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Abstract

A principal acquires information about a shock and then discloses it to an
agent. After the disclosure, the principal and agent each decide whether to
take costly preparatory actions that yield benefits only when the shock strikes.
The principal maximizes his expected payoff by controlling the quality of his
information, and the disclosure rule. We show that even when the acquisition
of perfect information is costless, the principal may optimally acquire imperfect
information when his own action eliminates the agent’s incentive to take action
against the risk.
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1 Introduction

Preparing for a variety of natural, social, and economic shocks is an important task
of every government. Many governments appropriate a large amount of money on
research into the forecasting of such natural shocks as hurricanes, snow storms and
other extreme weather conditions, earthquakes, epidemic outbreaks, and so on.1

Along with forecasting, a government’s strategies to prepare for those shocks
typically involve two forms of interventions. The first is a direct intervention that is
implemented at the government’s own cost. The second is an indirect intervention
that consists of raising public awareness of the risk of the shocks and advising the
public to take preparatory actions themselves. In the case of an epidemic outbreak,
for example, the direct interventions include stricter quarantine control, building
depressurized rooms at hospitals, increasing the stock of anti-virus medicines, and
so on. On the other hand, an indirect intervention consists of advice to the public
to receive vaccinations, avoid traveling and exercise hygiene practices. Likewise,
against earthquakes, direct interventions include enforcing stricter building codes
and reinforcing public buildings such as schools and highways, while indirect inter-
ventions include advice to the public to reinforce their own houses, prepare food
stocks, and purchase earthquake insurance. Unlike direct interventions, it is the
public themselves who bear the cost of the advised action.2 The same story also
applies to economic shocks such as currency crises, food and energy price hikes, and
market crashes. Governments engage resources in the forecasting of such shocks, and
prepare for them by intervening directly by adjusting portfolios, building food and
oil stocks, and subsidizing the development of alternative technologies. The essen-
tial feature of many of these preparatory actions is that they are specific investment
in the sense that they have value only when the shock strikes.

It is argued by some that the policy of spending much money on forecasting

1For example, National Oceanic and Atmospheric Agency (NOAA) of the United States budgeted

more than $2,000 million on weather services and satellites. Its joint polar satellite system (JPSS),

which is used for mid-range weather forecasts, alone cost US$382 million in FY2010 (“NOAA

warns weather forecasts will suffer from budget cuts,” Washington Post 03/31/2011). As another

example, the US Geological Survey budgeted more than US$90 million for research into geologic

hazard assessments in FY2010.
2Skoufias (2003) discusses the strategies employed by households and public agencies to mitigate

the damages of economic crises and natural disasters. Some indirect interventions involve public

expenditure as in the case of subsidies for vaccination programs, or those for the installation of

solar panels.
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shocks and at the same time advising the public to take preparatory measures
is inconsistent.3 One interpretation of this claim is as follows: If the accurate
forecasting of a shock is possible, then the public is led to think that timely direct
interventions will save them costly efforts. On the other hand, from the point of
view of the government, indirect interventions are much less costly and the public’s
own action is often more effective in mitigating the damage.

The purpose of this paper is to provide a formal justification of the above logic
in the framework of information acquisition by a principal (government) and its
disclosure to an agent (the public). We show that acquiring perfect information
may indeed be suboptimal when the agent may free-ride on the principal’s effort.
A more detailed description of our model is as follows: Facing the risk of a shock,
the principal first chooses a technology that determines the quality of his private
information about the risk of the shock. The technology is perfect if it enables the
perfect forecasting of the shock, and imperfect otherwise. The set of forecasting
technologies available for the principal equals R+ ∪ {∞}, where 0 corresponds to
the perfect technology and ∞ corresponds to the absence of the forecasting activity.
The principal may costlessly choose any forecasting technology from this set. Upon
acquiring information, the principal chooses whether to take his own preparatory
action, and at the same time issues an advice to the agent on whether he should take
a preparatory action. As mentioned above, these actions are costly to the respective
parties, but their benefits accrue only when the shock strikes. The principal’s payoffs
are such that taking action is a dominant strategy for him in the event of a sure
shock. That is, when the shock occurs for sure, the principal cannot commit to
not taking action. As for the agent’s payoffs in the shock state, on the other hand,
we consider the following two possibilities. In the first case, taking action is also a
dominant strategy for him. In the second case, taking action is a best response if
and only if the principal does not. In the latter case, hence, the agent free-rides on
the principal’s effort.

Not surprisingly, we observe that when the agent has no free-riding incentive,
acquiring perfect information and revealing it to the agent is the optimal policy
for the principal. Our main focus hence is on the free-riding case. We first show
that when the prior probability of the shock is moderately high, no information is
better than the adoption of the perfect technology. When the prior probability is
low, however, no information is dominated by perfect information. This leads us

3See Saito (2008).

3



to the question on whether there still exists an imperfect information policy that
outperforms perfect information even for low probability shocks. For this, we char-
acterize an optimal disclosure rule and the associated equilibrium actions subject to
imperfect information. Based on this characterization, we identify conditions under
which there exists an information policy that dominates perfect information. The
quality of information under such a policy is proportional to (some power of) the
prior probability of the shock, and the action and advice are based on the three risk
categories as follows: When the updated risk is high based on the acquired infor-
mation, the principal takes action but recommends no action to the agent. When
the risk is medium, the principal takes no action but recommends an action to the
agent. When the risk is low, the principal takes no action and also recommends
no action to the agent. We show that when the thresholds and information qual-
ity are appropriately chosen, such a policy dominates perfect information when the
marginal benefit of the agent’s action is sufficiently large for the principal, or when
the agent’s utility from inaction by both parties is sufficiently low in the event of
the shock. These conditions are hence relevant when the public has significantly
more efficient ways to insure against the risk, or when the shock has a disastrous
consequence when no preparation is made.

We further proceed to the model in which the agent’s free-riding incentive is
also subject to uncertainty. We reinterpret the free-riding incentive as a measure
of the severity of the shock, and suppose that when the shock is severe, the agent
has no free-riding incentive. When the principal can acquire information about the
probability and severity of a shock, we again observe that perfect information is
dominated by a policy that acquires only imperfect information about the severity.

The paper is organized as follows: After the discussion of the related literature
in the next section, we formulate in Section 3 a model of information acquisition
and disclosure. Section 4 compares the two extreme cases of perfect information and
complete obscurity. Section 5 describes an optimal disclosure rule subject to imper-
fect information. The main conclusion on the optimality of imperfect information
is presented in Section 6. We conclude in Section 7.

2 Related Literature

The present paper is related to at least three different lines of research in the liter-
ature as follows.
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First, decision making in the face of information about a natural shock is a
classical subject in both the theoretical and empirical literature. Nelson and Winter
(1964) study the weather forecasting system that maximizes the welfare of a user
of the forecast who must decide whether to take a protective action against rain.
Howe and Cochrane (1974) study the decision problem faced by authorities under a
snow storm forecast. While information acquisition is absent in their model, their
empirical observation on the “reluctance on the part of snow removal authorities
to be sensitive to any but very severe forecasts in making operation decisions” is
consistent with the optimal policy in the current paper. Brookshire et al. (1985)
show that the expected utility hypothesis is a reasonable description of decision-
making behavior facing a low-probability, high-loss event of an earthquake. Lewis
and Nickerson (1989) study the interaction of self-insurance and public interventions
against natural disasters.

