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1. Introduction

To test whether a random variable follows a specific parametric distribu-
tion, chi-square specification tests have been widely used since Pearson’s (1900)
pioneering work. For recent econometric extensions, see Andrews (1988a,b).
The main idea of the chi-square test is to measure the “distance” between the
empirical cell frequencies and their model-based counterparts. If a paramet-
ric model is true, then the distance measure will be small; otherwise, it will
be large. By suitably defining the distance measure, one can construct a test
statistic which asymptotically follows a chi-square distribution with known de-
grees of freedom. To define the test statistic, one has to estimate the unknown
parameters.

This paper proves that the chi-square test statistic monotonically increases
in a stochastic sense as the parameter estimator being plugged into the test
statistic becomes more and more efficient. When the cell structure used for the
parameter estimation is the same as the cell structure employed to design the
test statistic, it is well known that the resulting test statistic will asymptotically
follow a chi-square distribution with k − 1 − r degrees of freedom, where k
is the number of cells and r is the number of estimated parameters. When
the cell structures for estimation and testing are the same, the resulting test
statistic loses as many degrees of freedom as there are estimated parameters
in its asymptotic distribution. When the cell structure is finer in the case of
estimation than in the case of testing, the degrees of freedom loss is not as severe
as in the same structure case. In fact, there is a monotonic relationship between
the fineness in the estimation cell structure (equivalently, the efficiency of the
estimator) and the degrees of freedom loss. As a finer cell structure is used to
estimate the parameter and thus a more efficient estimator is plugged into, the
lesser will be the loss in the degrees of freedom of the resulting chi-square test
statistic.

Chernoff and Lehmann (1954) showed that the test statistic using the es-
timator obtained from the continuous data is stochastically larger than the one
using the estimator from the test cell structure, and that the degrees of free-
dom of the resulting chi-square test statistic are larger for the continuous data
case than for the test cell case. The monotonicity result in this paper extends
Chernoff and Lehmann’s result to bridge the gap between these two extreme
cases.

The rest of the paper is organized as follows. Section 2 introduces the
framework. Section 3 contains the main results. Section 4 concludes the paper.
Proofs are deferred to the Appendix.
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2. Framework

Let X follow a parametric distribution: X ∼ f(x, θ), x ∈ χ. Let C1, · · · , Ck

be k cells which partition the support χ of x. Define p1, · · · , pk to be the corre-
sponding cell probabilities, pj =

∫
Cj

f(x, θ) dx. Suppose we have n independent
observations, x1, · · · , xn, drawn from f(x, θ). Define an indicator variables dij

such that dij = 1 if xi ∈ Cj , dij = 0 otherwise. Let n1, · · · , nk denote the
number of observations falling into C1, · · · , Ck, respectively, nj =

∑n
i=1 dij . Of

course,
∑n

j=1 nj = n. Empirical cell probabilities, p̂1, · · · , p̂k, are obtained as
relative frequencies, p̂j = nj/n.

Let P be the k × 1 column vector composed of p1, · · · , pk. Define P̂ in a
similar manner. Let us make some regularity assumptions:

Assumption 1: The true parameter θ is an interior point of the parameter
space.
Assumption 2: The density f(x, θ) is positive for almost all x ∈ χ.
Assumption 3: The Lebesgue measure of each cell Cj is positive.
Assumption 4: Each cell probability pj(θ) has continuous first-order partial
derivatives in a neighborhood of the true parameter θ.
Assumption 5: The Jacobian matrix ∂P/∂θ′ has full column rank at true θ.

These conditions ensure that pj(θ) is positive, locally smooth, and one-
to-one at the true parameter θ, and that a Taylor series expansion exists in
a neighborhood around the true parameter θ. Assumption 5 implies that the
number, say r, of parameters in θ cannot exceed k−1, the number of maximum
free cells. This is because the row sum of the Jacobian matrix ∂P/∂θ′ is a zero
vector, which implies that the number of independent rows is at most k − 1.

In the following section, we construct chi-square test statistics to test
H0 : X ∼ f(x, θ). Depending on how the parameter θ is estimated, the resulting
chi-square test statistic will have different degrees of freedom. We consider two
different estimates of θ, one based on the test cell structure and the other based
on a finer cell structure.

3. Estimation of θ and construction of χ2 test statistics

We first have to estimate θ, and then based on these estimates, θ̂, compute
pj(θ̂), estimates of the model-implied cell probabilities. By comparing the em-
pirical cell probabilities p̂j with the model-based estimates pj(θ̂), we can design
a model specification test. Since we have k−1 maximum free cells, the number
r of free parameters in θ should be less than or equal to k − 1. In fact, the
model H0 : X ∼ f(x, θ) contains max(k − 1− r, 0) restrictions relative to k − 1
free cells. The case of known θ corresponds to r = 0, yielding k−1 restrictions.
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If r > k− 1, then the model is over-parameterized (under-identified) relative to
k − 1 free cells, which is excluded by Assumption 5.

