn, q² = inf

α∈ω(²)
q(α),

Rn(α) = sup
||s||=M

|s0δ0n[Tn(s,α)−Tn(0,α)]− s0Ωnsq(α)|.

Since

|s0δ0nTn(s,α)| ≥ inf
||s||=M

[s0Ωnsq(α)]−Rn(α)− sup
||s||=M

|s0δ0nTn(0,α)|,

by (5.30),

P
n
||Υn(α)|| ≥M, ∀α ∈ ω(²)

o
≤ P

n
Rn(α) ≥

inf
||s||=M

[s0Ωnsq(α)]− sup
||s||=M

|s0δ0nTn(0,α)|− ηM, ∀α ∈ ω(²)
o
+ ε. (5.31)

By Theorem 3.5.1 of CW and (5.37) below, Ωn converges to a matrix Ωx in distrib-

ution and Ωx is positive definite a.s.. Denote λn and λ0 as the minimum eigenvalues

of Ωn and Ωx, respectively. Then λn converges to λ0 in distribution with λ0 > 0

a.s.. For the above ε, there exists a constant c0 > 0 such that P (λ0 < c0) < ε/2.

Furthermore, there exists an integer n2 such that, when n > n2,

P ( inf
||s||=M

s0Ωns < c0M2) ≤ P (λn < c0) < P (λ0 < c0) + ε/2 < ε. (5.32)

By Lemma 5.6 (b), there exists a large constant M1 and an integer n3 such that,

when n > n3,

P ( sup
||s||=M

|s0δ0nTn(0,α)| > MM1, ∀α ∈ ω(²))

≤ P (||δ0nTn(0,α)|| > M1,∀α ∈ ω(²)) < ε. (5.33)
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Thus, by (5.32)-(5.33), when n > max{n2, n3},

P
n
Rn(α) ≥ inf

||s||=M
[s0Ωnsq(α)]− sup

||s||=M
|s0δ0nTn(0,α)|− ηM, ∀α ∈ ω(²)

o
≤ P

n
Rn(α) ≥ inf

||s||=M
[s0Ωnsq(α)]− sup

||s||=M
|s0δ0nTn(0,α)|− ηM,

sup
||s||=M

|s0δ0nTn(0,α)| ≤MM1, inf||s||=M
[s0Ωns] ≥ c0M2,∀α ∈ ω(²)

o
+P

³
sup
||s||=M

|s0δ0nTn(0,α)| > MM1, ∀α ∈ ω(²)
´
+ P

³
inf

||s||=M
[s0Ωns] < c0M2

´
≤ P

n
Rn(α) ≥ c0M2q² −MM1 − ηM,∀α ∈ ω(²)

o
+ 2ε. (5.34)

We may chooseM large enough such that c = c0Mq²−M1−η > 0. For the constant

c, by Lemma 5.6 (a), there exists an integer n4 such that, when n > n4,

P
n
Rn(α) ≥Mc, ∀α ∈ ω(²)

o
≤ P

n
sup
||s||=M

||δ0n[Tn(s,α)−Tn(0,α)]− s0Ωnsq(α)]|| ≥ c,∀α ∈ ω(²)
o
< ε. (5.35)

Thus, by (5.31) and (5.34)-(5.35), when n > max{n1, n2, n3, n4}, P{|| Υn(α)|| ≥
M, ∀α ∈ ω(²)} < 4ε. Finally, by Lemmas 5.6 (a) and 5.7 , we have

φ̂n(α)− φ(α) = −[q(α)
nX
t=1

Xt−1X 0
t−1]

−1Tn(0,α) + op(δn),

where op(·) holds uniformly for α ∈ ω(²). This completes the proof.2

Proof of Theorem 3.2. Since Zt is a stationary and ergodic time series, by the

ergodic theorem, n−1
Pn
t=1 Zt−1 = op(1) and n

−1Pn
t=1 Zt−1Z

0
t−1 = Σ+op(1). By The-

orems 3.4.1 and 3.4.2 in CW, the quantities
Pn
t=1(N

−1
1 Ut−1V 0t−1N

−1
2 ),

Pn
t=1(N

−1
1 Ut−1Y 0t−1(k)N

−1
k+2),Pn

t=1(N
−1
2 Vt−1Y 0t−1(k)N

−1
k+2), n

−1/2Pn
t=1(N

−1
1 Ut−1Z 0t−1), n

−1/2Pn
t=1(N

−1
2 Vt−1Z 0t−1) and

n−1/2
Pn
t=1(N

−1
k+2Yt−1(k)Z

0
t−1) converge to zero in probability, where k = 1, · · · , l.

Furthermore, by Lemmas 5.3-5.5 (a)-(c), we have

δ−1n
nX
t=1

Xt−1B0t
L−→ {K0

1(1,α), ξ(α), η(α), ζ1(α), · · · , ζl(α), Nα} , (5.36)

δ−1n
nX
t=1

Xt−1X 0
t−1δ

−1
n

L−→ diag
n³ 1 ξ∗

ξ∗
0
F

´
, F̃ , H1, · · · ,Hl,Σ

o
. (5.37)

By Theorem 3.5.1 of CW, the limiting matrix of (5.37) is positive definite a.s.. By

Theorem 3.1,

δ−1n [φ̂n(α1)− φ(α1), · · · , φ̂n(αm)− φ(αm)] = (5.38)
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h
δ−1n

nX
t=1

Xt−1X 0
t−1δ

−1
n

i−1h
δ−1n

nX
t=1

Xt−1B0t
i
diag

h 1

q(α1)
, · · · , 1

q(αm)

i
+ op(1).

Note that the random matrices and vectors involved in (5.36)-(5.37) are functionals

of the corresponding process of (2.2). By (5.36)-(5.37) and the continuous mapping

theorem, this completes the proof. 2
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