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Preface

The title of this monograph could have been “What does one do if Anything Goes”; a friend

suggested that I should use it as a sub-title instead of the more prosaic one that I have used.

There are two basic “Anything Goes ” type of results which influence the role of dynam-

ics in economic theory. The first is the Sonnenschein-Debreu-Mantel set of results which

indicate that excess demand functions which satisfy only Walras law and the Homogene-

ity of degree zero postulate do not imply too many restrictions since almost any set of

functions could be taken to excess demand functions; the second set of results are due to

Boldrin and Montruchhio which show that any dynamical system (continuous or discrete)

can describe the time evolution of the optimal paths of an infinite horizon discounted con-

cave maximization problem subject to stationarity constraints. Thus loosely speaking, any

dynamical system can be rationalized as occurring in the context of some maximization

problem. These two sets of results have had a profound impact on economic theory since

they seem to indicate that economic theory is unable to be definitive.

A third type of “Anything Goes” result arise from the theory of dynamical systems

itself, which economists do not perhaps refer to as much, is due to Smale. To describe the

content of this result some notation becomes necessary. Let X be any C1 vector field in

the unit simplex of dimension n − 1, ∆n−1; then there exists a C1 vector field F = (Fi)

in <n satisfying Fi = xiMi(x), Mij(x) < 0, j 6= i such that F |∆n−1 = X and ∆n−1 is an

attractor. Thus for any n > 2, it would appear that anything goes on account of dynamical

systems alone.
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Thus not only the theory of stability of competitive equilibrium, but the study of growth

processes and even the study of dynamical systems and their long term behavior need to be

handled and understood carefully. General results would be difficult to obtain; any result

will require special and some times, what may appear, to be ad-hoc conditions. As the three

sets of results mentioned above seems to indicate, we do not have any choice in the matter

and we should thus address ourselves to the nature of conditions which might provide us

with results of some interest. This monograph is directed towards this objective. Another

aspect that we shall be concerned with is the robustness of results obtained. In economic

theory we sometimes know signs of some terms; their magnitude is some thing beyond

our grasp. Accordingly we need to worry about our results if they are dependant upon

magnitudes of parameters. Or if this is some thing which we cannot overcome, we should

look for some ways of obtaining such information. There should be thus better cooperation

between researchers in economic theory and applied economics. Finally, it should not be

surprising given Smale’s results that we have devoted special attention to models where the

dynamics involve motion on the plane. It turns out however that even here a rich variety

of situations may be exhibited. We hope that this sets out the reason why such a study is

being attempted.

Currently, the study has been divided up into five chapters. Chapters 1 and 2 contain the

basic tools of analysis; the first refers to continuous time processes whereas the second refers

to discrete time processes. These chapters contain a summary of definitions and results and

some applications of these results. The chapters are by no means a comprehensive account
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of non-linear dynamic systems; they are there to keep the study self-contained. Chapters 3

and 4 contain an analysis of Stability of Competitive Equilibria; the first refers to Walrasian

Tatonnement processes while the second to Non-Walrasian or Non-tatonnement processes.

We have tried to make the analysis in these chapters as exhaustive as possible, so that

readers may understand and appreciate the different aspects of this problem. In short,

we examine the workings of the so-called ‘Invisible Hand’ and obtain conditions when the

Invisible Hand is also successful in carrying out the tasks that we usually assume that it

is capable of. Chapter 5, currently the last chapter, is devoted to processes of economic

growth in one sector models. The aspect studied in some detail is the approach to the

question of unemployment cycles. This study will be complete only when discussions on

optimal growth processes and multi-sector growth models are included. The references to

the bibliography needs to be added to; some items may still be missing and details for some

items may be absent. I apologize for this and the other shortcomings; I hope that I will be

able to attend to these matters soon.

The present version was completed during a sabbatical (August 2002- July 2003) spent at

the Institute of Social and Economic Research (ISER) of Osaka University; the scholarship

and the facilities provided are very gratefully acknowledged. Clearly without the support

received from ISER, progress would have been impossible. Comments on the material will

be deeply appreciated.
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1 Continuous time processes

1.1 Definitions and Propositions

Let x ∈ Rn where Rn denotes the n-dimensional Euclidean space, F : Rn → Rn. Consider

the system

ẋ(t) = F (x(t)) (1.1)

where t ∈ [0,∞) = I, ẋ(t) = (ẋi(t), i = 1, 2 · · ·n) and

ẋi(t) =
dxi
dt
.

The equation ( 1.1 ) is referred to as an autonomous system of first order differential

equations.

We shall say that x∗ ∈ Rn is an equilibrium point of ( 1.1 ) if

F (x∗) = 0

Let (t1, t2) ∈ I; φ(t1, t2) → Rn is said to be a solution of ( 1.1 ) if

(i) φ(t) is differentiable on (t1, t2)

and

(ii) φ̇(t) = F (φ(t)) on (t1, t2).

Let xo ∈ Rn; we shall be interested in a solution to ( 1.1 beginning from xo ( the initial

point), i.e., a solution φ(t) such that φ(0) = xo.
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To fix the implications of the above definitions, consider an autonomous differential

equation on R given by

ẋ = αx(t), x(t) ∈ R,α some constant (1.2)

Let φ(t) = C.eα.t where C is some constant; it is easy to check that the function φ(t) is

differentiable and ∈ R ∀ t; further

φ̇(t) = αφ(t)

so that φ(t) is a solution of ( 1.2 ) for any (t1, t2) ∈ I.

Let us say we have some r ∈ R. Note that by specifying that

φ(0) = r ⇒ C = r;

consequently, the solution to ( 1.2 ) with r as initial point is given by r.eαt.

Another point which may be exhibited by this example is the uniqueness of the

solution with respect to the initial point. Suppose that s ∈ R; then the solution to

( 1.2 ) with s as initial point is ψ(t) = s.eα.t. Suppose further that s is such that for some

t > 0 we have r.eα.t = s. Then ψ(t) = r.eα.t.eα.t = r.eα(t+t) = φ(t+ t). Thus ψ(t) coincides

with φ(t+ t).

1.2 Existence of Solution

The first problem, then, is to determine conditions under which the system of equations

( 1.1 ) has a solution with some xo as initial point. This is done through the following

proposition:

2



Proposition 1.1 : Let F(.) be continuous on Rn with continuous first order partial deriva-

tives (
∂Fi
∂xj

) on Rn and xo ∈ Rn. Then there exists a function φ : [0, t) → Rn for some

t such that φ(.) is continuous on [0, t) with φ(0) = xo such that φ(t) is a solution of the

system ( 1.1 ) which is continuous and unique with respect to the intial point xo.

Remark 1 Instead of the existence and continuity of partial derivatives
∂Fi
∂xj

, one may

require instead that the function F (.) satisfy a Lipschitz condition i.e., there exists a

constant k > 0 such that |F (x1)− F (x2)| < k.|x1 − x2| ∀x1, x2 ∈ Rn.

Remark 2 It should be pointed out that Proposition 1.1 guarantees the existence of solu-

tion on [0, t); ideally we would like the solution to exist on [0,∞); in other words, we would

like to be able to continue the solution beyond [0, t); this is possible if the function F (.)

satisfies some additional restrictions. A condition which permits this type of continuation

is that the function F (.) be bounded on Rn.

Remark 3 An extension of Proposition 1.1 to cover cases where the function F (.) may have

a discontinuity at a boundary point is also available. This refers to systems of differential

equations defined as below 2

ẋi(t) =


Fi(x(t)) provided xi(t) > 0

Max(0, Fi(x(t)) otherwise

2See for instance, Champsaur et. al (1977).
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1.3 Stability

We shall write the solution to ( 1.1 ) with xo as initial point, as φ(t, xo) or alternatively as

x(t, xo). Let x∗ be an equilibrium point of ( 1.1 ). We shall say that the solution x(t, x∗)

(or the equilibrium x∗) is stable if for every ε > 0 there is δ > 0 such that for all

solutions x(t, xo) for which |xo − x∗| ≤ δ, |x(t, xo)− x(t, x∗)| ≤ ε ∀t ≥ 0.

The solution x(t, x∗) (or the equilibrium x∗) is said to be locally asymptotically

stable if it is stable and there exists α > 0 such that |xo − x∗| ≤ α ⇒ limt→∞ |x(t, xo) −

x(t, x∗)| = 0.

The solution x(t, x∗) (or the equilibrium x∗) is said to be globally asymptotically

stable if it is stable and if limt→∞ |x(t, xo)− x(t, x∗)| = 0 for any xo ∈ Rn.

To consider the stability of the system ( 1.1 ) consider the following:

Claim 1.3.1 Let x(t, xo) be a solution to ( 1.1 ). If limt→∞ x(t, xo) = x for some finite

x ∈ Rn then x is an equilibrium of ( 1.1 ).

Proof: Suppose this is not so; i.e., Fk(x) 6= 0 for some k. By hypothesis, note that

Fk(x(t, xo)) → Fk(x). Consequently, given any ε > 0, there is T such that

Fk(x)− ε < Fk(x(t, xo)) < Fx(x) + ε, for all t > T

Let |Fk(x)| = 2η > 0; then ε can be so chosen that |Fk(x(t, xo))| > η for all t > T . Thus

either ẋk(t) > η or ẋk(t) < −η for all t > T .

Integrating from t to t+ h, for t > T and any h > 0, we have

|xk(t+ h)− xk(t)| > η.h for all t > T , and any h > 0:
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which contradicts the convergence of xk(t). This establishes the claim. •

The above claim allows us to define the system ( 1.1 ) as globally stable, if for all

xo in the domain of definition of the function F (.), x(t, xo) converges.

Next, consider solutions x(t, xo) which are contained in some compact set C ⊂ Rn for

all t > 0. Then ∃ a subsequence of the solution, x(ts, xo) such that lims→∞ x(ts, xo) = x for

some x ∈ C. x is called a limit point of the solution x(t, xo). Further, x(t, x) is called

a limit path of the system ( 1.1 ). For limit paths, we have the following3:

Remark 4 x(t, x)

= x(t, lims→∞ x(ts, xo), ( from the definition of x)

= lims→∞ x(t, x(ts, xo)), ( from the continuity of the solution with respect to the initial

point)

= lims→∞ x(t + ts, x
o) (from the property of uniqueness of the solution with respect to the

initial point).

Thus every point of the limit path is a limit point of the solution.

We can now define the process ( 1.1 ) as quasi-globally stable if for all xo in the domain

of definition of the function F (.), the limit points of x(t, xo) are equilibrium points of ( 1.1

). Consequently, we have:

Claim 1.3.2 If the equilibrium points of ( 1.1 ) are isolated , then quasi global stability

of ( 1.1 )⇒ global stability of ( 1.1 ).
3See, Uzawa (1961).
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Proof: If ( 1.1 ) is quasi globally stable, then every limit point of the solution x(t, xo) for

any xo in the domain of definition of F (.) is an equilibrium point for ( 1.1 ); for some

xo, let x(t, xo) have two distinct limit points x1, x2. Then these are equilibrium points for

( 1.1 ), and are consequently, isolated points. Thus there exist open neighborhoods N(x1)

and N(x2) in Rn such that N c(x1) ∩N c(x2) = ∅ where N c(.) denotes the closure of N(.).

Further, given that the equilibrium points of ( 1.1 ) are isolated, the neighborhoods N(.) can

be so chosen that N c(xi)−xi contain no other equilibria, i = 1, 2. Now let the subsequence

x(ts, xo) converge to x1 as s → ∞; since there is another distinct limit point, x2, there

must be another subsequence x(ts + hs, x
o) such that x(t, xo) ∈ N(x1) for all t satisfying

ts ≤ t < ts + hs with x(ts + hs, x
o) /∈ N(x1), and x(ts + hs, x

0) ∈ N c
B(x2) where N c

B(.)

denotes the boundary of N c(.). Since N c
B(.) is a closed and bounded subset,x(ts + hs, x

o)

must have a limit point in N c
B(.) and this must be an equilibrium point of ( 1.1 ) which is

distinct from x2, given quasi global stability. But this contradicts the definition of the sets

N(xi). Hence there cannot be two distinct limit points for the solution to ( 1.1 ): and the

claim follows by virtue of Claim 1. •

The basic method for establishing quasi global stability or global stability for a process

such as ( 1.1 ) is by way of Liapunov’s second method and we describe this next. A function

V : Rn → R is said to be a Liapunov function for ( 1.1 ), if the following conditions hold:

(i) V (x) is a continuous function on Rn;

(ii) V (x(t, xo)) converges as t→∞ for all xo in the domain of definition of F (.);

(iii) V̇ (x(t, xo)) exists and is zero if and only if x(t, xo) is an equilibrium for ( 1.1 ).

6



Claim 1.3.3 If a Liapunov function exists for ( 1.1 ), and if given any initial point, the

solution to ( 1.1 ) is bounded, then ( 1.1 ) is quasi globally stable.

Proof: Suppose, there is a Liapunov function for the system ( 1.1 ).Then by (ii) mentioned

above, limt→∞ V (x(t, xo)) = V ∗ for some finite V ∗, given some xo. Further, since x(t, xo)

is bounded, ∃ a subsequence x(ts, xo) such that x(ts, xo) → x∗ as s → ∞ for some x∗.

Consequently, by the property (i) of Liapunov functions, V (x(ts, xo) → V (x∗). Again by

(ii) V (x∗) = V ∗. Next, consider x(t, x∗): a limit path and use Remark 5, to conclude that

V (x(t, x∗)) = V ∗ for all t. By property (iii), every point of x(t, x∗) must be an equilibrium

for ( 1.1 ), including its initial point viz.,x∗. Since this is true for any arbitrary limit point

of x(t, xo), the claim follows. •

1.4 The Linear Case

We turn next to some special cases. Consider first of all, the case when F (x) = A.x where

A is some constant n× n matrix. Our system ( 1.1 ), then reduces to the linear system

ẋ = A.x

The classical result in this connection, is contained in the following:

Proposition 1.2 The solution x(t, 0) is globally asymptotically stable if and only if the real

parts of all characteristic roots of A are negative.

A demonstration of the sufficiency aspect of Proposition 2, by noting the following facts

may be of some interest:

7



(i) All characteristic roots of A have real parts negative ⇐⇒ the matrix equation AT .B+

B.A = −Q, for each real symmetric positive definite matrix Q, has as its solution B, a

positive definite matrix (see Murata(1977),p.63, for example) ⇐⇒ the matrix B defined

by the matrix equation AT .B + B.A = −I is positive definite (see Bellman (1960),p. 245,

for example). These are alternative statements of Liapunov’s Theorem . It should be

noted also that the system of equations AT .B +B.A = −Q has a unique solution for all Q

⇐⇒ λi + λj 6= 0 for any pair of characteristic roots λi, λj of the matrix A.

(ii) If A has all characteristic roots with real parts negative, the linear system has a unique

equilibrium x = 0; since A.x = 0 ⇐⇒ x = 0 given the fact that A must be non-singular

(i.e., cannot have zero as a characteristic root).

(iii) V (x) = xT .B.x ( where B is any positive definite matrix such that AT .B + B.A is

negative definite ) is a Liapunov function and any solution x(t, xo) remains bounded.

Using the above (i)-(iii) together with Claims 2 and 3, establishes the validity of the suffi-

ciency part of Proposition 1.2.

The use of the linear system arises in a natural way when one tries to analyze solutions

to ( 1.1 ) with the initial point xo close to an equilibrium x∗. For then, using a Taylor’s

series expansion of the functions Fi(.) around the equilibrium x∗, we have the following:

ẋi ≈
∑
j

Fij(x∗)(xj − x∗j )

Next writing the matrix of partial derivatives Fij(x∗) as A and a change of variables,

xj−x∗j = θj we have the system θ̇ = A.θ which is of course, the linear system. Consequently

8



an immediate application of the Proposition 1.2 leads to the following4:

Proposition 1.3 For the system (1.1), a sufficient condition for local asymptotic stability

of x∗ is that A (as defined above) should have all characteristic roots with real parts negative.

1.5 Motion on the Plane

The next special case is when instead of <n for arbitrary n, we confine attention to the case

when n = 2: that is, we shall consider motion on the plane. Such situations are of great

importance and it would be of some interest to collect together results available in this

connection. Apart from being of interest independently, there is another very important

reason why we must consider motion on the plane with great care. This is due to the

following result of Smale (1976). Let X be any C1 vector field in the unit simplex of

dimension n − 1, ∆n−1; then there exists a C1 vector field F = (Fi) in <n satisfying

Fi = xiMi(x), Mij(x) < 0, j 6= i such that F |∆n−1 = X and ∆n−1 is an attractor. Thus for

any n > 2, it would appear that no general results are possible.

Recall the definition of a solution x(t, xo) to ( 1.1 ) and of a limit point to the solution.

The term ω-limit set is used to describe the set of limit points of x(t, xo). Formally, the
4Notice that this is a sufficient condition for local stability; this is not necessary since even with char-

acteristic root zero, it may be possible to have stability. Consider for instance, ẋ = −x3; note that x = 0

is the unique equilibrium and is globally stable; however when one linearizes around equilibrium, the linear

system is ẋ = 0. It is for this reason that some authors have described this condition as being necessary and

sufficient for linear approximation stability .
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ω-limit set of x(t, xo) is the set L(xo) = {y : ∃ a subsequence x(ts, xo) such that x(ts, xo) →

y as s → ∞}. Note that if x∗ is an equilibrium of ( 1.1 ), then L(x∗) = x∗. On the other

hand, global stability would be equivalent to requiring L(xo) = x∗ for any xo. It should

also be pointed out that if x ∈ L(xo), then by virtue of Remark 5, above, x(t, x) ∈ L(xo)∀t.

A point xo is said to be in a closed orbit if x(t, xo) = xo for some t > 0. Closed orbits are

also called cycles . We shall try to characterize the nature of the the limit sets for systems

such as ( 1.1 ) when n = 2. The classical Poincaré-Bendixson Theorem5 achieves this:

Proposition 1.4 In case of ( 1.1 ) being a system in R2 with the functions F (.) contin-

uously differentiable, then any nonempty compact limit set which contains no equilibrium

point is a closed orbit.

Thus whenever the solution is bounded, it either has an equilibrium as a limit point or

it converges to a closed orbit, which is called a limit cycle in these circumstances. This

is perhaps the most clear-cut result that can be obtained for the case n = 2.

For higher dimensions the nature of the limit sets are often quite complicated. We

mention, in this connection, some recent results due to Hirsch ( Systems of Differential

Equations which are competitive or cooperative, I, Siam Journal of Mathematics, 1982 ).

Hirsch considers the case when n = 3 and considers the system ( 1.1 ) to be cooperative if

∂Fi
∂xj

≥ 0 for i 6= j. If the above inequality is reversed, the system is said to be competitive.

The result is that for n = 3, if the system is cooperative and if L is a compact ω−limit set

which contains no equilibrium, then L is a closed orbit.
5See, for example, Hirsch and Samle (1974), p. 248.
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The treatise by Andronov et. al. (1966) contains an exhaustive account of the dynamics

on the plane. To be more specific about the nature of ω−limit sets we have the following:

Proposition 1.5 On the plane, the structure of non-empty ω-limit sets is known to be

one of the following6:

i. Consists of a single equilibrium or

ii. Consists of one closed orbit or

iii. an union of equilibria and paths tending to them.

Notice that for convergence to equilibrium, we need to eliminate not only limit cycles but

case (iii) as well which are the most complicated types. To enable us to understand the

implications of the above, it would be of some help to note that first, for the linear case,

Proposition 1.2, allows us to obtain a particularly simple necessary and sufficient condition

for convergence.

Remark 5 For the linear case, when n = 2, a necessary and sufficient condition for con-

vergence is that both the following conditions should hold: (i) trace of the matrix should

be negative and (ii) the determinant of the matrix should be positive.

Remark 6 For local stability analysis, where the functions F (.) are linearized around x∗,

an equilibrium, the conditions indicated above, reduce to the following:

(i)
∂F1(x∗)
∂x1

+
∂F2(x∗)
∂x2

< 0

6See, for instance, Andronov et. al. (1966), p. 362.
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and

(ii) det

 ∂F1(x∗)
∂x2

∂F1(x∗)
∂x2

∂F2(x∗)
∂x1

∂F2(x∗)
∂x2

 > 0.

The above conditions, if satisfied, guarantee that if the solution x(t, xo) has an initial point

xo “close” to the equilibrium x∗, then the solution to the original system ( 1.1 ) will converge.

In case this nearness to equilibrium initially cannot be guaranteed then these results are

inapplicable, since the original system is, in general, non-linear. But the nature of the

characteristic roots of the matrix in (ii), the Jacobian of F (x1, x2) evaluated at equilibrium

x∗ (which we shall denote by ∇F (x∗) ) would play some role in determining the nature

of limit sets in the non-linear case as well. This so if equilibria or fixed points x∗ for

the dynamic system (1.1) are hyperbolic or nondegenerate or simple7 i.e., ∇F (x∗) has

characteristic roots with real parts non-zero. Thus having equilibria which are hyperbolic

or simple makes classification easier.

Consider the characteristic roots of ∇F (x∗). A focus is an equilibrium or fixed point

where the characteristic roots are complex conjugates; the equilibrium is a stable focus

when the real parts of these roots are negative; it is an unstable focus when the real parts

are both positive; the equilibrium is called a node when these characteristic roots are both

real and of the same sign; again it is a stable node if the real roots are both negative and

an unstable node if the real roots are positive. Sometimes stable focii and nodes are called

sinks; unstable nodes and focii are called sources. A saddle-point is an equilibrium when

the characteristic roots are both real but of opposite sign. A center is an equilibrium when
7See, for instance, Guckenheimer and Holmes (1983), p. 13.
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the characteristic roots are pure complex conjugates with real parts zero.

Returning to the Proposition 1.5 and assuming that equilibria are hyperbolic, consider

the case (iii): it should be clear the equilibria in case (iii) can neither be sinks nor sources.

Since points in the limit set are approached by the solution or trajectory, approaching

a source arbitrary closely is not possible. Approaching a sink means that the trajectory

cannot leave the neighborhood as well and we are in case (i) of Proposition 1.5. Thus the

only possible equilibria to be in limit sets of the type case (iii), are saddle-points. Thus

for convergence, if all equilibria are hyperbolic, we need to rule out not only cycles but

saddle-point equilibria as well.

We first present a result which achieves this end8: Consider (1.1) where the functions

Fi are assumed to be continuously differentiable on the plane <2 and the matrix ∇F (x),

the Jacobian of F (x). Assume that9:

• O1: There is an unique equilibrium (x̄1, x̄2) to (1.1).

• O2: Trace of ∇F (x) < 0 for all x ∈ <2.

• O3: Determinant of ∇F (x) > 0 for all x ∈ <2

• O4: Either F11.F22 6= 0 for all x ∈ <2 or F12.F21 6= 0 for all x ∈ <2.

Proposition 1.6 Under the conditions O1 - O4, the unique equilibrium (x̄1, x̄2) is globally

asymptotically stable.
8See Olech (1963) and Ito (1978).
9We shall denote by Fij(x) the partial derivative of Fi with respect to xj .
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It is clear that we still need to satisfy a lot of conditions, even for the relatively simple case

of motion on the plane, to achieve convergence. It may be of some interest to break down

the implications of the various conditions employed in Olech’s Theorem to get at exactly

what is required. For this purpose we first consider the elimination of cyclical orbits.

Remark 7 Dulac’s Criterion: If we can find a function θ(x1, x2) which is continuously

differentiable on the region S and for which

∂θ(x1, x2)F1(x1, x2)
∂x1

+
∂θ(x1, x2)F2(x1, x2)

∂x2

is not identically zero and is of constant sign on S10, then there is no closed orbit for the

system (1.1) on the region S11.

Notice therefore, the constancy of the sign of the Trace of ∇F (x), which is basically

condition O2 implies that there cannot be cycles. The problem with the application of

Dulac’s Criterion is the same as that of the Liapunov Method we described above: there is

no general method of obtaining the function θ(.).

To proceed, it may be worthwhile to take into account Poincaré’s Indices12. Consider

a simple closed curve S which does not pass through equilibrium and N any point on it;

consider the tangent to the trajectory of (1.1) through N (F1, F2) and consider the rotation

of the point N on the closed curve S : the vector (F1, F2) will rotate continuously and when
10The sign could thus be either ≥ 0 on S or ≤ 0 on S but not 0 everywhere in the region.
11See, for instance, Andronov et. al. (1966), p. 305; another condition, the Bendixson’s Criterion, which

serves the same purpose, is a special case of Dulac’s Criterion when θ(x1, x2) = 1.
12See, Andronov et. al. (1966), p. 300 for details.
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we return to the point N (since S is a closed curve), the vector would have rotated through

an angle 2πj where j is an integer. It is shown that the integer j is independent of the

shape of the closed curve and is called the index of the closed curve S with respect

to the vector filed (F1, F2). If the closed curve encircles an equilibrium then the index is

determined by the nature of the equilibrium and is hence referred to as the Poincaré index

of the equilibrium. In case the equilibrium x∗ is such that the determinant of the matrix

(∇F (x∗) does not vanish, it may be shown that the Poincaré indices for a node, focus or

center are all +1 while for a saddle point it is -113. Several other interesting conclusions

may be drawn; we include a sample:

• i.The index of a closed curve not enclosing an equilibrium is zero.

• ii. The index of a closed curve surrounding a number of equilibrium points is equal

to the sum of the indices of these points.

• iii. The index of a closed orbit is +1

Some important corollaries: first of all, if there is a single equilibrium inside a closed orbit,

it must be a node or a focus; if inside a closed orbit there are many equilibria, then they

must be odd in number with the number of saddle-points being one less than the number

of nodes and focii.

We shall use these properties at a later stage to provide a more general form of Propo-

sition 1.6.
13For these conclusions, the non-vanishing of the determinant of the Jacobian at equilibrium is crucial; if

this is not satisfied, it is not necessary that indices be + or - 1; see Andronov et. al. (1966), p. 300-305.
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1.5.1 Lotka-Volterra System of Equations

An important application of the theory of the last section is the Lotka-Volterra system of

equations or alternatively, the Predator-Prey Models. We shall also find this to be a useful

way of introducing another topic that we shall be concerned with later. This has to do

with the theory of bifurcations. This is a study of how the dynamics of a system undergoes

changes when some parameters change.

Consider an environment made up of two species of life-forms, one of which preys on the

other: the prey and the predator. Let the population of the prey be designated by x while

that of the predator by y. The basic assumption is that in the absence of the predator, the

population of the prey grows at a constant proportional rate a; and on the other hand, in

the absence of the prey, the population of the predator decays at a constant proportional

rate b (here both a and b are assumed positive). In the presence of both the prey and

predator, adjustments to this basic story have to be made and we have

ẋ = x(a− αy) and ẏ = y(βx− b) (1.3)

where α, β are also assumed to be positive and are to be interpreted as the effect of the

presence of one population on the other.

There are two equilibria for the above system of equations:

(x = 0, y = 0) Trivial Equilibrium or (TE)

and

(x = b/β, y = a/α) Non-Trivial Equilibrium or (NTE)
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We are interested in what happens to the solution, z(t) = (x(t), y(t)) to the system ( 1.3 )

beginning from an initial configuration zo = (xo, yo); we shall represent this solution by

z(t, zo).

Stability: Local and Global We note first of all, the following local stability prop-

erties of the equilibria mentioned above:

Claim 1.5.4 For the system ( 1.3 ), TE is a saddle point while NTE is a center.

Proof: The Jacobian of the rhs of the system ( 1.3 ) is given by: a− αy −αx

yβ βx− b


It is then straight forward to check that at TE the characteristic roots are:

(a,−b);

while at NTE, the characteristic roots are purely imaginary:

(ı
√
a.b,−ı

√
a.b).

The claim follows. •

Next, we note that

Claim 1.5.5 With any zo = (xo, yo) > (0, 0) as initial point, the solution to the system

( 1.3 ), φt(zo), is a closed orbit around NTE (b/β, a/α).

Proof14: Consider
14Hirsch and Smale, (1974), p.262, Theorem 1.
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V (t) = {βx(t)− b log x(t)}+ {αy(t)− a log y(t)}

and consider the derivative V̇ along the solution z(t) = (x(t), y(t)) to the system( 1.3 ) and

notice that

V̇ = (βx− b)
ẋ

x
+ (αy − a)

ẏ

y
= 0;

Thus the function V remains constant along the solution to the system ( 1.3 ) the value of

this constant is defined by the initial point. Thus V (t) = V o = (βxo − b log xo) + (αyo −

a log yo) for all t; also notice that V (z) = V (x, y) = (βx− b log x) + (αy− a log y) is strictly

convex and attains a global minimum value, say V ∗, at the NTE (b/β, a/α); thus if the

initial point is not the NTE, we have V o > V ∗; consequently the trajectory cannot approach

NTE; nor can it approach any other equilibrium, since along the solution x(t), y(t) must

remain positive as otherwise V (t) would become unbounded. In addition, x(t), y(t) must

also remain bounded, since otherwise, V (t) would become unbounded. Thus the ω-limit

set is non-empty, compact and can not contain any equilibrium; by the Poincaré-Bendixson

Theorem, the ω-limit set must be a closed orbit. Thus there are two possibilities: either

the closed orbit is approached in the limit ( a limit cycle ) or the trajectory itself is a closed

orbit.

In case of a limit cycle L, it must be the case that for every z ∈ L, V (z) = V o; in

addition for some neighborhood N of zo, z ∈ N ⇒ φt(z) → L15. Consequently we must

have V (z) = V o for all z ∈ N : this cannot be since the function V (z) is not constant over
15For this property of limit cycles, see, Hirsch and Smale (1974), p. 251.
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open sets. So there cannot be a limit cycle. The only possibility then is that φt(zo) is a

closed orbit. •

The above claim may be seen from the following diagram.

FIGURE 1: Closed Orbits in a Lotka-Volterra Model

The above has been used to explain why the population of some species like the above

constantly keep chasing one another and never settles down to any fixed values. We wish

to point out what happens when we change the basic story somewhat. But in order to do

that, we need some theoretical developments which we turn to next.

1.6 Bifurcations

An interesting area of research and study is the theory of bifurcations; the main point of

enquiry is whether the qualitative properties of a system such as ( 1.1 ) change when any

of the parameters which may define the function F (.) alter. Notice that these parameters,

if there are any, have been suppressed in what we have discussed so far. We make the

dependence explicit below:

ẋ = F (x, µ), x ∈ Rn , µ ∈ R (1.4)

Consider first of all, n = 1. Assume that for µ = 0, the above system has an equilibrium

x∗ = 0, i.e., F (0, 0) = 0. It is known that if the multiplier λo =
∂F (0, 0)
∂x

is negative, then

the equilibrium (0, 0) is locally asymptotically stable. Note that at an equilibrium (xo, µo)

if λ(xo, µo) 6= 0, then by the implicit function theorem, in a neighborhood of µo, we may

express xo solving F (xo, µo) = 0 as a differentiable function x(µ) with xo = x(µo); x(µ) is
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called a branch of equilibrium. If at a particular (x̃, µ̃) several branches come together,

then (x̃, µ̃) is called a bifurcation point.

At a bifurcation point, we have necessarily, λ(x̃, µ̃) = 0. The types of bifurcation are

classified according to the signs of the other partial derivatives evaluated at (x̃, µ̃)16:

• We have a fold bifurcation, when on one side of µ̃ there is no equilibrium, while on

the other side, there are two equilibria {∂F∂µ 6= 0; ∂
2F
∂x2 6= 0}.

• We may have a transcritical bifurcation, where on one side of µ̃, the equilibrium

x(µ) is stable and on the other side this becomes unstable and another stable equilib-

rium branch emerges { ∂
2F

∂x∂µ 6= 0; ∂
2F
∂x2 6= 0}.

• We may have pitchfork bifurcation, where on one side of µ̃, x(µ) is stable and on the

other side two additional branches of stable equilibria emerge { ∂
2F

∂x∂µ 6= 0; ∂
3F
∂x3 6= 0}.

Consider, for instance, the equation ẋ = F (x, µ) = µ − x2; notice that equilibria exist

only if µ > 0; for µ > 0, there are two branches of equilibria: +
√

(µ) and −
√

(µ); the former

is a stable equilibrium while the latter is an unstable equilibrium. Notice that F (x, µ) = 0

if and only if µ−x2 = 0 and Fx(0, 0) = 0;Fxx(0, 0) = −2;Fµ(0, 0) = 1, we have an example

of a fold bifurcation at µ = 0.

If F (x, µ) = µx − x2, then Fx(0, 0) = 0;Fxx(0, 0) = −2;Fxµ(0, 0) = 1; notice that for

µ < 0, the equilibria are x = 0 and x = µ; the former is stable and the latter unstable;

on the other hand for µ > 0, the equilibria are x = 0 and x = µ; but now the former is
16See Lorenz (1993), Chapter 3 for details.
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unstable and the latter is stable. Thus there has been exchange of stability between the

two and this is an example of a transcritical bifurcation at µ = 0.

If F (x, µ) = µx − x3 then Fx(0, 0) = 0;Fxxx(0, 0) = −6;Fxµ(0, 0) = 1. Notice that

equilibria are given by x = 0 or by x = ±
√

(µ) when µ > 0 and by x = 0 if µ < 0;

consider then that when µ > 0 x = 0 is unstable, while the remaining two are stable; for

µ < 0 only x = 0 remains and it is stable. This is an example of a pitchfork bifurcation at

µ = 0. This is called supercritical since the two equilibria which appear are both stable;

in case Fxxx(0, 0) > 0 the two equilibria which would appear are unstable, we shall call the

bifurcation subcritical.

When n > 1, we may still have bifurcations of the type described above; except, we

must note that the multipliers become the eigenvalues (characteristic roots) of the Jacobian

of F (.) at the bifurcation point; and out of the n eigenvalues, a single eigenvalue is zero and

so on.

