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Abstract

We consider the problem of allocating infinitely divisible commodities
among a group of agents. Especially, we focus on the case where there are
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1 Introduction

We consider the problem of allocating infinitely divisible commodities among a
group of agents. We assume that each agent has continuous, strictly convex, and
“separable” preference. A preference is separable if the preference over consumption
of each commodity is not affected by the consumption levels of the other commodi-
ties. A rule is a function which chooses a feasible allocation for each preference
profile.

Preferences are usually private information. Agents may strategically misrep-
resent their preferences to obtain assignments they prefer. As a result, the chosen
allocations may not be socially desirable relative to the agents’ true preferences.
Thus, it is important for a rule to give agents the incentive to represent their pref-
erences truthfully. The condition is called strategy-proofness.1 Our purpose is to
identify the class of strategy-proof rules which yield socially desirable allocations.

In the one-commodity case, it is well-known that the so-called “uniform rule” is
strategy-proof. For this rule, agents are allowed to choose their consumption sub-
ject to a common upper or lower bound, which is chosen so as to attain feasibility.
In this article, we characterize a multiple-commodity version of the uniform rule by
strategy-proofness and the following three axioms. First is unanimity, a weak con-
dition of efficiency. It says that if the sum of the peak amounts of each commodity
is equal to the supply of the commodity, then each agent’s assignment should be
equal to his own peak vector. Second is symmetry, a weak condition of fairness. It
says that two agents with the same preferences should receive assignments between
which they are indifferent. Third is nonbossiness (Satterthwaite and Sonnenschein,
1981). It says that when an agent’s preferences change, if his assignment remains
the same, then the chosen allocation should remain the same. We establish that on
the class of continuous, strictly convex, and separable preferences, a rule satisfies
strategy-proofness, unanimity, symmetry, and nonbossiness if and only if it is the
uniform rule. This result extends to the class of continuous, strictly convex, and
“multidimensional single-peaked”preferences.2

Sprumont (1991) gave the first axiomatic characterization of the uniform rule,
a rule introduced by Benassy (1982) in a general equilibrium model with fixed
prices. For the one-commodity case, he showed that the uniform rule is the only rule
satisfying strategy-proofness, Pareto-efficiency, and anonymity3 (alternatively, no-
envy4). Ching (1994) strengthened Sprumont’s (1991) characterization by replacing

1Strategy-proofness requires that it is a weakly dominant strategy for each agent to reveal his
true preference.

2A preference is multidimensional single-peaked if there is an ideal consumption point p ≡
(p1, . . . , pm), called the peak, and for any two distinct consumption bundles x ≡ (x1, . . . , xm) and
y ≡ (y1, . . . , ym), whenever x� is between y� and p� for each dimension � = 1, . . . ,m, x is strictly
preferred to y. The domain of continuous, strictly convex, and separable preferences is a subclass
of the multidimensional single-peaked domain.

3 Anonymity requires that if two agent’s preferences are switched, then their assignments should
be switched too.

4No-envy requires that no agent should prefer anyone else’s assignment to his own.
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anonymity with the weaker condition of symmetry.5

However, it is desirable to analyze the uniform rule allocating several commodi-
ties so that it can be applied to Benassy’s (1982) general equilibrium model with
fixed prices. Consider an economy with money and several (nonmonetary) com-
modities in which money consumption is not bounded. Agents have preferences
which are continuous, separable, linear with respect to money, and strictly convex
in commodities. If the prices are exogenously fixed, then preferences only on con-
sumption of commodities are induced, and they are continuous, strictly convex, and
separable. Our result can be applied to this class of economies.

When preferences are single-peaked, Moulin (1980) first characterized the class
of strategy-proof voting schemes in one-dimensional public alternative model. He
established that a rule satisfies strategy-proofness and unanimity if and only if it is a
so called “generalized median voter scheme”. Border and Jordan (1983) established
that when the set of alternatives is multidimensional and each agent has continuous,
strictly convex, separable, and star-shaped6 preferences, a rule is strategy-proof and
unanimous if and only if it can be decomposed into a product of one-dimensional
rules, each of which is a generalized median voter scheme. In the same way as Border
and Jordan (1983) generalized Moulin’s (1980) result to a model with several public
alternatives, we generalize Sprumont’s (1991) result to a model with several private
commodities.

Amorós (2002) also analyzed this situation. Assuming that there are only two
agents, he showed that a rule on the class of multidimensional single-peaked prefer-
ences satisfies strategy-proofness, same-sideness,7 and no-envy (alternatively, strong
symmetry8) if and only if it is the uniform rule.9 In the two-agent case, since know-
ing one agent’s consumption implies knowing the other agent’s consumption, the
model is like a public alternatives model. Thus, the model of Amorós (2002) can
be treated as that of Border and Jordan (1983), and his result can be derived from
theirs,10 although his proof differs from theirs. On the other hand, when there

5The single-commodity allotment problem has been analyzed from a wide variety of viewpoints.
See, for example, Thomson (1994a,b, 1995, 1997), Otten, Peters and Volij (1996), Barberà, Jackson
and Neme (1997), Ching and Serizawa (1998), Massó and Neme (2001, 2007), and Serizawa (2006).

6A preference is star-shaped if there is an ideal consumption point p such that for any bundle
x differing from p, and any real number a ∈ (0, 1), a · p+ (1− a) · x is strictly preferred to x and
p is strictly preferred to a · p + (1 − a) · x. Note that, in our model, if a preference is continuous
and strictly convex, then it is star-shaped.

7Same-sideness requires that for each commodity, if the sum of the peak amounts of the com-
modity is greater (smaller) than, or equal to, the supply of the commodity, then each agent’s
assignment of the commodity should be smaller (greater) than, or equal to, his own peak amount
of the commodity. It is a necessary condition for Pareto-efficiency.

8Strong symmetry requires that two agents with the same preferences should receive the same
assignments.

9Sasaki (2003) also showed that the uniform rule is the most efficient rule among all strategy-
proof rules in the two-agent and multiple-commodity model.

10Since same-sideness implies unanimity, Border and Jordan’s (1983) result implies that a rule
satisfies strategy-proofness and same-sideness if and only if it can be decomposed into a product of
one-dimensional rules, each of which is a generalized median voter scheme. No-envy (alternatively,
strong symmetry) implies that the one-dimensional rule for each commodity is the uniform rule.
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are more than two agents, the result of Border and Jordan (1983) cannot be ap-
plied. Accordingly, we need to devise more complex proof although we owe some
techniques to Sprumont’s (1991), Ching’s (1994), and Border and Jordan’s (1983).
Besides, unanimity is weaker than same-sideness, and symmetry is weaker than
strong symmetry or no-envy. Thus, the result of Amorós (2002) is a corollary of
our result.

This paper is organized as follows. Section 2 explains the model and the main
result. Section 3 is devoted to the proof of the result in Section 2. Section 4 provides
concluding remark.

2 The model and the results

Let M ≡ {1, . . . ,m} be a set of infinitely divisible commodities. Let N ≡ {1, . . . , n}
be a set of agents. Assume that 2 ≤ n < ∞. For each commodity � ∈ M , there is an
amount W� ∈ R++ to be allocated. Let W ≡ (W1, . . . , Wm) ∈ Rm

++. For each i ∈ N ,
agent i’s consumption set is X ≡ {xi ∈ Rm

+ | for each � ∈ M, 0 ≤ xi
� ≤ W�}, and

agent i’s bundle is a vector xi ≡ (xi
�)�∈M ∈ X. For each � ∈ M , let X� ≡ [0,W�]

and X−� ≡
∏

�′ �=�[0,W�′ ].

Each agent i ∈ N has a preference relation Ri on X. A preference Ri is a
complete and transitive binary relation on X. Let P i be the strict preference relation
associated with Ri, and I i the indifference relation. Given a preference Ri and a
bundle x ∈ X, the upper contour set of Ri at x is UC(Ri, x) ≡ {y ∈ X | y Ri x},
and the lower contour set of Ri at x is LC(Ri, x) ≡ {y ∈ X | x Ri y}. A
preference Ri is continuous on X if UC(Ri, x) and LC(Ri, x) are both closed for
each x ∈ X. A preference Ri is strictly convex on X if for each x ∈ X, each
pair {y, z} ⊂ UC(Ri, x), and each a ∈ (0, 1), y �= z implies ay + (1− a)z P i x. We
assume that preferences are continuous and strictly convex.11 Given a preference Ri,
let p(Ri) ≡ {x ∈ X | for each y ∈ X, x Ri y} be the set of preferred consumptions
according to Ri. Since Ri is continuous and strictly convex, p(Ri) is a singleton.
We call p(Ri) the peak of Ri and write p(Ri) ≡ (p�(R

i))�∈M . We also define two
additional properties of preferences.

Definition 1. A preference relation Ri on X is separable if for each � ∈ M ,
each xi

�, x̂
i
� ∈ X�, and each xi

−�, x̂
i
−� ∈ X−�, (x

i
�, x

i
−�) Ri (x̂i

�, x
i
−�) if and only if

(xi
�, x̂

i
−�) Ri (x̂i

�, x̂
i
−�).

Definition 2. A preference relation Ri on X ismultidimensional single-peaked
if p(Ri) is a singleton, and for each xi, x̂i ∈ X such that xi �= x̂i, whenever for each
� ∈ M , either p�(R

i) ≥ xi
� ≥ x̂i

� or p�(R
i) ≤ xi

� ≤ x̂i
�, we have xi P i x̂i.

Let R denote the class of continuous, strictly convex, and separable preference
relations on X. Any such relation is multidimensional single-peaked.

A feasible allocation is a list x ≡ (xi)i∈N ∈ Xn such that
∑

i∈N xi = W . Note
that free disposal is not assumed. Let Z ≡ {(x1, . . . , xn) ∈ Xn | ∑

i∈N xi = W} be

11If Ri is continuous and strictly convex on X, then for each x ∈ X, the set UC(Ri, x) is strictly
convex. The converse is not necessarily true.
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the set of feasible allocations.
A preference profile is a list R ≡ (R1, . . . , Rn) ∈ Rn. An allocation rule, or

simply a rule, is a function f : Rn → Z. Let R−i be a list of preferences for all
agents except for agent i, that is, R−i ≡ (Rj)j∈N\{i}. We sometimes write the profile
(R1, . . . , Ri−1, R̄i, Ri+1, . . . , Rn) as (R̄i, R−i). Let f i(R) ≡ (f i

1(R), . . . , f
i
m(R)) be the

bundle assigned to agent i by f when the preference profile is R.
We now introduce the axioms. Let f be a rule. First is an incentive property:

no agent should obtain an assignment he prefers by misrepresenting his preferences.