Second, the value of strategic ignorance is highlighted in dynamic contracting
problems where the lack of commitment leads to renegotiation. Dewatripont and
Maskin (1995) demonstrate the optimality of simple contracts that depend on the
limited observation of variables. Cremer (1995) studies a dynamic principal-agent
model with adverse selection and shows that the principal may refrain from acquiring
information about the intrinsic productivity of an agent. Also in a principal-agent
model with adverse selection, Kessler (1998) shows that an agent may optimally
choose to remain ignorant about the state before contracting with a principal.4 Our
model shares with these models the feature that the principal cannot commit to his
action under perfect information.5 On the other hand, our main innovation is that
we study the optimal degree of information imperfection and show that it can be a
useful commitment device even when complete ignorance is not.

Third, information revelation and transparency are analyzed in various contexts.
Among them, the present paper is related to the literature on the value of public
information and government transparency. Beginning with the pioneering work of
Hirschleifer (1971), the main theme of the literature is whether or not full disclosure
of a government’s private information induces an inefficient level of coordination

4Carrillo and Mariotti (2000) present another logic behind strategic ignorance by a decision

maker with time-inconsistent preferences.
5Bester and Strausz (2000) study the possible failure of the revelation principle in such a problem.

See also Skreta (2006). However, the problem of soliciting agents’ private information is absent in

our model since it is the principal who has private information in our model.
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by the public.6 While the literature is inconclusive as to whether transparency
is socially optimal, the common assumption there is that a government’s private
information is exogenous. In contrast, we endogenize private information, and point
to the possibility that it may be strictly less than what is potentially available.

3 Model

There are a principal (player 1) and an agent (player 2) facing the risk of a shock.
The shock corresponds to one of the two states of the world ω ∈ Ω: The shock
occurs in state ω = 1 and does not in state ω = 0. The prior probability of the
shock equals p = P (ω = 1) ∈ (0, 1). Before the state is realized, each player i either
“takes action” (ai = 1) or not (ai = 0) against the shock. We suppose that the
principal and the agent take their actions simultaneously after the disclosure.7 The
players’ payoffs depend on the action profile and the state. Specifically, player i’s
payoff under the action profile a = (a1, a2) in state ω is given by

vi(a, ω) = ui(a)1{ω=1} − ci 1{ai=1},

where 1A denotes the indicator function of event A. Hence, the players benefit from
the actions only when there is a shock (ω = 1), but incur the cost ci of taking action
even when there is no shock. Let

d0
1 = u1(1, 0) − u1(0, 0), d1

1 = u1(1, 1) − u1(0, 1),

d0
2 = u2(0, 1) − u2(0, 0), d1

2 = u2(1, 1) − u2(1, 0),

m0
1 = u1(0, 1) − u1(0, 0), m1

1 = u1(1, 1) − u1(1, 0).

d1
1 is the marginal benefit of his own action a1 = 1 to the principal when the agent

also chooses a2 = 1, and d0
1 is the marginal benefit of a1 = 1 when it is unilaterally

taken. d0
2 and d1

2 are the corresponding quantities for the agent. m0
1 and m1

1 are
the marginal benefits of agent’s action to the principal when the principal himself

6See, for example, Morris and Shin (2002) and Svensson (2006). Walsh (2007) analyzes the

optimality of transparency when the quality of private information is varied.
7If the principal moves after the agent, it becomes more difficult to induce the agent to take

action because the agent’s inaction can more easily force the principal to take action. However,

our conclusion holds true even with sequential moves if the agent is reinterpreted as a continuum

of individuals none of whom can influence the principal’s decision.
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chooses a1 = 0 and a1 = 1, respectively. We assume that

d0
1 ≥ d1

1 > c1 > 0, (1)

d0
2 > d1

2 > 0, (2)

m0
1 > d0

1 − c1. (3)

(1) and (2) show that the two players’ actions are strategic substitutes: The marginal
benefit of the own action is higher when it is unilateral. (1) also says that a1 = 1
is a dominant action for the principal in the event of a sure shock. We study two
different possibilities concerning the magnitude of d0

2 and d1
2 relative to c2. The

agent has a free-riding incentive if

d1
2 < c2 < d0

2,

and has no free-riding incentive if d1
2 ≥ c2. (3) says that for the principal, the

marginal benefit of the agent’s unilateral action is higher than the net marginal
benefit of his own unilateral action. For concreteness, we also assume in what
follows that

d0
2

c2
>

d0
1

c1
. (4)

In other words, when normalized by its cost, the agent’s (unilateral) action raises
his own utility more effectively than the principal’s (unilateral) action raises his own
utility.

0 1

θ

ω = 0 ω = 1

Figure 1: The signal distributions in states ω = 0 and ω = 1

The timing of the events is as follows. First, the principal chooses the forecasting
technology r that determines the precision of his private information θ. We suppose
that under the technology r ≥ 0, the principal observes signal θ given by

θ = 1{ω=1} + rε,
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where ε is a random noise term independent of ω and having positive density f

over R. As seen in Figure 1, hence, the distribution of the signal θ shifts up in
the state where the shock strikes. r represents the level of noise, and we say that
the technology r is perfect if r = 0 and imperfect otherwise. If we denote by F

the cumulative distribution of ε, then the distribution Fω,r of the signal θ under
technology r > 0 in state ω is expressed as

Fω,r(θ) = F

(
θ − 1{ω=1}

r

)
.

We assume that the corresponding density fω,r of θ satisfies the monotone likelihood
ratio property as follows:

x < y ⇒ f1,r(x)
f0,r(x)

<
f1,r(y)
f0,r(y)

We also assume that limx→−∞
f1,r(x)
f0,r(x) = 0 and limx→∞

f1,r(x)
f0,r(x) = ∞.

After observing θ, the principal makes a non-binding advice to the agent on which
action to take. Both parties then choose actions simultaneously. The principal’s
action choice is based on his signal θ, while the agent’s action choice is based on the
principal’s advice. Finally, the state is realized and the players receive payoffs.

The principal’s choice of an advice given the observation of θ is expressed by
a disclosure rule g : R → A2: g(θ) is the action suggested to the agent when
θ is observed. The principal’s policy is a pair (r, g) of his forecasting technology
and disclosure rule. We do not impose any restriction on the functional form of
the disclosure rule g. For example, it may advise action a2 = 1 for θ above some
threshold and a2 = 0 below it, or a2 = 1 for θ in some interval and a2 = 0 otherwise.
By the logic of the revelation principle, it entails no loss of generality to assume that
the disclosure rule g generates an advice to the agent and hence takes values in A2.8

We assume that the policy (r, g) is chosen in advance and is publicly announced.
Public observability of the forecasting technology r is a reasonable assumption given
that it usually entails publicly observable activities such as launching a satellite,
building a supercomputer or a network of sensors, and so on. We also assume that
the principal commits to his disclosure rule g in the sense that for any signal θ, his
advice equals g(θ).9

8That is, even if g reveals more information, any such information is associated with one of two

actions θ by the agent. Hence, the principal can perform this conversion on behalf of the agent and

advise on the action instead.
9This is a standard assumption in the information revelation literature, and is most likely justified

8



Given a policy (r, g), each player’s strategy is defined as follows. The principal’s
strategy σ1 : R → A1 chooses an action as a function of the observed signal θ. On
the other hand, the agent’s strategy σ2 : A2 → A2 chooses an action as a function
of the principal’s advice. Let σ∗

2 denote the obedient strategy such that σ∗
2(a2) = a2

for any a2 ∈ A2. Let πi(σ | r, g) denote player i’s ex ante expected payoff under the
strategy profile σ = (σ1, σ2) and the policy (r, g). Explicitly, they are given by

π1(σ | r, g) = Eω,θ

[
u1 (σ1(θ), σ2(g(θ))) 1{ω=1} − c11{σ1(θ)=1}

]

π2(σ | r, g) = Eω,θ

[
u2 (σ1(θ), σ2(g(θ))) 1{ω=1} − c21{σ2(g(θ))=1}

]
.