However when n 6= 1, a possibility which emerges is that characteristic roots (multipliers)

are pure imaginary numbers; since these appear in pairs, we must have n = 2 at least. This

brings us to what is called the Hopf Bifurcation. It is best to state a version of what is

known as the17 Hopf Bifurcation Theorem:

Proposition 1.7 Suppose that the system ( 1.4 ) has an equilibrium (x̃, µ̃) at which the

following conditions hold:

i. The Jacobian of F (., µ̃) evaluated at x̃ has a pair of pure imaginary eigenvalues
17See Lorenz(1993), p.96, for example
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(λ(µ̃), λ(µ̃) and no other eigenvalues with zero real parts; and

ii. d(Reλ(µ̃))
dµ |µ=µ̃> 0

then there exist periodic solutions bifurcating from x(µ̃) at µ = µ̃ and the period of the

solutions is close to 2π/(Imλ(µ̃)).

Notice that the theorem tells us about the existence of periodic solutions only; no

information is contained about either their number or their stability.To establish stability,

we need to transform the system ( 1.4 ), say for n = 2, by a change of coordinates into the

following:  ẋ
ẏ

 =

 µ −ω

ω µ

 .
x
y

+

 f(x, y)

g(x, y)

 (1.5)

The matrix of linear terms in x and y on the rhs is in the normal form; and the fixed

point of the original system ( 1.4 ) has been shifted to the origin and the terms have been

sorted into the linear terms and nonlinear terms f(x, y), g(x, y). Note that the eigenvalues

of the Jacobian evaluated at the fixed point are µ ± ıω; the real part of the complex root

is a positive function of the bifurcation parameter. And we know that we have a Hopf

bifurcation; to determine the stability of the periodic solutions, the nonlinear terms play a

role. The expression

a =
1
16

(fxxx + fxyy + gxxy + gyyy)+

1
16ω

(fxy(fxx + fyy)− gxy(gxx + gyy)− fxxgxx + fyygyy)

is computed and if found positive (negative), the emerging limit cycles are stable (unstable,

respectively).18

18In this connection, see also, C. Kind (1999).
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1.6.1 Lotka-Volterra Model Reconsidered

It may be recalled that the standard Lotka-Volterra Model is given by

ẋ = x(a− by) and ẏ = y(dx− c) (1.6)

with a, b, c, d > 0. As we have noted earlier, in Claim 1.5.5, For any (x, y) > (0, 0), the

trajectory or solution to (1.6) originating from the point (x, y), φt(x, y), is a closed orbit

around NTE (c/d, a/b).

We consider a perturbation of this model by allowing the rates of growth of population

of preys and predators to depend on their own population as well19; this takes us to :

ẋ = x(a− αx− by) and ẏ = y(dx− βy − c) (1.7)

Now for α = β = 0 we are back in the system (1.6); we shall consider α = β = p and consider

p to be of small magnitude. Thus the system (1.7) may be thought of as a perturbation of the

system (1.6). Figure 2 shows the orbits of this new system for the same values of parameters

as in Figure 1 with the addition of a positive value for the term p: the convergence to an

equilibrium could not have been more clearly seen. But we need an analytical argument

and this is what we proceed with next.

FIGURE 2: Convergence in a Lotka-Volterra Model

For the system, (1.7) the equilibria are given by: E1(0, 0), E2(a/p, 0) and
19Hirsch and Smale (1974), refer to this as the intorduction of social phenomenon; see, for example, p.

263.
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E3(
ap+ bc

bd+ p2 ,
ad− pc

bd+ p2 ).

Note that for E3 to exist in a meaningful way, we do need ad − pc > 0 which should

be the case if the magnitude of p is small enough, as we have said earlier. We note the

following:

Claim 1.6.6 The characteristic roots of the Jacobian of the system (1.7) at the equilibrium

E3 are given by:

1
2(bd+ p2)

{−bcp−adp−p(ad−cp)±
√

((bcp+adp+ap2−cp2)2−4(bd+p2)(abcd−bc2p+a2dp−acp2))}

It is easy to check that for p = 0, the roots are purely imaginary; this is not surprising,

since we had noted this property of the system (1.6) earlier and for p = 0, the system (1.7)

reduces to (1.6). It is easy to check that for p small, the real part of the characteristic roots

has the same sign as −p. Recall that we have assumed that ad− cp > 0; consequently, local

stability at E3 is completely determined by the sign of p : for positive p, the equilibrium E3

is locally asymptotically stable; while for a negative p, the equilibrium is locally unstable.

Thus with small p, the roots are still complex, and we either have a spiralling approach to

E3 (if p > 0) or a spiralling movement away from this equilibrium if the sign of p is reversed.

In particular, it is easy to check that the following holds.

Claim 1.6.7 Consider the system (1.7); there is an equilibrium E3{( cd,
a
b ); p = 0} at which

both conditions required for the Hopf Bifurcation Theorem hold.

24



Consequently, there may still be some chance of obtaining cyclical behavior near p = 0.

To consider these and other matters, we shall find it to consider the more general form of

the system (1.7)20. We recall that the system (1.7) is

ẋ = x(a− αx− by) and ẏ = y(dx− βy − c)

where a, b, c, d, α, β are all positive. For this system E3 is given by (x?, y?) say where x?, y?

solve the following system of equations:

a− αx− by = 0 and dx− βy − c = 0.

Note that we shall maintain the restriction αc − ad < 0 throughout to ensure that E3

occurs in the positive orthant. This allows us to rewrite the system (1.7) as

ẋ = x(α(x? − x) + b(y? − y)) and ẏ = y(d(x− x?)− β(y − y?)) (1.8)

We also notice that the function f(x) = θ1x− θ2 log x with θi > 0, i = 1, 2 is a strictly

convex function of x for all x ∈ <++; in addition f(x) →∞ as x→ 0 or as x→∞21.

FIGURE 3: The f-function

It may be noted too that a global minimum is attained at x = θ2
θ1

. With these observa-

tions, we define the function22:

V (x, y) = θ1x− θ2 log x+ γ1y − γ2 log y
20In other words, we do not assume that in (1.7), α = β necessarily.

21Observe that f ′′(x) = θ2
x2 > 0. See Figure 3.

22By virtue of what we have said about the function f(.), it follows that V (x, y) is strictly convex function

in x, y attaining a global minimum at (x?, y?), by virtue of the restrictions we shall place on the coefficients.
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where θi, γi > 0, i = 1, 2 and in particular, we define:

θ2 = x?θ1 ; γ2 = y?γ1 ; bθ1 = dγ1. (1.9)

We claim that

Claim 1.6.8 The function V (x, y) defined above is a Liapunov Function for the system

(1.7) or (1.8).

Proof. Notice that

V̇ (x, y) = (xθ1 − θ2).
ẋ

x
+ (yγ1 − γ2).

ẏ

y

so that using our definitions in (1.9) and the form (1.8), we have:

V̇ (x, y) = θ1(x− x?){α(x? − x) + b(y? − y)}+ γ1(y − y?){d(x− x?)− β(y − y?)}

= −αθ1(x− x?)2 − βγ1(y − y?)2

by virtue of the restrictions placed by (1.9). It is clear therefore that along the solution to

(1.7), we must have V̇ < 0 unless x = x? and y = y?. This establishes our claim. •

By virtue of the above, it is possible to claim that23

Claim 1.6.9 Any solution to the system (1.7) originating from any (xo, yo) > (0, 0) con-

verges to the equilibrium E3 = (x?, y?).

Returning to the Claim 1.6.7, when we considered α = β = p , we notice that the

expression for V̇ would reduce to:

−p
d
θ1{d(x− x?)2 + b(y − y?)2}

23In contrast, consider the conclusion in Hirsch and Smale (1974), p. 264-265. For the system such as

(1.7), they were unable to rule out the existence of a limit cycle.

26



It is clear that if p < 024 V (x(t), y(t)) would be nondecreasing along any solution to the

system (1.7), when α = β = p ; in this situation, consider a solution originating from some

point (xo, yo), which remains bounded so that it has limit points such as (x̄, ȳ); along any

such solution, the function V () must converge to some number say V̄ . It follows therefore

that V̄ = V (x̄, ȳ); it now follows that the solution originating from the limit point must

have V constant along it at the value V̄ ; and hence the limit point must be E3; but the

function V is known to attain a minimum at E3 and it was nondecreasing all along which

implies that the path must have originated from E3. Thus the only solution which remains

bounded is the one originating from E3. We have therefore demonstrated the validity of

the following:

Claim 1.6.10 For the system (1.7), when α = β = p < 0, and |p| is small, the only

solutions which remain bounded are the ones originating from E3.

Consequently, the chances of cyclical behavior, which seemed to have been indicated by

the conclusions of Claim 1.6.7 are limited only to the case p = 0. In fact, one may show

that there are no cycles when α, β have the same sign:

Claim 1.6.11 For the system (1.7), there can be no cycles, when α, β are non-zero and

have the same signs25.

Proof: Assume that α, β have the same sign; consider the function θ(x, y) = 1
xy and use it

24When p < 0 note that for a meaningful E3, we have to have ap+ bc > 0, which would be guaranteed for

the case when p is small in absolute magnitude.
25Thus α.β ≥ 0 is also admissible; in other words, one could be zero and the other non-zero.
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to check Dulac’s Criterion26:

∂x(a− αx− by).θ(x, y)
∂x

+
∂y(dx− βy − c).θ(x, y)

∂y

=

−α
y

+
−β
x

which has the sign of −α or −β and hence the claim follows, by virtue of Dulac’s Criterion.

•

Since cyclical behavior is also of interest to us, the above indicates:

Claim 1.6.12 In a system such as (1.7), for cyclical orbits to exist, we must have either

α = β = 0 or α, β have to be of opposite signs in some part of the positive orthant.

The above seems to indicate that the simple form of (1.7)) where ẋ/x, ẏ/y are represented

as affine functions with constant partial derivatives will not be suitable for generating cycles,

unless of course, social phenomenon do not exist and α = β = 0. Notice that α = ∂(ẋ/x)
∂x ;

similarly, β = ∂(ẏ/y)
∂y and we need to consider some possibilities of variation in these partial

derivatives to provide a chance for the existence of cyclical behavior. We provide, next, an

example of such a behavior within the context of a Predator-Prey Model.

1.6.2 Robust Cyclical Behavior in a Lotka-Volterra Model

We consider a more complicated configuration which allows us to consider the rates of

growth of the prey and predators as follows:

ẋ = x{r(1− x

A
)− βy

x+ h
} and ẏ = y{ bx

x+ h
− c} (1.10)

26See, Remark 7.
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where r,A, β, b, c are all positive constants. The interpretation of the above system is as

follows: in the absence of the predator, the prey x thrives on some other food items (maybe

grass, for example) and if the amount of grass is unlimited, the rate of growth of the prey

would have been a constant r; this is the so-called birth-rate of the prey; the birth-rate

has to be modified to arrive at a growth rate, since grass is not unlimited and given the

availability of grass, A is the maximum population of the prey which can be sustained27.

The standard logistic law provides us with rate of growth of the prey population. However

there is the predator too, which restricts the rate of growth of the population: this effect is

a bit more subtle than what we have considered so far. In the previous sections, we took

the loss on account of predators to be proportional to the product of the populations x.y

since this would in turn be proportional to the encounter rate; now we consider the loss

to be proportional to x.y
x+ h , where the denominator is in fact a saturation effect: if the

population of the prey is plentiful, the predators being not so hungry, would not kill on

every encounter; if for example x is infinite, the fraction x/x + h tends to unity and the

loss on account of the presence of the predators is just proportional to the population of

the predators y. For the population of the predators, the first term takes into account the

birth-rate, b being the natural birth-rate with plentiful prey and c is the death-rate among

the predators; notice that the saturation parameter h is the same as before and is purely a

matter of convenience for the algebra to follow.
27Alternatively, the death-rate of the prey needs to be taken into account.
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Rewriting the system (1.10) as:

ẋ = xM(x, y) and ẏ = yN(x, y)

we note that now M(x, y) = r(1− x/A)− βy/(x+ h) and N(x, y) = bx/(x+ h)− c. Notice

that My < 0, Nx > 0; however Mx could be either positive or negative. For the system

(1.7), Mx < 0 which had allowed us to use Dulac’s criterion to rule out the presence of

cycles when admitting “social phenomenon”. The non-trivial equilibrium for this system is

given by:

x? =
ch

b− c
and y? = r(1− x?/A)(x? + h)/β

Thus for a meaningful non-trivial equilibrium, we must have b > c and in addition, we must

have A(b − c) > ch and we take it that this is so. At this equilibrium the Jacobian of the

system is given by: x?Mx(x?, y?) x?My(x?, y?)

x?Nx(x?, y?) 0


Notice that given the signs indicated earlier, the determinant is positive while the trace is

of ambiguous sign. Notice too that the trace is given by:

x?.Mx(.) = x?
Aβy? − r(x? + h)2

A(x? + h)2

After some simplification, it may be shown that the sign of the trace depends on the

sign of

A− h− 2x?

and hence at the nontrivial equilibrium, either both of the characteristic roots have their

real parts positive; or both have their real parts negative. Consider what happens when the
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trace happens to be positive: notice that x? is independent of the parameter A so, keeping

all the other parameters fixed, we need to choose a large enough value for A for this to

happen. Clearly then, the non-trivial equilibrium is a source.

Consider then, the case when A > h + 2x?; in other words, A(b − c) > (b + c)h. The

Poincaré-Bendixson Theorem, if applicable, would imply the existence of a closed orbit.

We need to check whether any equilibrium can be approached and then check whether

trajectories are bounded for this purpose. Notice that the only other equilibria for the

system (1.10) are given by (0, 0) and (A, 0); computation of characteristic roots of the

Jacobian of the system at these equilibria implies that (0, 0) is a saddle-point and if b+c > 1

then so is (A, 0). The following may be checked:

• If the initial point (xo, yo) > (0, 0) none of these equilibria can be approached.

• Trajectories remain bounded.

Consequently the only possibility is a limit cycle around the non-trivial equilibrium. Notice

also that small perturbation of the system is unable to dislodge the cyclical behavior of

trajectories. Thus to clinch matters we need to establish the validity of the items noted

above.

For the first, it is best to consult the following figure, where we have considered the

phase plane of the system (1.10) for appropriate values of the various parameters: r =

12, β = 20, b = 4, c = 8/5, h = 4 with appropriate units28. Notice that A has been left

unspecified. The case we are interested in, consists of requiring A > 28/3 and the situation
28All but the last are measured per year for example, whereas the last is a stock.
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for A = 10 is captured below.

FIGURE 4: ROBUST PERIODIC BEHAVIOR

While the above is a computer generated figure and cannot be taken for an analytical

proof, we note that the axes x = 0 and y = 0 are trajectories and cannot be crossed; and

the only trajectories which approach the saddle-point equilibria are these trajectories. The

non-trivial equilibrium being a source cannot be approached. Hence no trajectory, with a

strictly positive initial point, can approach an equilibrium, as claimed.

To show that any trajectory beginning from an initial positive configuration remains

bounded, notice the following: denoting the solution to (1.10) from an arbitrary zo =

(xo, yo) > (0, 0) by φt(zo) = (φtx(zo), φty(zo)), φtx(zo) < A∀t > 0 since ẋ = φ̇tx(zo) < 0

whenever φtx(zo) = A; thus unbounded behavior, if possible, may arise only if φty(zo) →

+∞. If this were to be the case, ẋ → −∞ and for all t > T , say, ẋ < −δ for some δ > 0

⇒ φtx(zo) → −∞ which contradicts the fact that φtx(zo) > 0∀t. This allows us to conclude

that the solution φt(zo) remains within a bounded region of the positive quadrant. Thus

the ω-limit set is non-empty and does not contain any equilibrium when A(b−c) > (b+c)h;

an appeal to Poincaré-Bendixson Theorem establishes that there must be a limit cycle.

That this is an example of robust cyclical behavior may be gauged from the fact that

small perturbation in parameter values would maintain the local properties of the three

equilibria29 and also maintain the crucial inequality A(b− c) > (b+ c)h. Hence the limiting

periodic behavior would also be maintained.
29Notice too that the bounded nature of trajectories follow regardless of parameter values.
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In the example considered, there are points of bifurcation of course and to analyze them

we consider the fixing of all parameters except A. For the sake of a meaningful value for

x?, we maintain b > c ( the birth-rate of predators is greater than their death-rate ). The

three equilibria are (0, 0), (A, 0) and (x?, y?), the non-trivial equilibrium. Consider then the

Jacobian of the system (1.10): xMx +M xMy

yNx N


At (0, 0), the Jacobian reduces to:M(0, 0) = r 0

0 N(0, 0) = −c


Thus regardless of parameter values, (0, 0) is a saddle-point and the only trajectory ap-

proaching it is the one along the y-axis. At the maximum prey equilibrium with no predators

present (A, 0), the Jacobian reduces to:AMx(A, 0) = −r AMy(A, 0)

0 N(A, 0) = bA
A+ h − c


Notice that now the equilibrium is locally asymptotically stable whenever A < ch

b− c ; no-

tice that in this range, there is no non-trivial equilibrium; if this inequality is violated this

equilibrium becomes a saddle-point loses stability and a new equilibrium, the non-trivial

equilibrium emerges. To complete matters, the Jacobian evaluated at the non-trivial equi-

librium may be recalled and as we had seen then, the determinant is always positive; the

trace has the same sign as A − h − 2x? which has the same sign as A(b − c) − h(b + c).

Consequently for the range

ch

b− c
< A <

h(b+ c)
b− c
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the non-trivial equilibrium is locally asymptotically stable; as we have seen above, when

A(b−c) > h(b+c) the non-trivial equilibrium loses stability and a limit cycle emerges. Thus

there are two points of bifurcation: A = A1 = ch/(b− c) and A = A2 = (b+ c)h/(b− c) =

h + 2x?. To the left of A1 there are only two equilibria; one a saddle-point and the other

stable; to the immediate right of A1, the maximum prey equilibrium loses stability and a

new stable equilibrium, the non-trivial equilibrium emerges. This thus is another example

of a transcritical bifurcation.

To the right of A2 no equilibrium is stable; further at A = A2, the trace of the Jacobian,

evaluated at the non-trivial equilibrium vanishes; the determinant is still positive however,

and hence the characteristic roots are purely imaginary. It should be recalled that trace is

given by the expression:

r(1− x?

A )
x? + h

− r

A
=

r

x? + h
[1− h+ 2x?

A
]

Thus the derivative of the trace with respect to the parameter A is positive and it follows

that we have an example of a Hopf Bifurcation at A = A2; at this value, trajectories are

closed orbits; and as we have established for larger values of A periodic behavior remains

and hence the claim of a robust periodic behavior.

34



2 Discrete Processes

2.1 Preliminary Definitions

Definition 1 Let f : X → X be continuous; X = [a, b]; then (X, f) is a dynamical

system with xn+1 = f(xn).

For any x ∈ X, f0(x) = x, fn(x) = f(fn−1(x)), n = 1, 2, ...; γ(x) = {(fn(x)}n≥0: tra-

jectory through x. If fk(x) = x and f r(x) 6= x∀r < k, r > 0 then x is periodic with

period k; and {x, f(x), ....fk(x)}is the cycle through x with period k. Let z ∈ (a, b)

be a fixed point (or equilibrium point) i.e., f(z) = z; thus a fixed point of the map

f is periodic with period unity. We are interested in characterizing the asymptotic be-

haviour of the trajectory through x ∈ X : γ(x); this is described by the ω-limit set

ω(x) = {y ∈ X : limr→∞ fnr(x) = y for some subsequence {fnr(x)} ∈ γ(x)}. An At-

tractor for the map f(.) is a closed set F ⊂ X such that ω(x) = F for some x in a

nondegenerate interval in X. Thus attractors depict the long term behaviour of trajectories

which begin from some non-negligible subsets of X in a sense to be made precise soon.

We first note that if the trajectory converges, then it must converge to a fixed point of

the system:

Claim 2.1.1 If fn(x) → x as n→∞ then x = z: a fixed point.

Suppose to the contrary that the claim is false and fn(x) → x 6= z. Suppose that

|f(x)− x| = δ > 0. The from the covergence of fn(x) we have for any ε > 0 a n(ε)

such that for all n > n(ε)
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∣∣fn+1(x)− x
∣∣ < ε∀n > n(ε)

or ∀n > n(ε), |f(fn(x))− f(x) + f(x)− x| < ε .

Now note that ε is arbitrary and that in the last line, the first two terms move arbitrarily

close due to the continuity of the function f and we have arrived at a contradiction. Hence

the Claim 2.1.1.

2.2 Stability of Periodic Points

We saw earlier that if the trajectory from some point x ∈ X converges, then it can only

do so to a fixed point of the dynamical system. To check whether any fixed point may be

an attractor, it would be convenient to impose an additional restriction on the dynamical

system (X, f):

The map f : X → X is differentiable on X.

Unless stated to the contrary, we shall assume that the above is satisfied. We now have the

following:

Proposition 2.1 Let x? be an equilibrium (fixed point) for the dynamical system (X, f).

Then x? is locally asymptotically stable ⇒ f ′(x?) ≤ 1; and f ′(x?) < 1 ⇒ x? is locally

asymptotically stable.

To see this, note that |xn+1 − x?| = |f(xn)− x?| = |f ′(xn)| |xn − x?| where xn = λnxn+

(1 − λn)x? for some λn, 0 ≤ λn ≤ 1. So if |f ′(x?)| < 1, and xn is sufficiently close to x?,

there exists k < 1 such that |xn+1 − x?| = kn+1 |x0 − x?| and the right hand side tends to

zero as n becomes large.
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As we defined above, the attractor could be some closed subset F of the domain space X

such that ω(x) = F for x belonging to some non-negligible subset in X. Specifically, the set

F could be a cycle C through some point y ∈ X; the cycle C or the trajectory through y, γ(y)

or the periodic point y is asymptotically stable if there is some non-degenerate interval V

with y ∈ V such that ω(x) = γ(y)∀x ∈ V . In this connection, we also note that if x is a

periodic point of the system (X, f) with period r, then x is a fixed point or equilibrium

point of the system (X, f r). That is, we have distinct points C = {x1, ...xr}, forming a

cycle, where {x = x1, x2 = f(x1), ..., xr−1 = f(xr−2), xr = f(xr−1), x1 = f(xr)}. It is clear

that f r(x1) = x1; so applying the previous Proposition ??

to the system (X, f r), we have that if |f r ′(x1)| < 1 then x1 is locally asymptotically

stable for the system (X, f r); and hence for the system (X, f), the cycle C is locally asymp-

totically stable. It should be clear that |f r ′(x1)| = |f ′(x1).f ′(x2)...f ′(xr)| and hence we

have the following:

Claim 2.2.2 If C = {x1, ...xr} is a cycle of period r for the dynamical system (X, f) then

|f ′(x1).f ′(x2)...f ′(xr)| < 1 ⇒ Cis locally asymptotically stable for the system (X, f).

2.2.1 The Logistic Map

Consider f(x) = K.x(1− x) For 1 ≤ K ≤ 4, f : X → X where X = [0, 1]. For equilibrium

or fixed points:

we need to locate the solution to the equation:

f(x) = x
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or

Kx(1− x) = x;

thus the equilibria are:

x?1 = 0 ; x?2 =
K − 1
K

Further, for local stability, by virtue of Proposition ??, we note that

f ′(x?) = K(1− 2x?)

Note then that the critical point of the logistic map x is given by x = 1/2 and is

independent of the value of the parameter K; further we note that the equilibrium x?1

is locally unstable if K > 1 and is locally stable when K < 1; on the other hand, the

equilibrium x?2 is locally stable when 1 < K < 3. Thus different values of K correspond to

quite different dynamics.

We ask next, the question whether there are some two period cycles: i.e., do there exist

distinct points p, q such that they solve p = f(q) and q = f(p); since f(.) = Kx(1− x), we

need to solve the following equations:

p = K(q − q2) and q = K(p− p2)

These imply that

p+ q =
K

K + 1
and p.q =

1 +K

K2

These equations imply that p, q must be the roots of the quadratic

x2.K2 − (K + 1)Kx+ (K + 1) = 0
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In other words, p, q are the roots

K(K + 1)±
√
K2(K + 1)(K − 3)
2K2

Thus p, q exist if and only if K > 3.

Now when are these two period cycles stable ? Again using the results of the last

section, we need to compute |f ′(p).f ′(q)| i.e., |K2(1− 2p)(1− 2q)| = | −K2 + 2K + 4| < 1

for 3 < K < 3.5. Thus just as K crosses the value 3,the fixed point x?2 loses stability and a

stable 2-cycle appears.

2.3 Recurrence

Since we are interested in the long term behavior of a trajectory, we would also be interested

in finding out the subsets of the domain space that the trajectory visits and whether there

are subsets which are repeatedly visited by typical trajectories. To enable us to present these

notions in a concrete manner, it is necessary for us to consider the following definitions.

Definition 2 A σ-algebra Σ is a collection of subsets of the set X such that

i. X ∈ Σ

ii. A ∈ Σ ⇒ X −A ∈ Σ and

iii. If {Ai : i = 1, 2, ...} is a countable collection of subsets in Σ then ∪iAi ∈ Σ.

Definition 3 Let Σ be a σ-algebra on X and let {Ai : i = 1, 2, ...} be a collection of disjoint

subsets in Σ. µ : Σ → < where < is the real line, is a measure if :

i. µ(∅) = 0 and ii. µ(∪iAi) =
∑
i µ(Ai).
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If in addition, µ(X) = 1, then the measure is called a probability measure. In this case,

(X,Σ, µ) is called a probability space.

One of the more familiar measures defined over subsets of < is the Lebesgue measure,

which we shall denote by m(.); the σ-algebra is made up of intervals and the measure for

any interval is its length. The probability space is said to continuous if µ(x) = 0 for all

points x ∈ X. We shall consider probability spaces from here onwards, unless specified to

the contrary.

Consider next a continuous map f : X → X where (X,Σ, µ) is a probability space;

i.e., (X, f) is a dynamical system as defined earlier. f : X → X is said to be measure-

preserving and the measure µ is said to be invariant if ∀E ∈ Σ, µ(f−1(E)) = µ(E).

Exercise 1 Let X = [a, b] ⊂ <, b > a; Σ denotes the collection of all intervals of X of the

type (c, d], [c, d) and their union where a ≤ c ≤ d ≤ b together with the set X and the empty

set. Show that Σ is a σ-algebra. Now define µ thus: µ([c, d)) = µ((c, d]) = d− c
b− a . Show

that (X,Σ, µ) is a probability space.

Exercise 2 Let (X,Σ, µ), with b = 1, a = 0 be as defined for the above exercise. Define the

map fM as follows:

fM (x) =


2Mx for x ∈ [0, 1

2)

2M(1− x) for x ∈ [12 , 1]

Show that f1 is measure preserving and µ is invariant.

The map fM is the well known tent-map.

The advantage of the definitions introduced above lies in the well known result:
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Proposition 2.2 (Poincaré Recurrence Theorem) Let (X,Σ, µ) be a probability space, f :

X → X is measure preserving and µ invariant under f . Let E ∈ Σ, µ(E) > 0. Then any

trajectory beginning from almost all points of the set E returns to E infinitely often.

Thus sets of positive measure are visited infinitely often; notice then that to understand

long term behavior of trajectories we need to understand the structure of sets with positive

measure. We need another property of the dynamical system:

Definition 4 Let (X,Σ, µ) be a probability space. The map f : X → X is said to be ergodic

if for all E ∈ Σ, f−1(E) = E ⇒ µ(E) = 0 or 1.

For ergodic maps, thus the motion cannot be split up into two parts; for suppose that

a map is non-ergodic i.e., there is a set E such that 0 < µ(E) < 1 and f−1(E) = E; thus

trajectories originating from E remain in E ( and those from X −E remain inside X −E).

For ergodic maps, we have the following:

Proposition 2.3 (Birkhoff-von Neumann) Let (X,Σ, µ) be a probability space, f : X → X

be mean preserving and ergodic and g be any integrable function. Then

lim
n→∞

1
n

n−1∑
i=0

g(f i(x)) =
∫
X
gdµ

The above result is often stated as the time average being equal to the space average.

Consider, for example, E ∈ Σ, µ(E) > 0 and we are interested in finding out the time spent

by some trajectory γ(x) in the set E. For this purpose, we define the characteristic function
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of the set E:

χE(x) =


1 if x ∈ E

0 otherwise

Consider χE(f i(x)); summing this over all the points of the trajectory, we should have the

number of periods spent in E: according to the Poincare Recurrence Theorem, however,

this should be infinite. Suppose however we consider the average time spent in the set E

for the first n-periods and look at the average as n becomes large. Then we wish to consider,

lim
n→∞

1
n

n−1∑
i=0

χE(f i(x))

By the Birkhoff-von Neumann Theorem, this is the same as

∫
E
χE(x)dµ = µ(E)

So a typical trajectory spends, on the average, as much time in a set as its measure. In this

connection, it is clear that if the support of the measure is a large set, then the behaviour of

the typical trajectory is complicated. To provide an idea of how complicated this behaviour

can be, we need the notion of:

Definition 5 A subset S ⊂ X is said to be scrambled if:

(i) x, y ∈ S, x 6= y ⇒

lim sup
n→∞

|fn(x)− fn(y)| > 0; and lim inf
n→∞

|fn(x)− fn(y)| = 0

(ii) x ∈ S and y a periodic point of f(.) in X ⇒

lim sup
n→∞

|fn(x)− fn(y)| > 0
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Thus points of S are not periodic and are not even asymptotically periodic. A sufficient

condition for the existence of a “ large” scrambled set is contained in the following:

Proposition 2.4 (Li-Yorke) Assume there is some x ∈ X such that

either f3(x) ≥ x > f(x) > f2(x)

or f3(x) ≤ x < f(x) < f2(x)

then

for the dynamical system (X, f), there is an uncountable scrambled set S and for every

positive integer k, there is a cycle with period k. Moreover, there exists a continuous measure

µ which is invariant and ergodic under f .

There is, under the condition specified in Proposition 2.4,the measure µ is supported on

an uncountable scrambled set. But how “large” is this set compared to the whole set X.

For instance, consider the Logistic Map examined earlier: f(x) = Kx(1 − x), 1 ≤ K ≤ 4.

For a value of K near 3.83, one may show that f3(12) = 1
2. We note that 1

2 < f(12); and

that f2(12) < 1
2. Let x = f2(12); note that this allows us to conclude that the Li-Yorke

condition is satisfied and hence the conclusions of Proposition 2.4 hold. Nevertheless, our

earlier consideration of stability of periodic points also allows us to conclude that the 3-

period cycle 1
2 , f(12), f2(12) is asymptotically stable and a typical trajectory through almost

any ( in the sense of Lebesgue measure) point of X approaches this 3-period cycle. So

there is little chance of observing any complicated behaviour. In this particualr example,

although the scrambled set is uncountable, it has zero Lebesgue measure. For almost sure

noticeable complicated behaviour, we need the the following:
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Definition 6 A measure µ is absolutely continuous with respect to the Lebesgue measure m

if there is a Lebesgue-integrable function g such that µ(E) =
∫
E gdm; g is then the density

function for µ.

Note that the existence of an absolutely continuous measure would imply that the problem

raised earlier would disappear since now, if µ is absolutely continuous with respect to m,

m(A) = 0 ⇒ µ(A) = 0 and hence m( support of µ) 6= 0.

The existence of an absolutely continuous invariant measure is guaranteed by the well

known result:

Proposition 2.5 (Lasota and Yorke) Assume that f : X → X is piecewise C2 ( i.e.,

X = [a, b] is partitioned by points a < x1 < x2 < .... < xn = b and on each (xi, xi+1) f is a

C2 function which is extendable to a C2 function on [xi, xi+1]). If

∣∣f ′(x)∣∣ ≥ λ > 1 m-almost everywhere

then there exists an absolutely continuous invariant measure.

A map satisfying the condition specified above is called expansive. There are other

conditions which show the existence of absolutely continuous and invariant measure for

maps which need not be expansive and we shall have an oppotunity to consider one such

result later.

To sum up: we have considered situations under which trajectories for the dynamical

system (X, f) exhibit complicated behaviour. These situations were identified first by the

existence of an invariant, continuous and ergodic measure. A sufficient condition under
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which such a measure existed was contained in the Li-Yorke condition (Proposition 2.4).

Under this condition, an uncountable scrambled set may be shown to exist; further, for

every positive integer, k, a cycle of period k may be shown to exist as well. Sometimes,

the existence of an uncountable scrambled set is taken to be the existence of chaos in the

sense of Li-Yorke. We shall present in the next section a formal definition of topological

chaos:it will then turn out that topological chaos implies chaos in the sense of Li-Yorke

but the implication need not run the other way.

We also showed why we may need some thing stronger to guarantee that the unscrambled

set is non-negligible: this we presented in the form of the existence of invariant ergodic

and absolutely continuous measure. A more operational definition will be introduced next

section. This stronger notion of chaos will be defined to be ergodic chaos.

2.3.1 Chaos and Unimodal Maps

To provide a formal definition of topological chaos, we need the following:

Definition 7 A finite subset E of X is said to be (n, ε) separated n = 1, 2, ... ε > 0 in X

if for every x, y ∈ X,x 6= y, ∃k, 0 ≤ k < n such that

∣∣∣fk(x)− fk(y)
∣∣∣ ≥ ε

Let s(n, ε) denote the maximum cardinality of an (n, ε)-separated set in X; Ψε(f,X) =

lim supn→∞
1
n log s(n, ε); the topological entropy of the dynamical system (X, f) is de-

fined by the limε→0 Ψε(f,X). If for some dynamical system (X, f) the topological entropy

is defined to be positive then the dynamical system is said to exhibit topological chaos.
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An operational characterization of this property is contained in the following:

Proposition 2.6 (Misiurewicz) (X, f) exhibits topological chaos if and only if there is a

periodic point in X whose period is not a power of 2.