Strategy-proofness: For each R ∈ Rn, each i ∈ N , and each R̂i ∈ R, f i(R) Ri

f i(R̂i, R−i).

Our next three axioms are related to efficiency. An allocation x ∈ Z is Pareto-
efficient for R if there is no y ∈ Z such that, for each i ∈ N , yi Ri xi, and for
some j ∈ N , yj P j xj. For each R ∈ Rn, let P (R) be the set of Pareto-efficient
allocations for R.

Pareto-efficiency: For each R ∈ Rn, f(R) ∈ P (R).

Second, for each commodity, if the sum of the peak amounts of the commodity is
greater than, or equal to, the supply of the commodity, then each agent’s assignment
of the commodity should be smaller than, or equal to, his own peak amount of the
commodity, and conversely.

Same-sideness: For each R ∈ Rn and each � ∈ M ,
(i) if

∑
i∈N p�(R

i) ≥ W�, then for each i ∈ N , f i
�(R) ≤ p�(R

i), and
(ii) if

∑
i∈N p�(R

i) ≤ W�, then for each i ∈ N , f i
�(R) ≥ p�(R

i).

In the one-commodity case, same-sideness is equivalent to Pareto-efficiency.12

In the multiple-commodity case, Pareto-efficiency implies same-sideness, but the
converse is not necessarily true. Example 1 illustrates this fact.

Example 1. Let N ≡ {1, 2} and M ≡ {1, 2}. Let f be the rule defined as follows.13

For each R ∈ R2, each i ∈ {1, 2}, and each � ∈ {1, 2},

f i
�(R) ≡

{
p�(R

i)·W�

p�(R1)+p�(R2)
if p�(R

1) + p�(R
2) > 0

W�

2
otherwise.

Then, f satisfies same-sideness. Let R ∈ R2 be such that for each � ∈ {1, 2},
p�(R

1) = p�(R
2) = W�, and there is a bundle y1 ∈ Z such that y2 = W − y1 and

for each i ∈ {1, 2}, yi P i (W1

2
, W2

2
). In this case, f1(R) = f2(R) = (W1

2
, W2

2
). Then

f(R) is Pareto-dominated by y, contradicting Pareto-efficiency.

Third, if the sum of the peak amounts of each commodity is equal to the supply
of the commodity, then each agent’s assignment should be equal to his own peak
vector.

Unanimity: For each R ∈ Rn, if for each � ∈ M ,
∑

i∈N p�(R
i) = W�, then for each

i ∈ N , f i(R) = p(Ri).
12See Sprumont (1991)
13This rule is called Proportional Rule.
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Obviously, same-sideness implies unanimity. It is the weakest of our three ax-
ioms related to efficiency.

Our next four axioms are related to fairness. First, no agent should prefer anyone
else’s assignment to his own. Second, if two agents’ preferences are switched, then
their assignments should be switched too.

No-envy (Foley, 1967): For each R ∈ Rn and each i, j ∈ N , f i(R) Ri f j(R).

Anonymity: For each R ∈ Rn, each i, j ∈ N , and each R̂i, R̂j ∈ R, if R̂i = Rj

and R̂j = Ri, then f i(R̂i, R̂j, R−i,j) = f j(R) and f j(R̂i, R̂j, R−i,j) = f i(R).

Third, two agents with the same preferences should receive the same assign-
ments.

Strong symmetry: For each R ∈ Rn and each i, j ∈ N , if Ri = Rj, then f i(R) =
f j(R).

Note that anonymity implies strong symmetry.
Fourth, two agents with the same preferences should receive assignments between

which they are indifferent.

Symmetry: For each R ∈ Rn and each i, j ∈ N , if Ri = Rj, then f i(R) I i f j(R).

No-envy and strong symmetry both imply symmetry. Symmetry is the weakest
of our four axioms related to fairness. In the one-commodity case, for any rule
satisfying Pareto-efficiency, strong symmetry is equivalent to symmetry.14 However,
in the multiple-commodity case, same-sideness and symmetry do not imply strong
symmetry.

Our final axiom says that when an agent’s preferences change, if his assignment
remains the same, then the chosen allocation should remain the same.

Nonbossiness: For each R ∈ Rn, each i ∈ N , and each R̂i ∈ R, if f i(R) =
f i(R̂i, R−i), then f(R) = f(R̂i, R−i).

Remark 1. If there are only two agents, then any rule is nonbossy.

Next, we introduce a rule that is central to our paper. For each commodity,
agents are allowed to choose their consumption subject to a common upper or lower
bound, which is chosen so as to attain feasibility.

Uniform rule, U : For each R ∈ Rn, each � ∈ M , and each i ∈ N ,

U i
�(R) =

{
min{p�(R

i), λ�(R)} if
∑

j∈N p�(R
j) ≥ W�

max{p�(R
i), λ�(R)} if

∑
j∈N p�(R

j) ≤ W�,

where λ�(R) solves
∑

j∈N U j
� (R) = W�.

Example 2 illustrates the definition.

Example 2. Let N ≡ {1, 2, 3, 4}, M ≡ {1, 2}, and (W1,W2) ≡ (10, 20). Let
R ∈ R4 be such that p(R1) = (3, 5), p(R2) = p(R3) = (2, 2), and p(R4) = (5, 6).

14See Ching (1994).
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Then,
∑

i∈N p1(R
i) > W1 and

∑
i∈N p2(R

i) < W2. We calculate λ1(R) = 3 and
λ2(R) = 4.5. Then, U1(R) = (3, 5), U2(R) = U3(R) = (2, 4.5), and U4(R) = (3, 6).

Next is our main result, a characterization of the uniform rule.

Theorem. A rule defined on the domain of continuous, strictly convex, and separa-
ble preferences satisfies strategy-proofness, unanimity, symmetry, and nonbossiness
if and only if it is the uniform rule.

We remark that our result can be extended to the domain of continuous, strictly
convex, and multidimensional single-peaked preferences. The following is a corollary
of the Theorem.

Corollary. A rule defined on the domain of continuous, strictly convex, and multi-
dimensional single-peaked preferences satisfies strategy-proofness, unanimity, sym-
metry, and nonbossiness if and only if it is the uniform rule.

The proofs of the Theorem and Corollary are in Section 3.
Amorós (2002) showed that when there are only two agents, the uniform rule

is the only rule satisfying strategy-proofness, same-sideness, and no-envy (alterna-
tively, strong symmetry). In the two-agent case, by Remark 1, any rule is nonbossy.
As we mentioned above, unanimity is a necessary condition for same-sideness, and
symmetry is weaker than no-envy or strong symmetry. Thus, we obtain his result
as a corollary of our Theorem.

3 Proof of the Theorem

We devote this section to the proof of the Theorem. It is easy to check that the
uniform rule is strategy-proof, unanimous, and symmetric.15 Furthermore, we can
easily verify that the single-commodity uniform rule is nonbossy. Since the uniform
rule assigns commodities by applying the single-commodity uniform rule commodity
by commodity, it too is nonbossy. Thus, the if part of the Theorem holds. We turn
to the only if part.

For each � ∈ M , let Z−� ≡ {(x1
−�, . . . , x

n
−�) ∈ (X−�)

n | for each �′ �= �,
∑

i∈N xi
�′ =

W�′} be the set of feasible allocations except for commodity �. Given � ∈ M ,
x−� ∈ Z−�, and i ∈ N , let R̄i(x−�) ≡ {Ri ∈ R | for each �′ �= �, p�′(R

i) = xi
�′}

and R̄N(x−�) ≡ ∏
i∈N R̄i(x−�). Then, all preference profiles in R̄N(x−�) are the

same except for commodity �, that is, for each R ∈ R̄N(x−�) and each �′ �= �,∑
i∈N p�′(R

i) = W�′ . For simplicity, given � ∈ M , R ∈ Rn, and i ∈ N , we write
p−�(R

i) ≡ (p�′(R
i))�′ �=�, f i

−�(R) ≡ (f i
�′(R))�′ �=�, and f−�(R) ≡ (f�′(R))�′ �=�.

Let � ∈ M and x−� ∈ Z−�. We first restrict the domain of rules to the domain
R̄N(x−�). We show that on this domain, only the uniform rule satisfies the axioms
of the Theorem. Second, we extend the result to the entire domain Rn. This proof
technique is similar to that of Border and Jordan (1983). However, they study a
model with public alternative, whereas we study a model with private commodities

15See Amorós (2002) for the formal proofs.
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model. As we explain later, owing to this difference, the naive application of their
proof techniques would cause problems that we have to overcome.

Our proof of our Theorem is by means of seven Lemmas. Lemma 1 says that
strategy-proofness, unanimity, and nonbossiness imply same-sideness. In the one-
commodity case, if a rule is strategy-proof, unanimous, and nonbossy, then it is
same-sided (Serizawa, 2006). This implication also holds in the multiple-commodity
case. However, the proofs differ.

Lemma 1. If a rule is strategy-proof, unanimous, and nonbossy, then it is same-
sided.

Proof. Let f be a rule satisfying the hypotheses. Let R ∈ Rn and � ∈ M .
Assume that

∑
h∈N p�(R

h) ≤ W�. The opposite case can be treated symmetrically.
By contradiction, suppose that there is i ∈ N such that f i

�(R) < p�(R
i). Since∑

h∈N p�(R
h) ≤ W�, there is j ∈ N \ {i} such that f j

� (R) > p�(R
j). Without

loss of generality, let i = 1 and j = 2. For each k ∈ N \ {1, 2}, let R̂k ∈ R be
such that p(R̂k) = fk(R). Then, by strategy-proofness, f 3(R̂3, R−3) = f 3(R). By
nonbossiness, f(R̂3, R−3) = f(R). Repeating this argument for k = 4, . . . , n, we
obtain f(R1,2, R̂−1,2) = f(R).