(5)

The strategy profile σ is an equilibrium under (r, g) if πi(σ | r, g) ≥ πi(σ′
i, σj | r, g)

for any σ′
i and i �= j. A policy (r, g) is incentive compatible if there exists a strategy

σ1 of the principal such that (σ1, σ
∗
2) is an equilibrium under (r, g).

A policy (r, g) is optimal if it is incentive compatible and maximizes π1(σ | r, g)
where σ is an equilibrium under (r, g). Formally, (r, g) is optimal if there exists σ1

such that σ = (σ1, σ
∗
2) is an equilibrium under (r, g), and for any policy (r′, g′) and

any equilibrium σ′ under (r′, g′), we have

π1(σ | r, g) ≥ π1(σ′ | r′, g′).

4 Perfect Information and Complete Obscurity

We begin with the analysis of the principal’s payoffs when he adopts the perfect
technology r = 0, and when he adopts the completely uninformative technology
r = ∞.

First, in the case of the perfect technology, the principal observes either θ = 0
or θ = 1. It follows that the disclosure rule is either revealing g(0) �= g(1), or non-
revealing g(0) = g(1). The following proposition makes a simple observation that
if the agent knows that the principal knows the state, he knows that the principal
takes action in state 1. Hence, the free-riding agent does not take action in state
1 as a best response against the principal’s taking action. This suggests that any
incentive compatible disclosure rule must be non-revealing and advise no action
whether θ = 0 or 1.

for disclosure by a public sector, where adherence to the publicly announced rule is verifiable through

official documents.
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Proposition 1 Suppose that (r, g) is an incentive compatible policy with perfect
information r = 0 and admits an equilibrium σ = (σ1, σ

∗
2).

1. If the agent has no free-riding incentive (d1
2 ≥ c2), then

(σ1(θ), g(θ)) =

⎧⎨
⎩

(1, 1) if θ = 1,

(0, 0) otherwise,

and
π1(σ | r, g) = p{u1(1, 1) − c1}.

2. If the agent has a free-riding incentive (d1
2 < c2), then

(σ1(θ), g(θ)) =

⎧⎨
⎩

(1, 0) if θ = 1,

(0, 0) otherwise,

and the principal’s ex ante expected equilibrium payoff equals

π1(σ | r, g) = p{u1(1, 0) − c1} ≡ π0
1 .

Proof. Suppose that the agent has a free-riding incentive. Whether g is revealing
or not, the principal’s equilibrium strategy σ1 is as stated in the proposition. If g is
revealing (g(0) �= g(1)), the agent chooses a2 = 0 for any advice: When θ = 1, the
unique NE is (a1, a2) = (1, 0) and when θ = 0, the unique NE is (0, 0). Hence, (r, g)
cannot be incentive compatible, and g must be no-revealing. If g is no-revealing,
the agent chooses a2 so as to maximize

E[u2(a1 = 1, a2)1{θ=1}] − c21{a2=1} = pu2(1, a2) − c21{a2=1}.

The maximizer is a2 = 0 by assumption. Hence, the disclosure rule must be such that
g(·) = 0 for (r, g) to be incentive compatible. The principal’s expected equilibrium
payoff then equals p{u1(1, 0) − c1}.

On the other hand, when the agent has no free-riding incentive, then acquiring
perfect information does not prevent the agent from taking action, and the principal
can recommend a2 = 1 if and only if θ = 1.

Next, when the principal adopts the completely uninformative technology, we
have the following observation.
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Proposition 2 Suppose that (r, g) is an optimal incentive compatible policy with
no information r = ∞, and admits an equilibrium σ = (σ1, σ

∗
2).

1. If the agent has no free-riding incentive, then

(σ1, g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 0) if p < c2
d0
2

(0, 1) if c2
d0
2
≤ p < c1

d1
1
,

(1, 0) if c1
d1
1
≤ p < max

{
c1
d1
1
, c2

d1
2

}
,

(1, 1) if p ≥ max
{

c1
d1
1
, c2

d1
2

}
,

and

π1(σ | r, g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

pu1(0, 0) if p < c2
d0
2
.

pu1(0, 1) if c2
d0
2
≤ p < c1

d1
1
,

pu1(1, 0) − c1 if c1
d1
1
≤ p < max

{
c1
d1
1
, c2

d1
2

}
,

pu1(1, 1) − c1 if p ≥ max
{

c1
d1
1
, c2

d1
2

}
.

2. If the agent has a free-riding incentive (i.e., c2
d1
2

> 1), then

(σ1, g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(0, 0) if p < c2
d0
2

(0, 1) if c2
d0
2
≤ p < c1

d1
1
,

(1, 0) if p ≥ c1
d1
1
,

and

π1(σ | r, g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pu1(0, 0) if p < c2
d0
2
.

pu1(0, 1) if c2
d0
2
≤ p < c1

d1
1
,

pu1(1, 0) − c1 if p ≥ c1
d1
1
.

Proof. The principal’s dominant action equals a1 = 1 if p > c1
d1
1
, and a1 = 0 if

p < c1
d0
1
. When c1

d0
1
≤ p < c1

d1
1
, his best response is a1 = 1 if a2 = 0, and a1 = 0 if

a2 = 1. On the other hand, the agent’s best response against a1 = 0 equals a2 = 1 if
c2
d0
2

< p < c1
d0
1
, and a2 = 0 for p < c2

d0
2
. If the agent has a free-riding incentive, hence,

the action profile should be a = (1, 0) for p > c1
d1
1
, and either a = (1, 0) or (0, 1) for

c1
d0
2
≤ p < c1

d1
1
. By (3), the optimal policy should have a = (0, 1) in this case. The

disclosure rule g is accordingly determined, and the principal’s expected equilibrium
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payoff is as given in the proposition. The argument is similar when the agent has
no free-riding incentive.

It immediately follows from Propositions 1 and 2 that against a free-riding agent,
no information dominates perfect information when the prior probability of the
shock is moderately high ( c2

d0
2

< p < c1
d0
1
) since m1 > d0

1−c1 by assumption and hence

pu1(0, 1) > p{u1(1, 0) − c1}.

When the prior probability is low (p < c2
d0
2
), perfect information is better than no

information since d0
1 > c1 by assumption and hence

pu1(0, 0) < p{u1(1, 0) − c1}.

When the agent has no free-riding incentive, on the other hand, perfect information
is not only better than no information but also is optimal among all policies given
that the principal’s payoff in state 1 cannot be improved further because u1(1, 1) −
c1 > u1(0, 1) > u1(1, 0) − c1 > u1(0, 0).

The following corollary summarizes this observation.

Corollary 3 1. If the agent has no free-riding incentive, then perfect informa-
tion policy (r, g) as described in Proposition 1 is optimal among all policies.

2. If the agent has a free-riding incentive, then the following hold.

(a) If p ≤ c2
d0
2

or p > c1
d0
1
, then perfect information (r = 0) yields the higher

expected payoff to the principal than no information (r = ∞).