How does one search for periodic points whose periods are not a power of 2? Since 3 is

such a number, the following necessary and sufficient condition for the existence of a

periodic point with period 3 is often found quite useful.

Proposition 2.7 (Li-Yorke) A necessary and sufficient condition for the dynamical system

(X, f) to have a periodic point with period 3 is that there is some x ∈ X such that

either f3(x) ≥ x > f(x) > f2(x)

or f3(x) ≤ x < f(x) < f2(x)

We shall refer to the condition noted above as the Li-Yorke condition. Actually, Li-Yorke

went on to demonstrate that the condition, was sufficient to guarantee a good deal more

than just a three period periodic point (see, Proposition 2.4). Given the earlier proposition,

the condition is sufficient for topological chaos. We next present another type of dynamical

system which will exhibit topological chaos.

We shall study a type of dynamical system which has been called turbulent, in the

literature:

Definition 8 Now (X, f) is turbulent if ∃a, b, c ∈ X such that f(a) = a = f(b), f(c) = b

and either a > c > b or a < c < b.
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Exercise 3 Show that f(x) = Kx(1− x), 1 ≤ K ≤ 4 is turbulent if and only if K = 4.

Remark 8 If the dynamical system (X, f) is turbulent, for every positive integer k there

is periodic point of period k and an uncountable scrambled set.

To see the above: suppose that a < c < b; note that since the map f is continuous

and since f(a) = a and f(c) = b hence there must be q ∈ [a, c] such that f(q) = c. Thus

q < f(q) = c < f2(q) = f(c) = b and f3(q) = f(f(f(q))) = f(f(c)) = f(b) = a ≤ q and

we have the Li-Yorke condition being met; consequently the claim follows by virtue of the

Li-Yorke result mentioned above.

Remark 9 The existence of a three period cycle is sufficient for topological chaos. Notice

that if the dynamical system (X, f2) is turbulent then the map f2 satisfies the Li-Yorke

condition and hence by virtue of the Li-Yorke theorem, (x, f2) has a periodic point with

period 3; note that then (X, f) has periodic point with period 6 and by the Misiurewicz

proposition, exhibits topological chaos.

We shall confine our attention to the following type of dynamical systems (unimodal)

in the notes below:

Definition 9 X = [a, b], f : X → X is continuous; further, there is m ∈ [a, b] such that

the map f is increasing in [a,m] and decreasing in [m, b]; and f(a) ≥ a, f(b) < b and

f(x) > x∀x ∈ [a,m].

Below, we shall confine attention to the following three iterates of the pointm: f(m), f2(m), f3(m).

For maps of the type defined in 9, these three iterates will reveal some information about
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the long term behavior of the trajectories.

Note first of all that by virtue of the properties mentioned in Definition 9 there is an

unique z ∈ (a, b) such that f(z) = z; z is the unique interior fixed point . Also m < z < b.

Further f(m) > m and f(m) ≤ b. Thus for the location of f(m) relative to m:

b ≥ f(m) > f(z) = z > m. (2.1)

Using the above, we have immediately, the following condition for the location f2(m):

f2(m) < f2(z) = z = f(z) < f(m) ≤ b (2.2)

There are two possibilities that we need to consider f2(m) ≥ m or f2(m) < m; since we

cannot rule out any one of the two cases.

Claim 2.3.3 In case f2(m) ≥ m, for any x ∈ [a, b], fn(x) ∈ [m, f(m)] for some n = n and

fn(x) ∈ [m, f(m)]∀n ≥ n.

Note first of all that x ∈ [m, f(m)] ⇒ m ≤ x ≤ f(m) ⇒ f(m) ≥ f(x) ≥ f2(m) so that

in case f2(m) ≥ m, f(x) ∈ [m, f(m)]. Thus to establish Claim 2.3.3 we need only establish

that for any x ∈ [a, b], fn(x) ∈ [m, f(m)] for some n = n.

Suppose then to the contrary that, for some x ∈ [a, b] there is no such n. Then there

are the following possibilities:

i. f r(x) < m∀r > 0

ii.f r(x) > f(m)∀r > 0

iii. There are subsequences {ri}, {rj} such that f ri(x) < m and f rj (x) > f(m).

We consider the case iii first; in this case subsequences have to jump back and forth between
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the intervals I1 = [a,m] and I3 = [f(m), b] jumping across I2 = [m, f(m)]. That this is

not possible is easily seen by noting that in case x ∈ I1, f(x) < f(m) so that f(x) /∈ I3 so

either f(x) ∈ I2 or f(x) ∈ I1: the first being ruled out by hypothesis, I1 cannot be left.

Thus jumping back and forth across I2 is not possible. Thus we can only have case i or ii.

In both of these cases the successive iterates form monotonic sequences and being bounded

must converge. But the only possibility is convergence to the interior fixed point by virtue

of Claim 2.1.1 z which is neither in I1 nor in I3 (note that convergence to the fixed point

a in I1 is not possible since in I1 the iterates form a monotone increasing sequence) and

hence neither of these possibilities is feasible too. This establishes the Claim 2.3.3. The full

implication of what we have demonstrated may be seen from the following:

Claim 2.3.4 If there is a periodic point in A = [m, f(m)], then the period is either 1 or 2.

Suppose that there is a periodic point in A with period r > 1; i.e., there are distinct

points {x1, ...., xr} ∈ A such that f(xi) = xi+1 and f(xr) = x1. Since the points are

distinct, without loss of generality, assume that xr > x1. Now since A ⊂ [m, b] and f

is decreasing on A, it follows that x1 < z < xr and hence we have x2 > z > x3 and

so on so that {x1, x3, x5...} ∈ [m, z) and {x2, x4, .....} ∈ (z, f(m)]. Thus we observe that

r is even and = 2k say where k > 1. Suppose that x3 < x1 then we can say that we

have the following: x2k−1 < ... < x3 < x1 and x2 < x4 < ... < x2k and so that we have

f(x2k) = x1 < f(x2k−2) = x2k−1: which is a contradiction. A similar contradiction emerges

if x3 > x1. Hence x3 = x1 and k = 1 and the claim is established. This allows us to

conclude, using the result due to Misiurewicz that:

49



Claim 2.3.5 A necessary condition for topological chaos is that f2(m) < m.

This follows since with the violation of the condition one may have at best cycles with

period of 1 or 2. We next claim the following:

Claim 2.3.6 f2(m) < m and f3(m) ≤ m⇒ (X, f) exhibits topological chaos.

The claim follows by noting that in case f3(m) = m, we have a three period cycle

involving {m, f(m), f2(m)} and hence the Li-Yorke Theorem does the rest. In case f3(m) <

m, since f(f2(m)) < m and f(m) > m there is q ∈ [f2(m),m] such that f(q) = m and

note that f3(q) = f2(f(q)) = f2(m) ≤ q < m = f(q) < f(m) = f2(q) so that the Li-Yorke

condition is satisfied. We note next that a slightly weaker condition is also sufficient to

ensure that the dynamical system (X, f) exhibits topological chaos.

Claim 2.3.7 (Mitra (2001)) f2(m) < m and f3(m) < z ⇒ (X, f) exhibits topological

chaos.

The proof of this claim will be through the following steps: we shall show that under

the stated conditions, the dynamical system (X, f2) is turbulent: consequently, the system

has a three period cycle and hence the dynamical system (X, f) has a six period cycle and,

by virtue of the the Misiurewicz theorem, exhibits topological chaos. So we shall attempt

to find three points in X which meet the definition for turbulence for the system (X, f2).

Crucial use is made of the continuity of the map f : First of all note that:

f(f2(m)) < z and f(m) > z
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so there must exist p ∈ (f2(m),m) such that f(p) = z; it is also clear that p < m < z.

Next, observe

f2(m) = f(f(m)) < p and f(z) = z > p

thus there must exist q ∈ (z, f(m)) such that f(q) = p.

Next, since z, f(m) ∈ [m, b] we have:

f(z) = z > m and f(f(m)) < m

and hence there must be r ∈ (z, f(m)) such that f(r) = m. And further, r < q since

f(r) = m, f(q) = p and p < m.

Finally, note that:

f2(r) = f(f(r)) = f(m) > q and f2(z) = z < q

so that using the continuity of f2(.), there must exist s ∈ (z, r) such that f2(s) = q.

Collecting the above steps, we have z, s, q such that z < s < q and f2(z) = z, f2(q) =

f(f(q)) = f(p) = z, f2(s) = q; hence f2(.) is turbulent and the claim follows.

2.3.2 Unimodal Maps with Negative Scwartzian Derivatives

In the last section we identified conditions which could be used to check for topological

chaos. We present here some results which are relevant for unimodal maps which satisfy

the following:

Sf(x) (the Schwartzian derivative of the map h ) is defined by

Sf(x) =
f ′′′(x)
f ′(x)

− 3
2
{f

′′(x)
f ′(x)

}2
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We require the unimodal maps to satisfy in addition: Sf(x) < 0 for all x 6= m where m

is as noted above, the value of x for which f(x) attains a maximum.

Sometimes, we may speak of m as being a critical point of (X, f) (since if f(x) is

differentiable then f ′(m) = 0). For unimodal maps (which we shall refer to as A1) with a

negative Scwartzian derivative (except at the critical point)which we shall refer to as A2),

there are some strong chacterizations possible and we present these. These relate to how

the enire bifurcation process unfolds when parameters alter. Let {x1, x2, ...xk−1} = P be a

cycle of period k. If the products of the derivatives of f(.) at each point of the cycle has

an absolute value less than or equal to 1, we shall say that the cycle is weakly stable.

Further, if one of the points of the cycle P is the critical point m, then the cycle P is said

to be superstable.

Consider a family of maps fα : [aα, bα] → [aα, bα], where α ∈ [0, 1], say. Assume that

each map fα satisfies A1 and that aα, bα depend continuously on α, fα and f ′α. Let xα

denote the unique critical point of each fα. The family is said to be full if (i) f2
0 (b0) >

x0 and (ii) f2
1 (x1) < x1, f

3
1 (x1) < x1.

Proposition 2.8 Consider a full one parameter family of maps described above;

A. for any k ≥ 2, the set of parameters α for which fα has a superstable cycle of period

k is non-empty and closed; given such an α, there is an open interval V containing α such

that for every β ∈ V, fβ has a stable cycle of period k for every β ∈ V .

B. Let ak denote the first value of α for which there is a superstable cycle of period

2k, k ≥ 1. Then the sequence {ak} increases with k and converges to some value a∞ as k →
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∞. For each α ∈ [0, a∞), all cycles of the map fα have a period which is a power of 2 or

are fixed points.

C. If each member of the family fα satisfies A2, then

(i) for any α ∈ [0, a∞], the map fα has a unique weakly stable cycle;

(ii) there is an uncountable set of values of α in [a∞,1] for which fα has no weakly stable

periodic orbit.(Theorems D.1.6 and D.1.7, Grandmont (1988))

These results indicate what will happen when the parameter changes and how the first the

fixed point loses stability and stable cycles with periods which are powers of 2 successively

appear; how ultimately topological chaos is shown to be present for parameter values in the

range of [a∞, 1].

How do we identify whether a dynamical system (X, f) exhibits ergodic chaos ? Recall

this means that there is an uncountable scrambled set with positive Lebesgue measure or a

“large” (relative to the domain space) scrambled set. We had identified one such condition

in terms of expansive maps. We consider here the case of unimodal maps which are of course

not necessarily expansive. For such maps, we need to consider the following derivative: For

such maps, a result due to Misiurewicz provides a condition which again relates to the

iterates of the critical point m:

Proposition 2.9 Given that (X, f) is such that f is unimodal and satisfies the Scwartzian

derivative condition, if there exists an integer k such that either fk(m) = x?, where x? is a

fixed point of f(.) and |f ′(x?)| > 1 or fk(m) = x where x is a periodic point of an unstable

cycle, then the map f(.) exhibits ergodic chaos.
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3 Stability of Competitive Equilibrium

3.1 Introduction

The stability of competitive equilibrium is one area which attracted a lot of attention in the

mid-fifties and the sixties. But thereafter, the interest some how shifted with the realization

that unlike the question of the existence of competitive equilibrium, stability questions could

not be resolved as satisfactorily. Thereafter, the stability question was never analyzed and

neglected for reasons which are not really clear.

It may be of some interest to note what Malinvaud had to say in 1993 delivering the

anniversary lecture on the eve of the Conference held to celebrate the 40th anniversary of the

Arrow- Debreu-McKenzie contributions at the December 1952 Meetings of the Econometric

Society: “ Were there any failure of general nature ? Thinking about the question, I am

identifying two defeciencies, which would be considered as failures. They may be called

imperfect competition and price stability ” and then later, “ The second deficiency follows

from an ambiguity in the teachings of general equilibrium theory about the performance of

the market system...... Here I am not referring to the formal problem of how equilibrium is

reached, a problem about which, by the way, we shall perhaps be a little too silent in this

conference”. More recently, McKenzie (1994), comments that “ interest in this question (of

stability of the competitive equilibrium ) had been revived by the contribution of Arrow and

Hurwicz (1958).... Although interest has lasped in recent years, I do not regard this subject

as completely obsolete”.

The views of these two eminent scholars provide the first motivation for re-examining
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these issues more closely with the tools of non-linear dynamics. The views of McKenzie

and Malinvaud not withstanding, there is a more basic and and fundamental reason in

carrying out such a reexamination in the current context. During the late 20th Century,

the overwhelming favorite economic principle was based on a complete belief in the powers

of the market mechanism. Clearly this logically implied that equilibria were stable. Since if

these were not so, then the equilibrium would be attained by serendipity rather than design.

Yet on the theoretical side of things, at the same time, there were no indication that there

was any design which could guarantee attainment of equilibrium. This is what Malinvaud

refers to in the paragraph noted above. One of the things that we wish to do in the present

chapter is to rexamine the working of market mechanism.

The foundations of the subject had rested on the role of income effects1. The belief,

from the classical Samuelson (1947), Hicks (1946)contributions, had been that if the income

effects could be overcome, the competitive equilibrium would at least be locally stable. One

of the principal conditions for local stability has been that income effects cancel out at

equilibrium. That some such restriction would be required became evident due to the con-

tribution of Scarf (1960) and Gale (1963). Later contributions, which were interested in

global stability primarily, 2 introduced other conditions such as gross substitutes, dominant

diagonals and the weak axiom of revealed preference. The really restrictive nature of these

conditions were never fully appreciated till the contributions of Sonnenschein (1973) and
1This has been referred rather picturesquely to as being part of the consciousness of the profession. As we

hope to show in the pages below, many such items in our professional consciousness need to be reformulated.
2See Negishi (1962)or Hahn (1982) for surveys of these contributions.
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Debreu (1974) established that excess demand functions could only be subjected to Walras

Law and homogeneity of degree zero in the prices. With the Sonnenschein and Debreu

contributions, and with the Scarf and Gale examples in the background, it was felt that

anything could happen. Thus while the theorists among the profession felt that anything

could happen, when they wrote in professional journals, the same theorists strangely re-

mained quiet when the stability of equilibrium was routinely assumed and the virtues of

competitive equilibria were extolled. Even as the present version is being prepared, the

virtues of the competitive mechanism appear some what tarred but not on account of lack

of stability 3. Accordingly the issues concerning stability of competitive equilibrium need a

thorough reexamination.

The above provides, it is hoped, a satisfactory reason to be engaged in looking once

more at question of stability of competitive equilibrium, we need to first set out the context

or the model, which shall be the main vehicle of our discussion.

In the sections below, we hope to reexamine these issues to provide an unified view.

This unification, as we shall show, serves to clarify issues and reveal connections which

we believe are of fundamental interest. We begin with the nature of the price adjustment

process and investigate how the standard form of the tatonnement may be derived from

the Walrasian hypothesis of price behavior in disequilibrium. The question of what the

numeraire should be, is also considered. Thus what has been called the market mechanism
3This has more to do with the realization that the market mechanism may break down due to informa-

tional asymmetries. In other words, concerns were with the problems of existence of competitive equilibrium

and not with its stability.
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needs to be provided with some form which makes it amenable for analysis.

We hope to establish in the next stage, two things: first that it is the weak axiom of

revealed preference which is the basic condition for stability of competitive equilibrium.

We do this by first examining a necessary condition for local stability; it will be shown

that this is related to the weak axiom; all the conditions mentioned above, the so-called

sufficient conditions for local stability follow from the weak axiom. So far as global stability

consideration are concerned, we try to pin down what the path of prices would be in the

general situation. It turns out that although this path may be quite arbitrary, the weak

axiom of revealed preference may again be used to provide some clues. The second thing

that we hope to establish is that there are ways of determining stability conditions, in other

words, place restriction on parameter choices, so that stability is obtained. Some well known

models of instability are taken up for analysis in this context.

Apart from the above mentioned results being of interest on their own right, there is

another aspect that we should point out. It is the recent contribution of Anderson et. al.

(2002) in experimental economics. This is particularly important since one of the reasons

for the neglect of this very fundamental area has been the feeling that the formalization

of the market mechanism into the tatonnement has been inappropriate4. The experiment

conducted by Messrs Anderson et. al., however, seems to indicate that the predictions of

results by the tatonnement process are accurate even in a non-tatonnement experimental

double auction situation. Thus the predictions of a tatonnement process may be important

after all.
4Whether this was because the results were not quite satisfactory is not very clear.
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Finally, it should be pointed out that on account of the theory of dynamical systems

alone, we cannot expect very general conditions for convergence. This has been established

relatively recently by Smale (1976). It may be worthwhile to consider what his result is.

Let us denote by ∆n the unit simplex in <n spanned by the unit vectors ei = (δik), δik =

0, k 6= i, δii = 1. The Smale result is as follows: Let X be any C1 vector field in

∆n−1; then there exists a C1 vector field F = (Fi) in <n satisfying Fi = xiMi(x),

Mij(x) < 0, j 6= i such that F |∆n−1 = X and ∆n−1 is an attractor. In other words,

for n > 2, “anything goes” on account of dynamical systems alone. Convergence therefore

for any dynamical system involving more than 2 variables would require special conditions.

This justifies the need for analyzing what these stability conditions are. And even more so,

if the more than 2 variables are concerned. In the pages below, we shall identify “stability

conditions” and also pay close attention to what happens on the plane.

3.2 Excess Demand Functions

The economy is considered to be made up of households h, h = 1, 2, · · · ,H, each with a

consumption possibility set Xh ⊂ Rn where Xh is convex and bounded below.Also

each household h has a strictly quasi-concave, strictly increasing and continuously

differentiable utility function Uh : Xh → R; further each household h has an endowment

wh ∈ IntXh where IntXh denotes the interior of the set Xh and further wh 6= 0. Firm

j, j = 1, 2, · · · , J possesses a production possibility set Y j ⊂ Rn which is assumed to be

strictly convex and bounded above; also Y j ∩Rn+ = {0}; Y j ∩−Y j = {0}; y ∈ Y j , z ≤

y ⇒ z ∈ Y j are assumed to hold for every j. Finally, θhj ≥ 0 is the share of household h in
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the share of firm j’s profit Πj with
∑
h θhj = 1 for all j. Profits Πj are defined by the value

of the following programme:

Max p.y

subject to y ∈ Y j

Let yj(p) solve the above problem; note that, given our assumptions, this solution exists

and is unique for all p ∈ Rn++ (i.e., strictly positive prices). yj(p) is the supply function

and the profit function Πj(p) is defined by Πj(p) = p.yj(p). Household h solves the

programme:

Max Uh(x)

subject to p.x ≤ p.wh +
∑
j θhjΠ

j , x ∈ Xh

Given our assumptions,a unique solution xh(p), the demand function exists to the

above utility maximization exercise, for all p ∈ Rn++. The excess demand function then

is defined by:

Z(p) =
∑
h

xh(p)−
∑
j

yj(p)−
∑
h

wh = X(p)− Y (p)−W, say

where X(p), Y (p) and W respectively stand for the aggregate demand, aggregate sup-

ply and the aggregate endowment . The excess demand function, so derived, will be

taken to satisfy the following properties:

P1. Z(p) is a continuously differentiable function of p which is bounded below for all

p ∈ Rn++.
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P2. p.Z(p) = 0 for all p ∈ Rn++(Walras Law)

P3. Z(λp) = Z(p) for any λ > 0 and for all p ∈ Rn++.

P4. If ps, s = 1, 2, · · ·, ps ∈ Rn++, ‖ps‖ ≥ δ > 0 for some δ for all s and if psk → 0 as s→∞

for some k, then
∑
j Zj(p

s) →∞.

The above properties P1. - P4. are all standard properties5. The references provided

below would also convince persons that the set E = { p ∈ Rn++:Z(p) = 0} 6= ∅. Let p∗ =

(p∗1, · · · , p∗n−1, 1) ∈ E. Unless otherwise stated, we shall choose all prices p = (p1, · · · , pn−1, 1)

i.e., with good n as the numeraire. Define the set K = { p ∈ Rn++, pn = 1 : p∗.Z(p) ≤ 0}.

It is relatively straightforward to see

Claim 3.2.1 K is a nonempty and compact subset of Rn++ and has a positive distance from

the boundary of Rn+.

Proof. Note that E ⊂ K and hence K is nonempty, since E is non-empty. The remaining

part of the claim follows by virtue of the fact that if there is any sequence ps ∈ K such that

‖ps‖ → ∞ then clearly psk → ∞ as s → ∞ for some k. Define qs =
1
psk
.ps. Note that by

virtue of P3., Z(qs) = Z(ps)∀s; hence p∗.Z(qs) ≤ 0∀s. Note also that qsk = 1∀s and further

qsn → 0 as s→∞. Consequently P4. applies and given the bounded below nature of excess

demand functions, one may conclude that p∗.Z(qs) → ∞ as s → ∞; thus, p∗.Z(qs) > 0∀s

large enough. But then ∀s large enough, ps /∈ K: a contradiction; so no such sequence

exists and K is bounded. The closure of K follows from the definition. Next note that the
5See for instance Mukherji (1990), (2002), Neuefeind (1980).
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distance of K from the boundary of Rn+ denoted by B, say is

d(K,B) = inf
x∈K,y∈B

d(x, y) = α say

where

d(x, y)2 =
∑
i

(xi − yi)2

If α = 0, then there is a sequence ps ∈ K ∀s such that psj → 0 as s → ∞. Since ‖ps‖ ≥ 1

∀s, P4 applies and
∑
j Zj(p

s) → ∞ as s → ∞; thus exactly as argued above, ps /∈ K ∀s

large enough : a contradiction. Hence α > 0 as claimed. •

To need to apply our results on the existence of solutions to differential equations, we

need to strengthen the property P1 to:

P1′: For each j, Zj(p) is bounded below and continuously differentiable function of p for

all p ∈ Rn++.

We shall say that Weak Axiom of Revealed Preference (WARP) holds at p if

p∗.Z(p) > 0; otherwise, we shall say that WARP is violated at p.If WARP holds for all

p ∈ Rn++, then WARP holds. For discussions of WARP, see Hildenbrand and Jerison

(1989). Given the above, note that

K = E ∪ {p /∈ E : WARP is violated at p}.

To investigate this notion further, let p∗ ∈ E and p 6= θp∗; then it should be noted that by

virtue of Walras Law, using the notation introduced above:

p.(X(p)−W ) = p.Y (p);
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further, by virtue of profit maximization, p.Y (p) ≥ p.Y (p∗); also by the definition of equi-

librium, Y (p∗) = X(p∗) −W ; consequently, putting all this together, we have p.X(p) ≥

p.X(p∗). Thus we have demonstrated the validity of:

Claim 3.2.2 At any p, the aggregate demand X(p) costs no less than the aggregate demand

X(p∗) at equilibrium.

Remark 10 Had the aggregate demand X(p) originated from the maximization of a single

utility function, it would have been possible to argue that at p∗, X(p) should be more ex-

pensive than X(p∗), i.e., p∗.X(p∗) < p∗.X(p) or retracing the steps taken above, and using

the fact that from profit maximization, p∗.Y (p) ≤ p∗.Y (p), it would follow that p∗.Z(p) > 0:

which, of course, is WARP6.

3.3 Tatonnement Processes

The so-called tatonnement processes have two major properties: first of all, in dis-equilibrium

situations price adjustment in each market occurs in the direction of excess demand in that

market and secondly, trades occur only at equilibrium prices. These two assumptions about

price adjustment and trades figure in Walras’ description of how the market figures out what

the equilibrium prices are. The first treatment of the price adjustment equations as differ-

ential equations was provided by Samuelson (1946), where he wrote the price adjustment
6Thus aggregation across individuals has deprived us of these nice properties. It is, in this connection,

that the results of Sonnenschein (1972) and Debreu (1974) are crucial. The only restrictions on excess

demand functions are that they satisfy homogeneity of degree zero in the prices and obey Walras Law.
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equations as

ṗj = Fj(p) for all j 6= n (3.1)

where Fj(p) are required to satisfy the following restriction:

Sign of Fj(p) = Sign of Zj(p)

A special case of the above function Fj(p) has been mostly used where Fj(p) = kj .Zj(p)

with kj > 0 are some constants. The adjustment equations thus become

ṗj = kj .Zj(p) for all j 6= n; kj > 0∀j (3.2)

It has also been argued that in the above case, one may so define the units of measurement

of each commodity that kj = 1 can be chosen without any loss of generality. Using this

strategy we shall use the following equation:

ṗj = Zj(p) for all j 6= n; pn = 1 (3.3)

We shall have a chance to study the solutions to both ( 3.1 ) and ( 3.3 ) in our analysis

below. The analysis of local stability of competitive equilibrium is restricted to situations

when the initial point of the solution to the ( 3.1 ) is a point close to the equilibrium p∗.

In such situations, the property of the functions Fj , viz., that they are of the same sign as

Zj , allows us some advantages. To see these, we have first of all7,

Claim 3.3.1 If f(x) and g(x) are real valued linear functions, f, g : Rn → R, such that

f(x) 6= 0 for some x ∈ Rn and f(x) = 0 ⇐⇒ g(x) = 0, then f(x) = α.g(x), ∀x ∈ Rn, for

some α.
7McKenzie (2002), p. .
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Proof. Consider x ∈ Rn such that f(x) 6= 0. Consider y ∈ Rn and note that f(y− f(y)
f(x)

.x) =

0; consequently g(y − f(y)
f(x)

.x) = 0; hence g(y) = α.f(y) where α =
g(x)
f(x)

. •

For any function f(x), we write ∇f(x) = (
∂f(x)
∂xj

); by virtue of the above claim, if

∇Fj(p∗) 6= 0 then it follows that ∇Fj(p∗) = αj∇Zj(p∗) for some αj > 0. Consequently, the

linear approximation to ( 3.1 ) may be taken to be

ṗ = D.A.p (3.4)

where A = (
∂Zi(p∗)
∂pj

) and D is a diagonal matrix with positive αj down the diagonal. Now

for example, redefining units of measurement, we may choose the system

ṗ = A.p (3.5)

Consequently, there are two routes to arriving at a system such as ( 3.5 ); one, from

a system such as ( 3.1 ) and the other, from a system such as ( 3.3 ). It would be more

convenient to adopt the convention that we have arrived from ( 3.3 ). If the matrix A has all

its characteristic roots with real parts negative, we shall say ( 3.3 ) is linear approximation

stable. This is a stronger requirement than ( 3.3 ) being locally asymptotically stable.

The former implies the latter; but one can have the latter condition being met without the

former being true.8 Now the full Jacobian of Z(p) at the equilibrium p∗ has some interesting
8Consider, for example, x ∈ R, ẋ = −x3; and consider the linear approximation in a neighborhood of

equilibrium ( x = 0 )given by ẋ = 0. The difference between the two, lies in the fact that even though

linear approximation stability is violated, local asymptotic stability holds. This can happen only when the

characteristic root of the matrix of partial derivatives evaluated at equilibrium ( the Jacobian of Z(p)

without the numeraire row and column ) has zero as a characteristic root.
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properties which we note for future reference.

Claim 3.3.2 Consider the Jacobian J(p∗) of the excess demand functions given by (
∂Zi(p∗)
∂pj

)

where i, j run over all the goods, including the numeraire and p∗ is an equilibrium. Then

p∗
T
.J(p∗) = 0 and J(p∗).p∗ = 0 and further let I = {i : p∗i > 0}; then ∀ i, j, r, s ∈ I,

Jij/pi.pj = Jrs/pr.ps and Jij = 0 if either i /∈ I or j /∈ I where Jij denotes the cofactor of

the i-jth element in J(p∗).

Proof. By virtue of Walras Law, we have
∑
i pi.Zi(p) = 0; hence differentiating, with

respect to the j-th price pj , we have
∑
i pi.Zij(p) + Zj(p) = 0 and evaluation at p∗ leads to

p∗
T
.J(p∗) = 0. Again noting the homogeneity of degree zero in the prices, we have from

Euler’s Theorem that J(p∗).p∗ = 0. Next consider the matrix B = adjoint J(p∗) = (Jij)T .

It is then known that J(p∗).B = B.J(p∗) = det J(p∗).I If Jij = 0 ∀ i, j, then the claim

follows trivially; hence suppose Jij 6= 0 for some i, j; then note that rank of J(p∗) is n− 1

and hence the solutions to xT .J(p∗) = 0 and J(p∗).x = 0 constitute vector spaces of rank 1.

Thus rows of B must be scalar multiples of p∗
T

and columns of B must be scalar multiples

of p∗; consequently, writing the i-th row of B as bi, bi = θi.p
∗T

for some scalar θi and the

j-th column of B as bj , bj = βj .p
∗ for some scalar βj ; it remains to note that θi = βi and

hence Jij = θip
∗
j = θjp

∗
i and the claim follows. •

Remark 11 It should be noted that the full Jacobian J(p) of the excess demand function

Z(p), can be symmetric only at the equilibrium p∗. This follows from the proof of the above

claim; note that pT .J(p) = −Z(p)T and J(p).p = 0 for any p. Consequently, J(p) symmetric

⇒ 0T = pT .JT (p) = pT .J(p) = −Z(p)T ; hence p must be an equilibrium.
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We consider next, whether with conditions such as the above, we can ensure that the

equilibrium is locally stable, at least.

3.4 Local Stability of Tatonnement Processes

We shall consider the local stability of the system ( 3.3 ), i.e., the process

ṗj = Zj(p) for all j 6= n

and its linear approximation, around an equilibrium p∗, ( 3.5 ), i.e.,

ṗ = A.p

where A = (
∂Zi(p∗)
∂pj

)(i, j 6= n). It may be recalled also that the stability of ( 3.5 ) imples

local asymptotic stability of ( 3.3 ); but not conversely. We shall say that the equilibrium p∗

is linear approximation stable, if the process ( 3.5 ) is stable i.e., if all the charcateristic

roots of A have negative real parts; we shall refer to A being stable if all the characteristic

roots of A have their real parts negative.We shall say that the equilibrium p∗ is locally

stable if the process ( 3.3 ) is locally asymptotically stable. The conditions for the stability

of the matrix A are contained in the Liapunov Theorem ( see Section ); to relate these

conditions to excess demand functions, we have the following:

Claim 3.4.1 A is stable ⇒ ∃ a positive definite matrix B such that (p∗ − p)T .B.Z(p) > 0

∀p ∈ Nδ(p∗) = {p : pn = 1, |p− p∗| < δ} for some δ > 0, where

B =

 B 0

0T 1

 .
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Proof. Since A is stable, by Liapunov’s Theorem, there is a positive definite matrix B

such that B.A + AT .B is negative definite. Let B be as defined above and let f(p) =

(p∗ − p)T .B.Z(p). Note that f(p∗) = 0; further, writing the elements of the matrix B as

(bij), the partial derivative of the function f(p) as fk(p) =
∂f(p)
pk

, fkr(p) =
∂2f(p)
∂pk∂pr

, we

have the following:

fk(p) =
∑
i,j

(p∗i − pi).bij .Zjk(p)−
∑
j

bkj .Zj(p)

and

fkr(p) =
∑
i,j

(p∗i − pi).bij .Zjkr(p)−
∑
j

brj .Zjk(p)−
∑
j

bkj .Zjr(p) ;

where Zjkr(p) =
∂2Zj(p)
∂pk∂pr

. Now consider k 6= n; r 6= n and evaluate all the above partial

derivatives at p∗; we have then:

fk(p∗) = 0∀k

and further,

(fkr(p∗)) = −(
∑
j

brj .Zjk(p∗) +
∑
j

bkj .Zjr(p∗))

= −(
∑
j

brj .Zjk(p) +
∑
j

bjk.Zjr(p))

using the symmetry of the matrix B; hence, using the fact k, r 6= n, we have:

(fkr(p∗)) = −(B.A+AT .B)

which ensures the fact that the matrix of second order partial derivatives of the function

f(p) at p∗, i.e., the matrix (fkr(p∗)) is positive definite. Consequently, the function f(p)

attains a regular minimum at p = p∗ and hence there is a neighborhood Nδ(p∗) such that

p ∈ Nδ(p∗), p 6= p∗ → f(p) > f(p∗) = 0. •
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Remark 12 If the matrix A is stable with the relevant B = I, then a local version of the

Weak Axiom of Revealed preference holds; since then there is a neighborhood Nδ(p∗), such

that p ∈ Nδ(p∗) → (p∗ − p)T .B.Z(p) = p∗
T
.Z(p) > 0 when B = I.