There are two cases.
Case 1: p�(R

1)− f 1
� (R) ≥ f 2

� (R)− p�(R
2).

Let (R̂1, R̂2) ∈ R2 be such that (i) p�(R̂
1) = f 1

� (R) + f 2
� (R) − p�(R

2) and
p�(R̂

2) = p�(R
2), (ii) for each i ∈ {1, 2}, p−�(R̂

i) = f i
−�(R), and (iii) for each

i ∈ {1, 2}, UC(R̂i, f i(R)) ⊂ UC(Ri, f i(R)) and UC(R̂i, f i(R)) ∩ LC(Ri, f i(R)) =
{f i(R)} (Figure 1).16 Then, by strategy-proofness, f1(R2, R̂−2) = f1(R1,2, R̂−1,2).
By nonbossiness, f(R2, R̂−2) = f(R1,2, R̂−1,2). Since f(R1,2, R̂−1,2) = f(R), we
have f(R2, R̂−2) = f(R). Similarly, by strategy-proofness and nonbossiness, f(R̂) =
f(R). However, by feasibility, for each �′ ∈ M ,

∑
k∈N p�′(R̂

k) =
∑

k∈N fk
�′(R) = W�′ .

This contradicts unanimity.
Case 2: p�(R

1)− f 1
� (R) < f 2

� (R)− p�(R
2).

Similarly to Case 1, we derive a contradiction to unanimity by using preferences
(R̂1, R̂2) ∈ R2 such that (i) p�(R̂

1) = p�(R
1) and p�(R̂

2) = f2
� (R) − p�(R

1) +
f1

� (R), (ii) for each i ∈ {1, 2}, p−�(R̂
i) = f i

−�(R), and (iii) for each i ∈ {1, 2},
UC(R̂i, f i(R)) ⊂ UC(Ri, f i(R)) and UC(R̂i, f i(R)) ∩ LC(Ri, f i(R)) = {f i(R)}. �

We now introduce two additional properties of rules. First, if an agent’s pref-
erences change but his peak amounts remain the same, then his assignment should
remain the same. Second, if all agents’ preferences change but the peak profiles
remain the same, then the chosen allocation should remain the same.

Own peak-onlyness: For each R ∈ Rn, each i ∈ N , and each R̂i ∈ R, if p(R̂i) =
p(Ri), then f i(R) = f i(R̂i, R−i).

Peak-onlyness: For each R ∈ Rn and each R̂ ∈ Rn, if for each i ∈ N , p(R̂i) =
p(Ri), then f(R) = f(R̂).

16The condition (iii) means that R̂i is a Maskin monotonic transformation of Ri at f i(R). This
notion was first defined by Maskin (1999).
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Note that peak-onlyness implies own peak-onlyness. In the one-commodity case,
if a rule is strategy-proof and Pareto-efficient, then it is own peak-only (Sprumont,
1991). In the multiple-commodity case, if a rule is strategy-proof, unanimous, and
nonbossy, then for each � ∈ M and each x−� ∈ Z−�, we can establish the same
property on the domain R̄N(x−�). Furthermore, we can also show that if a rule is
nonbossy and own peak-only, then it is peak-only.

Lemma 2. Let f be a strategy-proof, unanimous, and nonbossy rule. Then, for
each � ∈ M , each x−� ∈ Z−�, each R ∈ R̄N(x−�), and each R̂ ∈ R̄N(x−�) such that
for each i ∈ N , p(R̂i) = p(Ri), we have f(R̂) = f(R).

Proof. Let � ∈ M , x−� ∈ Z−�, R ∈ R̄N(x−�), and R̂ ∈ R̄N(x−�). Assume that
for each i ∈ N , p(R̂i) = p(Ri). First, we show f 1(R) = f1(R̂1, R−1). By same-
sideness (Lemma 1) and p(R1) = p(R̂1), we have f1

−�(R) = x1
−� = f 1

−�(R̂
1, R−1).

Assume that
∑

i∈N p�(R
i) ≤ W�. The opposite case can be treated symmetri-

cally. We first show f 1
� (R) ≥ f 1

� (R̂
1, R−1). By contradiction, suppose that f1

� (R) <
f1

� (R̂
1, R−1). Then, by same-sideness (Lemma 1), p�(R̂

1) = p�(R
1) ≤ f1

� (R) <
f1

� (R̂
1, R−1). Thus f1(R) P̂ 1 f1(R̂1, R−1), contradicting strategy-proofness. Thus,

f1
� (R) ≥ f1

� (R̂
1, R−1). Similarly, we can show f 1

� (R) ≤ f1
� (R̂

1, R−1). Hence,
f1(R) = f1(R̂1, R−1). By nonbossiness, f(R) = f(R̂1, R−1). Repeating this ar-
gument for k = 2, . . . , n, we get f(R̂) = f(R). �

We introduce two more properties of rules. First, for any commodity and any
agent, if his peak amount of the commodity is smaller (greater) than his assignment
of the commodity and his new peak amount of the commodity is smaller (greater)
than, or equal to, his initial assignment of the commodity, then his assignment of
the commodity should not change. Second, for any commodity and any group of
agents, if for any agent in the group, the same assumption holds, then the chosen
allocation of the commodity should not change.

Own uncompromisingness: For each � ∈ M , each R ∈ Rn, each i ∈ N , and each
R̂i ∈ R,
if p�(R

i) < f i
�(R) and p�(R̂

i) ≤ f i
�(R), then, f i

�(R̂
i, R−i) = f i

�(R),
if p�(R

i) > f i
�(R) and p�(R̂

i) ≥ f i
�(R), then, f i

�(R̂
i, R−i) = f i

�(R).

Group uncompromisingness: For each � ∈ M , each R ∈ Rn, each N̂ ⊆ N , and
each R̂N̂ ∈ R|N̂ |,17

if for each i ∈ N̂ , p�(R
i) < f i

�(R) and p�(R̂
i) ≤ f i

�(R), then, f�(R̂
N̂ , R−N̂) = f�(R),

if for each i ∈ N̂ , p�(R
i) > f i

�(R) and p�(R̂
i) ≥ f i

�(R), then, f�(R̂
N̂ , R−N̂) = f�(R).

In the one-commodity case, if a rule is strategy-proof and Pareto-efficient, then
it satisfies own uncompromisingness (Ching, 1994). In the multiple-commodity
case, if a rule is strategy-proof, unanimous, and nonbossy, then for each � ∈ M
and each x−� ∈ Z−�, we can establish the same property on the domain R̄N(x−�).
Furthermore, we can also show that nonbossiness and own uncompromisingness
imply group uncompromisingness.

17|A| denotes the cardinality of set A.
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Lemma 3. Let f be a strategy-proof, unanimous, and nonbossy rule. Then, for
each � ∈ M , and each x−� ∈ Z−�, we have
(i) Own uncompromisingness:

for each R ∈ R̄N(x−�), each i ∈ N , and each R̂i ∈ R̄i(x−�),
if p�(R

i) < f i
�(R) and p�(R̂

i) ≤ f i
�(R), then, f i(R̂i, R−i) = f i(R),

if p�(R
i) > f i

�(R) and p�(R̂
i) ≥ f i

�(R), then, f i(R̂i, R−i) = f i(R),
(ii) Group uncompromisingness:

for each R ∈ R̄N(x−�), each N̂ ⊆ N , and each R̂N̂ ∈ ∏
i∈N̂ R̄i(x−�),

if for each i ∈ N̂ , p�(R
i) < f i

�(R) and p�(R̂
i) ≤ f i

�(R), then, f(R̂
N̂ , R−N̂) = f(R),

if for each i ∈ N̂ , p�(R
i) > f i

�(R) and p�(R̂
i) ≥ f i

�(R), then, f(R̂
N̂ , R−N̂) = f(R).

Proof. Let � ∈ M , x−� ∈ Z−�, and R ∈ R̄N(x−�).

Proof of (i). Let i ∈ N and R̂i ∈ R̄i(x−�). Assume that p�(R
i) < f i

�(R)
and p�(R̂

i) ≤ f i
�(R). The opposite case can be treated symmetrically. We show

f i(R̂i, R−i) = f i(R). By same-sideness (Lemma 1), f i
−�(R̂

i, R−i) = f i
−�(R). Also,

by same-sideness (Lemma 1) and p�(R
i) < f i

�(R), for each j ∈ N \ {i}, we have
p�(R

j) ≤ f j
� (R). Since p�(R̂

i) ≤ f i
�(R), by feasibility, p�(R̂

i) +
∑

j �=i p�(R
j) ≤∑

j∈N f j
� (R) = W�. Thus, by same-sideness (Lemma 1), f i

�(R̂
i, R−i) ≥ p�(R̂

i). By

contradiction, suppose that f i
�(R̂

i, R−i) �= f i
�(R). There are two cases.

Case 1: f i
�(R̂

i, R−i) > f i
�(R).

In this case, p�(R̂
i) ≤ f i

�(R) < f i
�(R̂

i, R−i). Thus, f i(R) P̂ i f i(R̂i, R−i), contra-
dicting strategy-proofness.
Case 2: f i

�(R̂
i, R−i) < f i

�(R).
Let R̄i ∈ R be such that p(R̄i) = p(Ri) and f i(R̂i, R−i) P̄ i f i(R). Then, by

peak-onlyness (Lemma 2), f i(R̄i, R−i) = f i(R). Thus, f i(R̂i, R−i) P̄ i f i(R̄i, R−i),
contradicting strategy-proofness. �
Proof of (ii). Let N̂ ⊆ N and R̂N̂ ∈ ∏

i∈N̂ R̄i(x−�). Assume that for each i ∈ N̂ ,

p�(R
i) < f i

�(R) and p�(R̂
i) ≤ f i

�(R). The opposite case can be treated symmetrically.
Without loss of generality, let N̂ ≡ {1, . . . , n̂}.