(b) If p ∈
(

c2
d0
2
, c1

d0
1

)
, then no information yields the higher expected payoff

than perfect information.

We can interpret the observation in 2(b) above as one expression of the value of
strategic ignorance as discussed in the literature mentioned in Section 2.

5 Optimal Policy under Imperfect Information

In this section, we fix an imperfect forecasting technology r ∈ (0,∞), and ask what
type of disclosure rule g makes (r, g) both incentive compatible and optimal subject
to the technology. This result is of interest in its own right when acquiring perfect
information is technologically infeasible. The analysis is independent of whether the
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agent has a free-riding incentive or not. We use the characterization derived here to
identify an imperfect policy that dominates perfect information in the next section.

Introduce the following notation:

δ0
1 = d0

1
c1

− 1, δ1
1 = d1

1
c1

− 1,

δ0
2 = d0

2
c2

− 1, δ1
2 = d1

2
c2

− 1,

μ0
1 = m0

1
c1

, μ1
1 = m1

1
c1

.

δ0
1 is the net marginal benefit for the principal of his own action normalized by its

cost when the agent does not take action, and δ1
1 is the corresponding quantity when

the agent takes action. δ0
2 and δ1

2 have similar interpretations. μ0
1 is the normalized

marginal benefit for the principal of the agent’s action. Let β0 and β1 be defined
by the values of θ such that

P (ω = 1 | θ = β0) =
c1

d0
1

, and P (ω = 1 | θ = β1) =
c1

d1
1

.

These are equivalent to

f0,r(β0)
f1,r(β0)

=
pδ0

1

1 − p
and

f0,r(β1)
f1,r(β1)

=
pδ1

1

1 − p
. (6)

Since by assumption, f0,r(θ)
f1,r(θ) strictly decreases from ∞ to 0 as θ varies from −∞ to

∞, β0 and β1 are well-defined and unique, and satisfy β0 < β1 since δ1
1 < δ0

1 . It can
be verified that β0 is the signal value at which the principal is exactly indifferent
between taking action and not when the agent does not take action. Likewise, β1 is
the signal value at which the principal is indifferent when the agent takes action:

θ = β0 ⇔ Eω

[
u1(1, 0)1{ω=1} − c1 | θ

]
= Eω

[
u1(0, 0)1{ω=1} | θ

]
,

θ = β1 ⇔ Eω

[
u1(1, 1)1{ω=1} − c1 | θ

]
= Eω

[
u1(0, 1)1{ω=1} | θ

]
.

(7)

It follows that the principal always takes action when θ > β1, and that he never takes
action when θ < β0. The following proposition characterizes an optimal disclosure
rule g and the associated equilibrium σ given r > 0.

Proposition 4 Suppose that (r, g) is an optimal incentive compatible policy with
r ∈ (0,∞) and admits an equilibrium σ = (σ1, σ

∗
2). Then there exist α, ν and γ

13



such that α ≤ β0 ≤ ν ≤ β1 ≤ γ ≤ ∞ and

(σ1(θ), g(θ)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0, 0) for almost every θ ∈ (−∞, α),

(0, 1) for almost every θ ∈ [α, β0) ∪ [ν, β1),

(1, 0) for almost every θ ∈ [β0, ν) ∪ [β1, γ),

(1, 1) for almost every θ ∈ [γ,∞).

Proposition 4 is illustrated in Figure 2. In each one of the three intervals
(−∞, β0), (β0, β1), and (β1,∞), the optimal disclosure rule advises the agent to
take action when the signal is in the upper portion of the interval. The proposition
also suggests that the problem of finding an optimal disclosure rule can be reduced
to the problem of finding the optimal thresholds α, ν and γ.

θ
α β0 β1 γν

(σ1(θ), g(θ)) =

(0,1) (1,0) (0,1) (1,0) (1,1)(0,0)

Figure 2: Optimal disclosure rule under imperfect information

6 Optimality of Obscurity for a Free-Riding Agent

Given the observation in Corollary 3 that against a free-riding agent, no information
dominates perfect information when the prior probability of a shock is moderately
high p ∈

(
c2
d0
2
, c1

d0
1

)
, we now focus on the case where it is low:

p ∈
(

0,
c2

d0
2

]
. (8)

For such a p, we will identify conditions on the payoffs under which there exists a
policy (r, g) with r > 0 that dominates perfect information.

For concreteness, we assume in what follows that the noise term in θ has the
standard normal distribution N(0, 1) over R. It follows that when the principal
adopts technology r > 0, θ has the normal distribution with mean μ = 1{ω=1} and
variance r2 in state ω.

14



Theorem 5 Suppose that the agent has a free-riding incentive. Suppose further
that μ0

1 − δ0
1 − δ1

1 > 0 and that

μ0
1

μ0
1 − δ0

1 − δ1
1

<

(
δ0
2

δ1
1

) 1
2

. (9)

Then for any prior probability p ∈
(
0, c2

d0
2

)
, there exists r > 0 such that for (σ1, g)

given below, (r, g) is incentive compatible, admits an equilibrium σ = (σ1, σ
∗
2), and

yields a strictly higher payoff to the principal than perfect information.

σ1(θ) =

⎧⎨
⎩

1 if θ ≥ β,

0 otherwise,
g(θ) =

⎧⎨
⎩

1 if θ ∈ [α, β),

0 otherwise,

where α is given by P (ω = 1 | θ = α) = c2
d0
2
, or equivalently,

f0(α)
f1(α)

=
pδ0

2

1 − p
, (10)

and β equals β1 defined in (6).

According to the policy described in the theorem, the principal takes action
himself and advises no action to the agent when taking action is a dominant strategy
for him, and takes no action and advises the agent to take action when a = (0, 1) is an
equilibrium action. This disclosure rule belongs to the class identified in Proposition
4.10 We can also see that this disclosure rule is equivalent to the full revelation of
θ as follows: If the agent also observes θ, a = (0, 1) is an equilibrium action profile
when the posterior probability P (ω = 1 | θ) ∈ [ c2

d0
2
, c1

d1
1
). Likewise, a = (1, 0) is

an equilibrium when P (ω = 1 | θ) > c1
d1
1
, and a = (0, 0) is an equilibrium when

P (ω = 1 | θ) < c2
d0
2
. In other words, this policy is transparent in the communication

stage although it entails imperfection at the information acquisition stage.
Clearly, the cost of imperfect information for the principal is the cost of wasted

effort in state 0. On the other hand, the benefit is that he can commit to no
action and have the agent take action when the risk is medium and a = (0, 1) is
an equilibrium. The point is whether the probability of observing such a signal is
made sufficiently large compared with the probability of observing a high signal in
state 0. The above proposition shows that this is possible when the signal quality
is appropriately chosen provided that the payoffs satisfy the stated conditions.

10Specifically, set γ = ∞ and ν = β0 in Proposition 4.
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The sufficient conditions in Theorem 5 are strictly in terms of the payoffs and
independent of the prior probability p. The condition (9) clearly holds when δ0

2

is sufficiently large so that the agent has a strong incentive to make effort in the
absence of the principal’s effort. Alternatively, it holds when the agent’s action has
a significant positive impact on the principal’s payoff. For example, suppose that
the principal’s payoff is written in the form u1(a) = (d0

2 − a2)a1 + m0
1a2, where

m0
1 = u1(0, 1) − u1(0, 0) is the benefit of the agent’s action for the principal. As

m0
1 increases, so does μ0

1 = m0
1

c1
, while δ0

1 and δ1
1 remain unchanged. Thus, the left-

hand side of (9) decreases, and the conditions of the theorem will eventually hold.
These qualitative interpretations of (9) are in line with the cost-benefit analysis of
imperfect information described above: The range ( c2

d0
2
, c1

d1
1
) of posterior probabilities

is where the principal takes no action and lets the agent take action. Hence, the
principal is better off if d0

2 is larger so that this interval is larger, or when he receives
a significant benefit from the agent’s unilateral action.