The test statistic will be based on
√

n(P̂ − P (θ̂)). By using a Taylor
expansion, we have

√
n(P̂ − P (θ̂)) ≈ √

n(P̂ − P (θ))− J
√

n(θ̂ − θ)

≈ √
n(P̂ − P (θ))− JH−1 1√

n

n∑

i=1

si

=
1√
n

n∑

i=1

(di − P (θ)− JH−1si),

(1)

where J = ∂P/∂θ′, H is the information matrix of a single cell observation, si

is the ith individual score function, di = (di1, · · · , dik)′, and ≈ indicates that
both sides of the ≈ have the same asymptotic distribution.

Given a data set, one often aggregates the data into a finite set of intervals
for the purpose of testing. Of course, if the original data is given as an interval
or a categorical data, one does not have to aggregate the data for the testing
purpose. Therefore, it is natural to assume that the test cell structure is coarser
than (aggregation case) or at best the same as the estimation cell structure (no
aggregation).

Alternatively speaking, to compute θ̂, one may use either a frequency data
from the test cell structure or a frequency data from a finer cell structure. In
section 3, we consider two cases separately, one case where the estimation cell
structure and the test cell structure are the same and the other case where the
estimation cell structure is a sub-partition of the test cell structure.

3.1 Estimator from the test cell information

Now the ith log-likelihood function is

log li =
k∑

j=1

dij log pj(θ). (2)

By taking first-derivative,

si =
∂ log li

∂θ
=

k∑

j=1

dij
1

pj(θ)
∂pj(θ)

∂θ
= J ′D−1di. (3)

Since J ′D−1P (θ) = J ′ιk = ∂
∂θ (P ′ιk) = ∂

∂θ 1 = 0 (with ιk being a k × 1 vector
of ones), si can also be written as

si = J ′D−1(di − P (θ)). (4)
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By taking expectation of the outer product of the score in (3), we obtain the
information matrix

H = E[sis
′
i] = J ′D−1E[did

′
i]D

−1J

= J ′D−1DD−1J = J ′D−1J.
(5)

By putting (4) and (5) into (1), we have

√
n(P̂ − P (θ̂)) ≈ 1√

n

n∑

i=1

[Ik − J(J ′D−1J)−1J ′D−1](di − P (θ))

∼N(0, [Ik − J(J ′D−1J)−1J ′D−1](D − PP ′)[Ik − J(J ′D−1J)−1J ′D−1]′),
(6)

where the asymptotic normality is established through the Lindberg-Levy cen-
tral limit theorem. By using J ′D−1P = 0, the asymptotic variance-covariance
matrix of

√
n(P̂ − P (θ̂)) in (6) can be simplified to yield

√
n(P̂ − P (θ̂)) ∼ N(0, D − PP ′ − J(J ′D−1J)−1J ′). (7)

From (7),

D−1/2
√

n(P̂ − P (θ̂)) ∼ N(0, Ik − P 1/2P 1/2′ −D−1/2J(J ′D−1J)−1J ′D−1/2).
(8)

Note that the variance-covariance matrix is in the form of the projection matrix
orthogonal to the space spanned by the columns of (P 1/2 : D−1/2J), since
P 1/2P 1/2′ = P 1/2(P 1/2′P 1/2)−1P 1/2′ and P 1/2′D−1/2J = ι′kJ = 0. Therefore,
the variance-covariance matrix is idempotent and its rank is equal to k− 1− r.

Lemma 1. Let Y be distributed multivariate normal with mean 0 and co-
variance matrix B. A necessary and sufficient condition for Y ′CY to have a
chi-squared distribution, with degrees of freedom equal to the rank of CB, is
BCBCB = BCB. (see Rao, 1973, p. 188).

To apply Lemma 1 to (8), take Y = D−1/2
√

n(P̂ − P (θ̂)), B = Ik −
P 1/2P 1/2′−D−1/2J(J ′D−1J)−1J ′D−1/2, and C = Ik. Then, since B is idempo-
tent with rank(B) =trace(B) = k−1−r, we have BCBCB = B3 = B2 = BCB
and rank(CB) =rank(B) = k − 1− r. Therefore,

n(P̂ − P (θ̂))′D−1(P̂ − P (θ̂)) = n
k∑

j=1

(p̂j − pj(θ̂))2

pj

≈ n

k∑

j=1

(p̂j − pj(θ̂))2

pj(θ̂)
∼ χ2(k − 1− r).