The Claim made above has the following converse:

Claim 3.4.2 Suppose there is a positive definite matrix B such that (p∗ − p)T .B.Z(p) > 0

∀p ∈ Nδ(p∗) = {p : pn = 1, |p− p∗| < δ} for some δ > 0 where

B =

 B b

bT 1


and the matrix B.A+AT .B has rank (n− 1), then A is stable.

Proof. Define f(p) = (p∗−p)T .B.Z(p); note that by the conditions specified, f(p) attains a

local minimum at p = p∗; hence it follows that the matrix (fkr(p∗)), k, r 6= nmust be positive

semi-definite; as shown in the proof of the above claim, (fkr(p∗)) = −(B.A+AT .B); hence

it follows that (B.A+ AT .B) must be negative semi-definite; given the rank condition, we

may conclude that there is a positive definite matrix B such that (B.A+AT .B) is negative

definite; hence by Liapunov’s Theorem, A is stable. •

Without the rank condition, we have the following:

Claim 3.4.3 Suppose there is a positive definite matrix B such that (p∗ − p)T .B.Z(p) > 0

∀p ∈ Nδ(p∗) = {p : pn = 1, |p− p∗| < δ} for some δ > 0 where

B =

 B b

bT α


then p∗ is locally stable i.e., the process ( 3.3 ) is locally asymptotically stable.
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Proof. Define V (p) = (p∗ − p)T .B.(p∗ − p)and consider ν > 0 such that Dν(p∗) ⊂ Nδ(p∗)

where Dν(p∗) = {p : pn = 1, (p∗ − p)T .B.(p∗ − p) < ν}. Now consider po ∈ Dν(p∗) and the

solution to ( 3.3 ) with po as initial point, p(t, po). Note that

V̇ (p(t, po)) = −2(p∗ − p(t, po))T .B.Z(p) < 0 , ∀p(t, po) ∈ Dν(p∗)

so long as p(t, po) 6= p∗; consequently V (p(t, po)) ≤ V (po) ∀t; moreover, the function V (p)

has all the properties of a Liapunov function in the region Dν(p∗) and the claim follows. •

Remark 13 Supoose A+AT has rank (n−1). Then the following conditions are equivalent:

(i) p∗ is an isolated point of the set K

(ii) p∗
T
.Z(p) > 0 ∀p 6= p∗, p ∈ Nδ(p∗)

(iii) xT .A.x < 0 for all x 6= 0.

It should be noted that the rank condition is only required for showing that Condition

(ii) ⇒ Condition (iii). Thus, the relationship between a local version of the Weak Axiom

of Revealed Preference and stability of processes such as ( 3.3 ) or ( 3.5 ) are quite close.

Kihlstrom et. al. (1976), contain related results. To put our results in this section in a

clear perspective, let us define Local Generalised WARP near an equilibrium p∗ by: ∃

a positive definite matrix B such that (p∗ − p)T .B.Z(p) > 0, ∀p 6= p∗, p ∈ Nδ(p∗) = {p :

pn = 1, |p− p∗| < δ} for some δ > 0.

Returning to the the Claim , one may note that linear approximation stability of the

process ( 3.3 ) implies Local Generalised WARP near the equilibrium p∗ where the matrix
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B is given by:

B =

 B 0

0T 1


and B, a positive definite matrix, satisfies the equation:

AT .B +B.A = −Q

for any positive definite matrix Q. For every such matrix B, one may construct B and

for each such B, we shall have (p∗ − p)T .B.Z(p) > 0 ∀p 6= p∗, p ∈ Nδ(p∗) for some δ > 0.

Thus, Local Generalised WARP is necessary for linear approximation stability of the

process ( 3.3 ) and is sufficient for the local asymptotic stability of the same process; only

when a rank condition is met is the condition sufficient for linear approximation stability

too. These results indicate what kinds of restrictions have to be in place to ensure local

stability.

The major conditions on excess demand functions which have been used to ensure local

stability are one of the following:

i. Gross Substitution i.e., A = (
∂Zi(p∗)
∂pj

), ∀i, j, has all its off-diagonal terms positive. Thus

writing Zij =
∂Zi(p∗)
∂pj

, we must have Zij > 0, i 6= j9.

ii. The matrix A = (
∂Zi(p∗)
∂pj

), i, j 6= n has a dominant negative diagonal10 i.e., the diago-

nal terms are negative ∃ positive numbers c1, c2, · · · , cn−1 such that ∀j, j = 1, 2, · · · , n −
9In the literature, the weaker sign, i.e., Zij ≥ 0, i 6= j, has been referred to as the weak gross substitute

case. Usually the matrix A is required to be indecomposable, then. We shall consider this case later.
10The fundamental property of dominant diagonal matrices is that they are non singular; if, in addition,

the diagonal is negative, then all characteristic roots of the matrix have real parts negative: see, McKenzie

(1959).
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1, cj |Zjj | >
∑
i6=j ci|Zij |. An equivalent 11 way of defining diagonal dominance is the

following: ∃ positive numbers d1, d2, · · · , dn−1 such that ∀j, j = 1, 2, · · · , n − 1, dj |Zjj | >∑
i6=j di|Zji|. While the c′s ensure dominance of the diagonal terms over rows, the d′s en-

sure that the diagonal terms dominate across columns. Only in special cases (such as when

the matrix is symmetric, for example), it is possible to conclude that the c′s and d′s match12.

However, if the c′s and d′s do match then one may show:

Claim 3.4.4 If the matrix A defined above has a dominant negative diagonal with cj = dj∀j

then A is quasi-negative definite13 Further WARP is satisfied locally i.e., ∃ a neighborhood

N(p∗) such that ∀p ∈ N(p∗), p 6= p∗, p∗.Z(p) > 0.14

Proof: Consider the matrix B = A+AT ; let a typical element of B be written as bij ; writing

elements of A as aij , bij = aij+aji; we are given that ∀j, cj |ajj | >
∑
i6=j ci|aij | and cj |ajj | >∑

i6=j ci|aij | for some positive numbers ci. It follows therefore that 2cj |bjj | >
∑
i6=j 2ci|bij |,

∀j; consequently, the symmetric matrix B has a dominant negative diagonal and is thus

negative definite; this, in turn, establishes the fact that A is quasi-negative definite. For

the last part, we proceed as in the proof of Claim 3.4.1. Define f(p) = (p∗− p)T .Z(p); note

that f(p∗) = 0;∇f(p∗) = 015 and that (∂
2f(p∗)
∂pj∂pk

)j,k=1,2,···,n−1 = −(A + AT ). These facts

imply that the function f(p) attain a local minimum at p = p∗ and the claim follows. •
11See, for example, Mukherji (1975).

12For example, the matrix

(−1 0.5

1.5 −1

)
has a dominant negative diagonal; this may be checked by con-

sidering c1 = 9, c2 = 15 or by d1 = 15, d2 = 9; but choosing d1 = c1, d2 = c2, will not do.
13A+AT is negative definite.
14A global version of this result may be found in Fujimoto and Ranade (1988).
15Recall that ∇f(p) stands for the vector of partial derivatives of the function f(p).
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It is easy to check that, given Walras Law and homogeneity of degree zero in prices of

the excess demand functions:

Claim 3.4.5 i. ⇒ ii. with ci = di = p∗i .

Consequently, by virtue of Claim 3.4.4, it follows that a local version of WARP is satisfied

for the Gross Substitute case, as well. Thus the importance of WARP should be apparent,

even for local stability of equilibrium. It should therefore come as no surprise that we need

additional requirements to ensure this property. We turn next, to examples of instability

which may be set right by appropriate changes in parameter values without really affecting

the substantive nature of the example.

3.5 The Gale Example: The Choice of the Numeraire

One of the first examples of an unstable equilibrium is due to Gale (1963). We take that

up first to analyze the possible causes of instability in this set up. It is of interest to note

that this analysis will also reveal another rather crucial element in the construction of the

tatonnement process.

It may be recalled that the ( 3.1 )involved choosing a numeraire; we chose good n to be

the numeraire, the unit of account. Ideally of course, it should not matter which commodity

is chosen; but before we can rest assured on this aspect, we need some further analysis on

this question. One may argue, however, that in the real world, there is no choice of the

numeraire available, since the medium of exchange is fixed and one should be interested in

whether the economy is stable with respect to this choice of the numeraire; the fact that
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some other choice of numeraire would have rendered the system stable or unstable should

be of no interest. As Arrow and Hahn (1971)16, indicate, such a remark should be objected

to at two levels: first, the argument about the medium of exchange being fixed is what has

been termed to be ‘casual empiricism’ by Arrow and Hahn, since our general equilibrium

model has no adequate theory of money. Second in actual situations, there is a choice of

numeraire: consider, for example, the recent worries on the international markets: whether

dollar retains its position as the pre-eminent currency with all transactions being in dollars

or whether this position is taken over by the new currency, the euro. The question that will

be addressed is whether this difference matters so far as stability questions are considered.

We shall use the Gale example to demonstrate that, unfortunately, the choice of the

numeraire does matter. Note first of all that in a two-good economy, with only one relative

price to worry about, this kind of problem does not appear. The example due to Gale which

we shall consider now, was introduced to exhibit the possibility of the tatonnement process

being unstable. There are three goods labelled 0, 1 and 2 and there are two individuals,

C and P. C possesses xo units of good 0 and wishes to exchange it for goods 1 and 2 and

has no desire for good 0. P, on the other hand has stocks of goods 1 and 2 given by x1, x2

which he wants to exchange for good 0 with P having no desire for good 0. Gale chooses

good 0 to be the numeraire and analyzes the situation when C maximizes a concave utility

function U(x1, x2) subject to a budget constraint p1.x1 + p2.x2 = xo, where pi denotes the

price of good i relative to good 0. The force of the paper was that if good 1 was a giffen
16See p.305.
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good, then one may so choose speeds of adjustment ri > 0 such that the system

ṗi = ri.fi(p)i = 1, 2 (3.6)

is unstable; in the above, fi(p) denotes the excess demand for good i. In particular, Gale

considers the linear approximation of the above system at equilibrium so that, as we have

seen in the previous section, stability results depend entirely on the characteristic roots of

the following matrix ( where fij denotes the partial derivative of fi with respect to the price

of good j evaluated at equilibrium):  r1f11 r1f12

r2f21 r2f22


By virtue of the giffen good assumption, f11 > 0; also, since C consumes good 1 and 2

only and no one else consumes goods 1 and 2, it follows that f22 < 0. However, r1 can be

so chosen that the trace of the above matrix r1f11 + r2f22 > 0, thus violating one of the

necessary conditions for stability of ( 3.6 ). This was what Gale had shown.

Following Mukherji (1973), suppose we decide to choose good 1 to be the numeraire;

clearly, this is possible, provided we assume that good 1 is not free. Note that no other

giffen good can exist: we have already noted that good 2 cannot be giffen; and since P

consumes good 0 only and no one else consumes good 0, good 0 cannot be giffen. With the

change in the numeraire, C solves the problem

Maximize U(x1, x2)

subject to x1 + p2x2 = p0x
o
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where pi for i = 0, 2 now represent the price of good i relative to good 1. The demand

functions are given by xi(p0, p2); consequently the excess demand functions are given by

fi(p0, p2) = xi(p0, p2)− xi for i = 1, 2.So much for C. So far as P is concerned, P demands

x0(p0, p2) = x1 + p2x
2; consequently, the excess demand for good 0 is given by f0(p0, p2) =

x0(p0, p2) − xo. The first point to note is that, writing fij as the partial derivatives of fi

with respect to pj , 1 = 1, 2,j = 0, 2 evaluated at equilibrium:

Claim 3.5.1

det

 f10 f12

f20 f22

 < 0

provided that C’s utility maximization exercise is solved at an interior point and that second

order conditions are met.

Proof. From the first order conditions at an interior maximum, we have the following:
U11 U12 −1

U21 U22 −p2

−1 −p2 0

 .

dx1

dx2

dλ

 =


0

λdp2

x2dp2 − xodp0

 (3.7)

Let us write the determinant of the matrix on the left hand side as detA which may be

taken to be positive assuming that the second order condition is satisfied; note further that

the determinant in the claim is given by

f10.f22 − f20.f12 = x10.x22 − x20.x12

from the definition of the the excess demand functions. Substituting the values of xij from

( 3.7 ), we have that

det

 f10 f12

f20 f22

 = −λ.xo/detA < 0.
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•

Next, notice that with the change in the numeraire, the system that we ought to be

considering is

ṗi = ri.fi(p0, p2) , i = 0,2 (3.8)

and consequently the matrix which will decide the (local) stability of the above is given by f00 f02

f20 f22


We already have that the trace of this matrix is negative (recall: no other giffen goods). To

establish that the determinant is positive, we need to use a result we had proved earlier.

By virtue of the above and given the result of Claim 3.3.2, it follows that

det

 f00 f02

f20 f22

 > 0

since the Claim 3.3.2 establishes that a cofactor of order 2 is positive ( the relevant cofactor

is (-1) times the determinant in Claim 3.5.1 ). Consequently, the equilibrium is locally

stable under the process ( 3.8 ).

Note that the example of instability provided by Gale has been converted to a stable

case by changing the numeraire. There was only one good, in the Gale example, for which

the price could move in the wrong direction; whereas Gale aggravated this movement,

what has been done above is to eliminate the movement entirely. Note however, the two

processes ( 3.6 ) and ( 3.8 ) are of course different. We can sum up the discussions here by

means of the following:
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Proposition 3.1 In general, stability properties of equilibrium depend upon the choice of

the numeraire.

We next provide a sufficient condition for stability of equilibrium to be insensitive to

the choice of the numeraire. We shall focus entirely on the system ( 3.3 ):

ṗi = Zi(p) ∀i 6= n ;

Let the equilibrium p∗ > 0. We shall say that the stability of equilibrium is insensitive

to the choice of the numeraire, if the linear approximation to the above system is stable

for all choice of n. The following points should be obvious: choosing another good , say

good 1, as the numeraire, amounts to considering a new equilibrium price vector q∗ = 1
p∗1
.p∗;

note that the system ( 3.3 ) also changes to

q̇i = Zi(q) ∀i 6= 1 ; (3.9)

The stability of the linear approximation to ( 3.3 )depends on the matrix J(p∗) = (Zij(p∗); i, j =

1 · · ·n− 1); for the stability of the linear approximation to the system ( 3.9 ), on the other

hand, we need to consider the matrix J(q∗) = (Zij(q∗); i, j = 2 · · ·n). We need to connect

the stability properties of these two matrices.

It would be more convenient, at this stage to consider the non-normalized price vector

P = (P1, P2 · · ·Pn) and the excess demand functions Zi(P ). We shall denote the Jacobian,

including the numeraire row and column by A = (aij) = (
∂Zi(P )
∂Pj

), i, j = 1, 2 · · ·n; we write

the cofactor of the i− j-th element in A by Aij . We have first of all,

Claim 3.5.2 A11 = 1
P ∗

n
.J(p∗)
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Proof. By virtue of homogeneity of degree zero:

Zi(P1, P2, · · ·Pn−1, Pn) = Zi(p1, p2, · · · , pn−1, 1)

where each pi = Pi/Pn = gi(P ), say . Thus, for i, j 6= n

∂Zi(P )
∂Pj

=
∑
k

∂Zi(p)
∂pk

.
∂gk
∂Pj

=
1
Pn
.
∂Zi(p)
∂pj

Evaluating at equilibrium p∗ = 1/P ∗
n .P

∗, the claim follows. •

The principal minors Aii, Akk of the matrix A defined above have the following relation-

ship:

Claim 3.5.3 Consider i, k such that P ∗
i , P

∗
k 6= 0. Then xT .Aii.x < 0 for all x 6= 0 ⇐⇒

xT .Akk.x < 0 for all x 6= 0.

Proof. Let P ∗
i , P

∗
k > 0 and let xT .Aii.x < 0 for all x 6= 0. Writing Bii = Aii + ATii, note

that then Bii is negative definite. Consider B = A + AT , where A is as defined above;

we first claim that A is negative semi-definite, i.e., xT .B.x ≤ 0 for all x; for suppose to

the contrary, there is some x∗ such that x∗
T
.B.x∗ > 0; note that x∗ 6= 0; in particular,

x∗i 6= 0; since otherwise, writing x∗ = (x∗1, · · ·x∗i−1, x
∗
i+1, · · ·x∗n, x∗

T
.B.x∗ = x∗

T
.Bii.x

∗ < 0:

a contradiction. Without any loss of generality, we can take x∗i > 0. Now note that

P ∗T
.B.P ∗ = 0; define t = x ∗i /P∗i > 0 and v = x∗ − t.P ∗; then vT .B.v = x∗

T
.B.x∗ > 0;

on the other hand, since vi = 0, writing v = (v1, · · · vi−1, vi+1, · · · vn), we have vT .B.v =

vT .Bii.v ≤ 0: a contradiction; hence no such x∗ can exist and xT .B.x ≤ 0 for all x.
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Consequently Bkk = Akk + ATkk, being a principal minor of B is also negative semidefinite

i.e., xT .Bkk.x ≤ 0 for all x. Next we note that in case xT .Bkk.x = 0 for some x 6= 0, then we

must have Bkk.x = 0; that is Bkk must be singular; But since, P ∗T
.B = 0 and B.P ∗ = 0,

the results of Claim are applicable, and we may conclude that Bkk must be non-singular,

since Bii is given to be so; i.e., we must have xT .Bkk.x < 0 for all x 6= 0; i.e., xT .Akk.x < 0

for all x 6= 0. Interchanging the roles of Aii and Akk, the converse follows. •

By virtue of the above result, we may conclude as follows; suppose that we choose good 1

as numeraire; then we observe that the linear approximation to the process ( 3.3 ) is stable;

i.e., the matrix J(p∗) is stable. By virtue of Liapunov’s Theorem, this means that there is

some positive definite matrix C such that C.J(p∗)+J(p∗)T .C is negative definite. Suppose

further that this C = I; then note that xT .J(p∗).x < 0 for all x 6= 0; further, by virtue of

Claim , this means that xT .A11.x < 0 for all x 6= 0; consequently, by virtue of Claim , we

have that xT .Akk.x < 0 for all x 6= 0 for all k which are permitted to be chosen as numeraire

(i.e., they are not free); again using Claim , it follows then that xT .J(q∗).x < 0 for all x 6= 0

and this allows us to conclude that the linear approximation to the process ( 3.9 ) is stable.

Thus, if the linear approximation to the tatonnement process for some choice of numeraire,

is stable with the corresponding Jacobian to be quasi-negative definite17, then stability of

the linear approximation to the tatonnement with any other choice of the numeraire would

follow.

The problem of sensitivity to numeraire choice appears therefore, because stability of
17A matrix M is quasi-negative definite if xT .M.x < 0 for all x 6= 0; in case, M is symmetric, then M is

negative definite.

79



the linear approximation need not imply that the relevant Jacobian J is quasi-negative

definite; stability is equivalent to there being a positive definite C such that C.J + JT .C is

negative definite or that C.J is quasi-negative definite for some positive definite C. Finally,

it should be pointed out that for symmetric matrices, this gap is closed; i.e., a necessary

and sufficient condition for all characteristic roots of a symmetric matrix to be negative

(for symmetric matrices, all characteristic roots are real) is that the matrix be negative

definite. Thus if the jacobian of the excess demand function happens to be symmetric, then

stability of the linear approximation with one choice of numeraire implies that the linear

approximation with any other choice of numeraire would also be stable.

3.6 The Scarf Example

We have already seen, in the last section, that the presence of giffen goods, for example, may

destroy the stability properties of the tatonnement. In the present section we indicate that

there may be other, seemingly more robust difficulties, for the stability of the tatonnement.

We do this by considering an example due to Scarf (1960). Consider an exchange model

where there are three individuals h = 1, 2, 3 and three goods j = 1, 2, 3. The utility functions

and endowments are as under:

U1(q1, q2, q3) = min(q1, q2); w1 = (1, 0, 0)

U2(q1, q2, q3) = min(q2, q3); w2 = (0, 1, 0)

U3(q1, q2, q3) = min(q1, q3); w3 = (0, 0, 1)
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Routine calculations lead to the following excess demand functions, where good 3 is treated

as numeraire (i.e., p3 = 1):

Z1(p1, p2) =
p1(1− p2)

(1 + p1)(p1 + p2)

Z2(p1, p2) =
p2(p1 − 1)

(1 + p2)(p1 + p2)

Z3(p1, p2) =
p2 − p1

(1 + p1)(1 + p2)

and the tatonnement process, for this example is given by

ṗi = Zi(p1, p2) i = 1, 2 (3.10)

Notice that equilibrium for this exchange model (and for the process defined above) is given

by p1 = 1, p2 = 1. It would be helpful to transform variables by setting xi = pi − 1 for

i = 1, 2. With this change in variables, our process becomes

ẋ1 = − x2(1 + x1)
(x1 + 2)(x1 + x2 + 2)

, ẋ2 =
x1(1 + x2)

(x2 + 2)(x1 + x2 + 2)
(3.11)

In what follows, we shall analyse the answer to the following question: given an arbitrary

xo = (xo1, x
o
2), how does the solution x(t, xo) to ( 3.11 ) behave as t→∞ ?

We introduce the function v : R→ R by

v(x) =
x2

2
+ x− ln(1 + x)

which is continuously differentiable for all x such that 1 + x > 0. One may show that

Claim 3.6.1 v(x) > 0 if x > −1, x 6= 0; v(0) = 0.
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Proof. Note that v(0) = 0, and for x > −1 we have v′(x) =
x(x+ 2)

1 + x
and v′′(x) = 1+

1
1 + x2

.

Thus for x > −1, v(x) is strictly convex with v′(0) = 0; hence x = 0 yields a global minimum

for v(x) for all x > −1. •

Next define V (x1, x2) = v(x1) + v(x2). We have then:

Claim 3.6.2 Along the solution x(t, xo) to ( 3.11 ), V̇ = 0 provided xi(t, xo) > −1 for

i = 1, 2.

Proof. Note that

V̇ = v′(x1).ẋ1 + v′(x2).ẋ2 = 0

•

We may next claim

Claim 3.6.3 Given xo = (xo1, x
o
2), x

o
i > −1,i = 1, 2 the solution x(t, xo) to ( 3.11 ) is such

that ∃ai, bi such that −1 < ai < bi and x(t, xo) ∈ [a1, b1]× [a2, b2] ∀t > 0.

Proof. Follows from the last two claims. •

For local stability, it may be of some interest to note the following

Claim 3.6.4 For x small, v(x) ≈ x2.

Proof. This follows since for x small one may use the following approximation:

ln(1 + x) ≈ x− x2

2

•
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The above may be used to classify the the solution to ( 3.11 ) when the initial point xo

is close to the equilibrium i.e., the origin. It is approximately a circle with the center origin

and passing through xo. In the general case, the nature of the orbit is provided by the

Figure 5 below: the cyclical behavior of prices around equilibrium are revealed; however,

since the figure cannot be taken as a demonstration, we provide such a demonstration, next.

FIGURE 5: The Orbits of the Scarf Example

First of all, note that since V (t) = V (x1(t), x2(t)) = V (xo1, x
o
2) for all t, it follows that the

solution or trajectory x(t, xo) = (x1(t), x2(t)) is bounded and each xi(t) is bounded away

from −1: since if either of these conditions is violated, V (t) would tend to +∞. Hence the

ω-limit set corresponding to xo, Lω(xo), is non-empty and compact; also, (0, 0) /∈ Lω(xo)

if x0 6= (0, 0) (remember, (0, 0) is the equilibrium for the system) hence by the Poincaré-

Bendixson theorem18 Lω(xo) must be a closed orbit. This means that either we have a limit

cycle or the trajectory x(t, xo) itself is a closed orbit.

If there is a limit cycle L, then by virtue of the Claim ??, it follows that for any

y ∈ L, V (y) = V (xo); further, in such circumstances, there would be a neighborhood

N of xo such that for any solution x(t, y) originating from any y ∈ N , x(t, y) → L19.

Consequently, we must have V (y) = V (xo)∀y ∈ N : this of course, is not possible, since the

function V cannot be constant on an open set. Hence no such limit cycle exists. And the

solution x(t, xo) must be a closed orbit. Thus we have shown the following to be true:
18See, for instance, [10] p. 248.
19See, for instance, [10] p.251.
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Claim 3.6.5 For any initial configuration xo, the solution to ( 3.11 ), x(t, xo) is a closed

orbit around the equilibrium (0, 0).

We turn, next to the set K introduced in the Section 3.2. For the particular case under

consideration, the set K is given by:-

K = {(p1, p2) : Z1(p1, p2) + Z2(p1, p2) + Z3(p1, p2) ≤ 0}.

Using the expressions for Zi(p1, p2), we have that

K = {(p1, p2) : (p1 − p2).(1− p1).(1− p2) ≤ 0}

FIGURE 6: The set K for the Scarf Example

In Figure 6, the shaded portions constitute the set K; the arrows indicate the direction

of price movements on the boundary of the set K. In the unshaded portions, i.e., on Kc,

∑3
i=1 Zi(p) > 0. Now consider d(t) =

∑2
i=1(pi(t, p

o)−1)2 where p(t, po) denotes the solution

to ( 3.10 ). Hence along this solution, we have

ḋ = 2
2∑
i=1

(pi(t, po)− 1).ṗi = 2
3∑
i=1

Zi(p(t, po))

Hence, it follows that

Claim 3.6.6 ḋ < 0 in Kc while ḋ ≥ 0 in K.

Returning to the solution p(t, po) of the system ( 3.10 ) through an arbitrary po =

(po1, p
o
2) 6= (1, 1), by virtue of the Claims made above, one may conclude the following:
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Remark 14 a. pi(t, po) > 0 for all t;

b. W (p(t, po)) =
∑
i{

(pi(t,p
o)−1)2

2 + (pi(t, po)− 1)− ln pi(t, po)} is constant and = W (po)

for all t;

c. ḋ > 0 in the interior of K, ḋ < 0 in Kc while ḋ = 0 on the boundary of K ( See

Claim 3.6.6, above);

d. The solution p(t, po) enters K and leaves K repeatedly.

For the Scarf example, the solution is a closed curve given by the above Remark (see

(b)); consequently, the set of limit points L coincide with this curve; note that the Poincaré-

Bendixson Theorem stated that so long as the set of limit points do not contain an equilib-

rium, again guaranteed by the point (b) noted above, a cycle is the only possible alternative.

As we hope to show below, there are some more interesting features of the Scarf Example.

3.6.1 Hopf Bifurcation for the Scarf Example

We introduce next, a parameter say b, which stands for the amount of second good which

individual 2 owns completely. Thus the value of b = 1 would revert back to the example

considered above. We continue to treat good 3 as the numeraire and then compute excess

demand functions for the non-numeraire commodities for the case at hand; it turns out that

these are given, using the same notation as above, by the following expressions:

Z1(p1, p2) =
p1(1− p2)

(1 + p1)(p1 + p2)

Z2(p1, p2) =
p2(p1 − b) + (1− b)p1

(1 + p2)(p1 + p2)
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Consequently the system ( 3.10 ) now takes the form:

ṗ1 =
p1(1− p2)

(1 + p1)(p1 + p2)
and ṗ2 =

p2(p1 − b) + (1− b)p1

(1 + p2)(p1 + p2)
(3.12)

Once more standard computations ensure that the unique equilibrium is given by

p∗1 =
b

2− b
= θ say, p∗2 = 1

Thus it may be noted that our choice of the parameter places a restriction on its magnitude

0 < b < 2;

and we shall take it that this is met. Notice also that when b = 1, θ = 1 too, and we

have the earlier situation. That there have been some changes to the stability property of

equilibrium is contained in the next claim:

Claim 3.6.7 For the process ( 3.12 ), (θ, 1) is a locally asymptotically stable equilibrium if

and only if b < 1; for b > 1, the equilibrium is locally unstable.

Proof: The characteristic roots of the Jacobian of the system ( 3.10 ) evaluated at the

equilibrium are given by:

1
8
(−b+ b2 ±

√
b
√

(−32 + 49b− 26b2 + 5b3))

and it should be noted that for 0 < b < 1.5 approximately , the characteristic roots are

imaginary; moreover, the real part, viz., −b+ b2 < 0 ⇔ b < 1 and the claim follows. •

We are now ready to show that:
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Claim 3.6.8 For the system ( 3.12 ), the unique equilibrium (θ, 1) is globally stable when-

ever b < 1. When b > 1 any solution with an arbitrary non-equilibrium initial point is

unbounded.

Proof. Consider the function:

W (p1, p2) = 2(1− b)p1 + (2− b)p2
1/2− b log p1 + p2

2/2− log p2

Then consider the derivative of the function W (., .) along any solution to the system ( 3.12 ),

we have:

Ẇ = {((2− b)p1 − b)(1 + p1)}
ṗ1

p1
+ (p2

2 − 1)
ṗ2

p2

= −(1− p2)2
p1(1− b)
p2(p1 + p2)

< 0

whenever b < 1 and p2 6= 1. We may now conclude that the function W (p1, p2) is a Liapunov

function for the system and the first part of the claim follows. For the remaining part note

that whenever b > 1, Ẇ ≥ 0 along any solution. The main point of interest about the

function W (p1, p2) is that it is a strictly convex function with an absolute minimum at

(p∗1, p
∗
2). Suppose then that some solution remains bounded and hence, limit points exist;

consequently, along such a solution, W (t) will be monotonically non-decreasing and bounded

too and hence convergent and thus Ẇ must converge to zero; one may conclude that any

limit point for the bounded solution must be the equilibrium and consequently, W (t) is

non-decreasing and converges to its minimum value: thus W (t) must be constant and

the only possibility for a bounded solution is that it must begin from the equilibrium, as

claimed. •
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Thus an easy stability condition for the Scarf Example is that b < 1; just as, for a

meaningful equilibrium to exist, we need to have b < 2 a more stringent requirement has to

be placed on the magnitude of b to ensure global stability20. More importantly, it is clearly

demonstrated that income effects need not necessarily be the villain of the piece. In the

Scarf example, there are no substitution effects, yet it is possible to have global convergence.

3.7 Global Stability of Tatonnement Processes

Recall the equations ( refeq:TG ):

ṗj = Fj(p) for all j 6= n (3.13)

where Fj(.) has the same sign as the excess demand functions Zj(.). For price adjustment,

which is triggered off from some arbitrary initial p ∈ Rn++, the above form seems to be the

best suited as a candidate. We have already seen that unless the excess demand functions

are restricted in some manner (i.e., beyond the properties P1-P4 mentioned in Section 3.2

), the convergence to equilibrium can not be assured, even when the initial price is close

to the equilibrium. When the initial price is not subjected to this restriction, it is not
20In the context of the Scarf Example, several results of interest may be referred to: Hirota (1981) and

(1985) and Anderson et. al. (2002). The first set of papers establishes the proposition that there are

many distribution of the endowments which guarantee stability. Instead of the corner point chosen by Scarf

(1960) and that we have followed, Hirota shows how redistribution of the totals will lead to global stability.

In Anderson et. al., there is an example of an endowment distribution which ensures global stability; the

endowment pattern is as follows: each individual possess the stock of the good that each is not interested

in. A similar example in a two-good context is available in Gale(1963).
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surprising that there have to be restrictions of some kind as well.

A principal condition under which convergence has been assured is that excess demand

functions satisfy the assumption of gross substitution (GS):

∂Zi(p)
∂pj

> 0 for i 6= j, for all i, j, for all p ∈ Rn++

Note that the above definition is valid only over strictly positive prices. For, we have the

following:

Remark 15 The extension of the above definition to include the entire non-negative or-

thant, i.e., Rn+ conflicts with the homogeneity property of excess demand functions. For

suppose, we are to insist that the above holds over the boundary of the non-negative orthant

as well; consider p with pj ≥ o for all j, p1 = 0, pk > 0 for some k 6= 1. Now, consider

λ > 1 and Z1(λp) = Z1(p), by homogeneity of excess demand functions; whereas by gross

substitution, Z1(λp) > Z1(p).

Sometimes gross substitution is defined with a weak inequality i.e.,

∂Zi(p)
∂pj

≥ 0 for i 6= j, for all i, j, for all p ∈ Rn++

we shall refer to this as the property of weak gross substitution (WGS) to distinguish

it from the former. Let I = [1, 2, · · · , n]; the economy is said to be decomposable at p ,

if there is a nonempty, proper subset J ⊂ I (i.e., J 6= I,) such that

∂Zi(p)
∂pj

= 0 for i /∈ J, j ∈ J

If no such subset J exists, the economy is said to be indecomposable at p. If the economy

is indecomposable for every p ∈ Rn++, then the economy is indecomposable. Weak gross
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substitution with indecomposability implies almost all the properties of gross substitution.

First of all,

Claim 3.7.1 GS implies that the equilibrium is unique, upto scalar multiples.

Proof: We note that by virtue of property P4, p is an equilibrium implies that p ∈

Rn++.Suppose then, that p, q are equilibria with p 6= δq for any δ > 0. Define θ =

Maxipi/qi = pk/qk, say. Note that θqi ≥ pi for all i; in particular note further that for

i = k, equality holds (i.e., θqk = pk) while there must be some i for which the strict in-

equality holds. By homogeneity property of excess demand functions, P3, it follows that

Zk(θ.q) = Zk(q) = 0; on the other hand, from GS and differentiability, we have:

Zk(θ.q) = Zk(p) +
∑
j

Zkj(p).(θqj − pj) > 0

where p is some point lying on the line segment joining p to θq; this establishes a contra-

diction and hence equilibrium must be unique upto scalar multiples. •

Remark 16 We shall show later that uniqueness follows if we have WGS together with

indecomposability.