For illustration, Figure 3 depicts the difference π1(σ | r, g) − π0
1 divided by the

prior probability p of a shock as a function of p when the payoff numbers are given
by11

u1(1, 1) = 212, u1(0, 1) = 201, u1(1, 0) = 12, u1(0, 0) = 0,

u2(0, 1) = 29, u2(0, 0) = 0, and c1 = c2 = 1.

7 Information about the Severity of a Shock

In many circumstances, the severity of a shock is also a primary object of a forecast
along with its probability of occurrence. We study in this section what happens
when the principal can acquire and disclose information about both the probability
and severity of a shock. Among different ways of modeling severity, we define
in what follows that the shock is severe if the agent has no free-riding incentive,
and not severe otherwise. The interpretation is that when the shock is severe, the
agent cannot simply rely on the principal to mitigate the damage. Given that the
conclusions in the preceding sections depend on whether the agent has a free-riding

11Note that perfect information yields
π0
1
p

= u1(1, 0) − c1 = 11, and that u2(1, 1) and u2(1, 0)

are not relevant for the computation of π1(σ | r, g). We have δ0
1 = 11, δ1

1 = 10, μ0
1 = 201,

and δ0
2 = 28, and the conditions of the theorem are satisfied since μ0

1 − δ0
1 − δ1

1 = 180 > 0, and

μ0
1

μ0
1−δ0

1−δ1
1

= 67
60

<
“

δ0
2

δ1
1

” 1
2

=
`

7
5

´ 1
2 . The upper bound of p as indicated in (8) equals c2

d0
2

= 1
29

; 0.034,

which corresponds to the right-end of the horizontal axis in Figure 3.
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Figure 3: 1
p (π1(σ | r, g) − π0

1) plotted against p

incentive, we think that introducing uncertainty about this incentive provides an
interesting exercise.

Formally, suppose that the state is now given by a vector ω = (ωp, ωq) ∈ {0, 1}2,
where ωp denotes whether a shock occurs and ωq denotes whether it is severe. That
is, ωp = 1 if the shock occurs and ωq = 1 if it is severe.12 Let q ∈ (0, 1) denote the
probability that the shock is severe conditional on its occurrence. Hence, we have
P (ω = (1, 0)) = p(1 − q) and P (ω = (1, 1)) = pq. For simplicity, we assume that
only the agent’s utility function u2 depends on ωq, and satisfies

d0
2(ωq) ≡ u2(0, 1, ωq) − u2(0, 0, ωq) > c2 for ωq = 0, 1,

and

d1
2(ωq) ≡ u2(1, 1, ωq) − u2(1, 0, ωq)

⎧⎨
⎩

> c2 for ωq = 1,

< c2 for ωq = 0.

In other words, when the shock is certain and is severe (i.e, in state ω = (1, 1)), the
agent’s best response against a1 = 1 is to take action. When it is not severe, his
best response against a1 = 1 is to take no action.

Suppose now that the principal can acquire information about both ωp and ωq.
When we denote by rp and rq the principal’s technologies used to forecast ωp and

12The two states ω = (0, 0) and (0, 1) are identified since no shock occurs in these states.
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ωq, respectively, his private signal θ is given by

θp = 1{ωp=1} + rpεp, and θq = 1{ωq=1} + rqεq,

where εp and εq are independent random variables having the standard normal dis-
tribution N(0, 1). The distribution of θp shifts up in the state where the shock
occurs and that of θq shifts up in the state where it is severe. A disclosure rule g

is a mapping from R2 to A2, so that g(θp, θq) is an advice to the agent when the
signal pair is θ = (θp, θq). We suppose that rp and rq are chosen simultaneously,
and are interested in determining whether the principal is better off acquiring im-
perfect information about either ωp or ωq (r = (rp, rq) �= 0) than acquiring perfect
information about both (r = 0).

Consider first the principal’s expected payoff under perfect information r = 0.
In this case, it is readily seen that the optimal incentive compatible policy (r, g),
the equilibrium strategy σ = (σ1, σ

∗
2), and the corresponding expected payoff of the

principal are given as follows:

1. When q ≥ c2−δ1
2(0)

δ1
2(1)−δ1

2(0)
,

(σ1(θ), g(θ)) =

⎧⎨
⎩

(1, 1) if θ = (1, 1) or (1, 0),

(0, 0) otherwise,

and π1(σ | r, g) = p{u1(1, 1) − c1}.

2. When q <
c2−δ1

2(0)

δ1
2(1)−δ1

2(0)
,

(σ1(θ), g(θ)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1) if θ = (1, 1),

(1, 0) if θ = (1, 0),

(0, 0) otherwise,

and π1(σ | r, g) = p{qu1(1, 1) + (1 − q)u1(1, 0) − c1} = π0
1.

13

Note that when the ex ante probability of a severe shock is high, it is optimal
for the principal to reveal no information about ωq even if he observes it. Since
acquisition of no information about ωq yields the same result in this case, we will
focus on the case where the probability q is low.

13We don’t consider a random policy that generates advice a2 = 1 with positive probability when

θq = 0 to make the agent just indifferent between taking action and not. We think that such a

policy lacks credibility and is unrealistic.
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Proposition 6 Suppose that q <
c2−δ1

2(0)

δ1
2(1)−δ1

2 (0)
. Then there exists an imperfect in-

formation policy (r, g) with rq > 0 that is incentive compatible and yields a higher
expected equilibrium payoff to the principal than perfect information r = (rp, rq) = 0.

We again observe the optimality of imperfect information. The policy (r, g) that
dominates perfect information in this case has rp = 0 and rq > 0, and advises a2 = 1
when θq ≥ α for some threshold α. Since rp = 0, this policy entails no wasted effort
on the part of the principal. The principal in this model wants to convince the
agent that ωq = 1 in both states. When the technology rq and threshold α are
appropriately chosen, we can show that the probability P (θq ≥ α | ωq = 0) that the
agent takes action in state 0 is made sufficiently large compared with the probability
P (θq < α | ωq = 1) that the agent takes no action in state 1. We are yet to see if
the optimal policy has imperfect information about both ωp and ωq.

8 Conclusion

In a model of information acquisition and disclosure, we show that endogenous
information about the risk of a shock may be imperfect when the agent may free
ride on the principal’s preparation efforts. For a shock with moderately high prior
probability, the principal prefers no information to perfect information. On the
other hand, for a shock with small prior probability, the principal prefers perfect
information to no information, but the optimal policy may entail a strictly positive
degree of imperfection. Specifically, we show that the full revelation of imperfect
information may outperform perfect information.

The model adopts an extreme assumption that a perfectly informative signal is
costlessly available to the principal. Of course, positive cost of information acquisi-
tion only reinforces the main conclusion of the paper. When acquisition of perfect
information is technologically infeasible, the relevant question is whether the opti-
mal information is less precise than what is technologically feasible. The answer
naturally depends on the parameters, but the basic intuition of the present analysis
continues to be valid.