By own uncompromisingness (Lemma 3-i), f 1(R̂1, R−1) = f1(R). By nonbossi-
ness, f(R̂1, R−1) = f(R). Repeating the same argument for k = 2, . . . , n̂, we have

f(R̂N̂ , R−N̂) = f(R). �
We define a class of preferences, which we call almost indifferent to all com-

modities except for commodity �. Given � ∈ M , xi
� ∈ {0,W�}, xi

−� ∈ X−�,

and d ∈ (0, W�

2n
), let RV (xi

�, x
i
−�, d) ⊂ R be the set of preferences Ri such that (i)

p(Ri) = (xi
�, x

i
−�), and (ii) for each y� ∈ [0,W� − d] and each y−� ∈ X−�, we have

if xi
� = 0, then (y�, y−�) P i (y� + d, p−�(R

i)), (1)

if xi
� = W�, then (y� + d, y−�) P i (y�, p−�(R

i)). (2)

See Figure 2 for an illustration of such a preference relation. Note that for each � ∈
M , each xi

� ∈ {0, W�}, each xi
−� ∈ X−�, and each d ∈ (0, W�

2n
), the set RV (xi

�, x
i
−�, d)
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is nonempty.18 Given � ∈ M , xi
� ∈ {0,W�}, and xi

−� ∈ X−�, for sufficiently small
d > 0, all preferences in RV (xi

�, x
i
−�, d) almost never depend on the consumption of

commodities other than commodity �.
Lemma 4 says that for a strategy-proof rule, and for any commodity, when

an agent’s preference changes, if both his old and his new preferences are almost
indifferent to all commodities except for the commodity, then his assignment of the
commodity changes little.

Lemma 4. Let f be a strategy-proof rule. Let � ∈ M , d ∈ (0, W�

2n
), i ∈ N , xi

� ∈
{0,W�}, x̄i

−�, x̃
i
−� ∈ X−�, R̄

i ∈ RV (xi
�, x̄

i
−�, d), R̃

i ∈ RV (xi
�, x̃

i
−�, d), and R−i ∈ Rn−1.

Then,
f i

�(R̄
i, R−i)− d < f i

�(R̃
i, R−i) < f i

�(R̄
i, R−i) + d. (3)

Proof. Assume that xi
� = 0. By a similar argument, we can also show that (3)

holds when xi
� = W�. The proof is in two steps.

Step 1. f i
�(R̃

i, R−i) < f i
�(R̄

i, R−i) + d.

Proof. There are two cases.
Case 1-1: f i

�(R̄
i, R−i) > W� − d.

In this case, f i
�(R̄

i, R−i) + d > W� ≥ f i
�(R̃

i, R−i).
Case 1-2 (Figure 3): f i

�(R̄
i, R−i) ≤ W� − d.

By contradiction, suppose that

f i
�(R̃

i, R−i) ≥ f i
�(R̄

i, R−i) + d. (4)

Then, since R̃i ∈ RV (xi
�, x̃

i
−�, d), by (1), we have

f i(R̄i, R−i) P̃ i
(
f i

�(R̄
i, R−i) + d, p−�(R̃

i)
)

.

By (4), (
f i

�(R̄
i, R−i) + d, p−�(R̃

i)
)

R̃i f i(R̃i, R−i).

This implies
f i(R̄i, R−i) P̃ i f i(R̃i, R−i),

contradicting strategy-proofness. �
Step 2. f i

�(R̄
i, R−i)− d < f i

�(R̃
i, R−i).

Proof. There are two cases.
Case 2-1: f i

�(R̄
i, R−i) < d.

In this case, f i
�(R̄

i, R−i)− d < 0 ≤ f i
�(R̃

i, R−i).
Case 2-2 (Figure 4): f i

�(R̄
i, R−i) ≥ d.

By contradiction, suppose that

f i
�(R̄

i, R−i)− d ≥ f i
�(R̃

i, R−i). (5)

18We can show that such a preference exists by constructing a separable and quadratic prefer-
ence. See Fact in Appendix.
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Then, since R̄i ∈ RV (xi
�, x̄

i
−�, d), by (1), we have

f i(R̃i, R−i) P̄ i
(
f i

�(R̃
i, R−i) + d, p−�(R̄

i)
)

.

By (5), (
f i

�(R̃
i, R−i) + d, p−�(R̄

i)
)

R̄i f i(R̄i, R−i).

This implies
f i(R̃i, R−i) P̄ i f i(R̄i, R−i),

contradicting strategy-proofness. �
Lemma 5 says that for a symmetric rule, and for any commodity, when two

agents have a same preference, if the preference is almost indifferent to all com-
modities except for the commodity, then their assignments of the commodity differ
little.

Lemma 5. Let f be a symmetric rule. Let � ∈ M , d ∈ (0, W�

2n
), x� ∈ {0,W�},

x−� ∈ X−�, R̃0 ∈ RV (x�, x−�, d), i, j ∈ N , R̃i = R̃0 = R̃j, and R−i,j ∈ Rn−2 .
Then,

f i
�(R̃

i,j, R−i,j)− d < f j
� (R̃

i,j, R−i,j) < f i
�(R̃

i,j, R−i,j) + d. (6)

Proof. Assume that xi
� = 0. By a similar argument, we can also show that (6)

holds when xi
� = W�. The proof is in two steps.

Step 1. f j
� (R̃

i,j, R−i,j) < f i
�(R̃

i,j, R−i,j) + d.

Proof. There are two cases.
Case 1-1: f i

�(R̃
i,j, R−i,j) > W� − d.

In this case, f i
�(R̃

i,j, R−i,j) + d > W� ≥ f j
� (R̃

i,j, R−i,j).
Case 1-2 (Figure 5): f i

�(R̃
i,j, R−i,j) ≤ W� − d.

By contradiction, suppose that

f j
� (R̃

i,j, R−i,j) ≥ f i
�(R̃

i,j, R−i,j) + d. (7)

Then, since R̃i ∈ RV (x�, x−�, d), by (1), we have

f i(R̃i,j, R−i,j) P̃ i
(
f i

�(R̃
i,j, R−i,j) + d, p−�(R̃

i)
)

.

By (7), (
f i

�(R̃
i,j, R−i,j) + d, p−�(R̃

i)
)

R̃i f j(R̃i,j, R−i,j).

This implies
f i(R̃i,j, R−i,j) P̃ i f j(R̃i,j, R−i,j),

contradicting symmetry. �
Step 2. f i

�(R̃
i,j, R−i,j)− d < f j

� (R̃
i,j, R−i,j).

Proof. There are two cases.
Case 2-1: f i

�(R̃
i,j, R−i,j) < d.
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In this case, f i
�(R̃

i,j, R−i,j)− d < 0 ≤ f j
� (R̃

i,j, R−i,j).
Case 2-2 (Figure 6): f i

�(R̃
i,j, R−i,j) ≥ d.

By contradiction, suppose that

f i
�(R̃

i,j, R−i,j)− d ≥ f j
� (R̃

i,j, R−i,j). (8)

Then, since R̃i ∈ RV (x�, x−�, d), by (1), we have

f j(R̃i,j, R−i,j) P̃ i
(
f j

� (R̃
i,j, R−i,j) + d, p−�(R̃

i)
)

.

By (8), (
f j

� (R̃
i,j, R−i,j) + d, p−�(R̃

i)
)

R̃i f i(R̃i,j, R−i,j).

This implies
f j(R̃i,j, R−i,j) P̃ i f i(R̃i,j, R−i,j),

contradicting symmetry. �
Next Lemma follows from Lemmas 4 and 5.

Lemma 6. Let f be a strategy-proof and symmetric rule. Let N̂ � N , i ∈ N \ N̂ ,
and K = N \ (N̂ ∪ {i}). Let � ∈ M , d ∈ (0, W�

2n
), xi

� ∈ {0,W�}, x̄i
−�, x̃

i
−� ∈ X−�,

R̄i ∈ RV (xi
�, x̄

i
−�, d), R̃i ∈ RV (xi

�, x̃
i
−�, d), and RK ∈ R|K|. For each j ∈ N̂ , let

R̃j = R̃i. Then,

f i
�(R

K , R̃N̂ , R̄i)− d < f i
�(R

K , R̃N̂ , R̃i) < f i
�(R

K , R̃N̂ , R̄i) + d, and (9)

for each j ∈ N̂ , f i
�(R

K , R̃N̂ , R̄i)− 2 · d < f j
� (R

K , R̃N̂ , R̃i) < f i
�(R

K , R̃N̂ , R̄i) + 2 · d.
(10)

Proof. Since R̄i ∈ RV (xi
�, x̄

i
−�, d), R̃i ∈ RV (xi

�, x̃
i
−�, d), and (RK , R̃N̂) ∈ Rn−1,

Lemma 4 implies (9). Next, we show (10). Let j ∈ N̂ . Since R̃j = R̃i, R̃j ∈
RV (xi

�, x̃
i
−�, d), and (RK , R̃N̂\{j}) ∈ Rn−2, Lemma 5 implies that

f i
�(R

K , R̃N̂ , R̃i)− d < f j
� (R

K , R̃N̂ , R̃i) < f i
�(R

K , R̃N̂ , R̃i) + d.

Now, (10) follows from (9). �
Consider a rule f satisfying the axioms of the Theorem on the domainRn. Given

� ∈ M and x−� ∈ Z−�, when a preference profile belongs to R̄N(x−�), by same-
sideness (Lemma 1), each agent receives his own peak amounts of all commodities
except for commodity � (or, including commodity � in the case where the sum of
the peak amounts of commodity � is also equal to the supply of commodity �).
Accordingly, on R̄N(x−�), f induces a rule for commodity �. Lemma 7 says that
this induced rule is the single-commodity uniform rule. Although we borrow some
techniques from Sprumont (1991) and Ching (1994), as we discuss below, we cannot
directly apply their proofs to obtain Lemma 7.
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Let � ∈ M and x−� ∈ Z−�. For each i ∈ N and each Ri ∈ R̄i(x−�), let R̄(Ri) be
a preference relation on [0, W�] such that for each xi

�, y
i
� ∈ [0,W�], xi

� R̄(Ri) yi
� if and

only if (xi
�, x

i
−�) Ri (yi

�, x
i
−�). Let P̄ (Ri) be the strict relation associated with R̄(Ri),

and Ī(Ri) the indifference relation. Let R̄� ≡ {R̄(Ri) | Ri ∈ Ri(x−�)}. Then, any
preference in R̄� is continuous and single-peaked on [0,W�].