A second condition that has been used to generate global stability results is the condition

of dominant negative diagonals, a condition which we saw also implied local stability in

Section 3.4. We shall consider this restriction too, below. Finally, we shall consider motion

on the plane and attempt to derive some global stability conditions.
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3.7.1 Global Stability and WGS: The McKenzie Theorem

We first take up for consideration a result due to McKenzie(1960). The main interest lies in

the fact that this result uses the most general form of the price adjustment process. Recall

the equations ( 3.1 ):

ṗj = Fj(p) for all j 6= n

where Fj(.) has the same sign as the excess demand functions Zj(.). We assume that

the excess demand functions satisfy the properties P1-P4; further, we assume that the

assumption of WGS holds and that the economy is indecomposable . And finally, the

functions Fj(p),j 6= n are assumed to be continuously differentiable for all p ∈ Rn++. Under

this assumption, for any po ∈ Rn++, the solution p(t, po) to the system ( 3.1 ) exists.

Let I = {1, 2, · · · , n}: the set of all goods including the numeraire. We define the

following:

P (p) = {i ∈ I : Zi(p) ≥ 0} ; N(p) = {i ∈ I : i /∈ P (p)}

and

P ′(p) = {i ∈ I : ṗi ≥ 0} ; N ′(p) = {i ∈ I : i /∈ P ′(p)}

Thus P (p) denotes the set of goods at p which have a non-negative excess demand; while

P ′(p) refers to the set of goods whose price adjustment is non-negative at p. Notice that

n ∈ P ′(p) since ṗn = 0 but n may or may not be an element of P (p). But P (p) ⊂ P ′(p).

This distinction allows us to define:

V (p) =
∑

i∈P (p)

pi.Zi(p) and V ′(p) =
∑

i∈P ′(p)
pi.Zi(p)
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Further,

V ′(p) =
∑
i6=n

Max(pi.Zi(p), 0) + Zn(p)

Thus

V ′(p) =


V (p) + Zn(p) if Zn(p) < 0

V (p) otherwise
(3.14)

Claim 3.7.2 Z(p) 6= 0 ⇒ V (p) > 0; p ∈ Rn++⇒ V ′(p) ≥ 0.

Proof. In case Z(p) 6= 0,∃i such that Zi(p) > 0 and hence V (p) > 0. For the other part of

the claim, note that by virtue of Walras Law, we have for all p ∈ Rn++:

∑
i∈P ′(p)

pi.Zi(p) +
∑

i∈N ′(p)
pi.Zi(p) = 0;

Note that the first term is V ′(p). In case N ′(p)is empty, V ′(p) = 0; in case N ′(p)is non-

empty, the second term above is negative; and hence the first term must be positive, i.e.,

V ′(p) > 0. Since these are the only two possibilities, the claim follows. •

Let E,F be two disjoint nonempty subsets of I such that E ∪ F = I. Since we have

assumed that the economy is indecomposable, it follows directly that ∀ p ∈ Rn++, ∃i ∈ E, j ∈

F such that Zij(p) > 0. For our convergence argument, we require something weaker, which

does not require indecomposability but follows from WGS. This was what McKenzie had

used and for the sake of completeness we provide the following:

Claim 3.7.3 Let p ∈ Rn++and E,F be as defined above; further assume that
∑
i∈E pi.Zi(p) ≥

ε > 0 for some ε; WGS ⇒ ∃i ∈ E, j ∈ F such that Zij(p) > 0.
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Proof. Differentiating the Walras Law expression
∑
i pi.Zi(p) = 0 with respect to pj , we

have: ∑
i

pi.Zij(p) = −Zj(p).

Multiplying both sides by pj and summing over for j ∈ E, we have:

∑
i

∑
j∈E

pi.Zij(p).pj = −
∑
j∈E

pj .Zj(p) ≤ −ε from hypothesis

Thus
∑
i∈E

∑
j∈E

pi.Zij(p).pj +
∑
i∈F

∑
j∈E

pi.Zij(p).pj ≤ −ε

WGS implies that the second term is non-negative, given the fact that E,F are nonempty

and disjoint. Hence we may conclude

∑
i∈E

∑
j∈E

pi.Zij(p).pj ≤ −ε (3.15)

Next from the property P3, that is the homogeneity property of excess demand functions,

it follows that ∀ p ∈ Rn++,
∑
j Zij(p).pj = 0. Hence ∀ p ∈ Rn++

∑
i∈E

∑
j

pi.Zij(p).pj = 0

or
∑
i∈E

∑
j∈E

pi.Zij(p).pj +
∑
i∈E

∑
j∈F

pi.Zij(p).pj = 0

or using ( 3.15 ), we have ∑
i∈E

∑
j∈F

pi.Zij(p).pj ≥ ε > 0

and the claim follows. •

Returning to the functions, V (p), V ′(p), note that these are both continuous functions

of p ∀ p ∈ Rn++. However, given the involvement of the function Max , the functions may
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lack derivatives at some p such that Zi(p) = 0 for some i; in such situations, the right

hand and left derivatives will always exist; these however may not be equal. Keeping this

in mind, we can proceed as follows:

Claim 3.7.4 Let V (t) = V (p(t, po)) and V ′(t) = V ′(p(t, po)); whenever derivatives exist,

V̇ ′(t) ≤ 0; if V ′(t) > 0, the inequality is strict. V̇ (t) ≤ 0 whenever derivatives exist.

Proof. Writing p(t) for p(t, po), we note that

V ′(t) =
∑

i∈P ′(p(t))
pi(t).Zi(p(t));

if derivatives exist, ( recall that pn(t) = 1∀t⇒ ṗn = 0,∀t ):

V̇ ′(p(t)) =
∑

i∈P ′(p(t))
{ṗi.Zi(p(t)) + pi(t).

∑
j

Zij(p(t)).ṗj}

=
∑

i∈P ′(p(t))
{ṗi(−

∑
j

pj(t).Zji(p(t))) + pi(t).
∑
j

Zij(p(t)).ṗj}

Splitting up the sum over j into sum over j ∈ P ′(p(t))and j /∈ P ′(p(t)), and cancelling

terms, we have:

V̇ ′(p(t)) = −
∑

i∈P ′(p(t))

∑
j /∈P ′(p(t))

ṗi.Zji(p(t)).pj(t)

+
∑

i∈P ′(p(t))

∑
j /∈P ′(p(t))

pi(t).Zij(p(t).ṗj ≤ 0

The last step follows because each term in the above is non-positive. Whenever, p(t) is

not an equilibrium price, V ′(p(t)) > 0 and both P ′(p(t))and its complement are non-empty;

consequently, either directly from indecomposability or from the Claim ( 3.7.3 ), it follows

that the second term is negative. This demonstrates the validity of the claim regarding

V̇ ′(t). The claim for V̇ (t) follows exactly as above, replacing P ′(p(t))by P (p(t). •
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Next, we need to cover cases where derivatives of V ′(t) may not exist; say at t = t;

recalling the definition of V ′(p) from equation ( 3.14 ), it follows that at t = t the following

must hold:

i. ∃i 6= n such that Zi(p(t) = 0; and

ii. the right hand derivative, V̇ ′+(t) and the left hand derivative, V̇ ′−(t) exist but are

unequal.

In view of the above, we define Q(t) = {i 6= n : Zi(p(t)) ≥ 0}; Q1(t) = {i ∈ Q(t) :

Zi(p(t)) > 0}; Q2(t) = {i ∈ Q(t) : Zi(p(t)) = 0}. Thus Q(t) = Q1(t) ∪Q2(t) and P ′(p(t))=

Q(t)∪ {n}. Note that Q1(t) ⊂ Q1(t+ h) for all h > 0 and small. The problems are created

by virtue of the possibility that for h > 0 and small, there may be i ∈ Q1(t + h) but

i /∈ Q1(t). Clearly such an i ∈ Q2(t). We define Q3(t) = {i ∈ Q2(t) : i ∈ Q1(t+ h)} for all

h > 0 and small. With these definitions, we have:

V ′(t+ h)− V ′(t) = Zn(p(t+ h))− Zn(p(t)

+
∑

i∈Q(t+h)

pi(t+ h)Zi(p(t+ h)−
∑
i∈Q(t)

pi(t)Zi(p(t)

The right hand side of the above may now be broken up further as follows, using the

fact that for h > 0 and small, i ∈ Q1(t+ h) ⇒ either i ∈ Q1(t) or i ∈ Q3(t):

Zn(p(t+ h))− Zn(p(t) +
∑

i∈Q1(t)

{pi(t+ h)Zi(p(t+ h)− pi(t)Zi(p(t)}

+
∑

i∈Q3(t)

{pi(t+ h)Zi(p(t+ h)− pi(t)Zi(p(t)}

−
∑

i∈Q2(t)−Q3(t)

pi(t).Zi(p(t)
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Note that the last term is by definition zero. Let Q ∗ (t) = Q1(t) ∪ Q2(t) ∪ {n}. Then

we have:

V ′(t+ h)− V ′(t) =
∑

i∈Q∗(t)

{pi(t+ h)Zi(p(t+ h)− pi(t)Zi(p(t)}

Therefore V̇ ′+(t) =
∑

i∈Q∗(t)

{ṗi.Zi(p(t) + pi(t).
∑
j

Zij(p(t)).ṗj}

We have already shown, by virtue of the Claim 3.7.4 , that the right hand side is non-

positive in general, while it is negative at dis-equilibrium price configurations. Consequently,

we may now claim:

Claim 3.7.5 V ′(t+ h) ≤ V ′(t) for all h > 0 and small.

Consequently, V ′(t) is monotonically non-increasing and hence, 0 ≤ V ′(p(t, po)) =

V ′(t) ≤ V ′(po) for all t. This allows us to make the following

Claim 3.7.6 p(t, po) remains bounded for ∀ t; further pi(t, po) ≥ δi > 0 ∀ t for some δi for

all i.

Proof. Note that ‖p(t, po)‖ → +∞ ⇒ ∃i 6= n such that pi(t, po) → +∞ since pn(t, po) = 1

∀ t. Define q(t) = p(t, po)/pi(t, po); then qi(t) = 1 ∀ t while qn(t) → 0. By Properties P3

and P4,
∑
i Zi(q(t)) =

∑
i Zi(p(t, p

o)) → +∞. Thus V ′(t) → +∞ which is a contradiction.

Hence the solution remains bounded beginning from any initial point. Finally, a similar

argument, using property P4 establishes a contradiction if any price is not bounded away

from 0. This establishes the claim. •

Considering the properties of the function V ′(p) established above, it follows that it

satisfies all the requirements of a Liapunov Function; consequently, by virtue of Claim 3,
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we may conclude that every limit point of the solution p(t, po) is an equilibrium of ( 3.1 ):

quasi global stability.

We shall show below, that under WGS and indecomposability, equilibrium is unique.

Putting these conclusions together we have demonstrated the validity of the following result

due to McKenzie(1960):

Proposition 3.2 Given the properties P1-P4 of excess demand functions, WGS and in-

decomposability imply that the solution p(t, po) to ( 3.1 ) from any initial point p0 ∈ Rn++

converges to the unique equilibrium.

3.7.2 Global Stability and Dominant Diagonals

Let Z : <n++ → <n be excess demand functions satisfying assumptions P1 - P3 introduced

in 3.2; for this section, we strengthen P4, introduced there, to the following:

P4*. Consider a sequence P s ∈ <n++, ∀s, with P sio = 1,∀s for some fixed index io, such

that21 ||P s|| → +∞ as s→ +∞; then Zio(P s) → +∞.

We shall consider the good n as numeraire and consequently we represent prices by

(p1, p2, · · · , pn−1, 1) where we shall write p = (p1, p2, · · · , pn−1) ∈ <n−1
++ ; thus the price

configuration will be written as (p, 1). Thus excess demand functions will be written as

Z(p, 1). We shall use the symbol p∼i to denote all the components of the vector p except

the i-th. Unless stated to the contrary, all prices will be considered to be positive. The

main advantage in the strengthening of P4 to P4* lies in the following:
21||x|| will be taken to be the Euclidean Norm, i.e., if x ∈ <n, then ||x|| = +

√
(x2

1 + x2
2 + · · ·+ x2

n).
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Claim 3.7.7 For each i = 1, 2, · · · , n − 1, there exists εi > 0 such that Zi(p∼i, pi, 1) >

0 if pi ≤ εi for any p∼i.

Proof: Suppose to the contrary, there is no such ε1; i.e., for any sequence {ps1}, ps1 → 0 as

s → +∞, one can find ps∼1 > 0, such that Z1(ps1, p
s
∼1, 1) ≤ 0 for all s large enough. Now

consider the sequence qs = (1, 1/ps1.p
s
∼1, 1/p

s
1); notice that ||qs|| → +∞ as s → +∞; hence

by P4*, Z1(qs) → +∞ or by homogeneity of excess demand functions, (P3), Z1(ps1, p
s
∼1, 1) →

+∞; thus for all s large enough, Z1(ps1, p
s
∼1, 1) > 0: a contradiction. This establishes the

claim. •

We introduce, next the other main condition which has been imposed on excess demand

functions to yield stability, is the condition of dominant negative diagonals, which we have

encountered in Section 3.4. First of all, recall the definition of dominant diagonal condition.

Consider the Jacobian of the excess demand functions A(p, 1) = (Zij(p, 1)), i, j 6= n.

For all p ∈ <n−1
++ we have:

DD i. the diagonal terms must be negative (Zjj(p, 1) < 0, j 6= n) and

DD ii. there exist positive numbers d1, d2, · · · , dn−1 such that ∀j, j = 1, 2, · · · , n−1, dj |Zjj(p, 1)| >

∑
i6=j,n di|Zji(p, 1)|.

An equivalent 22 way of defining diagonal dominance is the following: ∃ positive num-

bers c1, c2, · · · , cn−1 such that ∀j, j = 1, 2, · · · , n − 1, cj |Zjj(p, 1)| >
∑
i6=j ci|Zij(p, 1)|; the

numbers d’s in DD ii provide row dominant diagonals while the c’s provide column dom-
22See, for example, Mukherji (1975).
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inant diagonals. For the purpose at hand, we shall consider row dominant diagonals; also

notice that the same constants d’s satisfy the condition DD ii ∀p.

It is known that under the condition of dominant diagonals, equilibrium is unique23.

We denote this equilibrium by (p?, 1). Recall the equations ( 3.1 ):

ṗj = Fj(p) for all j 6= n

where Fj(p) has the same sign as the excess demand functions Zj(p, 1). We shall assume,

as before that the functions Fj(p) are continuously differentiable on <n−1
++ . And we shall

investigate the behavior of the solution p(t, po) to (3.1) from any arbitrary initial point po

in <n−1
++ . One immediate consequence of P4* may now be noted:

Claim 3.7.8 For any adjustment process of the form (3.1), the solution p(t, po) remains

within a bounded region and is bounded away from the axes.

Proof: Suppose that ||p(t, po)|| → +∞; then P4* implies that Zn(p(t, po), 1) → +∞; conse-

quently, by Walras law, i.e., P2, we have, writing p(t, po) as (p1(t), p2(t), · · · , pn−1(t)):

p1(t)Z1(p(t, po), 1) + · · ·+ pn−1(t)Zn−1(p(t, po), 1) → −∞

Since excess demand functions are bounded below (P1), the above means that for some index

j 6= n pj(t).Zj(p(t, po), 1) → −∞; note this possible only if pj(t) → +∞ and Zj(.) < 0;

thus for all t large enough, say for t > T , pj(t).Zj(p(t, po), 1) < 0; which means that for

all t > T, ṗj < 0; hence pj(t) ≤ pj(T )∀t: a contradiction. This establishes that p(t, po)

remains within some bounded region. Using the result of Claim 3.7.7, it follows that there
23See, for example, Arrow and Hahn (1971), p. 235.
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is a rectangular region R given by 0 < εi ≤ pi ≤Mi, i = 1, 2, · · · , n− 1, such that po ∈ R⇒

p(t, po) ∈ R∀t. •

Next, we shall deduce a consequence of assuming the dominant diagonal condition.

We begin by noting the following:

Claim 3.7.9 Given P1-P3 and P4*, ∃δ > 0 such that for any λ, 0 < λ < δ and any

p ∈ <n−1
++ , pi + λZi(p, 1) > 0, i = 1, 2, · · · , n− 1.

Proof: By virtue of P1, we know that for all p ∈ <n−1
++ , there is bi > 0, such that Zi(p, 1) ≥

−bi, i = 1, 2, · · · , n− 1. Let b̄ = maxi bi.

Consider, next, the set Ki = {p ∈ <n−1
++ : Zi(p, 1) ≤ 0}, i = 1, 2, · · · , n− 1. The set Ki is

a closed subset of <n−1
++ and we claim that p ∈ Ki ⇒ pi ≥ ηi > 0 for some ηi; if no such ηi

exists, then we can construct a sequence ps ∈ Ki ∩<n−1
++ , ∀s, psi → 0 as s→ +∞. Consider

then the sequence P s = (ps, 1) and qs = P s.1/psi ; note that qsi = 1∀s and ||qs|| → +∞;

hence by P4*, Zi(qs) → +∞; thus Zi(P s) > 0 for all s large enough and hence ps /∈ Ki

for all s large enough: a contradiction. Hence there is ηi with the claimed property. Let

η̄ = mini ηi.

Define δ = η̄/b̄; now choose any positive λ < δ. If possible, suppose for some i and

for some p ∈ <n−1
++ , pi + λZi(p, 1) ≤ 0 ⇒ p ∈ Ki ⇒ λ(−Zi(p, 1)) ≥ pi ≥ η̄; hence

λ ≥ η̄/(−Zi(p, 1)) ≥ η̄/b̄ = δ: a contradiction. Hence no such i and p can exist and

this proves the claim. •

It would be appropriate to introduce in <n−1 a norm which is somewhat different from

the usual Euclidean norm which we have dealt with in most situations. We define the
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following norm24 :

d-norm: For x ∈ <n−1, ||x||d = max1≤i≤n−1 |xi/di| where the constants di’s are the same

as the ones which appear in the definition of DD ii.

It is easy to check that this definition satisfies all the conditions required for being a

norm. The reason for choosing such a norm will become clear with the next step:

Claim 3.7.10 ||x||d is a norm on <n−1; further if A = (aij), i, j = 1, 2, · · · , n− 1, aij real

numbers for all i, j, then ||A||d = max1≤i≤n−1
∑n−1
j=1 |aij |dj/di.

Proof: That ||x||d satisfies all the conditions is straightforward. Now for any square matrix

A, ||A||d is by definition sup||x||d=1 ||Ax||d25. From this definition, we observe that:

||Ax||d = max
i
|
∑
j aij .xj

di
| = max

i
| 1
di
.
∑
j

aij .dj .xj/dj |

≤ max
i

1
di
.
∑
j

|aijdj |.|xj/dj | ≤ max
i

1
di
.
∑
j

|aij |.dj .||x||d

Now suppose that maxi
∑
j |aij |dj/di =

∑
j |akj |dj/dk; then define:

x̄j =


djakj
|akj |

if akj 6= 0

dj otherwise

(3.16)

Notice that ||x̄||d = 1; further for i = k,
∑
j akj .x̄j =

∑
j |akj |.dj and for any i,

|
∑
j aij .x̄j | ≤

∑
j |aij |.dj ; hence note that for this particular definition of x̄, ||Ax̄||d =

∑
j |akj |.dj/dk, the bound we had obtained above, is attained. This proves the claim. •

We note next:
24The analysis follows the elegant treatment in Fujimoto and Ranade (1988).
25See, for example, Ortega and Rheinboldt (1970), p. 40-41.
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Claim 3.7.11 Given any p̄ ∈ <n−1
++ 6= p? there is some λ̄ > 0 such that 1 + λZii(p, 1) >

0 ∀λ, 0 < λ < λ̄ and for all p ∈ [p̄, p?], where [p̄, p?] consist of all points on the line segment

connecting p̄ to p?.

Proof: By DD i, Zii(p, 1) < 0∀p ∈ [p̄, p?]; by virtue of P1,

λ̄ = min
p∈[p̄,p?]

1
−Zii(p, 1)

exists and is positive. It is straightforward to check that this definition of λ̄ has the desired

property. •.

These preliminary steps allows us to prove the following crucial property of of dominant

diagonal systems26

Proposition 3.3 Given DD i-ii, consider for any p ∈ <n−1
++ 6= p?, maxi

|pi − p?i |
di

=

|pk − p?k|
dk

, say. Then pk − p?k > 0 ⇒ Zk(p, 1) < 0; while pk − p?k < 0 ⇒ Zk(p, 1) > 0.

Proof: Consider any p ∈ <n−1
++ 6= p?; next choose λ < min(δ, λ̄), where δ and λ̄ are as in

Claims 3.7.9 and 3.7.11 respectively; for such a fixed choice of λ, define ψ(p) = (pi+λZi(p));

then by the Mean Value Theorem27, we have the following:

||ψ(p)− ψ(p?||d ≤ sup
0≤t≤1

||Jψ(p? + t(p− p?))||d.||p− p?||d

26This property was noted by Fujimoto and Ranade (1988).
27See Ortega and Rheinboldt (1970), p. 69.
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where the matrix Jψ is given by the (n− 1)× (n− 1) matrix:

1 + λZ11 · · · · · · λZ1n−1

λZ21 1 + λZ22 · · · λZ2n−1

· · · · · · · · · · · ·

λZn−11 · · · · · · 1 + λZn−1n−1


Now by virtue of the Claim 3.7.10, we have:

||Jψ||d = max
i

[1 + λ
diZii +

∑
j 6=i |Zij |dj
di

]

using the fact that by our choice of λ, |1 + λZii| = 1 + λZii; hence it follows from DD ii

that ||Jψ||d < 1 for all points on the line segment [p, p?]; consequently it follows that:

||ψ(p)− p?||d < ||p− p?||d

If the left hand side is
ψj(p)− p?j

dj
and the right hand side is pk − p?k

dk
then it follows that:

ψk(p)− p?k
dk

≤
ψj(p)− p?j

dj
<
pk − p?k
dk

which implies that |pk − p?k + λZk(p, 1)| < |pk − p?k|; since λ > 0 this is possible only if

(pk − p?k) and Zk(p, 1) are of opposite signs. This establishes the claim. •

The above allows us to demonstrate the following:

Proposition 3.4 Given DD i- ii, the unique equilibrium is globally asymptotically stable

under the adjustment process (3.1).

Proof: Let p(t, po) denote the solution to (3.1) from some arbitrary initial point po ∈ <n−1
++ .

Define V (t) ≡ V (p(t, po)) = ||p(t, po)−p?||d. Note that V (p(t, po)) is continuous in p; in case
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derivatives exist, V̇ = Sgn(pk−p?k).ṗk where ||p(t, po)−p?||d = |pk−p?k|/dk; hence by virtue

of Proposition 3.3 and the properties of the system (3.1), it follows that when derivatives

exist V̇ (t) < 0 if p(t, po) 6= p?. When derivatives do not exist, we need to investigate further.

Consider S(t) = {k : |pk(t, p
o)− p?k|
dk

≥ |pi(t, po)− p?i |
di

∀i}; thus ||p(t, po)− p?||d = |pk −

p?k|/dk for k ∈ S(t). Notice that if at t, S(t) is a singleton, V̇ (t) exists; when S(t) has more

than one member, derivatives may fail to exist. In this case, note that if i /∈ S(t) then

i /∈ S(t + h) for h positive and small. Thus S(t + h) ⊆ S(t) for all h positive and small

enough. With these observations, consider some k ∈ S(t+h), h small enough; then k ∈ S(t)

and we have:

lim
h→0+

V (t+ h)− V (t)
h

= lim
h→0+

1
h

(
|pk(t+ h, po)− p?k|

dk
− |pk(t, po)− p?k|

dk
)

thus we may observe that:

lim
h→0+

V (t+ h)− V (t)
h

=
1
dk

d|pk(t, po)− p?k|
dt

for some k ∈ S(t) ;

note that the right hand side exists and is negative whenever p(t, po) 6= p?.

Consequently, V (t + h) < V (t) for all h sufficiently small and positive, so long as the

equilibrium is not encountered. Thus V (t) is a Liapunov function for the process (??); this

also implies that V (p(t, po)) < V (po) which implies that the solution is bounded. So all the

ingredients required for our claim are in place. •

The above result is crucially dependant on the fact that DDholds or that the same

constants provide the dominance condition DD ii, for all p. We present next an attempt

to weaken this condition: but it will not be costless, since as we shall see the convergence
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result will have to be in terms of a somewhat special version of the tatonnement. Given

this trade-off, it has been thought best to present both of these results.

We shall maintain the assumptions P1-P3 and P4* on excess demand functions; in ad-

dition, we shall require a modified version of the conditions DD ii:

DD ii*: There exist continuously differentiable functions hj : <n−1
++ → <n−1

++ , j = 1, 2, · · · , n−

1 satisfying hj(p)|Zjj(p, 1)| >
∑
i6=j,n |Zji(p, 1)|hi(p) for all j = 1, 2, · · · , n− 1.

We shall say that DD* holds when we have DD i and DD ii*.

For DD*, the adjustment process (3.1) needs to be specialized to the following28:

ṗj = hj(p).Zj(p, 1) for all j 6= n, pn ≡ 1 (3.17)

Notice that the weights which appeared in the definition of DD ii* also appear in the

adjustment equations above; we shall return to an interpretation to these equations later.

We note that by virtue of our assumptions, and due to Claims 3.7.7 and 3.7.8, we have :

Claim 3.7.12 Given any po ∈ <n−1
++ , the solution to (3.17) through po, p(t, po) exists and

is continuous with respect to the initial point; further the solution remains within a bounded

region and is bounded away from the axes.

We shall write the solution p(t, po) in short as p(t). DefineW (t) ≡W (p(t)) = maxj 6=n |Zj(p(t), 1)| =

|Zk(p(t), 1)| say . Then, one may show:

Claim 3.7.13 Given DD*, W (t) is strictly decreasing along the trajectory, if p(t, po) 6= p?.

Proof: Define S(t) = {j 6= n : |Zj(p(t), 1)| ≥ |Zi(p(t), 1)|∀i 6= n}; notice that if at t,

S(t) is a singleton, {k}, say, and if p(t) 6= p?, then Ẇ (t) exists and is given by Ẇ (t) =
28The treatment presented here is a generalization of Mukherji (1974 a).
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(SgnZk(.)).
∑
j 6=n Zkj(p(t), 1).hj(p(t)).Zj(p(t), 1). Suppose Zk(p(t), 1) > 0, we claim that

the expression
∑
j 6=n Zkj(p(t), 1).hj(p(t)).Zj(p(t), 1) < 0; if to the contrary, this expression

is non-negative, we have, using the fact that DD i holds:

|Zkk(.)hk(.)Zk(.)| ≤ |
∑
j 6=k,n

Zjk(.).hj(.)Zj(.)| ≤
∑
j 6=k,n

|Zkj(.)|hj(.)|Zj(.)| ≤ |Zk(.)|
∑
j 6=k,n

|Zkj(.)|hj(.)

where the first inequality follows from our contrary hypothesis and the fact that the diagonal

term is negative; the second inequality follows on account of the absolute value of sum being

less than or equal to the sum of absolute values and the last inequality follows because of

the fact that k ∈ S(t). We note then that since Zk(.) is not zero at dis-equilibrium, we

have |Zkk(.)|hk(.) ≤
∑
j 6=k,n |Zkj(.)|hj(.) which violates condition DD ii* for j = k. Hence

k ∈ S(t) and Zk(.) > 0 implies that
∑
j 6=n Zkj(p(t), 1).hj(p(t)).Zj(p(t), 1) < 0. In a similar

fashion, in case Zk(.) < 0, one may show that
∑
j 6=n Zkj(p(t), 1).hj(p(t)).Zj(p(t), 1) > 0.

Thus whenever, S(t) is a singleton, Ẇ (t) < 0 provided, p(t) 6= p?. If S(t) is not a singleton,

then derivatives may not exist. To cover such cases, notice that for h > 0 and small,

S(t + h) ⊆ S(t); so the situation is as in the proof of Proposition 3.4 and one may claim,

exactly following those steps that W (t+h) < W (t) for all h positive and small, provided no

equilibrium is encountered. Thus regardless of whether S(t) is a singleton or not, so long

as no equilibrium is encountered, W (t) is strictly decreasing along the trajectory. •

We may now claim, the following to be true:

Proposition 3.5 Given DD*, conditions P1-P3 and P4* on excess demand functions, the

unique equilibrium (p?, 1) is globally asymptotically stable under the process (3.17).

Proof: First of all, we note that the process (3.17) satisfies the requirement of being a
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special case of the process (3.1) and hence, by virtue of Claims 3.7.7 and 3.7.8, any solution

to (3.17) from an arbitrary po will be trapped in some bounded region R which is also

bounded away from the axes. Consequently limit points exist and since W (t) has been

shown to satisfy the requirements for being a Liapunov function for the process (3.17), the

claim is established. •

We have thus presented two results both of which assure global asymptotic stability for

the unique equilibrium under appropriate adjustment processes. The first result, Propo-

sition 3.4 considers the most general process but is more demanding in the restriction on

excess demand functions, since the condition DD ii requires the same set of weights to

provide row dominance for all prices. We used a condition derived by Fujimoto and Ranade

(1988) to arrive at this conclusion; weakening the condition DD ii to DD ii* and allowing

these weights to vary over prices we obtained the second result, Proposition 3.5, where the

adjustment process (3.1) had to be specialized to (3.17). As we had remarked earlier, the

generalization was not costless. The results are of interest since the adjustment processes,

for both of these cases are more general than the ones in the existing literature. It may be

possible to provide some other results for special cases of (3.1) but such exercises have not

been reported.

Finally, the dominant diagonal condition has an inherent interest because what it ensures

is that in any market, the excess demand is “most” responsive to its own price; the various

formalizations provided, namely DD and DD* are alternative ways of capturing this simple

idea. In contrast to the assumption of Gross Substitutes considered earlier, notice that
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dominant diagonals offer a scope for the presence of complementarities in the system subject

to the provision that own price effects dominate. We should also mention that the gross

substitute case satisfies the Weak Axiom of Revealed Preference in the Aggregate (WARP);

it is of interest that so does the Dominant Diagonal Condition DD provided the same

weights also provide column dominant diagonals; this has been shown by Fujimoto and

Ranade (1988). Some what loosely speaking, thus, the condition WARP lies at the common

intersection of the conditions which guarantee the stability of equilibrium.

As we have seen above, there are two issues involved. One is the nature of excess demand

functions and the other is the form of the tatonnement process. If we specialize one, we are

able to consider general forms of the other. We consider, next, general forms for the excess

demand functions and, as is to be expected, we specialize the form of the tatonnement

process.

3.8 The Structure of Limit Sets for the General Case

In this section, we consider excess demand functions satisfying the properties P1-P3 and

P4* and the adjustment on prices given by the process ( 3.3 ):

ṗj = Zj(p) for all j 6= n; pn = 1 (3.18)

Then for any po ∈ Rn++, the solution to ( 3.3 ), p(t, po) exists. In addition, recalling the

results of Claims 3.7.7 and 3.7.8, which remain applicable since the process (3.3) is a special

case of the process (3.1), we may conclude:

Claim 3.8.1 There is a region R given by {(x1, x2, · · · , xn−1) : 0 < εi ≤ xi ≤Mi} for some
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εi,Mi, i = 1, 2, · · · , n− 1 within which any solution to p(t, po) lies provided po ∈ R.

Thus any solution to (3.3) is bounded and bounded away from the axes. Let E = {p ∈

Rn++ : Z(p) = 0}: the set of equilibrium prices. To provide this set with some minimal

structure, we shall assume that the economy is regular i.e.,

P5. For every p ∈ E, rank of

J(p) = (
∂Zi(p)
∂pj

)

is (n− 1).

It is well known that P5 ensures that E is a finite set. Recall that for any p∗ ∈ E we

had defined the set Kp∗ by Kp∗ = {p ∈ Rn++ : p ∗T .Z(p) ≤ 0}: the set of prices where

the Weak Axiom is violated. We shall use P1-P3, P4* and P5 to analyze the behavior of

p(t, po) as t→∞. By virtue of the Claims made above, we may conclude that the set

L = {p : ∃ a susbsequence p(ts, po and p(ts, po) → p as s→∞}

is non-empty . In addition, given the properties of the solution to the system ( 3.3 ), one

may also conclude that L is a compact and connected subset of Rn++. Further, we have:

Claim 3.8.2 L ∩Kp∗ 6= ∅ for any p∗ ∈ E.

Proof. In case L ∩ Kp∗ = ∅ for some p∗ ∈ E, then p(t, po) /∈ Kp∗ for all t > T for some

T and consequently, d(p(t, po), p∗) is a Liapunov function for t > T and p(t, po) → p∗ as

t→∞, i.e.,L = {p∗} ⊂ Kp∗: a contradiction. Hence the claim. •

Next note that

d∗(p∗) = min
p∈L

d(p, p∗) and d∗(p∗) = max
p∈L

d(p, p∗)
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are well defined and further d∗(p∗) and d∗(p∗) are both attained in the set L. In particular,

we have:

Claim 3.8.3 d∗(p∗) and d∗(p∗) are attained in L ∩Kp∗.