The scientific assessment of a risk is often very difficult to communicate to non-
experts. Furthermore, it is often observed that individuals overreact to a small
probability risk in some cases, and undermine a moderately high probability risk in
other cases. In this sense, the biggest challenge for the sender of information may
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be to induce the right action from the receivers taking into account the imperfection
and bias in their information processing.14 Theoretical investigation into such a
process would be an interesting topic of future research.

Appendix

Proof of Proposition 4 Since σ = (σ1, σ
∗
2) is an equilibrium under (r, g), we

have σ1(θ) = 1 if

Eω

[
u1(1, g(θ))1{ω=1} | θ

]
− c1 > Eω

[
u1(0, g(θ))1{ω=1} | θ

]
,

or equivalently
{u1(1, g(θ)) − u1(0, g(θ))}P (ω = 1 | θ) > c1.

Since d0
1 > d1

1 by assumption, σ1(θ) = 1 must hold if

P (ω = 1 | θ) =
pf1(θ)

pf1(θ) + (1 − p)f0(θ)
>

c1

d1
1

,

which is equivalent to θ > β1. Likewise, we have σ1(θ) = 0 if θ < β0. We can also
conclude from these that

θ > β1 ⇒ (σ1(θ), g(θ)) ∈ {(1, 0), (1, 1)}
θ ∈ (β0, β1) ⇒ (σ1(θ), g(θ)) ∈ {(1, 0), (0, 1)}

θ < β0 ⇒ (σ1(θ), g(θ)) ∈ {(0, 0), (0, 1)}
(11)

We next show that there exists ν ∈ [β0, β1] such that g(θ) = 0 for almost every
θ ∈ (β0, ν) and g(θ) = 1 for almost every θ ∈ (ν, β1). The proofs for the existence
of α and γ as stated in the theorem are almost identical and omitted.

Fix (r, g) such that r > 0. Let

B0 = {θ ∈ R : g(θ) = 0}, and B1 = {θ ∈ R : g(θ) = 1}.

We claim that if g is optimal, then for any x ∈ (β0, β1),

P (θ ∈ (β0, x) ∩ B1) > 0 ⇒ P (θ ∈ (x, β1) ∩ B0) = 0. (12)

Intuitively, (12) states that when g advises a2 = 1 for some signal θ, then it should
advise a2 = 1 for almost every signal above θ.

14See, for example, Eggers and Fischhoff (2004) and Fischhoff (1994, 2011) for the discussion of

communication strategies when the receivers have limited capabilities.
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Suppose to the contrary that P (θ ∈ (β0, x)∩B1) > 0 but P (θ ∈ (x, β1)∩B0) > 0
for some such x. We will show that (r, g) is dominated by an alternative policy. Take
D1 ⊂ (β0, x) ∩ B1 and D0 ⊂ (x, β1) ∩ B0 such that

P (θ ∈ D0 | ω = 0) = P (θ ∈ D1 | ω = 0) > 0. (13)

Define B̂1 and B̂0 by

B̂1 ≡ B1 ∪ D0 \ D1,

B̂0 ≡ B0 ∪ D1 \ D0,

and σ̂ = (σ̂1, σ
∗
2) and ĝ by

(ĝ(θ), σ̂1(θ)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 0) if θ ∈ D0,

(0, 1) if θ ∈ D1,

(g(θ), σ1(θ)) otherwise.

In other words, (σ1, g) and (σ̂1, ĝ) are switched on the sets D0 and D1, but are the
same otherwise.

Since every element of D0 is larger than any element of D1, the monotone like-
lihood ratio property implies that

P (θ ∈ D0 | ω = 1)
P (θ ∈ D0 | ω = 0)

>
P (θ ∈ D1 | ω = 1)
P (θ ∈ D1 | ω = 0)

.

We hence have
P (θ ∈ D0 | ω = 1) > P (θ ∈ D1 | ω = 1).

We now claim that

P (θ < β1, ω = 1 | θ ∈ B̂1) > P (θ < β1, ω = 1 | θ ∈ B1),

P (ω = 1 | θ ∈ B̂1) > P (ω = 1 | θ ∈ B1),

P (θ > β1, ω = 1 | θ ∈ B̂1) < P (θ > β1, ω = 1 | θ ∈ B1),

P (ω = 1 | θ ∈ B̂1) < P (θ > β1, ω = 1 | θ ∈ B1).

(14)
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The first inequality in (14) holds because

P (θ < β1, ω = 1 | θ ∈ B̂1)

=
pP (θ ∈ (−∞, β1) ∩ B̂1 | ω = 1)

P (θ ∈ B̂1)

=
pP (θ ∈ (−∞, β1) ∩ (B1 ∪ D0 \ D1) | ω = 1)

P (θ ∈ B1 ∪ D0 \ D1)

=
p
{
P (θ ∈ (−∞, β1) ∩ B1 | ω = 1) + P (θ ∈ D0 | ω = 1) − P (θ ∈ D1 | ω = 1)

}
P (θ ∈ B1) + P (θ ∈ D0) − P (θ ∈ D1)

=
pP (θ ∈ (−∞, β1) ∩ B1 | ω = 1) + p

{
P (θ ∈ D0 | ω = 1) − P (θ ∈ D1 | ω = 1)

}

P (θ ∈ B1) + p
{

P (θ ∈ D0 | ω = 1) − P (θ ∈ D1 | ω = 1)
}

> P (θ < β1, ω = 1 | θ ∈ B1),

where the last equality follows from (13). The derivation of the other inequalities in
(14) is similar. Together, these inequalities show that if (r, g) is incentive compatible,
then so is (r, ĝ). To see this, note that (r, g) is incentive compatible if

d0
2P (θ < β1, ω = 1 | θ ∈ B1) + d1

2P (θ > β1, ω = 1 | θ ∈ B1) ≥ c2,

d0
2P (θ < β1, ω = 1 | θ ∈ B0) + d1

2P (θ > β1, ω = 1 | θ ∈ B0) ≤ c2,

and that (r, ĝ) is incentive compatible if

d0
2P (θ < β1, ω = 1 | θ ∈ B̂1) + d1

2P (θ > β1, ω = 1 | θ ∈ B̂1) ≥ c2,

d0
2P (θ < β1, ω = 1 | θ ∈ B̂0) + d1

2P (θ > β1, ω = 1 | θ ∈ B̂0) ≤ c2.

If (14) holds, then

P (θ < β1, ω = 1 | θ ∈ B̂1) − P (θ < β1, ω = 1 | θ ∈ B1)

+ P (θ > β1, ω = 1 | θ ∈ B̂1) − P (θ > β1, ω = 1 | θ ∈ B1)

= P (ω = 1 | θ ∈ B̂1) − P (ω = 1 | θ ∈ B1) > 0

Hence,

d0
2

{
P (θ < β1, ω = 1 | θ ∈ B̂1) − P (θ < β1, ω = 1 | θ ∈ B1)

}

+ d1
2

{
P (θ > β1, ω = 1 | θ ∈ B̂1) − P (θ > β1, ω = 1 | θ ∈ B1)

}

> (d0
2 − d1

2)
{

P (θ < β1, ω = 1 | θ ∈ B̂1) − P (θ < β1, ω = 1 | θ ∈ B1)
}

> 0.
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It follows that the first condition for the incentive compatibility of (r, g) implies
that of (r, ĝ). Likewise, the second condition for the incentive compatibility of (r, g)
implies that of (r, ĝ) under (14).