Consider the restriction f̄ of a rule f to R̄N(x−�). If f is strategy-proof, then
for each R ∈ R̄N(x−�), each i ∈ N , and each R̂i ∈ R̄i(x−�), we have f̄ i

�(R) R̄(Ri)
f̄ i

�(R̂
i, R−i). Thus f̄� is strategy-proof. When f is same-sided, for each R ∈ R̄N(x−�),

if
∑

j∈N p�(Rj) ≥ W�, then for all i ∈ N , f̄ i
�(R) ≤ p�(Ri), and if

∑
j∈N p�(Rj) ≤ W�,

then for all i ∈ N , f̄ i
�(R) ≥ p�(Ri). Thus f̄� is Pareto-efficient.

Assume that f̄� is symmetric for commodity �, that is, for each R ∈ R̄N(x−�)
and each i, j ∈ N , if R̄(Ri) = R̄(Rj), then f̄ i

�(R) Ī(Ri) f̄ j
� (R). Then, since the

single-commodity uniform rule is the only rule satisfying strategy-proofness, Pareto-
efficiency, and symmetry (Sprumont, 1991; Ching, 1994), f̄� is the single-commodity
uniform rule.

Therefore, if symmetry implied symmetry for commodity �, then we could di-
rectly apply their result to obtain Lemma 7. However, symmetry does not imply
symmetry for commodity �. We illustrate this point in the next Example.

Example 3. Let N ≡ {1, 2} and M ≡ {1, 2}. Let f be the rule on R2 defined
as follows: for each R ∈ R2, if R1 = R2, f 1(R) ≡ f2(R) ≡ (W1

2
, W2

2
); otherwise

f1(R) ≡ p(R1), and f2(R) ≡ (W1,W2)− p(R1). Note that f satisfies symmetry.
Let x−1 ≡ (x1

−1, x
2
−1) ≡ (

2·W2

3
, W2

3

)
. Let f̄ be the restriction of f to R̄N(x−1)

(Figure 7). Let R ∈ R̄N(x−1) be such that R̄(R1) = R̄(R2). Then, since p2(R
1) =

2·W2

3
�= W2

3
= p2(R

2), we have R1 �= R2. By the definition of f̄ , f̄ 1
1 (R) = p1(R

1) and
f̄2

1 (R) = W1 − p1(R
1). Thus, f̄ 1

1 (R) P̄ (R2) f̄ 2
1 (R). In fact, f̄1 is dictatorial, and so

it violates symmetry for commodity 1.

Furthermore, as we discussed in Section 2, in the one-commodity case, any
Pareto-efficient and symmetric rule is strongly symmetric. Ching (1994) could ap-
ply strong symmetry to prove this uniqueness result. However, in the multiple-
commodity case, since same-sideness and symmetry do not imply strong symmetry,
we cannot apply strong symmetry to obtain Lemma 7.

Lemma 7. Let f be a strategy-proof, unanimous, symmetric, and nonbossy rule.
Then, for each � ∈ M , each x−� ∈ Z−�, each R ∈ R̄N(x−�), and each i ∈ N ,
f i(R) = U i(R).

Proof. Let � ∈ M . By same-sideness (Lemma 1), for each x−� ∈ Z−�, each
R ∈ R̄N(x−�), each i ∈ N , and each �′ �= �, we have f i

�′(R) = xi
�′ = U i

�′(R).
Thus we only show that for each x−� ∈ Z−�, each R ∈ R̄N(x−�), and each i ∈ N ,
f i

�(R) = U i
�(R).

Let x−� ∈ Z−� and R ∈ R̄N(x−�) be such that
∑

i∈N p�(R
i) = W�. Then, by the

definition of U , for each i ∈ N , U i
�(R) = p�(R

i). By same-sideness (Lemma 1), for
each i ∈ N , we have f i

�(R) = p�(R
i). Thus, for each x−� ∈ Z−�, each R ∈ R̄N(x−�)

such that
∑

i∈N p�(R
i) = W�, and each i ∈ N , we have f i

�(R) = U i
�(R).

Next, we show that for each x−� ∈ Z−�, eachR ∈ R̄N(x−�) such that
∑

i∈N p�(R
i) <

W�, and each i ∈ N , we have f i
�(R) = U i

�(R).
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We introduce some notations. Given a preference profile R ∈ Rn, let π ≡
(π1, . . . , πn) be the permutation of N such that p�(R

π1(R)) ≥ · · · ≥ p�(R
πn(R)). We

simply write π1, . . . , πn when we can omit R as an argument without confusion. Let
RN

� (0) be the set of preference profiles R such that
∑

i∈N p�(R
i) < W� and for each

i ∈ N , p�(R
i) ≤ W�

n
. Given k ∈ {1, . . . , n − 1}, let RN

� (k) be the set of preference
profiles R such that

∑
i∈N p�(R

i) < W� and

p�(R
π1) >

W�

n
,

p�(R
π2) >

W� − p�(R
π1)

n − 1
,

· · ·

p�(R
πk) >

W� −
∑k−1

i=1 p�(R
πi)

n − k + 1
, and

p�(R
πj) ≤ W� −

∑k
i=1 p�(R

πi)

n − k
for each j ∈ {k + 1, . . . , n}.

Note that
⋃n−1

k=0 RN
� (k) = {R ∈ Rn | ∑

i∈N p�(R
i) < W�}. For each k ∈ {0, 1, . . . , n−

1}, let RN
� (k, 0) be the subdomain of RN

� (k) such that for each j ∈ {k + 1, . . . , n},
p�(R

πj) = 0.
For each k ∈ {0, 1, . . . , n − 1} and each x−� ∈ Z−�, let R̄N(k, x−�) ≡ RN

� (k) ∩
R̄N(x−�). Note that for each x−� ∈ Z−�,

⋃n−1
k=0 R̄N(k, x−�) = {R ∈ R̄N(x−�) |∑

i∈N p�(R
i) < W�}.

By induction, we will show that for each k ∈ {0, 1, . . . , n − 1}, each x−� ∈ Z−�,
each R ∈ R̄N(k, x−�), and each i ∈ N , we have f i

�(R) = U i
�(R).

Step 1. For each x−� ∈ Z−�, each R ∈ R̄N(0, x−�), and each i ∈ N , we have
f i

�(R) = U i
�(R).

Proof. Let x−� ∈ Z−� and R ∈ R̄N(0, x−�). In this case, by the definition of
U , for each i ∈ N , U i

�(R) = W�

n
. We show that for each i ∈ N , f i

�(R) = W�

n
.

Let R̂ ∈ R̄N(x−�) be such that for each i ∈ N , p�(R̂
i) = 0. If for each i ∈ N ,

f i
�(R̂) = W�

n
, then, by group uncompromisingness (Lemma 3-ii), f(R̂) = f(R).

Thus, we only have to show that for each i ∈ N , f i
�(R̂) =

W�

n
.

By contradiction, suppose that there is j ∈ N such that f j
� (R̂) > W�

n
. Without

loss of generality, let j = 1. Denote e1 ≡ f 1
� (R̂) − W�

n
. For each k ∈ N \ {1}, let

ek ≡ ek−1

n−k+2
. Then, (i) for each k ∈ N \ {1}, ek > 0 and ek < ek−1, (ii) for each

k ∈ {2, 3, . . . , n},
ek =

e1∏k−2
t=0 (n − t)

,

and (iii) for each k ∈ {2, 3, . . . , n},
ek−1

n − k + 1
− ek =

e1∏k−1
t=0 (n − t)

≥ e1

n!
. (11)

Let d ≡ e1

2·n!
. For each i ∈ N , let R̄i ∈ RV (0, p−�(R

i), d), and R̄ ≡ (R̄1, . . . , R̄n).

Then, by peak-onlyness (Lemma 2), f(R̄) = f(R̂).
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Let x̃−� ∈ X−�, R̃0 ∈ RV (0, x̃−�, d), and R̃1
0 ≡ R̃0.

Step 1-1. f1
� (R̃

1
0, R̄

−1) ≥ W�

n
+ e1 = f1

� (R̂).

Proof. Suppose on the contrary that f 1
� (R̃

1
0, R̄

−1) < W�

n
+ e1. Since f(R̄) =

f(R̂), we have f1
� (R̄) =

W�

n
+ e1. Let Ř1 ∈ R be such that p(Ř1) = p(R̄1) and

f1(R̃1
0, R̄

−1) P̌ 1 f 1(R̄). Then, by peak-onlyness (Lemma 2), f 1(Ř1, R̄−1) = f1(R̄).
Thus, f1(R̃1

0, R̄
−1) P̌ 1 f1(Ř1, R̄−1), contradicting strategy-proofness. �

Given N̂ ⊂ N , let R̃N̂
0 be such that for each i ∈ N̂ , R̃i

0 = R̃0.

Step 1-2. For each k ∈ {1, 2, . . . , n},
(a) if k is even, then there is N̂ ⊂ N such that |N̂ | = k and for each i ∈ N̂ , we

have f i
�(R̃

N̂
0 , R̄−N̂) ≤ W�

n
− ek, and

(b) if k is odd, then there is N̂ ⊂ N such that |N̂ | = k and for each i ∈ N̂ , we have

f i
�(R̃

N̂
0 , R̄−N̂) ≥ W�

n
+ ek.

Proof. The proof proceeds by induction on k. Let k ∈ {1, 2, . . . , n}. When k = 1,
by Step 1-1, we have already proven that (b) holds. Assume that k ≥ 2.
Case (a) (Figure 8): k is even.

Our induction hypothesis is that there is N̄ ⊂ N such that |N̄ | = k − 1, and for
each i ∈ N̄ , f i

�(R̃
N̄
0 , R̄−N̄) ≥ W�

n
+ ek−1.

Suppose on the contrary that for each j ∈ N \ N̄ , f j
� (R̃

N̄
0 , R̄−N̄) > W�

n
− ek−1

n−k+1
.

Then,

W� =
∑
i∈N

f i
�(R̃

N̄
0 , R̄−N̄) (by feasibility)

> (k − 1) ·
(

W�

n
+ ek−1

)
+ (n − k + 1) ·

(
W�

n
− ek−1

n − k + 1

)
= W� + (k − 2) · ek−1

≥ W�, (by k ≥ 2 and ek−1 > 0)

which is a contradiction.
Thus, there is j ∈ N \N̄ such that f j

� (R̃
N̄
0 , R̄−N̄) ≤ W�

n
− ek−1

n−k+1
. Let N̂ ≡ {j}∪N̄

and R̃j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�(R̃

N̂
0 , R̄−N̂) < f j

� (R̃
N̄
0 , R̄−N̄) + 2 · d (by Lemma 6)

≤ W�

n
− ek−1

n − k + 1
+ 2 · d

=
W�

n
− ek−1

n − k + 1
+

e1

n!