(9)
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3.2 Estimator from a finer cell information

Let a finer cell structure be obtained by sub-partitioning each interval in
the previous k cell structure. For notational convenience, let us assume that
each cell Cj is partitioned into m sub-cells Cj1, · · · , Cjm, j = 1, · · · , k. The fact
that m is constant across the original k cells is only for convenience. Define
pjl to be the sub-cell probability corresponding to Cjl: pjl =

∫
Cjl

f(x, θ) dx,
j = 1, · · · , k, and l = 1, · · · ,m. Define indicator variables dijl such that dijl = 1
if xi ∈ Cjl, dijl = 0 otherwise, i = 1, · · · , n, j = 1, · · · , k, and l = 1, · · · ,m.
Let njl denote the number of observations falling into Cjl: njl =

∑n
i=1 dijl. Of

course,
∑m

l=1 njl = nj and
∑k

j=1 nj = n. The empirical sub-cell probability p̂jl

is obtained as the corresponding relative frequency: p̂jl = njl/n. Let P ∗ be the
mk×1 column vector composed of pjl: P ∗ = (p11, · · · , p1m : · · · : pk1, · · · , pkm)′.
Define P̂ ∗, d∗, and D∗ in a similar manner.

Similar to (1), we derive

√
n(P̂ − P (θ̂∗)) ≈ 1√

n

n∑

i=1

(di − P (θ)− JH∗−1s∗i ), (1′)

where θ̂∗ is the maximum likelihood estimator calculated from the sub-
partitioned data, J = ∂P/∂θ′, H∗ is the Fisher information matrix of a single
observation, s∗i is the ith score function, and ≈ indicates that both sides of the
≈ have the same asymptotic distribution.

Now the ith log-likelihood function is

log l∗i =
k∑

j=1

m∑

l=1

dijl log pjl(θ). (2′)

By taking first-derivative,

s∗i =
∂ log l∗i

∂θ
=

k∑

j=1

m∑

l=1

dijl
1

pjl(θ)
∂pjl(θ)

∂θ
= J∗′D∗−1d∗i , (3′)

where J∗ = ∂P ∗/∂θ′. Since J∗
′
D∗−1P ∗(θ) = J∗′ιmk = ∂

∂θ (P ∗
′
ιmk) = ∂

∂θ 1 = 0,
s∗i can also be written as

s∗i = J∗′D∗−1(d∗i − P ∗(θ)). (4′)

Using (4’), we obtain the information matrix

H∗ = E[s∗i s
∗
i
′] = J∗′D∗−1E[d∗i d

∗
i
′]D∗−1J∗

= J∗′D∗−1D∗D∗−1J∗ = J∗′D∗−1J∗.
(5′)
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By putting (4′) and (5′) into (1’), we have

√
n(P̂ − P (θ̂∗)) ≈ 1√

n

n∑

i=1

[T − J(J∗′D∗−1J∗)−1J∗
′
D∗−1](d∗i − P ∗(θ))

∼N(0, A(D∗ − P ∗P ∗
′
)A′),

(6′)

where A = T −J(J∗′D∗−1J∗)−1J∗
′
D∗−1 and T is a k×mk matrix T = Ik⊗ ιm

with ⊗ being the Kronecker product operator (see Amemiya 1985, p. 462). The
matrix T plays the role of linking di, P (θ), and J to d∗i , P ∗(θ), and J∗: di = Td∗i ,
P (θ) = TP ∗(θ), and J = TJ∗. By using (i) T (D∗ − P ∗P ∗

′
)T = D − PP ′,

(ii) J = TJ∗, and (iii) J∗′D∗−1P ∗ = J∗
′
ιmk = 0, the asymptotic variance-

covariance matrix in (6′) can be simplified to yield

√
n(P̂ − P (θ̂∗)) ∼ N(0, D − PP ′ − J(J∗

′
D∗−1J∗)−1J ′). (7′)

From (7′),

D−1/2
√

n(P̂ − P (θ̂∗))

∼N(0, Ik − P 1/2P 1/2′ −D−1/2J(J∗
′
D∗−1J∗)−1J ′D−1/2).

(8′)

Ryu (1993) showed that as the data cell structure gets finer, the resulting
Fisher information is monotonically increasing. Using his result, we imme-
diately notice that the variance-covariance matrix in (8′) is larger than the
corresponding one in (8) in the matrix sense (meaning that their difference is a
positive semi-definite matrix).