Proof. We shall write K, d∗ for K(p∗), d∗(p∗) respectively. Suppose that d∗ is attained at

p /∈ K; i.e., ∃ a subsequence p(ts, po) → p and d(p, p∗) ≤ d(p, p∗), ∀p ∈ L. Thus p ∗ .Z(p) =

δ > 0 for some δ. Also for some η > 0, d(p,K) > η, where d(p,K) = minp∈K d(p, p). Let

ε > 0 be such that p ∈ Nε(p) = {p : d(p, p) < ε} ⇒ d(p,K) > η; further ∀p ∈ Nε(p),

|p∗ .Z(p)−p∗ .Z(p)| < δ/2. Since p(ts, po) → p, there is some number Sε such that ∀s > Sε,

p(ts, po) ∈ Nε(p) and there is a subsequence p(ts + θs, p
o) such that p(ts + θs, p

o) /∈ Nε(p),

while p(t, po) ∈ Nε(p) for all t such that ts ≤ t < ts + θs. Such a subsequence can always

be constructed, since otherwise p(t, po) has no other limit points and L = {p} and hence

L ∩K = ∅: a contradiction. By definition, note that d(p(ts + θs, p
o),K) ≥ η and hence the

subsequence p(ts + θs, p
o) has all its limit points outside the set K. Now note that:

d(p(ts + θs, p
o), p∗) = d(p(ts, po), p∗) + θsḋ(p(ts + λsθs, p

o), p∗)

for some λs , 0 ≤ λs ≤ 1

Recall that ḋ(p(t, po), p∗) = −p ∗ .Z(p(t, po)); thus, by hypothesis, ∀s > Sε, ḋ(p(ts +

λsθs, p
o), p∗) = −p ∗ .Z(p(ts +λsθs, p

o)). Since |p ∗ .Z(p(ts +λsθs, p
o))− p ∗ .Z(p)| ≤ δ/2 for

all s > Sε, it follows that ḋ(p(ts+λsθs, po), p∗) = −p∗ .Z(p(ts+λsθs, po)) ≤ δ/2−p∗ .Z(p) =

−δ/2. Since p(ts + θs, p
o) /∈ Nε(p) ∀s > Sε, θs cannot have 0 as a limit point. Hence

d(p(ts + θs, p
o), p∗) ≤ d(p(ts, po)− θsδ/2
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≤ d(p(ts, po)− lim inf
s→∞

θs.δ/2

Hence all limit points p̃ of p(ts + θs, p
o) satisfy

d(p̃, p∗) ≤ d∗ − lim inf
s→∞

θsδ/2 < d∗

which is a contradiction. Hence p ∈ K and the claim follows. An analogous argument

establishes that d∗ is attained in K too. • We now take into consideration the fact that E

may have other equilibria; but given P5, E is a finite set. To take this aspect into account,

we make the following definitions:

K = ∪p∗∈EK(p∗); d∗ = max
p∈L

d(p,E); d∗ = min
p∈L

d(p,E)

Hence note that d∗ = d(p̂, p∗) for some p̂ ∈ L, p∗ ∈ E. By virtue of our last claim, p̂ ∈

K(p∗) ⊂ K. In case this particular p∗ happens to be an isolated point of K(p∗), we have

the following:

Claim 3.8.4 Since d∗ = d(p̂, p∗) for some p̂ ∈ L, p∗ ∈ E, d∗ = 0 ⇒ d∗ = 0 and limt→∞ p(t, po) =

p∗ provided p∗ is an isolated point of K(p∗).

Proof. Since d∗ = 0, there is a subsequence p(ts, po) → p∗ as s → ∞. Further since

p∗ is an isolated point of K(p∗), there is a neighborhood N(p∗) of p∗ such that for all

p ∈ N(p∗), p 6= p∗ ⇒ p ∗ .Z(p) > 0. Moreover, p ∈ N(p∗) ⇒ ḋ(p, p∗) < 0. Let ε > 0 be such

that d(p, p∗) < ε ⇒ p ∈ N(p∗). Since p(ts, po) → p∗, d(p(ts, po), p∗) < ε for all s > Sε, say.

Also by our choice of ε,d(p(t, po), p∗) < ε⇒ d(p(t+ h, po), p∗) < d(p(t, po), p∗) for all h > 0.

Thus d(p(t, po), p∗) < ε for some t implies that d(p(t, po), p∗) < ε for all t > t and the claim

follows. •
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We are now ready to consider the general nature of the set of limit points L of the

solution p(t, po). By virtue of what we have shown above L ∩ K 6= ∅. The question is

whether L ∩ E is empty or not. In case it is empty, d∗ > 0 and there are the following

logically feasible possibilities:

(i) there is t such that for all t > t, p(t, po) /∈ K;

(ii) there is t such that for all t > t, p(t, po) ∈ K;

(iii) there are subsequences p(ts, po), p(tk, po) such that p(ts, po) ∈ K and p(tk, po) /∈ K for

all s, k respectively.

Note that in case (i), d(p(t, po), p∗) is a Liapunov function for any p∗ ∈ E and conse-

quently p(t, po) → p∗ for any p∗ ∈ E: a contradiction. For the case (ii), ḋ(p(t, po)) ≥ 0

for any p∗ ∈ E. Also since p(t, po) ∈ K for all t > t, which is a compact set, it follows

that d(p(t, po), p∗) converges for any p∗ ∈ E to some D(p∗); thus all points of L are at the

same distance D(p∗) from p∗ and this is true for every p∗ ∈ E. In case (iii), the solution

p(t, po) fluctuates between a maximum distance d∗ and a minimum distance d∗ from the set

of equilibria E, where the maximum and minimum are attained in the set K; recall this

is what happened in the example due to Scarf considered above. When the set L has this

nature, we shall say that it has the Scarf property. . We note these possibilities in the

form of

Proposition 3.6 The solution to the system ( 3.3 ) for any arbitrary initial point po has

a nonempty set of limit points L which either contains an equilibrium or its points are

equidistant from any equilibrium or L has the Scarf property.
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Without putting more structure on the the sets K(p∗) or the set K, the set of limit

points cannot be subjected to more restrictions. If the set of limit points L does not contain

an equilibrium, then it must be the case that either prices remain at some constant distance

away from equilibria or fluctuate between a maximum and minimum distance from the set

of equilibria. In some sense, therefore, if the type of phenomenon exhibited during

our analysis of the Scarf example is not present, convergence to equilibrium

may be ensured. We shall specifically consider these issues in smaller dimensions, next.

In particular, we shall consider motion on the plane.

3.8.1 The Scarf Example Once More

By virtue of the comments made above, we shall consider the example due to Scarf as

the point of departure. The model and the our analysis has been presented in Section 3.6.

Consequently we shall not repeat them here except we provide an alternative proof of Claim

3.6.8. This will be instructive since it will reveal exactly what is required for convergence

and to eliminate the type of problems envisaged by Scarf. For this purpose recall the system

(3.12):

ṗ1 =
p1(1− p2)

(1 + p1)(p1 + p2)
and ṗ2 =

p2(p1 − b) + (1− b)p1

(1 + p2)(p1 + p2)

Recall that the unique equilibrium is given by

p∗1 =
b

2− b
= θ say, p∗2 = 1

Also recall that the characteristic roots of the relevant matrix at equilibrium are given by:

1
8
(−b+ b2 ±

√
b
√
{−32 + 49b− 26b2 + 5b3}).
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Consequently, for the the process ( 3.12 ), (θ, 1) is a locally asymptotically stable equilibrium

if and only if b < 1 ; for b > 1, the equilibrium is locally unstable.

We had made the much stronger assertion: For the system ( 3.12 ), the unique equi-

librium (θ, 1) is globally asymptotically stable whenever b < 1; and any trajectory with

(po1, p
o
2) > (0, 0) as initial point remains within the positive orthant. When b > 1, any

solution with an arbitrary non-equilibrium initial point is unbounded. We offer below a

somewhat different approach to the proving of this result, next.

We first note that for the system (3.12) there can be no closed orbit in <2
++ so

long as b is different from unity. For this purpose we shall use, Dulac’s Criterion29. Now

consider the function:

f(p1, p2) =
(p1 + p2)(1 + p1)(1 + p2)

p1.p2

on <2
++. Notice that:

∂f(p1, p2)Z1(p1, p2)
∂p1

+
∂f(p1, p2)Z2(p1, p2)

∂p2
= −(1− b)/p2

2

Thus b 6= 1 implies that Dulac’s Criterion is satisfied by this choice of f(p1, p2) and

consequently there can be no closed orbits when b 6= 1. Applying next, the Poincaré-
29See, Andronov et. al. (1966), p. 305. This criterion looks for a function f(p1, p2) which is continuously

differentiable on some region R and for which

∂f(p1, p2)h1(p1, p2)

∂p1
+
∂f(p1, p2)h2(p1, p2)

∂p2

is of constant sign on R (not identically zero), then there is no closed orbit for the system ṗi = hi(p1, p2), i =

1, 2 on the region R.
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Bendixson Theorem, it follows that for any initial po ∈ <2
++, the unique equilibrium

p? = (θ, 1) ∈ Lω(po) provided the ω-limit set is non-empty.

Recall that for b > 1, the unique equilibrium is unstable; consequently no solution can

enter a small enough neighborhood of p?; consequently, in this situation, Lω(po) must be

empty, if po 6= p?; thus the trajectories must be unbounded.

When b < 1, the unique equilibrium p? is locally asymptotically stable; so if Lω(po) 6= ∅,

p? ∈ Lω(po) ⇒ p? = Lω(po); since once having entered a small enough neighborhood of the

equilibrium, the trajectory cannot leave. Thus all that we need to guarantee convergence

is that trajectories are bounded when b < 1.

This last step may be accomplished by considering the function

W (p1, p2) = 2(1− b)p1 + (2− b)p2
1/2− b log p1 + p2

2/2− log p2

and noting that its time derivative, along any solution to the system ( 3.12 ):

Ẇ = {((2− b)p1 − b)(1 + p1)}
ṗ1

p1
+ (p2

2 − 1)
ṗ2

p2

= −(1− p2)2
p1(1− b)
p2(p1 + p2)

≤ 0

whenever b < 1. Thus for b < 1, W (p1(t), p2(t)) ≤W (po1, p
o
2)∀t, where we write (p1(t), p2(t))

as the solution to (3.12). Note that if pi(t) → +∞, for some i, W (p1(t), p2(t)) → +∞ and

the boundedness and positivity of the solution are established30. This establishes the claim.

There are thus two things to be noted from the above demonstration: first that choosing

a value of b different from unity negates the existence of a closed orbit; and a value of b
30It may be recalled in our earlier approach, we had established that the function W (.) was a Liapunov

function for the problem at hand.
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less than unity is required to ensure that trajectories remain bounded. In a sense to be

made precise below, these are the two aspects we need to account for if we are interested

in identifying global stability conditions. This is why the above analysis is revealing.

3.8.2 General Global Stability Conditions

If there are three goods and one of them is the numeraire, then the price adjustment

equations of the type used for the Scarf example introduces dynamics on the plane.

For motion on the plane, we shall use the results introduced in Section 1.531; we show

next that it is possible to substantially weaken the conditions under which a global stability

result may be deduced. This would allow us to conclude global stability for a competitive

equilibrium as well as providing a general stability result which would be of some general

interest, as well.

Consider the following systems of equations:

ẋ = f(x, y) and ẏ = g(x, y) (3.19)

where the functions f, g are assumed to be of class C1 on the plane <2. For any pair of

functions f(x, y), g(x, y) let J(f, g) or simply J , if the context makes it clear, stand for the

Jacobian32:  fx fy

gx gy


31These results are Propositions 1.4, 1.5 and 1.6.
32fx for any function f will refer to the partial derivative of f with respect to the variable x.
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We shall use the setting of the tatonnement to investigate motion on the plane and for

this purpose we introduce the notion of the excess demand functions Zi(p1, p2, p3) : <3
++ →

<, i = 1, 2, 3 which are required to satisfy the following:

A Conditions P1- P3 and P4* hold.

To study the dynamics on the plane, we shall investigate the solutions to a system of

equations of the following type:

ṗi = hi(p), i = 1, 2 with p3 ≡ 1 (3.20)

where the functions hi(p) are assumed to satisfy the following: (we write p = (p1, p2) ∈ <2
++)

B hi(p) = Zi(p1, p2, 1), i = 1, 2.

Thus the equation (3.20) defines motion on the positive quadrant of the plane and more

importantly reduce to (3.3) for the plane.

A typical trajectory or solution to (3.20) from an initial po ∈ <2
++ will be denoted by

φt(po); the price configuration will be (φt(po), 1) for each instant t; this is just to signify

that the numeraire (the third good) price is always kept fixed at unity. Also we note that

any equilibrium for the dynamical system (3.20), say p̄ where hi(p̄) = 0, i = 1, 2, implies

that (p̄, 1) is an equilibrium for the economy, in the sense that (p̄, 1) ∈ E and conversely.

We shall denote the equilibrium for (3.20) by ER.

We are interested in the structure of the ω-limit set Lω(po) i.e., the limit points of the

trajectory φt(po) as t→ +∞33.

First, we recall from Claims 3.7.7 and 3.7.8 that there is a rectangular region R =
33On the plane, the structure of non-empty ω-limit sets was discussed by Proposition 1.5 in Section 1.5.
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{(p1, p2) : εi ≤ pi ≤Mi} in the positive quadrant within which the solution gets trapped.

Incidentally, this fact together with Poincaré’s theory of indices for singular points34,

implies that R contains equilibria; i.e., ER 6= ∅; recall that, by virtue of our assumptions on

excess demands, (p1, p2, 1) ∈ E ⇔ (p1, p2) ∈ ER.

We shall assume now the following:

C i. Trace of the Jacobian J(h1, h2) is not identically zero on R nor does it change sign on

R.

C ii. On the set ER, the Jacobian J(h1, h2) has a non-zero trace and a non-zero determinant.

Notice that while Olech (1963) demands an unique equilibrium, we do not. They demand

a lot of other restrictions as well35. We have of course the properties of the excess demand

function in A which have helped us to isolate a region such as R; C i and C ii appear

weaker than the requirements demanded in Olech (1963) and Ito (1978). C ii ensures that

the equilibria in ER have characteristic roots with real parts non-zero: this ensures that all

equilibria or fixed points for the dynamic system (3.20) are hyperbolic or nondegenerate or

simple. It follows that ER contains a finite odd number of equilibria since the sum of the

indices of all must add up to +136.

Proposition 3.7 Under A, B and C, for any po ∈ R, Lω(po) = p? ∈ ER. Thus all solutions

converge to an equilibrium.

Proof: Consider any po ∈ R and the trajectory φt(po): the solution to (3.20); by virtue
34See, for instance, Section 1.5.
35See, for example conditions listed as O1-O4, in Section 1.5 and Proposition 1.6.
36See, for instance, Andronov et. al. (1966), p. 305.
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of the Claim ??, the ω-limit set Lω(po) is not empty. Again by the criterion of Bendixson

37, C i implies that there can be no closed orbits in the region R. Thus there can be no

limit cycle and hence the Poincaré-Bendixson Theorem implies that Lω(po) ∩ ER 6= ∅. It

follows therefore that p? ∈ Lω(po) for some p? ∈ ER; consequently there is a subsequence

{ts}, ts → +∞ as s→ +∞ such that φts(po) → p? as s→ +∞.

Since we know that the only types of equilibria are focii, nodes and saddle-points, the

characteristic roots of the Jacobian J(h1, h2) at p? have real parts either both positive or

negative, or they are real and of opposite signs, given C ii.

In the first case, there would be an open neighborhood N(p?) which no trajectory or

solution could enter; consequently since our trajectory φt(po) does enter every neighborhood

of p?, it follows that at p?, the characteristic roots of the Jacobian, if complex, have real parts

negative; and if real, then at least one must be negative. Thus the fixed point p? is either

a sink or at worst, saddle-point. If it is a sink, then any trajectory once having entered a

small neighborhood of the equilibrium, can never leave. Consequently, the trajectory φt(po)

has no other limit point. Thus Lω(po) = p?. In the case of a saddle-point, there is only a

single trajectory which converges to the equilibrium; if po happens to be on this trajectory,

Lω(po) = p? but otherwise it is not possible for a trajectory to have a saddle-point as a limit

point. In any case therefore, the trajectory must converge to an equilibrium, as claimed.

•

We provide, next a set of remarks which highlight the implications of the above result.
37See, for example, Remark 7.
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Remark 17 The above result provides a set of conditions under which an adjustment on

prices on disequilibrium, in the direction of excess demand, will always lead to an equilib-

rium. Notice also that these conditions guarantee that there will always be at least one sink

i.e., an equilibrium at which the Jacobian has characteristic roots with real parts negative.

To see this note that if no such equilibrium existed, then the only equilibria are saddle-points

and sources. Also in aggregate they are finite in number and moreover, as argued above, no

trajectory can come close to sources; so the only possibility for a limit is a saddle-point; but

each saddle-point has only one trajectory leading to it and there are an infinite number of

possible trajectories. Thus there must be a sink.

More importantly:

Proposition 3.8 Under A, B and C, if there is a unique equilibrium, it must be globally

asymptotically stable.

Remark 18 As mentioned above, there must be at least one equilibrium where the charac-

teristic roots have real parts negative. Hence the trace of the Jacobian at that equilibrium

must be negative; further, since the trace at that equilibrium will be negative and the trace

cannot change sign nor can it be zero at equilibria, it follows that the trace of the Jacobian

at every equilibrium must be negative.

Consequently, we have:

Proposition 3.9 Under A, B and C, at every equilibrium, the sum of the characteristic

roots of the Jacobian will be negative38.
38Thus, if roots are complex, the real parts must be negative.
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Remark 19 If we consider hi(p1, p2) to have the same sign as Zi(p1, p2, 1), i = 1, 2 then

the assumptions in C are restrictions placed on the functions hi. Of course these become

difficult to interpret. One may show that the Jacobian of (h1, h2) at equilibria is related to

the Jacobian of (Z1, Z2), where the partial derivatives are with respect to (p1, p2), again at

equilibria by means of the following:h11 h12

h21 h22

 =

Z11 Z12

Z21 Z22

 .
 d1 0

0 d2


where all partial derivatives are evaluated at an equilibrium and di > 0, i = 1, 2 are some

positive numbers. This would provide some link between the equilibria for the dynamic

process and equilibria for the economy.

Let us reconsider the system (3.19); assume that the set of equilibria for this system

E = {(x, y) : f(x, y) = 0, g(x, y) = 0} is non-empty. The following general result follows

from our analysis:

Proposition 3.10 If

i. There is a rectangular region R = {(x, y) : 0 ≤ x ≤ M, 0 ≤ y ≤ N} such that any

trajectory of (3.19) on the boundary of R is either inward pointing or coincides with the

boundary;

ii. Trace of J(f, g) is not identically zero and does not change sign in the positive quadrant;

iii. On the set E, the trace and determinant of the Jacobian J(f, g) do not vanish;

then any trajectory φt(xo, yo) where (xo, yo) > (0, 0) converges to a point of E.

A final remark considers the weakening of the assumption C i.
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Remark 20 If we can find a function θ(p1, p2) which is continuously differentiable on the

region R and for which

∂θ(p1, p2)h1(p1, p2)
∂p1

+
∂θ(p1, p2)h2(p1, p2)

∂p2

is of constant sign on R, then there is no closed orbit for the system (3.20) on the region

R39.

In some situations, the above may provide a weakening of the condition C i. It may be

recalled that the sole purpose of C i was to rule out closed orbits in R. If, for example,

hi(p1, p2) = Zi(p1, p2, 1) = pi.gi(p1, p2), i = 1, 2, then we may replace C i. by requiring

that p1g11(p1, p2) + p2g22(p1, p2) be of constant sign on R; note that we do not require the

trace of J(p1g1, p2g2) being constant on R. This follows by virtue of the fact that we may

consider θ(p1, p2) = p−1
1 p−1

2 and then the condition in Remark 7 is satisfied for this choice

of θ(p1, p2).

A more recent paper Anderson et. al. (2003), makes the important and significant

contribution made that experiments conducted with agents with similar preferences and

endowments, but engaging in double auctions would lead to price movements which are

predicted by the tatonnement model. Thus the results provided by the tatonnement process,

they argue, should be looked at with greater care because they seem to predict what price

adjustments might actually occur.

As we showed in our analysis of the Scarf Example, the perturbation allowed us to get
39See Dulac’s criterion, discussed in Section 1.5, Remark 7.
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rid of closed orbits; for convergence, we needed to show that the solution was bounded. One

of the reasons for our being able to obtain such a different result was due to the fact that at

the original equilibrium, the relevant matrix had purely complex characteristic roots, with

zero real parts. It is not surprising that in such a situation, a perturbation changed the real

parts of the characteristic root from zero to positive or negative.

Notice that C ii rules out the Jacobian of the excess demand functions from having

characteristic roots with zero real part or from being singular; both serve to ensure that the

properties we observe are robust; non-singularity of the Jacobian, some times called regular-

ity preserves static properties of the equilibria of the economic system for small changes in

parameters; the trace being non-zero at equilibrium, preserves the dynamic properties from

small changes in parameters. While C i rules out the trace of the Jacobian from changing

signs on the positive quadrant which eliminates cycles. Thus C i rules out periodic behavior

and C ii ensures robustness. These two together imply that the process will always lead

to an equilibrium, provided trajectories are bounded; the particular equilibrium approached

will depend on the initial configuration of prices, of course. It is also important to note that

if there is a unique equilibrium, then that has to be globally asymptotically stable. Thus

the feature of the original Scarf example, of a unique equilibrium which cannot be attained,

is removed. However, these conclusions are for motion on the plane. Their interest lie in

the fact that in many applications in economics, only such motions are considered.

In Hicks (1946), there is an enquiry relating to the following questions: if a market is

stable by itself, can it be rendered unstable from the price adjustment in other markets
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? Alternatively, if a market is unstable when taken by itself, can it be rendered stable

by the price adjustment in the other markets ? To both an answer was provided in the

negative. Notice that C i essentially ensured (together with C ii) that the trace of the

relevant Jacobian remained negative; notice that this would be implied by assuming that

Zii < 0 for each i, that is when each market when taken in isolation, was stable. This in

turn has been seen to imply that the markets together must also be globally stable. Under

certain conditions, C i may be weakened further; this involves the existence of a function

θ() satisfying Dulac’s criterion, as in the case of the perturbation of the Scarf example. But

this is a matter of serendipity rather than design.

As we have seen, general results in this area are difficult to obtain. This is mainly due to

two reasons: first of all, the excess demand functions are not expected, a priori to satisfy

any other property apart from Homogeneity of degree zero in the prices and Walras Law;

secondly, dynamics in dimensions greater than 2 may be quite difficult to pin down. Even

on the plane, a variety of dynamic motions are possible. It is not surprising that in higher

dimensions matters become a lot more complicated and Walras Law and Homogeneity do

not help too much. We have just seen what these considerations will lead us to. And

consequently, we must impose additional restrictions which may be called global stability

conditions ; we have shown that an easy such condition for the Scarf example is b < 1.

For the general case, on the plane, the conditions in C serve the same purpose.
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3.9 Effective Tatonnement: An Example

3.9.1 The Problem

It is clear from what we have seen so far that a price adjustment on prices needs to be

supported by additional restrictions on the excess demand functions to ensure convergence

to equilibrium; without any such restrictions, which we have called stability conditions,

dynamics of a very arbitrary character becomes possible. Even for the simplest version of

the tatonnement (3.3), results were not clear. Strong assumptions such as gross substitutes

or dominant diagonals have to be used to claim convergence.

Consequently any study to devise a theory for price adjustment behavior which success-

fully attains equilibria for any class of excess demand functions will be implausible. We

have argued above, therefore, to identify stability conditions. The alternative may be to

identify adjustment processes with strong convergence properties.

What then are the minimal ingredients for such a theory of adjustment processes?

First of all, we have usually taken that price moves in the direction of the excess demand

and secondly, that transactions occur when equilibrium is reached. These are the two

cornerstones of the Walrasian tatonnement story. We report here some exercises where the

first of these requirements are surrendered.

Historically, there have been the contributions of Smale (1976), Arrow and Hahn (1971)

and Kamiya (1990). The main feature of these contributions are that they provide exam-

ples of adjustment processes which attain equilibria for any family of excess demand

functions. The intuition behind the processes however is not always clear. Processes such
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as these, which converge regardless of the nature of excess demand functions are known as

effective processes. The requirements for local processes to be effective were first stud-

ied by Saari and Simon (1978); they found that the dependence of price adjustment only

on excess demand in the appropriate market was not sufficient for convergence; the entire

jacobian of the excess demand function needs to be used to define the process. The later

study by Jordan (1983) also proved to be quite revealing. It was shown there that for a

local process to be effective a necessary condition was that it should violate a Walrasian

requirement viz., the price of a commodity whose market was in equilibrium should not be

adjusted even if there are disequilibria in other markets. Thus processes such as the ones

we have considered so far do not have much chance of being able to attain equilibria. We

provide an example of a process40 which provides an economic rationale for such conclu-

sions. As an interesting joint-product of this exercise, a condition for the uniqueness of the

competitive equilibrium will be identified which has several interesting features.

3.9.2 Regular Economy

Consider an economy specified by means of excess demand function Z : D → <n where

<n++ ⊂ D ⊂ <n+. We shall impose the restrictions P1-P3 and P4 which we reproduce here,

for ease of reference:

P1. For all p ∈ D, Z(p) is bounded below and is continuously differentiable with contin-

uous second order partial derivatives.

P2. pt.Z(p) = 0∀p ∈ D (Walras Law).
40This is based on Mukherji (1995).
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P3. Z(λp) = Z(p)∀p ∈ D, for any λ > 0 (Homogeneity of degree zero in prices).

Let S = {p ∈ <n+ :
∑
i p

2
i = 1}: the part of the unit n-sphere inside the non-negative

orthant. Given P3, we may confine attention to the set T = S ∩ D; it would be helpful to

assume that in addition to the above, we have:

P4. If ps is a sequence in T for all s and if ps → po as s → ∞, where po /∈ D then

∑
i Zi(p

s) → +∞.

Let E = {p ∈ T : Z(p) = 0}: the set of equilibria. We shall assume that there are no

boundary equilibria 41. Formally, we require that:

P5. Let ∂S = {p ∈ S : pk = 0 for some index k}. Then E ∩ ∂S = ∅.

The Jacobian of the excess demand function is the matrix of all partial derivatives of

the excess demand function:

J(p) = [
∂Zi
∂pj

, i, j = 1, 2, · · · , n]

By virtue of P3, J(p).p = 0∀p ∈ D; hence rank J(p) ≤ n− 1∀p ∈ D. An equilibrium p ∈ E

is said to be regular if rank J(p) = n − 1; and the economy is said to be regular if every

equilibrium is regular.

We shall write ζ(p), for any p ∈ D, for the following square matrix of order n+ 1: J(p) p

−pt 0


We note for future reference the following properties of the matrix ζ(p):

41It may be pointed out that our earlier restriction P4* ruled out boundary equilibria and so we had no

reason to use this condition separately.
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Proposition 3.11 For p ∈ T , det ζ(p) 6= 0 ⇔ 0 is NOT a repeated characteristic root of

J(p); if however p ∈ E, det ζ(p) 6= 0 ⇔ 0 is NOT a repeated characteristic root of J(p) ⇔

rank J(p) is n− 1.

Proof: Suppose then, that det ζ(p) = 0; thus there must exist (x̄, β̄) 6= (0, 0) such that

x̄t.J(p) − β̄pt = 0, and x̄t.p = 0; since J(p).p = 0 it follows that β̄ = 0; hence we have

x̄t.J(p) = 0 and x̄t.p = 0, for some x̄ 6= 0. It therefore follows that 0 is a repeated

characteristic root of J(p); for suppose to the contrary that 0 is a simple characteristic root

of the matrix J(p); then rank of J(p) is n−1 and moreover, the left and right characteristic

vectors corresponding to 0 may be so chosen that their inner product is unity42; i.e., there

are non-null vectors u, v such that ut.v = 1, ut.J(p) = 0, J(p).v = 0; since the rank of

J(p) = n− 1; it follows that p = αv, x̄ = γu for some scalars α, γ; hence we have 0 = x̄t.p =

α.γut.v = α.γ; since x̄ 6= 0; the scalar γ cannot be zero; hence α = 0 but then p = 0 but

recall that too is not possible, since p ∈ T . Thus 0 must be a repeated characteristic root

for J(p), as claimed. Conversely, if 0 is a repeated characteristic root of J(p); then using

the Jordan decomposition of the matrix J(p) it follows that there exists x 6= 0 such that

xt.J(p) = 0, xt.p = 0: notice that this implies that:

(xt, 0).

 J(p) p

−pt 0

 = ( 0 0 )

which establishes the singularity of the matrix ζ(p).

If p ∈ E , then we have in addition that pt.J(p) = 0; notice now that if det ζ(p) = 0;
42Consider for example, the Jordan decomposition of the matrix J(p); see, for example, Gantmacher

(1959).
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then it follows immediately that rank of J(p) < n − 1; thus rank of J(p) = n − 1 ⇒ det

ζ(p) 6= 0. The converse argument is also straightforward. •

The property of regularity of equilibrium yields the following interesting consequences:

Proposition 3.12 Let p? ∈ E be regular. Then there exists a neighborhood N(p?) of p?

satisfying the following:

i. N(p?) ∩ E = p? (Local Uniqueness);

ii. (p?)t.[J(p)]t.Z(p) ≤ 0∀p ∈ N(p?) ∩ T ;

iii. p ∈ N(p?) ∩ T , Z(p)t.J(p) = 0 ⇒ p = p?.

Proof: For i., see, for example, Mas-Colell (1985), p. 185, Proposition 5.4.2.

For ii., define f(p) = (p?)t.[J(p)]t.Z(p); note the following:

∇f(p) = (
∂f

∂pk
) = (

∑
i

∑
j

p?i (
∂Zji(p)
∂pk

.Zj(p) + Zji(p).Zjk(p)))

and ∇2f(p) is given by :

(
∂2f(p)
∂pr∂pk

) = (
∑
i

∑
j

p?i (
∂Zji(p)
∂pk

.Zjr(p)+
∂2Zji(p)
∂pr∂pk

Zj(p)+
∂Zji(p)
∂pr

.Zjk(p)+Zji(p).
∂Zjk(p)
∂pr

))

Also note that ∇f(p?) = 0; and the matrix (∇2f(p)) = −2J t(p?).J(p?) thus for q ∈

N(p?) ∩ T we have f(q) = 1/2(q − p?)t.(∇2f(p?)).(q − p?) = −qt.J t(p?).J(p?).q ≤ 0; if

q 6= p?, the inequality is strict and this proves the claim.

For iii., first recall that p? being regular implies that ζ(p?) is non-singular; thus for p

‘close’ to p?, ζ(p) must be non-singular too; note also that if p /∈ E , Z(p)t.J(p) = 0 ⇒ ζ(p)
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is singular and hence the claim follows. •

With these properties at or near regular equilibria, we shall now set up an adjustment

process which is locally effective.

3.9.3 A Locally Effective Process

Instead of the usual method of normalizing prices by choosing a numeraire and then con-

sidering all prices to be relative to this good, we shall adopt a some what different method;

we consider prices to be normalized on the unit sphere S introduced earlier; in particular

we restrict attention to set T which is a subset of S over which the excess demand functions

are defined. Consider the following adjustment equation:

ṗi = −
n∑
k=1

Zki(p).Zk(p), , i = 1, 2, · · · , n (3.21)

or alternatively, in matrix notation:

ṗ = −J t(p).Z(p)

We shall refer to this process as the LS-process. Given any po ∈ T , let φt(po) denote

the solution to (3.21); such a solution exists, given our assumptions; we first ascertain that

the solution always remains on the set T provided po is ‘close’ to some regular equilibrium

p?; we do this in two steps. First of all,

Claim 3.9.1 φt(po) ∈ S for all t ≥ 0.

Proof: Let us write the solution φt(po) as (pj(t)); We note that
∑
j p

2
j (t) =

∑
j(p

o
j)

2∀t; this

follows since
∑
j pj(t)ṗj = −p(t)t.J(p(t))t.Z(p(t)) = 0; hence the claim follows. •
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Claim 3.9.2 Let V (t) =
∑
j Z

2
j (p(t)); then V̇ (t) < 0 whenever p(t) ∈ N(p?) ∩ T , p(t) 6= p?

provided p? is a regular equilibrium, and N(p?) is as in the statement of Proposition 3.12.

Proof: Note that V̇ (t) = −2Z(p(t))t.J(p(t))t.J(p(t)).Z(p(t)) ; this allows us to conclude

that V̇ (t) = 0 only if J(p(t)).Z(p(t)) = 0; now recall and apply the result of the Proposition

3.12 iii, and the claim follows. •

Suppose po ∈ N(p?) ∩ T where N(p?) is as defined above; and consider W (t) =

1/2
∑
i(pi(t)−p?i )2; note that Ẇ (t) = −(p(t)−p?)t.J(p(t))t.Z(p(t)) = p?

t
.J(p(t))t.Z(p(t)) ≤

0 by virtue of Proposition 3.12 ii. Thus φt(po) ∈ N(p?)∀t.

Now suppose that φt(po) approaches p̄ /∈ D; then by virtue of the assumption P4.,

V (t) → +∞ which contradicts Claim 3.9.2. So φt(po) ∈ D∀t. Hence by virtue of the above,

we may claim:

Claim 3.9.3 φt(po) ∈ N(p?) ∩ T ∀t provided po ∈ N(p?) ∩ T and p? is regular.

Note then, that by virtue of the result in Claim 3.9.2, V (t) is a local Liapunov Function

and hence using the conclusion of Claim 3.9.3, one may conclude that

Proposition 3.13 Every regular equilibrium is locally asymptotically stable under the LS-

process.

3.9.4 The Significance of the LS-Process

In our studies, till we encountered the LS-process, we considered the Walrasian tatonnement.

This is based on the intuition that price adjustment in a market is determined by the

level of excess demand in that market: we shall refer to this as the Walrasian Adjustment
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Hypothesis. The naive expectation that this will work is based on an argument which may

be constructed as follows: if the price of a good is raised (lowered), we may expect its excess

demand to be lowered (raised, respectively); so if the market is in excess demand (excess

supply), one should raise (lower, respectively) the price to move towards equilibrium.