(
by d =

e1

2 · n!
)

≤ W�

n
− ek. (by k ≥ 2 and (11))

Case (b) (Figure 9): k is odd.
Our induction hypothesis is that there is N̄ ⊂ N such that |N̄ | = k − 1, and for

each i ∈ N̄ , f i
�(R̃

N̄
0 , R̄−N̄) ≤ W�

n
− ek−1.
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Suppose on the contrary that for each j ∈ N \ N̄ , f j
� (R̃

N̄
0 , R̄−N̄) < W�

n
+ ek−1

n−k+1
.

Then,

W� =
∑
i∈N

f i
�(R̃

N̄
0 , R̄−N̄) (by feasibility)

< (k − 1) ·
(

W�

n
− ek−1

)
+ (n − k + 1) ·

(
W�

n
+

ek−1

n − k + 1

)
= W� − (k − 2) · ek−1

≤ W�, (by k ≥ 2 and ek−1 > 0)

which is a contradiction.
Thus, there is j ∈ N \N̄ such that f j

� (R̃
N̄
0 , R̄−N̄) ≥ W�

n
+ ek−1

n−k+1
. Let N̂ ≡ {j}∪N̄

and R̃j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�(R̃

N̂
0 , R̄−N̂) > f j

� (R̃
N̄
0 , R̄−N̄)− 2 · d (by Lemma 6)

≥ W�

n
+

ek−1

n − k + 1
− 2 · d

=
W�

n
+

ek−1

n − k + 1
− e1

n!

(
by d =

e1

2 · n!
)

≥ W�

n
+ ek. (by k ≥ 2 and (11))

Thus, Step 1-2 holds. �
Step 1-3. We derive a contradiction to conclude that for each i ∈ N , f i

�(R̂) =
W�

n
.

There are two cases.
Case 1: n is even.

Then, by Case (a) of Step 1-2, for each i ∈ N , f i
�(R̃

N
0 ) ≤ W�

n
− en. Thus,

W� =
∑
i∈N

f i
�(R̃

N
0 ) (by feasibility)

≤ n ·
(

W�

n
− en

)
< W�, (by en > 0)

which is a contradiction.
Case 2: n is odd.

Then, by Case (b) of Step 1-2, for each i ∈ N , f i
�(R̃

N
0 ) ≥ W�

n
+ en. Thus,

W� =
∑
i∈N

f i
�(R̃

N
0 ) (by feasibility)

≥ n ·
(

W�

n
+ en

)
> W�, (by en > 0)

which is a contradiction.
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Therefore, for each i ∈ N , we have f i
�(R̂) =

W�

n
. �

Step 2. Let k ∈ {0, 1, . . . , n − 2}. Assume that for each h ∈ {0, 1, . . . , k}, each
x̂−� ∈ Z−�, each R̄ ∈ R̄N(h, x̂−�), and each i ∈ N , we have f i

�(R̄) = U i
�(R̄). Then,

for each R ∈ RN
� (k + 1, 0) and each i ∈ {π1, . . . , πk+1}, we have f i

�(R) = p�(R
i).

Proof. Let R ∈ RN
� (k + 1, 0). Without loss of generality, assume that agents are

indexed so that p�(R
1) ≥ · · · ≥ p�(R

k+1). Let K̄ ≡ {1, 2, . . . , k + 1}.
Step 2-1. Let x̂−� ∈ Z−� and R̂ ∈ RN(x̂−�) be such that for each i ∈ N , p�(R̂

i) =
p�(R

i). Then, for each i ∈ K̄, we have f i
�(R̂) = p�(R̂

i).

Proof. Let i ∈ K̄. By contradiction, suppose that f i
�(R̂) �= p�(R̂

i). By same-
sideness (Lemma 1), f i

�(R̂) > p�(R̂
i).

Let R̃i
0 ∈ R be such that p�(R̃

i
0) = 0 and p−�(R̃

i
0) = p−�(R̂

i). Then, by own
uncompromisingness (Lemma 3-i), f i

�(R̃
i
0, R̂

−i) = f i
�(R̂). Note that for some h ∈

{0, 1, . . . , k}, we have (R̃i
0, R̂

−i) ∈ R̄N(h, x̂−�).
By the assumption of Step 2, f i

�(R̃
i
0, R̂

−i) = U i
�(R̃

i
0, R̂

−i). Also, by the definition
of U and R̂ ∈ RN

� (k + 1, 0), we have U i
�(R̂) = p�(R̂

i). Since p�(R̃
i
0) = 0 < p�(R̂

i),
by the definition of U , we get U i

�(R̃
i
0, R̂

−i) ≤ U i
�(R̂). Thus, f i

�(R̃
i
0, R̂

−i) ≤ p�(R̂
i) <

f i
�(R̂) = f i

�(R̃
i
0, R̂

−i), which is a contradiction. �
Step 2-2. For each i ∈ K̄, we have f i

�(R) = p�(R
i).

Proof. Let R̄ ∈ Rn be such that for each i ∈ N , (i) p�(R̄
i) = p�(R

i), (ii)
p−�(R̄

i) = f i
−�(R), and (iii) UC(R̄i, f i(R)) ⊂ UC(Ri, f i(R)) and UC(R̄i, f i(R)) ∩

LC(Ri, f i(R)) = {f i(R)} (Figure 10).
Then, by strategy-proofness, f1(R̄1, R−1) = f1(R). By nonbossiness, f(R̄1, R−1) =

f(R). Repeating the same argument for i = 2, . . . , n, we have f(R̄) = f(R).
By feasibility, f−�(R) ∈ Z−�. Since for each i ∈ N , p−�(R̄

i) = f i
−�(R), we have

R̄ ∈ RN(f−�(R)). By Step 2-1 and for each i ∈ N , p�(R̄
i) = p�(R

i), it follows that
for each i ∈ K̄, f i

�(R̄) = p�(R̄
i) = p�(R

i). Since f(R̄) = f(R), for each i ∈ K̄, we
have f i

�(R) = p�(R
i). �

Step 3. For each k ∈ {1, 2, . . . , n − 2}, each x−� ∈ Z−�, each R ∈ R̄N(k, x−�), and
each i ∈ N , we have f i

�(R) = U i
�(R).

Proof. The proof proceeds by induction on k. Let k ∈ {1, 2, . . . , n − 2}. Assume
that

(A) For each h ∈ {0, 1, . . . , k− 1}, each x̂−� ∈ Z−�, each R̄ ∈ R̄N(h, x̂−�), and each
i ∈ N , we have f i

�(R̄) = U i
�(R̄).

By Step 1, we have already proven that (A) holds when k = 1. We will prove
that

(B) For each x−� ∈ Z−�, each R ∈ R̄N(k, x−�), and each i ∈ N , we have f i
�(R) =

U i
�(R).

Let x−� ∈ Z−� and R ∈ R̄N(k, x−�). Without loss of generality, we may assume
that agents are indexed so that p�(R

1) ≥ · · · ≥ p�(R
n). Let K ≡ {1, 2, . . . , k}.
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Then, by the definition of U , for each i ∈ K, U i
�(R) = p�(R

i), and for each

j ∈ N \ K, U j
� (R) =

W�−
Pk

i=1 p�(R
i)

n−k
= λ�(R). Note that, since R ∈ R̄N(k, x−�)

implies
∑

i∈N p�(R
i) < W�, we have λ�(R) > 0. We show that for each i ∈ N ,

f i
�(R) = U i

�(R).
Let R̂−K ∈ R|−K| be such that for each i ∈ N \ K, p�(R̂

i) = 0 and p−�(R̂
i) =

p−�(R
i). Then, by the definition of U , for each i ∈ N , U i

�(R
K , R̂−K) = U i

�(R). If
for each i ∈ N , f i

�(R
K , R̂−K) = U i

�(R
K , R̂−K), then, by group uncompromisingness

(Lemma 3-ii), f(R) = f(RK , R̂−K). Thus, we only have to show for each i ∈ N ,
f i

�(R
K , R̂−K) = U i

�(R
K , R̂−K).

By (A) and Step 2, we have already proven that for each i ∈ K, f i
�(R

K , R̂−K) =
p�(R

i). Thus, we only show that for each i ∈ N \ K, f i
�(R

K , R̂−K) = λ�(R).
By contradiction, suppose that there is j ∈ N \ K such that f j

� (R
K , R̂−K) >

λ�(R). Without loss of generality, assume that j = k + 1. Note that, since for each
i ∈ K, f i

�(R
K , R̂−K) = p�(R

i), and for each i ∈ {k + 2, . . . , n}, f i
�(R

K , R̂−K) ≥ 0,

by feasibility, fk+1
� (RK , R̂−K) ≤ W� −

∑k
i=1 p�(R

i).

Let e1 ≡ fk+1
� (RK , R̂−K) − λ�(R). For each h ∈ {2, 3, . . . , n − k}, let eh ≡

eh−1

n−k−h+2
. Then, (i) for each h ∈ {2, 3, . . . , n−k}, eh > 0 and eh < eh−1, (ii) for each

h ∈ {2, 3, . . . , n − k},
eh =

e1∏h−2
t=0 (n − k − t)

,

and (iii) for each h ∈ {2, 3, . . . , n − k},
eh−1

n − k − h+ 1
− eh =

e1∏h−1
t=0 (n − k − t)

≥ e1

(n − k)!
. (12)

Let d ≡ e1

2·(n−k)!
. For each i ∈ N \ K, let R̄i ∈ RV (0, p−�(R̂

i), d), and R̄−K ≡
(R̄k+1, . . . , R̄n). Then, by peak-onlyness (Lemma 2), f(RK , R̄−K) = f(RK , R̂−K).

Let x̃−� ∈ Z−�, R̃0 ∈ RV
0 (0, x̃−�, d), and R̃k+1

0 ≡ R̃0.