Note now that the principal’s payoff under (r, g) and σ can be written as

π1(σ | r, g) =p
[
{u1(1, 0) − c1}P (θ ∈ (β0, β1) ∩ B0 | ω = 1)

+ u1(0, 1)P (θ ∈ (β0, β1) ∩ B1 | ω = 1)
]

− (1 − p)c1P (θ ∈ (β0, β1) ∩ B0 | ω = 0)

+ Eω

[{u1(σ1(θ), g(θ))1{ω=1} − c11{σ1(θ)=1}}1{θ/∈(β0,β1)}
]
.

Since

P (θ ∈ (β0, β1) ∩ B̂0 | ω = 1)

= P (θ ∈ (β0, β1) ∩ B0 | ω = 1) + P (θ ∈ D1 | ω = 1) − P (θ ∈ D0 | ω = 1)

< P (θ ∈ (β0, β1) ∩ B0 | ω = 1),

P (θ ∈ (β0, β1) ∩ B̂1 | ω = 1)

= P (θ ∈ (β0, β1) ∩ B1 | ω = 1) + P (θ ∈ D0 | ω = 1) − P (θ ∈ D1 | ω = 1)

> P (θ ∈ (β0, β1) ∩ B0 | ω = 1),

P (θ ∈ (β0, β1) ∩ B̂0 | ω = 0)

= P (θ ∈ (β0, β1) ∩ B0 | ω = 0) + P (θ ∈ D1 | ω = 0) − P (θ ∈ D0 | ω = 0)

= P (θ ∈ (β0, β1) ∩ B0 | ω = 0),

the corresponding expression of π(σ̂ | r, ĝ) implies that we have π1(σ | r, g) < π1(σ̂ |
r, ĝ) when 0 < u1(1, 0) − c1 < u1(0, 1).

We now show that (12) implies the existence of ν as claimed in the proposition. If
P (θ ∈ (β0, x)∩B1) > 0 for some x > β0, then let ν = inf {x : x > β0, P (θ ∈ (β0, x)∩
B1) > 0}. By the definition of ν, we have P (θ ∈ (β0, ν) ∩ B1) = limn→∞ P (θ ∈
(β0, ν − 1

n) ∩ B1) = 0. Furthermore, by (12), we have

P (θ ∈ (ν +
1
n

, β1) ∩ B0) = 0 for every n = 1, 2, . . .

so that P (θ ∈ (ν, β1) ∩ B0) = limn→∞ P (θ ∈ (ν + 1
n , β1) ∩ B0) = 0. If P ((β0, x) ∩

B1) = 0 for every x ∈ (β0, β1), then let ν = β0, and if P ((β0, x) ∩ B1) > 0 for
every x ∈ (β0, β1), then let ν = β1. In each case, hence, we can conclude that if g is
optimal, then there exists ν ∈ [β0, β1] such that g(θ) = 1 for almost every θ ∈ (ν, β1)
and g(θ) = 0 for almost every θ ∈ (β0, ν).
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Proof of Theorem 5 For σ1 and g specified in the theorem, we first verify that
(σ1, σ

∗
2) is an equilibrium under (r, g) for any r > 0: σ1 is a best response to σ∗

2 if

Eω

[
u1(1, g(θ))1{ω=1} | θ

]
− c1 ≤ Eω

[
u1(0, g(θ))1{ω=1} | θ

]
for θ < β, (15)

and

Eω

[
u1(1, g(θ))1{ω=1} | θ

]
− c1 ≥ Eω

[
u1(0, g(θ))1{ω=1} | θ

]
for θ ≥ β, (16)

while σ∗
2 is a best response to σ1 if

Eω,θ

[
u2(0, 1)1{θ∈[α,β),ω=1} | g(θ) = 1

]
− c2

≥ Eω,θ

[
u2(0, 0)1{θ∈[α,β),ω=1} | g(θ) = 1

]
,

(17)

and

Eω,θ

[
u2(1, 0)1{θ∈[β,∞),ω=1} + u2(0, 0)1{θ∈(−∞,α),ω=1} | g(θ) = 0

]

≥ Eω,θ

[
u2(1, 1)1{θ∈[β,∞),ω=1} + u2(0, 1)1{θ∈(−∞,α),ω=1} | g(θ) = 0

]
− c2.

(18)

It is clear from (7) that (15) and (16) hold for β = β1. Moreover, (17) and (18) hold
since g(θ) = 1 if and only if θ ∈ [α, β), and by the definitions of α and β, we have

Eω

[
u2(0, 1)1ω=1} | θ

]
− c2 ≥ Eω

[
u2(0, 0)1{ω=1} | θ

]

for every θ ∈ [α, β),

Eω

[
u2(0, 1)1ω=1} | θ

]
− c2 ≤ Eω

[
u2(0, 0)1{ω=1} | θ

]

for every θ ∈ (−∞, α), and

Eω

[
u2(1, 1)1ω=1} | θ

]
− c2 ≤ Eω

[
u2(1, 0)1{ω=1} | θ

]

for every θ ∈ [β,∞).
We now choose r and evaluate the principal’s equilibrium payoff under (r, g).

Let log denote the natural logarithm and e = 2.713... denote its base. Define

λ =
1
2

log
δ0
2

δ1
1

> 0,

and take k > 1 such that
(

δ0
2

δ1
1

)k

> e, eλ(1− 1
k
e−2λ−k) >

μ0
1

μ0
1 − δ0

1 − δ1
1

, (19)
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where the second inequality is possible by (9). Define r > 0 by

r =
(

pδ1
1

1 − p

)k

, (20)

and α and β as in the Theorem. By definition, we have

f0(β)
f1(β)

=
pδ1

1

1 − p
= r

1
k . (21)

and

r ≤
(

δ1
1

δ0
2

)k

⇔ p ≤ c2

d0
2

. (22)

Under the assumption that ε has the standard normal distribution, it can also be
verified that

β =
1
2
− r2 log

pδ1
1

1 − p
=

1
2
− r2

k
log r, and α =

1
2
− r2 log

pδ0
2

1 − p
= β − 2λr2.

The principal’s ex ante expected payoff from σ = (σ1, σ
∗
2) under (r, g) equals

π1(σ | r, g) = Eω,θ

[
u1(1, 0)1{ω=1,θ≥β} − c11{θ≥β}

+ u1(0, 1)1{ω=1,α≤θ∈[α,β)} + u1(0, 0)1{ω=1,θ<α}
]
.

(23)

Now define

ξ(r) =
δ1
1

c1(1 − p)
{
π1(σ | r, g) − π0

1

}

= r
1
k

{
(μ0

1 − δ0
1)F1(β) − μ0

1F1(α)
} − δ1

1 {1 − F0(β)} .

(24)

Hence, ξ(r) > 0 if and only if the principal’s equilibrium payoff π1(σ | r, g) under
(r, g) strictly exceeds the level π0

1 = p{u(1, 0) − c1} under perfect information. In
what follows, we show that

ξ′(r) ≥ 0 for r ≤
(

δ1
1

δ0
2

)k

, (25)

and that
h ≡ lim

r→0

ξ(r)

r
1
k F1(β)

> 0, (26)

which would together imply that ξ(r) > 0 for 0 < r ≤
(

δ1
1

δ0
2

)k
. In view of (22), this

would prove the theorem.
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Note first that the following inequalities hold under (19):

f1(β)
f1(α)

= eλ{1+2r2(λ+ 1
k

log r)} ≥ eλ(1− 1
k
e−2λ−k) >

μ0
1

μ0
1 − δ0

1 − δ1
1

,

F1(α)
F1(β)

=

∫ α
−∞ f1(θ) dθ∫ β
−∞ f1(θ) dθ

<
f1(α)
f1(β)

.