Now let us compare these two variance-covariance matrices in (8) and (8′):

Σk =Ik − P 1/2P 1/2′ −D−1/2J(J ′D−1J)−1J ′D−1/2;

Σmk =Ik − P 1/2P 1/2′ −D−1/2J(J∗
′
D∗−1J∗)−1J ′D−1/2.

We have Σmk ≥ Σk in the matrix sense.

Lemma 2. The characteristic roots of Σmk are: k − 1− r ones, 1 zero, and r
fractions. Let λ1, · · · , λr be these fractions. Then these λ’s are the roots of the
equation |J ′D−1J − (1− λ)J∗

′
D∗−1J∗| = 0. (proof in the Appendix)

Lemma 3. Let Y be multivariate normal with mean 0 and covariance matrix Ω.
Let δ1, · · · , δk be the characteristic roots of Ω. Then the distribution of Y ′Y is
asymptotically equivalent to the distribution of δ1z

2
1 +· · ·+δkz2

k, where z1, · · · , zk

are i.i.d. standard normal random variates (see Chernoff and Lehmann 1954,
p. 584).
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By combining Lemmas 2 and 3, we finally derive the asymptotic distribu-
tion of n(P̂−P (θ̂∗))′D−1(P̂−P (θ̂∗)) ≈ n

∑k
j=1(p̂j−pj(θ̂∗))2/pj(θ̂∗). Its asymp-

totic distribution is equivalent to that of z2
1+· · ·+z2

k−1−r+λ1z
2
k−r+· · ·+λrz

2
k−1,

where z1, · · · , zk−1 are i.i.d. standard normal variates and λ1, · · · , λk are as de-
fined as in Lemma 2.

Note that if m = 1, the results here reproduce the previous results since
J∗

′
D∗−1J∗ = J ′D−1J implies λ1 = · · · = λr = 0. When the true θ is known, we

can regard it as an infinite information, J∗
′
D∗−1J∗ = ∞, implying λ1 = · · · =

λr = 1. Therefore, in the known parameter case, the resulting test statistic
is stochastically the largest, and asymptotically distributed as chi-square with
degrees of freedom equal to the number of cells minus one.

4. Concluding Remarks

The results in this paper extend to models with covariances. These models
are specified through conditional distribution of y given x.

Appendix

Proof of Lemma 2: Given J ′D−1J and J∗
′
D∗−1J∗, there exists an r×r non-

singular matrix S and an r × r diagonal matrix M such that (J ′D−1J)−1 =
SS′ ≥ (J∗

′
D∗−1J∗)−1 = SMS′ where the diagonal elements of M are the roots

of |(J∗′D∗−1J∗)−1−µ(J ′D−1J)−1| = 0 and hence of |J ′D−1J−µJ∗
′
D∗−1J∗| =

0 (see Rao 1973). Since 0 ≤ J ′D−1J ≤ J∗
′
D∗−1J∗, all these roots are between

zero and one. Now we can re-write Σk and Σmk as:

Σk =Ik − P 1/2P 1/2′ −D−1/2JSS′J ′D−1/2

Σmk =Ik − P 1/2P 1/2′ −D−1/2JSMS′J ′D−1/2.

Let those r columns of D−1/2JS be u1, · · · , ur, that is, D−1/2JS = (u1 :
· · · : ur). We can easily show that (P 1/2, u1, · · · , ur) is a collection of 1 + r
orthogonal unit vectors and that Σk is the projection matrix to their orthogonal
column space. Let η1 · · · , ηk−1−r be a complementary set of orthogonal unit
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vectors. Now Σmk can be re-written as:

Σmk =Ik − P 1/2P 1/2′ −D−1/2JSMS′J ′D−1/2

=Ik − P 1/2P 1/2′ −
r∑

j=1

µjuju
′
j

=[Ik − P 1/2P 1/2′ −
r∑

j=1

uju
′
j ] +

r∑

j=1

(1− µj)uju
′
j

=
k−1−r∑

j=1

ηjη
′
j +

r∑

j=1

(1− µj)uju
′
j ,

where the last equality follows since P 1/2P 1/2′+
∑r

j=1 uju
′
j+

∑k−1−r
j=1 ηjη

′
j = Ik.

From the resulting expression

Σmk =
k−1−r∑

j=1

1 · ηjη
′
j +

r∑

j=1

(1− µj) · uju
′
j ,

it is clear that the characteristic roots of Σmk are: k − 1 − r ones, 1 zero,
and r fractions 1 − µj with µj ’s being the roots of the equation |J ′D−1J −
µJ∗

′
D∗−1J∗| = 0, j = 1, · · · , r. QED
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