Step 3-1. fk+1
� (RK , R̃k+1

0 , R̄−K∪{k+1}) ≥ λ�(R) + e1 = fk+1
� (RK , R̂−K).

Proof. The proof is similar to Step 1-1. By contradiction, suppose not. Since
f(RK , R̄−K) = f(RK , R̂−K), we have fk+1

� (RK , R̄−K) = λ�(R)+e1. Let Řk+1 ∈ R be
such that p(Řk+1) = p(R̄k+1) and fk+1(RK , R̃k+1

0 , R̄−K∪{k+1}) P̌ k+1 fk+1(RK , R̄−K).
Then, by peak-onlyness (Lemma 2), fk+1(RK , Řk+1, R̄−K∪{k+1}) = fk+1(RK , R̄−K).
Thus, fk+1(RK , R̃k+1

0 , R̄−K∪{k+1}) P̌ k+1 fk+1(RK , Řk+1, R̄−K∪{k+1}), contradicting
strategy-proofness. �

Given N̂ ⊂ N \ K, let R̃N̂
0 be such that for each i ∈ N̂ , R̃i

0 = R̃0.

Step 3-2. For each h ∈ {1, 2, . . . , n − k},
(a) if h is even, then there is N̂ ⊂ N \K such that |N̂ | = h and for each i ∈ N̂ , we

have f i
�(R

K , R̃N̂
0 , R̄−K∪N̂) ≤ λ�(R)− eh, and

(b) if h is odd, then there is N̂ ⊂ N \ K such that |N̂ | = h and for each i ∈ N̂ , we

have f i
�(R

K , R̃N̂
0 , R̄−K∪N̂) ≥ λ�(R) + eh.
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Proof. The proof is similar to Step 1-2, and proceeds by induction on h. Let
h ∈ {1, 2, . . . , n − k}. When h = 1, by Step 3-1, we have already proven that (b)
holds. Assume that h ≥ 2.

Case (a): h is even.
Our induction hypothesis is that there is N̄ ⊂ N \K such that |N̄ | = h− 1 and

for each i ∈ N̄ , f i
�(R

K , R̃N̄
0 , R̄−K∪N̄) ≥ λ�(R) + eh−1.

Suppose on the contrary that for each j ∈ N \ (K ∪ N̄), f j
� (R

K , R̃N̄
0 , R̄−K∪N̄) >

λ�(R)− eh−1

n−k−h+1
. By (A) and Step 2, for each i ∈ K, f i

�(R
K , R̃N̄

0 , R̄−K∪N̄) = p�(R
i).

Thus,

W� =
∑
i∈N

f i
�(R

K , R̃N̄
0 , R̄−K∪N̄) (by feasibility)

>
∑
i∈K

p�(R
i) + (h − 1) · (λ�(R) + eh−1) + (n − k − h+ 1) ·

(
λ�(R)− eh−1

n − k − h+ 1

)

= W� + (h − 2) · eh−1 ( by
∑
i∈K

p�(R
i) + (n − k) · λ�(R) = W�)

≥ W�, (by h ≥ 2 and eh−1 > 0)

which is a contradiction. Thus, there is j ∈ N\(K∪N̄) such that f j
� (R

K , R̃N̄
0 , R̄−K∪N̄) ≤

λ�(R)− eh−1

n−k−h+1
.

Let N̂ ≡ N̄ ∪ {j} and R̃j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�(R

K , R̃N̂
0 , R̄−K∪N̂) < f j

� (R
K , R̃N̄

0 , R̄−K∪N̄) + 2 · d (by Lemma 6)

≤ λ�(R)− eh−1

n − k − h+ 1
+ 2 · d

= λ�(R)− eh−1

n − k − h+ 1
+

e1

(n − k)!

(
by d =

e1

2 · (n − k)!

)
≤ λ�(R)− eh. (by h ≥ 2 and (12))

Case (b): h is odd.
Our induction hypothesis is that there is N̄ ⊂ N \K such that |N̄ | = h− 1 and

for each i ∈ N̄ , f i
�(R

K , R̃N̄
0 , R̄−K∪N̄) ≤ λ�(R)− eh−1.

Suppose on the contrary that for each j ∈ N \ (K ∪ N̄), f j
� (R

K , R̃N̄
0 , R̄−K∪N̄) <

λ�(R)+
eh−1

n−k−h+1
. By (A) and Step 2, for each i ∈ K, f i

�(R
K , R̃N̄

0 , R̄−K∪N̄) = p�(R
i).

Thus,

W� =
∑
i∈N

f i
�(R

K , R̃N̄
0 , R̄−K∪N̄) (by feasibility)

<
∑
i∈K

p�(R
j) + (h − 1) · (λ�(R)− eh−1) + (n − k − h+ 1) ·

(
λ�(R) +

eh−1

n − k − h+ 1

)

= W� − (h − 2) · eh−1 ( by
∑
i∈K

p�(R
i) + (n − k) · λ�(R) = W�)

≤ W�, (by h ≥ 2 and eh−1 > 0)
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which is a contradiction. Thus, there is j ∈ N\(K∪N̄) such that f j
� (R

K , R̃N̄
0 , R̄−K∪N̄) ≥

λ�(R) +
eh−1

n−k−h+1
.

Let N̂ ≡ N̄ ∪ {j} and R̃j
0 ≡ R̃0. Let i ∈ N̂ . Then,

f i
�(R

K , R̃N̂
0 , R̄−K∪N̂) > f j

� (R
K , R̃N̄

0 , R̄−K∪N̄)− 2 · d (by Lemma 6)

≥ λ�(R) +
eh−1

n − k − h+ 1
− 2 · d

= λ�(R) +
eh−1

n − k − h+ 1
− e1

(n − k)!

(
by d =

e1

2 · (n − k)!

)
≥ λ�(R) + eh. (by h ≥ 2 and (12))

Thus, Step 3-2 holds. �
Step 3-3. We derive a contradiction to conclude that for each i ∈ N\K, f i

�(R
K , R̂−K) =

λ�(R).

By (A) and Step 2, for each i ∈ K, f i
�(R

K , R̃−K
0 ) = p�(R

i).
There are two cases.

Case 1: n − k is even.
Then, by Case (a) of Step 3-1, for each i ∈ N \ K, we have f i

�(R
K , R̃−K

0 ) ≤
λ�(R)− en−k. Thus,

W� =
∑
i∈N

f i
�(R

K , R̃−K
0 ) (by feasibility)

≤
∑
i∈K

p�(R
i) + (n − k) · λ�(R)− (n − k) · en−k

= W� − (n − k) · en−k ( by
∑
i∈K

p�(R
i) + (n − k) · λ�(R) = W�)

< W�, (by n − k ≥ 2 and en−k > 0)

which is a contradiction.
Case 2: n − k is odd.

Then, by Case (b) of Step 3-1, for each i ∈ N \ K, we have f i
�(R

K , R̃−K
0 ) ≥

λ�(R) + en−k. Thus,

W� =
∑
i∈N

f i
�(R

K , R̃−K
0 ) (by feasibility)

≥
∑
i∈K

p�(R
i) + (n − k) · λ�(R) + (n − k) · en−k

= W� + (n − k) · en−k ( by
∑
i∈K

p�(R
i) + (n − k) · λ�(R) = W�)

> W�, (by n − k ≥ 2 and en−k > 0)

which is a contradiction.
Therefore, for each i ∈ N \ K, we have f i

�(R
K , R̂−K) = λ�(R). �
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Step 4. For each x−� ∈ Z−�, each R ∈ R̄N(n − 1, x−�), and each i ∈ N , we have
f i

�(R) = U i
�(R).

Proof. Let x−� ∈ Z−� and R ∈ R̄N(n − 1, x−�). Without loss of generality, we
may assume that p�(R

1) ≥ · · · ≥ p�(R
n). Then, by the definition of U , for each

i ∈ N \ {n}, U i
�(R) = p�(R

i), and Un
� (R) = W� −

∑n−1
i=1 p�(R

i). Let R̂n ∈ R be

such that p�(R̂
n) = 0 and p−�(R̂

n) = p−�(R
n). By Steps 1 and 3, when k = n − 2,

we have already proven that the assumption of Step 2 holds. Thus Step 2 implies
that for each i ∈ N \ {n}, f i

�(R̂
n, R−n) = p�(R

i). By feasibility, fn
� (R̂

n, R−n) =
W� −

∑n−1
i=1 p�(R

i). Since
∑

i∈N p�(R
i) < W�, we have W� −

∑n−1
i=1 p�(R

i) > 0.

Thus p�(R̂
n) < f�(R̂

n, R−n). By own uncompromisingness (Lemma 3-i), f(R) =
f(R̂n, R−n). Thus, for each i ∈ N , we have f i

�(R) = U i
�(R). �

In the same way, we can also show that for each x−� ∈ Z−�, each R ∈ R̄N(x−�)
such that

∑
i∈N p�(R

i) > W�, and each i ∈ N , we have f i
�(R) = U i

�(R).
We have completed the proof of Lemma 7. �

Proof of the Theorem. Let f be a strategy-proof, unanimous, symmetric, and
nonbossy rule. We will show that for each R ∈ Rn and each � ∈ M , f�(R) =
U�(R). Let R ∈ Rn and � ∈ M . Let R̄ ∈ Rn be such that for each i ∈ N , (i)
p�(R̄

i) = p�(R
i), (ii) p−�(R̄

i) = f i
−�(R), and (iii) UC(R̄i, f i(R)) ⊂ UC(Ri, f i(R))

and UC(R̄i, f i(R)) ∩ LC(Ri, f i(R)) = {f i(R)} (Figure 10). By strategy-proofness,
f1(R̄1, R−1) = f1(R). By nonbossiness, f(R̄1, R−1) = f(R). Repeating the same
argument for i = 2, . . . , n, we have f(R̄) = f(R).