To understand the rationale behind the LS-process it will be convenient to write the

equation (3.21) as follows:

ṗi = −Zii(.)Zi(.)−
∑
k 6=i

Zki(.)Zk(.)

thus the price adjustment in the i-th market may be decomposed into two terms: the

first relates to its own market excess demand and the other relates to the excess demands

in all other markets. In case Zii(.) < 0, the first term on the right thus satisfies the

Walrasian Adjustment Hypothesis; the second term on the right has no counterpart in the

Walrasian paradigm since the second term indicates how price adjustment in market i should

depend on the state of excess demand in the k−th market k 6= i: if for instance, Zk(.) >

0, then pi should be revised upwards (downwards) depending on whether Zki(.) < 0(>

0 respectively ). Thus the LS-process acknowledges the interconnections between markets

when formulating the price adjustment hypothesis; price adjustment in any market should

not only help curb level of excess demand in its own market, it should also help curb excess

demand in other markets as well; if the terms Zki(.) = 0, for example, then this latter

requirement is not an additional burden on price adjustment in the i-th market and the

second set of terms disappear. When this is not so, the requirements placed on what ṗi

should be is an aggregation of many terms and consequently the if the first terms dominates,
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then we shall have the Walrasian Adjustment Hypothesis satisfied; when Zi(.) = 0 in a dis-

equilibrium configuration (Zk(.) 6= 0 for some k), the first term cannot dominate and it is

easy to understand why Jordan (1983) reached the conclusion that an effective process will

necessarily violate the requirement ṗi = 0 whenever Zi(.) = 0.

The naive belief that price adjustment in a market is governed by excess demand in only

that market, as in the Walrasian Adjustment Hypothesis takes into account only what may

be called the direct effects of disequilibrium. In a slightly different context, Hicks (1946)

indicated that there are indirect effects too: those which work through other markets. For

example suppose that in market j, Zj(.) > 0; j 6= i; buyers in the market for j would bid

the price up; this would affect the i-th market too through the excess demand Zi depending

on the sign of Zij(.). It appears that while stressing the interconnections between markets

while discussing issues relating to the existence of equilibrium, Walras did not take into

account of precisely these interconnections while setting up the dynamic considerations. In

other words, processes such as (3.1), where price adjustment in any market is governed

entirely by excess demand in that market is at best a partial equilibrium approach to price

adjustment. To be able to reduce disequilibria in all markets, we need to take into account

not only excess demands in other markets but also the links between markets provided by

the partial derivatives Zij(.). This provides a justification for why the entire Jacobian of

the excess demand function must be involved.

As a final point to clinch the matter, consider the situation when n = 2; then the process
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(3.21) for the i-th market reduces to:

ṗi = −Zii(.)Zi(.)− Zji(.)Zj(.)

It is easy to check then that if Zii(.) < 0 then ṗi.Zi(.) > 0 whenever Zi(.) 6= 0: this follows

from properties P2 and P3. Notice that n = 2 means that effectively, there is only one

market and hence interconnections through other markets need not be considered. In such

situations, the adjustment process (3.21) satisfies the Walrasian Hypothesis.

There is another aspect of the above that should be pointed out. Given Z(p), define

fi(p) = −
∑
k Zki(p).Zk(p) and f(p) = (fi(p)). Note that pt.f(p) = 0; also f(λp) = f(p)/λ;

so that if we define

θ(p) = ||p||.f(p) (3.22)

then θ(p) satisfies p.θ(p) = 0 and θ(λp) = θ(p): thus θ(p) may be called a pseudo-excess

demand function. More importantly, by virtue of Proposition 3.12, it follows that for

any regular equilibrium p?, for p ∈ N(p?), θ(p) = 0 if and only if p = p? and (p?)t.θ(p) > 0.

Thus in a neighborhood of regular equilibria, regardless of the nature Z(p), θ(p) satisfies

a local Weak Axiom of Revealed Preference. Thus one way of justifying a process such as

(3.21) is to claim that it is a local modification of a process such as (3.3) where ṗj = Zj(p)

and the excess demands have been replaced by the pseudo-excess demands.

In the literature there are two other processes which may be called effective; these are

due to Smale (1976) and Kamiya (1990). Both of these processes involve the choice of a

numeraire; by choosing the n-th good as numeraire; since, in this section, we have used a

different normalization, viz., on the sphere, we shall use q to denote the relative prices, i.e
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q = (q1, q2, · · · , qn−1); also we shall use the notation Z̄(q), J̄(q) to denote respectively, the

excess demand functions of the non-numeraire goods and their Jacobian. With this notation,

the process due to Smale (1976), the Global Newton Method (N) may be presented as:

J̄(q).q̇ = −λZ̄(q) (3.23)

where λ is a real number such that sign λ = sign det −J̄(q). The result due to Kamiya

(1990) behaves very much like the Global Newton Method near equilibria and since we shall

be comparing local behavior only, we confine attention to (3.23). To make comparisons, we

need to consider a normalized version of (3.21) where commodity n is a numeraire; such a

process may be written as:

q̇ = −J̄(q)t.Z̄(q) (3.24)

Notice this normalization preserves the local stability of (3.21) since the linearized version

of (3.24) around an equilibrium q? is given by:

q̇ = −J̄(q?)t.J̄(q?).q

and since the matrix −J̄(q?)t.J̄(q?) is negative definite at all regular equilibrium, it follows

that every regular equilibrium is locally asymptotically stable under (3.24). Consider the

case when n = 3 then under the process (N) near a regular equilibrium, the matrix on the

left of (3.23), is invertible and we have:

q̇ = − λ

∆

 Z22 −Z12

−Z21 Z11

 .Z̄(q)

where ∆ is the determinant of J̄(q) and hence λ/∆ is positive. For the process (3.24) on
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the other hand, we have:

q̇ = −

Z11 Z21

Z12 Z22

 .Z̄(q)

Thus for the former, we have on the right hand side J̄(q)−1; whereas for the latter, we have

J̄(q)t. To see the differences even more starkly, assume that the off diagonal terms are zero;

then under (3.23), the Global Newton Method, we have:

q̇i = −λZi(q)/Zii(q)

and for the process (3.24), we have:

q̇i = −Zii(q).Zi(q)

the processes begin to differ when the sign of λ happens to be negative; say Z22.Z11 < 0

and say Z11 < 0. In such a situation, the process N will adjust q1 in a direction opposite to

excess demand while moving q2 in the same direction as its excess demand: given the sign

pattern of the Zii this is not what we would have expected. What we would have expected

to move the first price in the same direction as excess demand and the second opposite to

its excess demand and this is exactly what happens under the process (3.24).

Finally, neglecting excess demands in other markets, when would q̇j have the same sign

as Zj(q): for the process (3.24), this is so whenever Zii(.) < 0; for the process (N), however,

this is so whenever

λ
cofactor of Zjj(q) in J̄(q)

det J̄(q)
< 0

It is a bit difficult to explain the necessity of this condition for convergence. Thus, our

discussion should convince people of the necessity of including information about all excess
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demands while formulating price adjustment mechanisms. But it is also important to re-

member that there has to be some rationale for explaining how the inclusion of other excess

demands guarantee convergence.

3.9.5 Uniqueness of Competitive Equilibrium

As we hope to demonstrate, the exercise reported in the sections above, allows us to identify

a set of conditions which imply the uniqueness of competitive equilibrium. We ask the

following question: we know that for global uniqueness, we should certainly have local

uniqueness of equilibrium; are there some conditions which together with local uniqueness

add up to global uniqueness ? As we shall see, it is possible to answer this question in the

affirmative.

In particular we shall show that the conditions identified in the Proposition 3.12 play

major role. Notice that these conditions all hold in some neighborhood of a regular equi-

librium. Consider the first two of them, which we restate here, for ease of reference:

P6. (Near Equilibria) Let p? ∈ E . There exists a neighborhood N(p?) of p? satisfying

the following:

i. N(p?) ∩ T = p? (Local Uniqueness);

ii. (p?)t.[J(p)]t.Z(p) ≤ 0∀p ∈ N(p?) ∩ T .

As we had shown in Proposition 3.12, P6 is implied at all regular equilibria; demanding

that P6 holds is however weaker than insisting on regularity of equilibrium. To show this,

we need to construct an example of an excess demand function where regularity is violated

but P6 holds; so consider the following example:
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Exercise 4 Consider the function

Z1(p1, p2) =


(3− p1

p2
)3 provided p1 < 4p2

= 48p1
p2
− 13 otherwise

Notice that the function Z1(., .) is a differentiable continuous function, homogeneous of

degree zero and bounded below for all p1, p2 > 0; by virtue of Proposition 10 of Shafer

and Sonnenschein (1982), p. 683, Z1(., .) and Z2(p1, p2) defined by = −p1.Z1(p1, p2)/p2

constitute excess demand functions for an appropriate economy. The unique equilibrium

in S may be seen to be p? = (
√ 9

10 ,
√ 1

10); at this price J(p?) is the null matrix: thus the

economy is not regular. In any neighborhood N(p?) small enough, it must be the case that

p1 < 4p2; hence we note that:

p?
t
J t(p).Z(p) =

√
(

1
10

).
1
p2

(3− p1

p2
)5[4(

p1

p2
)3 − 15(

p1

p2
)2 + 12(

p1

p2
)− 9]

=
√

(
1
10

).
1
p2

(3− p1

p2
)5[(−3 +

p1

p2
).(4(

p1

p2
)2 − 3(

p1

p2
) + 3]

Check that when p1 = 3p2, the rhs is zero; when p1 > 3p2, the first term in parenthesis is

negative; while the term in square brackets is positive so the product is negative. When

p1 < 3p2; the first term in parenthesis is positive while the second term in square brackets

is negative and the product is once again, negative. Thus the requirements of P6 are

met, while the economy is not regular.

Recollect that the Proposition 3.12 had a third part which holds near regular equilibria:

p ∈ N(p?) ∩ T , Z(p)t.J(p) = 0 ⇒ p = p?. We shall consider the strengthening this to:

P7. p ∈ T , Z(p)t.J(p) = 0 ⇒ Z(p) = 0 or p ∈ E .
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In contrast to P6, P7 is a restriction which is supposed to hold for all of T . We know

of course that near a regular equilibrium, P6 and P7 hold; if P6 and P7 hold then we shall

show that equilibrium must be unique. This would thus ensure uniqueness of equilibrium

based on conditions which necessarily hold near regular equilibria P6 and if a condition

which holds near regular equilibria holds elsewhere, as well (P7).

We first examine the plausibility of meeting the requirement in P7; towards this end,

observe, first of all:

Remark 21 The exercise presented above satisfies P7.

To see this note that when p1 ≥ 4p2

Z1 = 48
p2

p1
− 13 ; Z2 = −48 + 13

p1

p2
;

consequently the Jacobian J(p) is given by:−48p2

p2
1

48/p1

13/p2 −13p1

p2
2


Thus Z(p)t.J(p) = 0 ⇒

(48
p2

p1
− 13)(−48

p2

p2
1

− 13
p1

p2
2

) = 0 ⇒ p1/p2 = 48/13 ⇒

p1 < 4p2: a contradiction. Similarly, when p1 < 4p2 it is easy to check that to satisfy the

first component of Z(p)t.J(p) = 0, requires p1 = 3p2 or Z(p) = 0; so that Z(p)t.J(p) = 0 is

possible only at equilibria. Hence P7 holds.

That the above example is not a stray case satisfying P7 will be established next by

considering some conditions which imply P7.
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Claim 3.9.4 If ζ(p) is non-singular for all p ∈ T , P7 is satisfied for all p ∈ T .

Proof: Recall from the proof of Proposition 3.11 that if ζ(p) is non-singular then P7 follows:

in fact, we had used regularity to guarantee non-singularity near regular equilibria. Hence

the claim follows. •

We next show that under the assumption of indecomposable weak gross substitutes, P7

is also satisfied. We have:

Claim 3.9.5 Let D = <n++ and let Zij(p) ≥ 0∀p ∈ T ; further, for all such p, the index set

I = {1, 2, · · · , n} has no non-empty proper subset K such that Zij(p) = 0 for all i /∈ K, j ∈

K. Then P7 holds.

Proof: Suppose p /∈ E and Z(p)t.J(p) = 0. Then we have,
∑
j Zi(p).Zij(p) = 0 for all j.

Thus, we have:

−Zj(p).Zjj(p) =
∑
i6=j

Zi(p)Zij(p)∀j

or, we have:

| − Zj(p).Zjj(p)| = |
∑
i6=j

Zi(p)Zij(p)| ≤
∑
i6=j

|Zi(p)Zij(p)|∀j

and hence:

|Zj(p)|(−Zjj(p)) ≤
∑
i6=j

|Zi(p)|.Zij(p)∀j

the last step follows by virtue of the sign restriction on the Zij ; writing vj = |Zj(p)| and

v = (vj), we have vt.J(p) ≥ 0; since J(p).p = 0 and p ∈ <n++ it follows that we must have

vt.J(p) = 0; this means that (v + Z(p))t.J(p) = 0; since p /∈ E , the set K = {i : Zi(p) ≤

0} 6= ∅ and there is i /∈ K; thus K is a non-empty proper subset of I. Consider the equation
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(v + Z(p))t.J(p) = 0 that is
∑
i(vi + Zi).Zij = 0∀j; in particular, for j ∈ K, vj + Zj = 0;

thus the above equation implies that Zij = 0 when i /∈ K: thus we arrive at a contradiction

and our claim is established. •

Since we had demonstrated the local asymptotic stability of every regular equilibrium

under a process such as (3.21) in Proposition 3.13 by using the properties such as P6 and

P7 near regular equilibria (Proposition 3.12), we can dispense with regularity and claim:

Claim 3.9.6 Under P1-P7, every equilibrium p? ∈ E is locally asymptotically stable under

(3.21).

But now since P7 holds on all of T , we can claim the following:

Proposition 3.14 Let L(po) denote the set of limit points to the solution p(t, po) of (3.21)

for any po ∈ T ; then under P1 - P7, L(po) = p? for some p? ∈ E.

Proof: First of all, consider W (t) ≡ W (p(t, po)) =
∑
j Z

2
j (p(t, p

o)) and note that Ẇ (t) =

−2Z(p(t, po))t.J(p(t, po)).J t(p(t, po)).Z(p(t, po)) < 0 unless p(t, po) ∈ E by virtue of P7. We

know already from Claim 3.9.1 that p(t, po) ∈ S; since W (t) ≤W (po)∀t, it follows, by virtue

of P4 that p(t, po) ∈ T ∀t and hence that L(po) 6= ∅ and L(po) ⊆ T . Notice that we have

thus established that W (.) is a Liapunov function for the process (3.21) and every limit

point of the trajectory p(t, po) is in E ; we know by virtue of P6 that equilibria are locally

unique and locally asymptotically stable, as we have just noted above. it follows therefore

that once having entered a small enough neighborhood of any equilibrium, the trajectory

cannot leave; hence L(po) can have only one limit point and this proves the result. •
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This allows us to apply a result due to Arrow and Hahn (1971)43 and claim the following:

Proposition 3.15 Under P1-P7, the set E is a singleton: equilibrium is unique.

Proof: Under P1-P7, we know that E is compact and made up of locally unique equilibrium:

hence E is a finite set. Thus let the elements of E be written as pi, i = 1, 2, · · · ,m; our claim

is that m = 1. Suppose this is not the case and choose any two p1, p2 ∈ E and consider

the line segment C = [p1, p2] i.e., C = {p : p = tp1 + (1 − t)p2 for some t, 0 ≤ t ≤ 1}; let

C(pi) = {po ∈ C : p(t, po) → pi}; we know that since each pi is locally asymptotically stable,

C(pi) 6= ∅, i = 1, 2; indeed, due to the Proposition 3.14, we know that every p ∈ C belongs

to some C(pj) and hence one may write C = ∪mj=1C(pj), where some of the sets C(pj)

are non-empty; further we also know that C(pj) ∩ C(pk) = ∅, if j 6= k and we also note

that since C is connected it cannot be decomposed into the union of two or more disjoint

non-empty closed sets; consequently, it must be the case that for some j, C(pj) 6= ∅ and is

not closed; i.e., there is a sequence p(s) ∈ C(pj) with p̄ as a limit point and p̄ /∈ C(pj); since

p(s) ∈ C and C is a closed set, p̄ ∈ C and p̄ /∈ C(pj) implies that p̄ ∈ C(pk) for some index

k different from j. Thus p(t, p(s)) → pj and p(t, p̄) → pk; from the property of continuity

of the solution, we know that there is a neighborhood N of p̄ such that po ∈ N implies

p(t, po) → pk (recall, equilibria are locally unique); now since p(s) → p̄, for s large enough,

p(s) ∈ N and hence p(t, p(s)) → pk: a contradiction. Thus we cannot construct a set such

as C and hence E must be a singleton as claimed. •

To sum up: it is to be noted that we used P6 and P7 to be main conditions for guar-
43See, Theorem 5, p. 280
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anteeing uniqueness of equilibrium. The main interest in these conditions lie in the fact

that these conditions will always be satisfied near regular equilibria. Note that since

we dispensed with regularity, P6 was imposed near equilibria while P7 was needed over

T . If one were to ask the question that in addition to local uniqueness, what else would

ensure global uniqueness, then our analysis provides an answer. There is another point

of interest about these conditions. Recall the pseudo-excess demand functions θ(p) (3.22);

we had remarked that these functions satisfy a local weak axiom of revealed preference.

Now consider the following: given an excess demand function system Z(p) satisfying P1-

P5. Consider a fictitious economy made up of the the pseudo excess demand functions,

θ(p) given the Z(p); notice P7 ensures that the equilibria of the fictitious economy coincide

with those of the original economy; now if the original economy was regular then P6 would

hold and the equilibrium for the original economy must be unique. Notice that what P6

achieves is to ensure that the fictitious economy satisfies local uniqueness as well as a local

weak axiom of revealed preference. Thus the close links between WARP, uniqueness and

stability are exhibited once more. In fact, it may be recalled that it is this link which we

have investigated in our analysis throughout this chapter.

3.10 Discrete Time Tatonnement

3.10.1 Preliminary Difficulties

Among economists, the problem that discreteness, per se introduces, it seems to me, are

not well appreciated. To exhibit the problem, we consider first of all, a discrete version of
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the tatonnement process studied earlier:

pj(t+ 1) = max{0, pj(t) + γZj(p(t))} ∀j 6= n , pn(t) = 1∀t (3.25)

where γ > 0 is interpreted as a speed of adjustment, assumed for the sake of simplicity, to

be constant across commodities/markets. Further to ease our demonstration, we assume

that the excess demand functions Zj(.) exhibit the property of Gross substitution (GS) for

all p ∈ Rn++i.e.,

∂Zj(p)
∂pk

> 0 ∀j 6= k

and for all p ∈ Rn++. Under the property of GS, it is well known that

i. There is an unique p∗ = (p∗1, · · · , p∗n−1, 1) ∈ Rn++ such that Z(p∗) = 0.

ii. For every p ∈ Rn++,p 6= p∗, p∗ .Z(p) > 0 (the Weak Axiom of Revealed Preference holds).

The continuous version of the process ( 3.25 ) converges to the unique equilibrium and

the demonstration is relatively straightforward, using the fact that the function V (p) =

‖p − p ∗ ‖2 =
∑
j(pj − p∗j)2 is a Liapunov function. It would be instructive to try to see

what we can say about the iterates of the process ( 3.25 ).

Using a method suggested by Uzawa(1958), one may show the following:

Claim 3.10.1 If γ is sufficiently small, then for any ε > 0, there is an integer to such that

V (p(t+ 1)) ≤ V (p(t)) for 0 ≤ t < to and V (p(t) ≤ ε for t ≥ to.

.
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Proof: Now consider the following:

∑
j 6=n p

2
j (t+ 1) ≤

∑
j 6=n p

2
j (t) + 2γ

∑
j 6=n pj(t)Zj(p(t)) + γ2∑

j 6=n Z
2
j (p(t))

−2
∑
j 6=n p ∗j pj(t+ 1) ≤ −2

∑
j 6=n p ∗j pj(t)− 2γ

∑
j 6=n p ∗j Zj(p(t)

 (3.26)

Also note that by definition, we have

V (p(t+ 1)) =
∑
j 6=n

p2
j (t+ 1)− 2

∑
j 6=n

pj(t+ 1)p ∗j +
∑
j 6=n

p∗2
j

so that using the equation ( 3.26 ) and using Walras Law, we have:

V (p(t+ 1)) ≤ V (p(t)) + γ[γ
∑
j 6=n

Z2
j (p(t)−

n∑
j=1

p ∗j Zj(p(t))

Next let, for any ε > 0, K = max[ε, V (po)] where po denotes the initial price; and further

choose:

γ < min{min
p∈Bε

p ∗ .Z(p)∑
j 6=n Zj(p)2

,min
p∈Cε

√
ε/2∑

j 6=n |Zj(p)|
}

where Bε = {p ∈ Rn++ : K ≥ V (p) ≥ ε/2} and Cε = {p ∈ Rn++ : V (p) ≤ ε/2}. Note first

of all that such a choice of γ can be made and taken to be positive. This follows, by the

continuity of the functions and the sets being compact over which positive minimum may

be shown to exist. Next note that for such a choice of γ, we have:

a. if p(t) ∈ Bε then V (p(t+ 1)) < V (p(t))

b. if p(t) ∈ Cε then V (p(t+ 1)) ≤ ε.

Since V (po) ≤ K, it follows that V (p(t)) ≤ K,∀t and hence the sequence of prices

p(t) is bounded and limit points exist: let p̂ be a limit point such that V (p̂) ≤ V (p) for

any other limit point p. It may be shown that V (p̂) ≤ ε/2; to see this, let p(ts) → p̂
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while p(ts + 1) → p say; then it follows that pj = max{0, p̂j + γZj(p̂)} for all j 6= n; thus

V (p̂) > ε/2 ⇒ V (p) < V (p̂); hence we must have V (p̂) ≤ ε/2; hence the claim follows. •

It should be easy to see that choosing the appropriate γ is a difficult task indeed; for

that we need to have pretty exhaustive information about the price space; in fact, it would

appear that we must know the equilibrium it self. And in that case, we need not worry

about processes such as the one constructed above. If knowledge about the equilibrium and

the price space is less than perfect, and if we may only be able to guess what the speed of

adjustment should be, what happens to the convergence question? To see this and related

questions, we turn to the next section.

There is another point which is perhaps noteworthy about the example considered below.

The fact that non-linear discrete processes may give rise to problems has not been properly

appreciated by economists, as we mentioned above, has to do with the fact that the examples

considered were mainly the logistic equation mentioned in Section 3.1. What we show below

is that similar situations can be found within models which are very familiar to economists.

3.10.2 Bifurcation and Complex Dynamics in a Discrete Tatonnement

Consider an exchange model involving two individuals A and B, and two goods x and y. A’s

preferences are given by xαy1−α where 0 < α < 1 and B’s preferences are given by xβy1−β

where 0 < β < 1; further A has the endowment (x◦, 0) and B has the endowment (0, y◦)

where x◦, y◦ are both assumed to be positive. To continue with our analysis, standard

calculations lead to the following excess demand function for good x, Z(p), where p is the
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price of x relative to y

Z(p) =
βy◦

p
− (1− α)x◦ (3.27)

See Figure 7; a better behaved excess demand function may be difficult to locate.

FIGURE 7: The Excess Demand Function

Equilibrium p? is then uniquely determined by

p? =
βy◦

(1− α)x◦
. (3.28)

Consider the standard adjustment on prices in disequilibrium, the tatonnement, for the

model described above:

p(t+ 1) = p(t) + γZ(p(t)) (3.29)

where γ > 0 is some speed of adjustment, assumed constant; we can rewrite the equation

( 3.29) as p(t+ 1) = f(p(t)) where

f(p) = p+ γZ(p) = p+ γ(
βy◦

p
− (1− α)x◦);

note that at p = p =
√
γβy◦, f(.) attains a minimum value which is given by

f(p) = 2
√
γβy◦ − γ(1− α)x◦

and for the adjustment process to be well defined for all values of p, we shall require that

the parameter values are so defined that f(p) > 0 for all p; this is ensured by requiring that

the minimum value, f(p), is positive i.e.,

4 >
γ((1− α)x◦)2

βy◦
(3.30)
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Let us, for future reference, define

K =
γ((1− α)x◦)2

βy◦

It follows that

K =
(p)2

(p?)2

Consequently, p ≤ p? ⇔ K ≤ 1. Figure 8 depicts the nature of the function f(p) when

K > 1.

FIGURE 8: THE f-MAP WITH K > 1

We first note that

Claim 3.10.2 There is an interval I = [a,b] such that f : I → I.

Proof: Consider the case when K > 1; i.e., p > p?. Let b = Max[f(f(p)), p]; a = f(p)

Since p > p?, and f ′(p) < 0 ∀p < p , note that

a = f(p) < f(p?) = p? < p ≤ b

Consider I = [a,b]; clearly, p? ∈ I; consider p ∈ I and suppose, if possible, that f(p) /∈ I.

Sincef(p) ≥ f(p) = a; f(p) /∈ I ⇒ f(p) > b.

That is, we must have Z(p) > 0 or f(p) > p or a = f(p) ≤ p < p? < p; hence b ≥ f(f(p)) ≥

f(p) > b: a contradiction. Hence no such p can exist and the claim is established. A similar

construction for I may be provided when K ≤ 1. •

Since f ′(p?) = 1−K, we have by virtue of, say, Proposition 1 in Saari (1991), (see our

Proposition ??) the following:
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Claim 3.10.3 K < 2 ⇒ p? is locally stable for the process ( 3.29 ); p? is locally stable for

the process ( 3.29 ) ⇒ K ≤ 2.

Given above, we shall investigate what happens when 2 < K < 4.

It should be next pointed out that

Claim 3.10.4 For 2 < K < 2.5 there exists a stable 2-cycle.

Proof: For a two cycle to exist we need to show that there are q, s such that q 6= s satisfying

q = f(s) and s = f(q), i.e.,

q = s+ γ(
βy◦

s
− (1− α)x◦) and s = q + γ(

βy◦

q
− (1− α)x◦)

Thus 2sq = γβy◦ and s+ q = γ(1− α)x◦ or s, q are roots of the quadratic equation

z2 − γ(1− α)x◦z +
γβy◦

2
= 0

Real roots of the quadratic exist whenever

(γ(1− α)x◦)2 − 2(γβy◦) > 0 or K > 2.

Thus 2-cycles exist for all K > 2 ; to examine the stability of these cycles (See Lauwerier

(1986), p. 40, for example), we need to examine

| f ′(q)f ′(s) | = | 5− γβy◦(
1
s2

+
1
q2

) | = | 9− 4K |;

now | 9− 4K |< 1 if and only if 2 < K < 2.5

and the claim follows. •
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Notice that just as K crosses the value 2, the unique equilibrium p? loses stability and a

stable 2-cycle is born; the 2-cycle loses stability just as K crosses the value 2.5 and a stable

4-cycle may be shown to exist. To analyze the behavior of the attractors for different values

of K, we fix the values of all the parameters except γ:

βy◦ = 1 and (1− α)x◦ = 6;

so that K = 36γ and our difference equation ( 3.29 ) takes the particular form

p(t+ 1) = p(t) + (
1
p(t)

− 6)K/36 (3.31)

Let an denote the critical value of K where a 2n cycle is born; then a1 = 2 and a2 = 2.5.

It is known that the sequence an converges to a∞ as n becomes large and further, for any

one dimensional iterate, with a single parameter, there is a constant, F (the Feigenbaum

constant = 4.669202...) which allows us to approximate the value of a∞ by means of the

following (See, Lauwerier (1986), p.44-45.):

a∞ ≈ Fan+1 − an
F − 1

Using the above formula, one may see that for the example we have been discussing,

a∞ ≈ 2.6362694

To properly appreciate the nature of the dynamics, please see Figure 9: the so called

bifurcation diagram.

FIGURE 9: THE BIFURCATION DIAGRAM
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In this diagram, on the x-axis we have values of the parameter K; on the vertical axis, we

have plotted the iterates fn(x), say for n = 200 to n = 300 for a point chosen at random

from the corresponding [a,b]. This experimental method generates the period doubling

phenomenon mentioned above; beginning with a two period cycle, bifurcating into 4 period

cycles and so on, till a∞; beyond this value, apart from small gaps the picture is diffused;

within the gaps, we have stable cycles. Outside these regions of stable cycles, we may

conclude that either there is no stable cycle or there are cycles with very long periods: the

reason we are not able to capture these may be attributed to the fact that we have looked

at only a few iterates. This is only to be expected from running such experiments.

3.10.3 Evidence of Chaos

To proceed analytically in the matter, we need to be in a position to apply results such as

Proposition 2; however, these results cannot be directly applied. We recall ( 3.31 ):

p(t+ 1) = p(t) + (
1
p(t)

− 6)K/36

now introduce q = 1/p; then

q(t+ 1) =
1

p(t+ 1)
=

1

p(t) + (
1
p(t)

− 6)K/36

=
36q(t)

36 +K(q(t)− 6)q(t)

= g(q(t)), say;

We consider the map g(q) and note its properties. See Figure 10, in this connection.
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FIGURE 10: THE g-MAP

Note first, that there is a single parameter K and since we shall be considering variations

in the value of the parameter, we shall write the map as

gK(q) =
36q

36 +Kq2 − 6Kq
(3.32)

and restrict attention to K ∈ ∆ = (2, 4). Any value of K in ∆ will be called an admissible

value of the parameter. The following properties are immediate:

P1. gK(q) is well defined for all non-negative values of q, whenever K < 4; also gK(q) is

of class C3 for all q ≥ 0. For each admissible value of K, there exists a unique qK such that

g′K(qK) = 0; qK = 6/
√
K; further, q < qK ⇒ g′K(qK) > 0; while q > qK ⇒ g′K(qK) < 0.

Note also that in IK , the unique fixed point for each admissible value of K is q = 6 > qK .

P2. Define b(K) = gK(qK); a(K) = Min[gK(b(K)), qK ]; then a(K) ≤ qK < b(K); fur-

ther, writing IK = [a(K), b(K)], gK : IK → IK . Also note that a(K), b(K) vary continuously

with K in ∆.

Thus

b(K) =
6√

K(2−
√
K)

a(K) = Min [
6(2−

√
K)√

K(5 + 2K − 6
√
K)

,
6√
K

]

It may be noted that for K < 2.25, a(K) = 6/
√
K while for K > 2.25,

a(K) =
6(2−

√
K)√

K(5 + 2K − 6
√
K)

;

thus for K = 2,

gK(b(K)) =
6(2−

√
K)√

K(5 + 2K − 6
√
K)

>
6√
K

;
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and further, for the same value of K,

g2
K(b(K)) =

6(2−
√
K)(5 + 2K − 6

√
K)√

K[6K2 − 34K3/2 + 74K − 74
√
K + 29]

>
6√
K

;

while for K = 3.6, g2
K(qK) = gK(b(K)) < 6/

√
K; moreover, g3

K(qK) = g2
K(b(K)) < 6/

√
K.

Thus the family of maps gK for K ∈ ∆, constitute a full family of single peaked

maps. Further g(q) > q for all q ∈ (a(K), 6). In addition, the Schwartzian derivative is

given by:

SgK(q) =
−216K

(Kq2 − 36)2
< 0

for all q ∈ IK , q 6= qK .

The conditions A1 and A2 are thus verified; consequently, Proposition 2.8 holds; in

addition, the results for the map ( 5.3 ) should apply to our earlier excess demand map,

since these are topologically conjugate to one another. Consequently, our preliminary com-

ments about bifurcation (Figure 9) have been provided with analytical support by virtue

of Proposition 2.8. Further, to specify the nature of chaotic behavior we use the notions of

topological chaos. We may claim:

Claim 3.10.5 For K ∈ ∆1 = (25/9, 4) the map gK(.) exhibits topological chaos.

Proof: Consider any K ∈ ∆1;

b(K) = gK(qK) ; a(K) = gK(b(K)), since K > 2.25.
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Consider the expression for g2
K(b(K)) = g3

K(qK); by virtue of Proposition 10, a sufficient

condition for topological chaos to be exhibited is that

g2
K(qk) < qK

and

g3
K(qK) < 6.

The first inequality reduces to

2−
√
K < 5 + 2K − 6

√
K

which holds for all K > 2.25. The second inequality is written as:

6(2−
√
K)(5 + 2K − 6

√
K)√

K[6K2 − 34K3/2 + 74K − 74
√
K + 29]

− 6 < 0.

As Figure 11 would show, the above inequality is true for all K ∈ ∆1. Thus the claim

is true by virtue of Proposition 10. •

FIGURE 11: THE RANGE FOR TOPOLOGICAL CHAOS

We can show the existence of ergodic chaos too.

Claim 3.10.6 For K = 25/9, the map gK exhibits ergodic chaos; in addition, there exists

K ∈ ∆1 such that gK exhibits ergodic chaos.

Proof: Consider the expression for g2
K(qK); note that for K = 25/9, g2

K(qK) = 6/K Con-

sequently, g3
K(qK) = 6. And since g′K(6) = 1 − K = −16/9, Proposition 2.9 applies, and

one may conclude that for K = 25/9, the map gK exhibits ergodic chaos. To follow the
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above method, in order to identify other K values for which the corresponding gK exhibits

ergodic chaos, we need to solve the following equation for K,

gnK(qK) =
6
K

for some integer n; then the corresponding gK-map exhibits ergodic chaos by virtue of

Proposition 2.9. In fact, we have solved this equation for n = 2. If we try to solve this

equation for n = 3, recalling the expression for g3
K(qK) = g2

K(b(K)), we have to solve:

6(2−
√
K)(5 + 2K − 6

√
K)√

K[6K2 − 34K3/2 + 74K − 74
√
K + 29]

=
6
K

or, say

√
KX − Y = 0

Figure 12 plots right hand side for various values of K ∈ ∆1 It is straightforward to check

that the equation has a solution for K near 3.2 •

FIGURE 12: EXISTENCE OF ERGODIC CHAOS

3.11 A Summing Up

We have investigated over the past pages, the notion of stability of equilibrium. The notion

of stability, goes back to Walras and his idea of a groping process, the tatonnement, which

searches for and attains equilibria. The main idea behind the process, which we have

called the Walrasian Adjustment Hypothesis, is that in disequilibrium situations, prices are

revised upwards in the direction of excess demand. There is another aspect, which we did

not perhaps specify and that is that trades take place only at equilibrium. We have kept

155



this latter condition throughout; the former was relaxed only in the section on Effective

processes.