(27)

Differentiating ξ, we obtain

ξ′(r) = (μ0
1 − δ0

1)F1(β) − μ0
1F1(α)

+ r
1
k
+1

[
(μ0

1 − δ0
1)f1(β)

(
β − 1

r

)′
− μ0

1f1(α)
(

α − 1
r

)′]

+ δ1
1rf0(β)

(
β

r

)′
.

Using (27), we observe that

(μ0
1 − δ0

1)F1(β) − μ0
1F1(α) = F1(β)

{
μ0

1 − δ0
1 − μ0

1

F1(α)
F1(β)

}

> F1(β)
{

μ0
1 − δ0

1 − μ0
1

f1(α)
f1(β)

}

> F1(β)
{

μ0
1 − δ0

1 − μ0
1

μ0
1 − δ0

1 − δ1
1

μ0
1

}

> 0.

On the other hand, since r < e−1 for p ≤ c2
d0
2

by (20) and (22), we have

(
β − 1

r

)′
=

1
2r2

− log r − 1 ≥ 1
2r2

,

(
α − 1

r

)′
=

(
β − 1

r

)′
− 2λ,

(
β

r

)′
=

(
β − 1

r

)′
− 1

r2
.

Using these as well as (21) and (27), we can evaluate ξ′ as

ξ′(p) ≥ rf0(β)

×
[

1
2r2

{
μ0

1 − δ0
1 + δ1

1 − f1(α)
f1(β)

μ0
1

}
+ 2λ − δ1

1

1
r2

]

> r1+ 1
k f1(β)

1
2r2

{
μ1

1 − δ0
1 − δ1

1 − f1(α)
f1(β)

μ0
1

}

> 0.
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This shows (25). To prove (26), we rewrite

ξ(r)

r
1
k F1(β)

=
1
δ1
1

{
μ0

1 − δ0
1 − μ0

1

F1(α)
F1(β)

}
− 1 − F0(β)

r
1
k F1(β)

.

Lemma 7, the definition of λ, and (9) together imply that

lim
r→0

ξ(r)

r
1
k F1(β)

=
1
δ1
1

{
μ0

1 − δ0
1 − μ0

1e
−λ

}
− 1

>
1
δ1
1

{
μ0

1 − δ0
1 − μ0

1

μ0
1 − δ0

1 − δ1
1

μ0
1

}
− 1 = 0.

This completes the proof.

Lemma 7

lim
r→0

F1,r(α)
F1,r(β)

= e−λ, lim
r→0

1 − F0,r(β)

r
1
k F1,r(β)

= 1,

Proof. Note first that

lim
r→0

r2

(
β

r

)′
= lim

r→0
r2

(α

r

)′
= −1

2
,

lim
r→0

r2

(
β − 1

r

)′
= lim

r→0
r2

(
α − 1

r

)′
=

1
2
.

(28)

We also have

lim
r→0

f0(α)
f0(β)

= lim
r→0

e
β2−α2

2r2 = lim
r→0

eλ(2β−2λr2) = eλ, (29)

and

lim
r→0

F1(β)
f1(β)

= lim
r→0

e−
(β−1)2

2r2

(
β−1

r

)′

e−
(β−1)2

2r2 (−1)
(

β−1
r

) (
β−1

r

)′ = lim
r→0

r

1 − β
= 0. (30)

For the first equation, we have

lim
r→0

F1,r(α)
F1,r(β)

= lim
r→0

F
(

α−1
r

)
F

(
β−1

r

) = lim
r→0

f
(

α−1
r

) (
α−1

r

)′
f

(
β−1

r

)(
β−1

r

)′

= lim
r→0

e
(β−1)2−(α−1)2

2r2
r2

(
α−1

r

)′
r2

(
β−1

r

)′

= lim
r→0

eλ(2β−2−2λr2) = e−λ,
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where the second equality follows from L’Hospital’s rule, and the next to the last
equality uses (28). For the second equation, we have by L’Hospital’s rule,

lim
r→0

1 − F0,r(β)

r
1
k F1,r(β)

= lim
r→0

1 − F (β
r )

r
1
k F (β−1

r )

= lim
r→0

−rf0(β)
(

β
r

)′

1
kr

1
k
−1F1(β) + r

1
k
+1f1(β)

(
β−1

r

)′

= lim
r→0

−r f0(β)
f1(β)

(
β
r

)′

1
kr

1
k
−1 F1(β)

f1(β) + r
1
k
+1

(
β−1

r

)′

= lim
r→0

−r2
(

β
r

)′

1
k

F1(β)
f1(β) + r2

(
β−1

r

)′

=
1/2
1/2

= 1,

where the fourth equality follows from (21) and the fifth from (28), (29) and (30).

Proof of Proposition 6 For α ∈ R, let (r, g) and σ = (σ1, σ
∗
2) be such that

rp = 0 and rq > 0, and

(σ1(θ), g(θ)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1, 1) if θp = 1 and θq ≥ α,

(1, 0) if θp = 1 and θq < α,

(0, 0) otherwise.

Then the principal’s ex ante expected payoff under σ and (r, g) is given by

π1(σ | r, g)

= p
[
u1(1, 1)

{
qP (θq ≥ α | ωq = 1) + (1 − q)P (θq ≥ α | ωq = 0)

}

+ u1(1, 0)
{

qP (θq < α | ωq = 1) + (1 − q)P (θq < α | ωq = 0)
}
− c1

]
.

Hence

π1(σ | r, g) − π0
1 = pm1

1

{
−qP (θq < α | ωq = 1) + (1 − q)P (θq ≥ α | ωq = 0)

}
,

where m1
1 = u1(1, 1) − u1(1, 0). Therefore, (r, g) dominates perfect information if

P (θq < α | ωq = 1)
P (θq ≥ α | ωq = 0)

<
1 − q

q
. (31)
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On the other hand, the agent’s incentive conditions are written as

P (ω = (1, 1) | g(θ) = 1) δ1
2(1) + P (ω = (1, 0) | g(θ) = 1) δ1

2(0) ≥ c2, (32)

when he receives the advice g(θ) = 1, and

P (ω = (1, 1) | g(θ) = 0) δ1
2(1) + P (ω = (1, 0) | g(θ) = 0) δ1

2(0) ≤ c2, (33)

when he receives the advice g(θ) = 0. Since qδ1
2(1) + (1 − q)δ1

2(0) < c2 by our
assumption on q, if (32) holds, then (33) must hold as well. Using

P (ωq = 1 | θq ≥ α) =
qP (θq ≥ α | ωq = 1)

qP (θq ≥ α | ωq = 1) + (1 − q)P (θq ≥ α | ωq = 0)
,

we can rewrite (32) as

P (θq ≥ α | ωq = 1)
P (θq ≥ α | ωq = 0)

≥ 1 − q

q

c2 − d1
2(0)

d1
2(1) − c2

. (34)

Now note that

P (θq < α | ωq = 1)
P (θq ≥ α | ωq = 0)

is increasing in r, and → 0 as r → 0 when α <
1
2
,

and that

P (θq ≥ α | ωq = 1)
P (θq ≥ α | ωq = 0)

is decreasing in r, and → ∞ as r → 0.

Hence, if we let α < 1/2 and take r > 0 sufficiently small, then they satisfy both
(31) and (34).
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