By feasibility, f−�(R) ∈ Z−�. Since for each i ∈ N , p−�(R̄
i) = f i

−�(R), we
have R̄ ∈ R̄N(f−�(R)). Thus Lemma 7 implies f�(R̄) = U�(R̄). By the definition
of U , U�(R̄) = U�(R). Thus, f�(R̄) = U�(R). Since f(R̄) = f(R), we obtain
f�(R) = U�(R). �
Proof of the Corollary. Let f be a strategy-proof, unanimous, symmetric, and
nonbossy rule defined on the domain Rn

M of continuous, strictly convex, and mul-
tidimensional single-peaked preferences. Let R ∈ Rn

M . Let R̂ ∈ Rn be such that
for each i ∈ N , (i) p(R̂i) = p(Ri), and (ii) UC(R̂i, f i(R)) ⊂ UC(Ri, f i(R)) and
UC(R̂i, f i(R))∩LC(Ri, f i(R)) = {f i(R)}. Then, by strategy-proofness, f 1(R̂1, R−1) =
f1(R). By nonbossiness, f(R̂1, R−1) = f(R). Repeating the same argument for
i = 2, . . . , n, we have f(R̂) = f(R). By the Theorem, f(R̂) = U(R̂). Since the
uniform rule is peak-only, U(R) = U(R̂). Hence, f(R) = U(R). �

4 Concluding Remarks

We considered the problem of allocating several infinitely divisible commodities
among agents with continuous, strictly convex, and separable preferences. We estab-
lished that a rule on this class of preferences satisfies strategy-proofness, unanimity,
symmetry, and nonbossiness if and only if it is the uniform rule.

We conclude by commenting on further research. The only if part of our The-
orem does not hold when we drop any of the three axioms of strategy-proofness,
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unanimity, and symmetry. The proportional rule19 satisfies unanimity, symmetry,
and nonbossiness, but not strategy-proofness. The queuing rules20 satisfy strategy-
proofness, unanimity, and nonbossiness, but not symmetry. The equal distribution
rule21 satisfies strategy-proofness, symmetry, and nonbossiness, but not unanimity.
Thus, it is an open question whether the uniqueness part of our theorem holds
without nonbossiness.

In the one-commodity case, since the uniform rule is nonbossy, strategy-proofness,
Pareto-efficiency, and symmetry imply nonbossiness (Sprumont, 1991; Ching, 1994).
Moreover, effectively pairwise strategy-proofness and unanimity imply nonbossiness
(Serizawa, 2006).22 Therefore, it is an interesting question whether their charac-
terizations of the uniform rule for the one-commodity case extend to the multiple-
commodity case.

Appendix

Fact. For each � ∈ M , each xi
� ∈ {0,W�}, each xi

−� ∈ X−�, and each d ∈ (0, W�

2n
),

RV (xi
�, x

i
−�, d) is nonempty.

Proof. Let � ∈ M , xi
� ∈ {0,W�}, xi

−� ∈ X−�, and d ∈ (0, W�

2n
).

Case 1: xi
� = 0.

19Proportional rule, Pro: For each R ∈ Rn, each � ∈ M , and each i ∈ N ,

Proi
�(R) =

{
p�(R

i)·W�P
j∈N p�(Rj) if

∑
j∈N p�(Rj) > 0

W�

n otherwise.

20Queuing rule, Q: There is a permutation π of N , and for each R ∈ Rn and each � ∈ M ,

Q
π(1)
� (R) = p�(Rπ(1))

Q
π(2)
� (R) = min{p�(Rπ(2)), W� − Q

π(1)
� (R)}

Q
π(3)
� (R) = min{p�(Rπ(3)), W� − Q

π(1)
� (R)− Q

π(2)
� (R)}

...

Q
π(n)
� (R) = W� −

n−1∑
j=1

Q
π(j)
� (R).

21Equal distribution rule, E: For each R ∈ Rn, each � ∈ M , and each i ∈ N ,

Ei
�(R) =

W�

n
.

22Effective pairwise strategy-proofness requires that rules are strategy-proof and that no pair
of agents can increase the welfare of any agent of the pair without decreasing the welfare of
the other member of the pair, and neither member of the pair has an incentive to betray his
partner. Serizawa (2006) characterized the uniform rule by effectively pairwise strategy-proofness,
unanimity, and symmetry.
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Define

Li
� ≡ max

ŷ∈X

{∑
�′ �=� (ŷ�′ − xi

�′)
2

d · (2 · ŷ� + d)

}
. (13)

Since the set X is compact, Li
� exists. By d > 0, 0 < Li

� < ∞. Let ai
� > Li

�. Let
ui : X → R be a utility function such that for each y ∈ X,

ui(y) ≡ −ai
� · (y�)

2 −
∑
�′ �=�

(
y�′ − xi

�′
)2

. (14)

Let Ri ⊂ X × X be the preference relation such that for each y, z ∈ X, yRiz if
and only if ui(y) ≥ ui(z). Then, p(Ri) = (0, xi

−�), and Ri is continuous, strictly
convex, and separable. We show that for each y� ∈ [0,W� − d] and each y−� ∈ X−�,
(y�, y−�) P i (y� + d, xi

−�). Let y� ∈ [0,W� − d] and y−� ∈ X−�. Then,

ui (y�, y−�)− ui
(
y� + d, xi

−�

)
=− ai

� · (y�)
2 −

∑
�′ �=�

(
y�′ − xi

�′
)2
+ ai

� · (y� + d)2 (by (14))

= ai
� · d · (2 · y� + d)−

∑
�′ �=�

(
y�′ − xi

�′
)2

> Li
� · d · (2 · y� + d)−

∑
�′ �=�

(
y�′ − xi

�′
)2

(by ai
� > Li

�, d > 0, and y� ≥ 0)

= d · (2 · y� + d)

{
Li

� −
∑

�′ �=� (y�′ − xi
�′)

2

d · (2 · y� + d)

}

≥0. (by (13), d > 0, and y� ≥ 0)

Thus, Ri ∈ RV (0, xi
−�, d).

Case 2: xi
� = W�.

Define

L̄i
� ≡ max

ŷ∈[0,W�−d]×X−�

{ ∑
�′ �=� (ŷ�′ − xi

�′)
2

d · (2 · (W� − ŷ�)− d)

}
.

Note that since the set [0,W� − d]×X−� is compact, L̄i
� exists. Since d > 0 and for

each ŷ� ∈ [0,W� − d], 2 · (W� − ŷ�)− d > 0, we have 0 < L̄i
� < ∞. Let āi

� > L̄i
�. Let

ūi : X → R be a utility function such that for each y ∈ X,

ūi(y) ≡ −āi
� · (y� − W�)

2 −
∑
�′ �=�

(
y�′ − xi

�′
)2

.

Let R̄i ⊂ X × X be the preference relation represented by ūi. Similarly to Case 1,
we can show that R̄i ∈ RV (W�, x

i
−�, d). �
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•

•
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•
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p(R1)
R1

p(R̂1)

f 1(R)

R̂1

p(R2)
R2

p(R̂2)
R̂2

f2(R)

f1
� (R) + f2

� (R)− p�(R
2)

•

Figure 1. Illustration of (R̂1, R̂2) in the proof of Lemma 1.

commodity �

commodity �′

W�

W�′

0 y� y� + d

•p(Ri)

W� − d

d dd

ŷ� ŷ� + d

Ri

y−� •
(y�, y−�)

•

(ŷ�, y−�)•

•(0, xi
−�)

Ri

(y� + d, p−�(R
i)) (ŷ� + d, p−�(R

i))

Figure 2. Illustration of Ri ∈ RV (0, xi
−�, d).
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commodity �

commodity �′

W�

W�′

0

•

W� − d

d d

R̃i

•

•

•f i(R̄i, R−i)

f i(R̃i, R−i)

(f i
�(R̄

i, R−i) + d, p−�(R̃
i))(0, x̃i

−�)
p(R̃i)

Figure 3. Illustration of Case 1-2 of Step 1 in the proof of Lemma 4.

commodity �

commodity �′

W�

W�′

0

•p(R̄i)

dd

R̄i

•

•

•
f i(R̄i, R−i)

f i(R̃i, R−i)

(f i
�(R̃

i, R−i) + d, p−�(R̄
i))

d

(0, x̄i
−�)

Figure 4. Illustration of Case 2-2 of Step 2 in the proof of Lemma 4.
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commodity �

commodity �′

W�

W�′

0

•p(R̃i)

W� − d

d d

R̃i = R̃0 = R̃j

•

•

•f i(R̃i,j, R−i,j)

f j(R̃i,j, R−i,j)

(f i
�(R̃

i,j, R−i,j) + d, p−�(R̃
i))(0, x−�)

Figure 5. Illustration of Case 1-2 of Step 1 in the proof of Lemma 5.

commodity �

commodity �′

W�

W�′

0

•p(R̃i)

dd

R̃i = R̃0 = R̃j

•

• • f i(R̃i,j, R−i,j)
f j(R̃i,j, R−i,j)

d

(0, x−�)

(f j
� (R̃

i,j, R−i,j) + d, p−�(R̃
i))

Figure 6. Illustration of Case 2-2 of Step 2 in the proof of Lemma 5.
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commodity 1

commodity 2

W1

W2

0

•

•

•

f̄1(R1, R2)

f̄ 2(R1, R2)

2·W2

3

W2

3

W1

3
2·W1

3

p(R2)

p(R1)
R1

R2

Figure 7. Illustration of f̄ in Example 3 for p(R1) = (2·W1

3
, 2·W2

3
) and

p(R2) = (2·W1

3
, W2

3
). Note that R̄(R1) = R̄(R2).

commodity �

commodity �′

W�

W�′

0

2d

•

•f j(R̃N̄
0 , R̄−N̄)

f i(R̃N̂
0 , R̄−N̂)

W‘

n

••

W�

n
− ek−1

n−k+1

W�

n
− ek

Figure 8. Illustration of Case (a) of Step 1-2 in the proof of Lemma 7.
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commodity �

W�

W�′

0

2d

•

•
f j(R̃N̄

0 , R̄−N̄)

f i(R̃N̂
0 , R̄−N̂)

W‘

n

• •

W�

n
+ ek−1

n−k+1

W�

n
+ ek

commodity �′

Figure 9. Illustration of Case (b) of Step 1-2 in the proof of Lemma 7.
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W�′

0 W�

•

•

•

•

f i(R)
•

Ri p(Ri)

p(R̄i)

R̄i

•p(Rj)

•
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p(R̄j)

Rj

R̄j

p(Rk)
•

•

p(R̄k)
R̄k

Rk
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Figure 10. Illustration of R̄ in the proof of Step 2 (Lemma 7) and Theorem.
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