We began with an analysis of local stability and it was found straightaway that we

needed to impose some additional restrictions on excess demand functions; a necessary

condition was identified which was the first inkling that one had of the importance of the

Weak Axiom of Revealed Preference; without any such condition cyclical behavior around

equilibrium was possible too. We saw how such behavior could be tackled and this paved

the way for the central point of this chapter that stability conditions need to be investigated

and imposed. Without such conditions, the notion of excess demand functions themselves

would not play any meaningful roles.

While theorists have been inclined to impose restrictions to imply existence of equilib-

rium, the imposition of conditions to imply stability have not been popular. We saw the

derivation of some stability conditions. So far as the adjustment process was considered, we

studied two variations: one where the price adjustment had the same sign as excess demand

and the other, the more specific one where price adjustment was proportional to excess de-

mand; the more general form of the adjustment process was seen to require the stricter

restrictions on excess demand viz., gross substitution, dominant diagonals were analyzed.

Both had close links with WARP. The weaker version of the price adjustment process could

handle some other types of restrictions on excess demands: we saw what could happen in

the general n-goods case as well as in the 3-goods case. In the latter case, with the choice of

the numeraire, the dynamics moved to studying motion on the plane and hence once could
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identify global stability conditions. In the n-goods case, there was no easy way of obtaining

general results but we did identify the structure of the limit sets in this case too.

Given the problems identified above, we tried to give up on the Walrasian hypothesis

altogether; this led us to a study of effective processes. Two results flowed from this source:

one was to identify a process which worked always to reach equilibria locally and the other

was to provide an interesting set of conditions for the uniqueness of equilibrium. Again, the

crucial role of the Weak Axiom was revealed.

In fact, there appears to be a trade off between the nature of processes and the con-

ditions required for convergence to equilibrium. The more general processes require more

restrictions on excess demand functions; specific forms of the processes may not need too

many restrictions on the nature of excess demands for convergence.

Finally, we turned to discrete price adjustment processes; here the dynamic results

turned out to be quite complex indeed. And convergence, is the exception. Possibilities of

variety of periodic behavior in very simple contexts were identified.
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4 Non-Tatonnement Processes

4.1 Introduction

One of the major restrictions employed in the analysis of the tatonnemnt processes has

been the requirement that trading if at all, takes place at equilibrium price con-

figurations. One may have wondered exactly how this assumption figured in our analysis

in the previous chapter: this was implicit when we represented excess demand functions

Zj(.), we denote them as being functions of prices alone. In the current chapter, we shall

attempt to weaken this restriction, by allowing for transactions or trades to take place at

dis-equilibrium prices or at non-market clearing prices. There was no need in the previous

chapter, thus, to distinguish between desired transactions and actual transactions, since

there was no difference between the two: actual transactions being confined to take place at

equilibrium match desired transactions. But when we allow for transactions to take place

at non-market clearing prices, we need to investigate what these actual transactions could

be.

To follow the development of the literature, we consider first certain properties of such

trades and then, at a later stage, we indicate what transactions can take place when prices

fail to clear markets. There are two distinct sets of properties of dis-equilibrium transactions

which have been analyzed: the first due to Hahn and Negishi (1962) and the second due to

Uzawa (1962). Before considering them in turn, we need to clearly identify the model in

the context of which the entire analysis will proceed.

We consider the standard exchange model with n-goods, numbered 1 to n; good n is the
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numeraire; there are M individuals i = 1, · · · ,M each with an utility function U i(.) and an

endowment wi ∈ Rn+. Any vector of prices p will be taken to be p = (p1, p2, ..., pn−1, 1) ∈

Rn++; and let Rn+ denote the consumption possibility set of individual i. We shall assume

the following:

A 1 For each i, U i(.) : Rn+ → R, strictly quasi-concave, increasing and continuously

differentiable on Rn++, the strictly positive orthant. Further, for each i,U i(x) = 0 if

xk = 0 for some k and x ∈ Rn++ ⇒ U i(x) > 0.

Consequently, as before, the desired trades or individual excess demand of each

individual zi(p, wi), is formulated on the basis of the demand functions , xi(p, wi) of each

individual i obtained from the following maximization problem ( U-Max say):

max U i(x)

subject to p.x ≤ p.wi, x ∈ Ci.

Now, zi(p, wi) = xi(p, wi)−wi. Further, the excess demand function Z(p, {wi}) =
∑
i z
i(p, wi).

The effect of trades at dis-equilibrium or non-market clearing prices mean that transactions

take places at p where Z(p, {wi}) 6= 0; consequently actual trades ti will necessarily differ

from desired trades zi(p, wi), since a feature of the situation is that the desired trades can

not be made. What properties should such trades have ?

We note that first of all,

∑
i t
i = 0

since every purchase ( an addition to the endowment for some) must also indicate a sale (

a subtraction from endowment for some other) and hence, for each good j, purchases and
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sales must balance. This, of course, is an aggregate feasibility condition for trades; an

individual feasibility condition, which too must hold is that

p.ti = 0

which is just the budget equation and guarantees that trading at constant prices, by itself,

cannot add or subtract to or from wealth.

Next note that after such transactions or trades are complete, endowments, post-trade,

are wi
′

= wi + ti; the point to note is that the result of the change in endowments do

not affect the demands, i.e.,xi(p, wi) = xi(p, wi
′
) and consequently, the desired trades post-

trade, zi(p, wi
′
) = zi(p, wi)− ti so that the market excess demand, Z(p, {wi′}) remains the

same as before the trade Z(p, {wi}). With these preliminary remarks, we need to investigate

the consequences of assuming some special features of the trades ti.

4.2 The Hahn-Negishi Process

To characterize the disequilibrium trades ti, Hahn and Negishi (1962) assumed that the

trades reflected the following:

A 2 In a market with over all excess demand Zj(.) > 0(excess supply, Zj(.) < 0), after

trades are complete, no individual agent is left with an individual excess supply (respectively,

individual excess demand) i.e.,

zij(p, w
i′).Zj(p, {wi

′}) ≥ 0 ∀i, j.

Hahn and Negishi went on to assume that once the trades are completed prices changed
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according to the familiar equation:

ṗj = Zj(p(t), {wi(t)}) ∀j 6= n (4.1)

It is assumed that pn = 1 so that ṗn = 0; in addition, the Hahn-Negishi assumption on

trades hold, namely:

ẇi(t) = φi(p(t), {wi(t)}) ∀i (4.2)

for some continuous functions φi(p(t), {wi(t)}) so that wi(0) = wi∀i and at each instant,

we have:

∀i, zij(p(t), wi(t)).Zj(p(t), {wi(t)}) ≥ 0∀t ≥ 0 and ∀j 6= n

and further, the trades satisfy

p(t).ẇi(t) = 0 for all i & t and
∑
i

wi(t) =
∑
i

wi ∀t

We may now make the following claim for the price adjustment and trading rule, called

the Han-Negishi process:

Claim 4.2.1 Along any solution to the Hahn-Negishi process,(4.1),(4.2), ∀i,U̇ i(xi(p(t), wi(t)) ≤

0. The inequality is strict so long as ṗ 6= 0.

Proof: We begin by noting that first of all at each t, xi(p(t), wi(t)) solves the maxi-

mum problem U-Max; hence it follows that each instant t, for each i, there is some

λi(t) > 0 such that ∇U i(xi(p(t), wi(t))) = λi(t)p(t). Consequently, U̇ i(xi(p(t), wi(t))) =

∇U i(xi(p(t)), wi(t))).ẋi = λi(t)p(t)ẋi(t).
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Again from the budget constraint, which must be exactly met, given our assumptions,

we have:

p(t)ẋi(.) + ṗ.xi(.) = p(t)ẇi(t) + ṗ.wi(t)

Since by the trading rule, the first term on the right is zero, we have,

p(t).ẋi(.) = −ṗ.zi(p(t), wi(t)) = −
n−1∑
j=1

Zj(p(t){wi})zij(p(t), wi(t)) ≤ 0

The inequality will be strict whenever ṗ 6= 0. The claim now follows, since, λi(t) > 0 for all

t. •

Thus along the solution to any Hahn-Negishi Process, the target utilities for each i or

the indirect utility for each i is decreasing unless price adjustment stops. We shall use

this information next. Suppose that along the solution to the Hahn Negishi process, either

‖p(t)‖ → ∞ or pj(t) → 0 for some j. These two situations are similar since in the first

case, it is the relative price of the numeraire which is going to zero. In either of these

cases, the budget set for some individual will tend to become unbounded and hence the

target utility, for that individual may be increased as much as possible: which contradicts

the fact that target utilities for all individuals must never exceed the initial level. Since

endowments always sum up to the initial levels, the boundedness of the solution to (4.2) is

more straightforward. Consequently, we may claim that the following holds:

Claim 4.2.2 Along the solution of Hahn-Negishi process, (4.1) and (4.2), beginning with

any arbitrary initial p(o), wi(0) = wi, p(t, {wi(t)}) remains bounded and p(t) remains

bounded away from boundary of Rn+.
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Thus limit points exist for the Hahn-Negishi process and we may claim that all limit

points are competitive equilibria, since we have just shown that the sum of target utilities

behave as a Liapunov function. Note that given the two sets of equations, equilibrium

would mean that no price adjustment can take place and no further trades can occur: i.e.,

a no-trade competitive equilibrium. We note this conclusion as:

Proposition 4.1 (Hahn-Negishi) Given any initial configuration of prices and endowments,

(p0, {wi}) the Hahn-Negishi process described by (4.1) and (4.2) generates solutions which

converges to a no-trade competitive equilibrium for the economy.

One of the deficiencies of the process such as the one we have described is the fact

that there does not appear to be any incentive for individuals to make these kinds of

transactions; in other words, why should some one trade so that the Hahn Negishi post-

trade assumptions are met ? The view adopted has been that these trades reflect the

following type of transactions: people queuing up to trade in each market and then given

the imbalances, if more persons wish to buy, then all those who wish to sell get to carry out

their plans; conversely if more people wish to sell, then those who wish to buy get to carry

out their plans. While these may seem reasonable at first glance, a moment’s reflection will

indicate a problem. Consider an individual who wishes to buy in the market j and wants

to sell in the market k: that is, in market j the person wants to surrender the required

amount of the numeraire to acquire units of commodity j; while in market for k, the same

person wants to get rid of some amount of commodity k and receive units of the numeraire

in exchange. Now assume further, that in the market j where the individual wants to
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purchase, most people want to sell: then according to the Hahn Negishi assumption, this

person should sell. However now suppose that in market for k where the person wants

to sell, most people want to sell too and once more, Hahn Negishi assumption indicates

that the person may be unable to sell. Now given this constraint, it is quite possible that

the person is worse off after making this transaction and hence, in such a situation, the

person would not have participated in the transaction. Thus to accept a set of feasible

transactions, we need to ensure that they be voluntary ; the easiest such consideration

comes from demanding that no one should lose by making these transactions. This provides

the contribution of Uzawa (1962) with his point of departure.

4.3 Uzawa’s Edgeworth Process

4.3.1 Edgeworth Barter and Voluntary Trades

As we had indicated in the last section, the Hahn-Negishi assumption on trades may be

difficult to justify in the context of multiple markets. The set-up is similar to the one

considered in the previous section, except in some details; first, we need to strengthen the

assumption on individual tastes:

A 1* In addition to the requirements in A 1, each utility function U i(.), for each i =

1, 2, · · · ,m is assumed to be strictly increasing and strictly concave in the strictly positive

orthant Rn++.

Thus for any two positive bundles x, y ∈ Rn++, x 6= y, U i(λx + (1 − λy)) > λU i(x) +

(1 − λ)U i(y) , for all λ, 0 < λ < 1, for each i. Moreover, the marginal utilities U ij(x) =
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∂U i(x)
∂xj

> 0 for all x ∈ Rn++ and for every i and j.

Thus, given endowments wi ∈ Rn++,∀i, p ∈ Rn++, the solution to the U-Max problem

leads to demand functions for each i, xi(p, wi) with the following properties:

• For each i, xi(p, wi) ∈ Rn++ and is a continuous function of p, wi.

• p.xi(p, wi) = p.wi;

• U i(xi(p, wi)) ≥ U i(y) for all y such that p.y ≤ p.wi.

Note that excess demands are then given by Z(p, {wi}) =
∑
i x

i(p, wi) −
∑
iw

i. The

usual restrictions on excess demand functions will be taken to hold here as well1:

P Z : Rn++×Rmn++ → Rn is continuously differentiable function of its arguments, is bounded

below and satisfies Walras Law (∀(p, {wi}) ∈ Rn++ × Rmn++, p.Z(p, {wi}) = 0); in addition,

Z( λp, {wi}) = Z(p, {wi}) for any λ > 0 (Homogeneity of degree zero in prices); further, if

{ps} is a sequence in Rn++ for all s and if psj → 0 for some j then Zj(ps, {wi}) → +∞ for

any {wi} ∈ Rmn++.

Next, we shall define the transaction rule which formalizes the notion of voluntary

trades or Edgeworth Barter according to Uzawa (1962). Given W =
∑
iw

i, the total stock

of goods available, consider the set Ω = {Y = (yi) ∈ Rmn+ :
∑
i y
i = W}: each element of Ω

constitute a feasible allocation of the stock of goods W among the m individuals with the

i-th individual receiving yi. The transaction rule at each configuration p, {wi} chooses a Y
1These are the same as the ones employed in the last chapter, see for example P1 - P4 and P4*. We need

to take into account the fact that endowments will change along the process.

165



from the set Ω and we shall write Y = G(p, {wi}): G is the transaction rule2 and we shall

require the following:

A 2*G : Rn++×Ω → Ω written G(p, {wi}) = (gi(p, {wi}) = (yi), i = 1, 2, · · · ,m satisfies for

each i, p.yi = p.wi and U i(yi) ≥ U i(wi). In case U i(yi) = U i(wi)∀i then yi = wi for all i;

and further gi(p, {wi}) = wi , ∀i ⇔ {wi} is the only element of {Y = (yi) : Y ∈ Ω, p.yi =

p.wi, U i(yi) ≥ U i(wi) , ∀i} . Finally, if
∑
i x

i(p, wi) = W then yi = xi(p, wi).

The interpretation is that prior to transactions, each individual has wi; after transac-

tions, each individual has yi. Thus notice that the transaction does not create or destroy

goods since we are restricting the definition to set Ω; further trades will take place according

to the budget constraint for each individual and no one loses through these transactions.

Thus we are not allowing any consumption or production to take place during the process.

Also, for any transaction to occur, at least one person must be better off, after the

transactions. And finally, if the demands are achievable, then the transactions will be such

as to achieve them. With these requirements, a natural question arises whether all these

conditions can in fact be met.

To answer this query consider some positive numbers c1, c2, · · · , cm, one for each individ-

ual and consider the Social Welfare Function Ψc({U i(yi)}) =
∑
i ciU

i(yi) and the following

maximum problem:

max Ψc({U i(yi)}) =
∑
i ciU

i(yi)

subject to pyi = p.wi

2Note that we have stuck to the notation and terminology of Uzawa (1962); thus, transactions should

have been defined by G(p, {wi})− {wi} = {yi − wi}.
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U i(yi) ≥ U i(wi)

Y = {yi} ∈ Ω

Notice that the objective function is strictly concave (A 1*) and it is being maximized

over a non-empty, convex, compact set; as a result, the problem has a unique solution

Y = {yi} satisfying all the requirements of A 2*.

Given the initial distribution {wi}, we define Y ∗ = {yi∗} ∈ Ω to be Pareto Optimal

if there is no Y = {yi} ∈ Ω such that U i(yi) ≥ U i(yi∗)∀i with inequality strict for some

i. Thus if the distribution {wi} happens to be Pareto Optimal then for any transaction

rule G(.) satisfying A 2* and any p, we must have G(p, {wi}) = (wi)∀i. This follows

immediately since if, to the contrary, there exists Y = {yi} ∈ Ω satisfying pyi = p.wi∀i and

U i(yi) ≥ U i(wi) for all i as required by A 2*, then consider Z = {zi}, zi = yi + wi

2 ; note

that Z ∈ Ω and yi 6= wi for some i implies that, for that particular i, U i(zi) > U i(wi) while

for the others we have U i(zi) ≥ U i(wi) so that the Pareto Optimality of {wi} is violated.

4.3.2 A Process of Price Adjustment and Trades

With these preliminary matters in place, we can now proceed to define the following process

given an initial (po, {wio}), po ∈ Rn++, w
io ∈ Rn++,∀i. Now define Γ = Rn++ × Ω, where

Ω = {Y = (yi) ∈ Rmn+ :
∑
i y
i = W =

∑
iw

io}:

ṗj = kjZj(p, {wi})∀j 6= n pn ≡ 1 and ẇi = gi(p, {wi})− wi∀i (4.3)

where the constants kj > 0 for all j. Thus, at each instant, while price adjustment, for all

non-numeraire commodities, takes place in the direction of excess demand, transactions too
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occur according to the transaction rule specified by the function G = (gi) in A 2*.

An equilibrium for the process is a configuration (p?, {wi?}) at which both price adjust-

ment and trades stop that is: Zj(p?, {wi?}) = 0 and gi(p?, {wi?}) = wi? for all i, j.

To enable us to proceed with the analysis of the solution to (4.3), we shall also require:

A 3*: The function G : Γ → Ω is continuously differentiable function of its arguments.

Given P, A 1* - A 3*, there is a solution φt(po, {wio}) = (p(t), {wi(t)}) to (4.3) and

we need to guarantee that it stays within the set defining the entire process:

Claim 4.3.1 The solution φt(po, {wio}) = (p(t), {wi(t)}) to (4.3) remains within Γo, a

compact subset of Γ for all t.

Proof: Recall the Claims 3.7.7 and 3.7.8. Since price adjustment under the process (4.3) is

a special case of the process studied earlier (3.1), these claims continue to apply. Hence we

may conclude that p(t) remains within a compact set and remains bounded away from the

axes: thus pj(t) > 0∀j, ∀t.

Next note that under our assumptions, since {wio} ∈ Ω, and
∑
i ẇ

i(t) =
∑
i g
i(.) −

∑
iw

i = 0 since (gi(.)) ∈ Ω consequently,
∑
iw

i(t) =
∑
iw

io = W . Also, we have that along

the solution to the process, for each i, U̇ i(wi(t)) = ∇U i(wi(t)).ẇi(t) = ∇U i(wi(t)).(gi(p(t), {wi(t)})−

wi(t))3 In addition, from the definition of the transaction rule, we have that U i(gi(p(t), {wi(t)})) ≥

U i(wi(t)); hence using the concavity of the utility functions, A 1*, we have 0 ≤ U i(gi(.))−

U i(wi(.)) ≤ ∇U i(wi(.)).(gi(.)−wi(.)); thus U̇ i(wi(t)) ≥ 0∀t. Thus U i(wi(t)) ≥ U i(wio) > 0,

where the strict inequality follows by virtue of A 14; this also implies that for all t, wi(t) ∈ Ω.

3∇f(x) denotes the vector of partial derivatives of the function f(x) i.e., ∇f(x) = (
∂f(x)
∂xj

).
4Recall that A 1 is included in A 1*.
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Hence the solution lies in some Γo, a bounded subset of Γ for all t, as claimed. •

Note that along the solution, we have shown that U i(wi(t)) are non-decreasing; we

next show that if the initial configuration {wio} is not Pareto Optimal, these utilities cannot

remain constant for all i. That is some trades will actually take place, provided the initial

configuration is not Pareto Optimal. This is established through the following two steps.

First of all, define, at any configuration (p, {wi}) ∈ Γ, for each i, j (recall pn ≡ 1:

Ψi
j(p, w

i) =
U ij(w

i)/pj
U in(wi)

− 1

It should be apparent that in case Ψi
j(p, w

i) > 0, then if individual i gives up (pays) a small

amount of good n and receives whatever the equivalent value of good j (purchases)in return,

then individual i is made better off and conversely, whenever the quantity Ψi
j(p, w

i) < 0 an

exchange of good j for good n will benefit the individual.

4.3.3 When Trades Do Not Occur

It should also be clear that Ψi
j(p, w

i) = 0∀j⇔ wi solves the problem maxU i(x) subject to p.x ≤

p.wi, x ≥ 0. On an aggregate level, however, individuals may be stuck with their endow-

ments, for another reason and this is in case, all individuals wish to make the same trans-

actions. More specifically, define B(p, {wi}) = {Y ∈ Ω : Y = (yi), U i(yi) ≥ wi , p.yi ≤

p.wi ∀i. Then one may show:

Claim 4.3.2 B(p, {wi}) = {wi} ⇔ ∃ non-negative numbers ci, i = 1, 2, · · · ,m and a vector

b ∈ Rn such that for all i, Ψi(p, wi) = ci.b provided wi ∈ Rn++.
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Proof: Consider I = {i : Ψi(p, wi) 6= 0}; if I is empty, then we may just choose b to be any

vector and the numbers ci = 0; so say I is non-empty and #I ≥ 2; even if I has only one

member, say, io, there is nothing to prove, since we just choose b = Ψio(p, wio); cio = 1, ci =

0, i 6= io. Notice then B(p, {wi}) = {wi} if and only if for each i ∈ I wi solves the following

problem Pi:

maxU i(yi)

subject to Uh(yh) ≥ Uh(wh)∀h 6= i, h ∈ I

∑
h∈I y

h ≤
∑
h∈I w

h

p.yh ≤ p.wh , ∀h ∈ I

yh ≥ 0 , ∀h ∈ I

It is clear that if there are non-negative numbers ch and a vector b satisfying the conditions

of the claim, no trades can take place. For the converse, suppose that no trades are possible;

then, for each i ∈ I, wi solves the problem Pi which is a concave programming problem

with only one set of constraints non-linear. Note that we can find yh, h ∈ I, h 6= i, Uh(yh) >

Uh(wh), p.yh = p.wh by using the fact that for all such h Ψh(p, wh) 6= 0 and making small

transactions, which we adjust with wi to ensure
∑
h∈I y

h =
∑
h∈I w

h; the fact that wi is

positive for all i is crucial at this stage. This implies that the above maximum problem is

equivalent to the saddle-value problem5 and hence the fact that each wi solves Pi implies

the existence of non-negative numbers λh, µj , θh satisfying the following:
5See, for example, Arrow, Hurwicz and Uzawa (1961), Corollary 3 to Theorem 3 which shows the validity

of the Kuhn-Tucker theorem on Non-Linear programming under this kind of Slater’s condition applied to

the only the nonlinear constraints.
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λhU
h
j (wh)− µj − θhpj = 0 ∀h 6= i, h ∈ I

U ij(w
i)− µj − θipj = 0

where we have equality on account of the fact that whj > 0 for all j and for all h ∈ I. Thus

eliminating µj , we have for all h ∈ I:

λhU
h
j (wh)/pj − θh = U ij(w

i)/pj − θi∀j

and hence subtracting the equation for j = n from both sides we have:

λh(Uhj (wh)/pj − Uhn (wh)/pn) = U ij(w
i)/pj − U in(w

i)/pn

which implies that Ψi
j(w

i) = ρhΨh
j (w

h) for some positive numbers ρh. The numbers ρh

are positive since by definition i ∈ I. This proves the claim, since we may now define

b =
∑
h∈I Ψh(p, wh) so that Ψh(p, wh) = chb, ch > 0∀h ∈ I, ch = 0, h /∈ I. •.

The second step is to prove the following:

Proposition 4.2 Consider the process (4.3) and an initial configuration (po, {wio}), po ∈

Rn++, w
io ∈ Rn++,∀i. If along the solution φt(po, {wio}) = (p(t), {wi(t)}), {wi(t)} = {wio} , ∀t,

then {wio} is Pareto Optimal and p(t) converges to po which is such that Z(po, {wio}) = 0.

Proof: Since {wi(t)} = {wio}∀t it must be the case, given the property of the transaction

rule (see A 2*, above) that B(p(t), {wi(t)}) = {wi(t)} = {wio}∀t; also since {wio} ∈ Rn++,

the above result is applicable and we have that there is some vector b(t) and ci(t) ≥ 0 such

that Ψi(p(t), {wi(t)}) = ci(t)b(t) for all t, where we may take b(t) =
∑
h Ψh(p(t), who) and

Ψh(p(t), who) = ch(t)b(t), ch ≥ 0,∀h.
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We assume that b(t) does not vanish for any t; since if b(t) is zero, then all the Ψh(.)

vanish too but then, as we have seen, the proposition holds since demands coincide with

{who}. With this, one may define ch(t) = Ψh(t).b(t)/b(t).b(t) and hence
∑
h ch(t) = 1 with

ch ≥ 0∀h.

Next, note that we may rewrite (recall that pn = 1) Ψh
j (t) = rhj /pj(t) − 1 where rhj =

Uhj (who)/Uhn (who) If rhj = rij = r̄j for all h, i and j = 1, 2, · · · , n then notice that {who}

constitutes a Pareto Optimum and the vector (r̄1, r̄2, · · · , 1) constitute an equilibrium price

vector corresponding to {who}. Hence we take the case when rhj 6= rkj for some h, k and

some j. We have then:

rhj − rkj = pj(t)(Ψh
j (t)−Ψk

j (t)) = (ch(t)− ck(t))qj(t) where qj(t) = pj(t).bj(t).

Note that ch(t) 6= ck(t), ∀t; since the left hand side is independent of t, ch(t) = ck(t) for

some t will imply that rhj = rkj ∀j: a contradiction.

Since ∀i, Ψi(t) = ci(t).b(t) and Ψi
j(t).pj(t) = rij − pj(t), we have −ṗj(t) = ċi.qj(t) +

q̇j(t).ci(t) for all i and j. Hence summing over all i and noting that
∑
i ci(t) = 1∀t and

hence,
∑
i ċi(t) = 0, we have −mṗj(t) = q̇j(t). Thus using the earlier expression6, we have

that:

ṗj(t) =
1
m

ċh(t)− ċk(t)
ch(t)− ck(t)

qj(t) =
rhj − rkj
m

.ω(t)

where ω(t) = ċh(t)− ċk(t)
(ch(t)− ck(t))2

. Since we have assumed that b(t) 6= 0,∀t, it follows that

ω(t) 6= 07; since otherwise if ω(to) = 0 for some to, then ṗj = 0 for all j and consequently, it

6ciqj(t) = ri
j − pj(t) for i = h, k and subtracting, we have qj(t) =

rh
j − rk

j

ch(t)− ck(t)
. In addition we have that

0 = (ċh(t)− ċk(t))qj(t) + (ch(t)− ck(t))q̇j(t).
7Notice that ω(t) is well defined for all t since the denominator does not vanish.
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must be the case that p(to) is an equilibrium price vector which in turn would imply that

b(to) = 0: a contradiction. Consequently given this conclusion, it follows that ω(t) is either

always positive or always negative: thus prices behave monotonically. Now since we have

already shown that prices are bounded this implies that p(t) converges say to p? and that

(p?, 1) must be an equilibrium and hence it must follow that {wio} is Pareto Optimal, as

was claimed. •

4.3.4 Convergence

It may be recalled that the equilibrium for the process (4.3) has two properties: first that

there can be no further trades and secondly that there cannot ba any price adjustment as

well. The convergence to equilibrium will take up these properties one by one.

We know that any solution (p(t), wi(t)}), possesses limit points (since the solution lies

in a bounded region); let p?, {wi?}) be one such. Note that this configuration must also be

positive i.e., p?j > 0, wi?j > 0 for all i, j. Now since the utilities U i(wi(t)) are nondecreasing

and bounded above, it follows that U i(wi(t)) converges say to U i? for each i; thus for

any limit point (p̄, {w̄i}) for the process, it must be the case that U i(w̄i) = U i? for each

i. Consider next, the solution originating from the limit point (p?, {wi?}), denoted by

(p ∗ (t), {wi?(t)}): since every point of this solution is a limit point of the original solution

with (po, {wio})) as initial point, it follows that U i(wi?(t)) = U i? for all t and hence no

trades can take place. This implies, that {wi?} is Pareto Optimal. Notice also that for

every limit point w̄i = wi?. Thus wi(t) → wi? and we have proved the following:
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Proposition 4.3 The solution φt(po, {wio}) = (p(t), {wi(t)}) to (4.3) for any p0 ∈ Rn++, w
io ∈

Rn++ for all i is such that {wi(t)} converges to a unique Pareto Optimal configuration {wi?}.

Notice that the above result is silent on the convergence of prices; except we may use

the proof of the Proposition 4.2 to conclude that along the limit path, i.e., the solution

originating from the limit point (p?, {wi?}), denoted by (p ∗ (t), {wi?(t)}), p ∗ (t) converges.

But this clearly is not good enough: since as matters stand now, there could be many limit

points for the prices. But, fortunately, it is possible to close this gap and we do so next8.

Before we proceed we need some elementary facts which we shall note for future use.

First of all,

Claim 4.3.3 Given W ? = {wi?}, wi? ∈ Rn++,∀i, Pareto Optimal, there is a unique price

configuration (p?, 1) = (pstar1 , · · · , p?n−1, 1) such that Z((p?, 1),W ?) = 0.

Proof: Suppose that (p?, 1) and (p̄, 1) both satisfy Z((p, 1),W ?) = 0; where W ? is Pareto

Optimal. That is for all individuals i, the demands xi(p, 1, wi?) = wi? when p = p̄ and

p = p?. This implies that for each i, wi? solves the problem:

maxU i(x) subject to
∑n−1
j pjxj + xn ≤

∑n−1
j pjw

i?
j + wi?n

when p = p̄ and when p = p?. Since wi? ∈ Rn++, we have the following conditions satisfied

for all j:

∂U i(wi?)
∂wj

/
∂U i(wi?)
∂wn

= p̄j = p?j

which proves the claim. •
8The following argument, is based on Mukherji (1974).
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Next, it should be pointed out that, for any p? whose uniqueness was established in

Claim 4.3.3, and excess demands Z(p,W ?) we have the following:

Claim 4.3.4 Given W ? = {wi?}, wi? ∈ Rn++,∀i, Pareto Optimal, we have
∑n−1
j p?j .Zj(p,W

?)+

Zn(p,W ?) > 0 for any p > 0, p 6= p?. Thus WARP holds.

Proof: Consider any p 6= p? and note that at from the property of demand functions,

xi(p, 1, wi?), for every individual i, we have
∑
j 6=n pjx

i
j(.) + xin(.) =

∑
j 6=n pjw

i?
j + wi?n ; thus

we may conclude U i(xi(.)) > U i(wi?); hence at p∗, when xi(p?, 1, wi?) = wi?, we must have

∑
j 6=n p

?
jx
i
j(p, 1, w

i?) + xin(.) >
∑
j 6=n p

?
jw

i?
j + wi?n : this must be true for every i: summing

over all i provides us with the desired inequality. •

Now define V (t) = 1/2
∑
j 6=n(pj(t)− p?j )

2/kj where (p(t),W (t)) denotes the solution to

the process (4.3); we know that W (t) → W ?, a Pareto Optimal configuration such that p?

is the unique corresponding equilibrium configuration. We have:

Claim 4.3.5 V (t) → 0 as t→ +∞.

Proof: Suppose first of all that

V (t) ≥ ε > 0 for all t (4.4)

. We know from the Claim 4.3.1, that p(t) lies within a bounded region, say B in Rn−1
++ ;

let Bε = {p ∈ B : 1/2
∑n−1
j (pj − p?j )

2 < ε}; notice that from the Claim 4.3.4, f(p,W ?) ≡

∑n−1
j p?jZj(p,W

?) +Zn(p,W ?) > 0 on the set B−Bε: which is a compact set; thus on this

set, f(p,W ?), a continuous function, attains a minimum δ > 0.
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Notice also that the function f(p,W ) =
∑n−1
j p?jZj(p, 1,W )+Zn(p, 1,W ) is a continuous

function on Γo a compact set (see, Claim 4.3.1) and hence is uniformly continuous on this

set. Thus for any λ > 0 there is a µ > 0 such that:

|f(p,W )− f(p,W ?)| < λ if |W −W ?| < µ

Notice that along the solution to (4.3), V̇ (t) =
∑n−1
j (pj(t) − p?j ).ṗj = −f(p(t),W (t)),

using Walras Law. Now if V (t) ≥ ε as we have assumed, then p(t) ∈ B − Bε , ∀t. Hence

f(p(t),W ?) > δ > 0. Now choose λ = δ/2; then there is µ(δ) such that9 :

|f(p(t),W )− f(p(t),W ?)| < δ/2 whenever |W −W ?| < µ(δ)

Thus f(p(t),W ) > f(p(t),W ?) − δ/2 > δ/2 whenever |W − W ?| < µ(δ). Now since

W (t) = {wi(t)} →W ? by virtue of Proposition 4.3, it follows that there is some T (µ(δ)) such

that |W (t)−W ?| < µ(δ) for all t > T (µ(δ)); hence for all such t, we have f(p(t),W (t)) > δ/2

i.e., for all t > T (µ(δ)), V̇ (t) = −f(p(t),W (t)) < −δ/2 < 0 which contradicts (??).

Thus for any ε > 0 and for any N , say N > T (µ(δ)), there is a T (ε) > N , such that

V (T (ε)) < ε; if possible let there exist h > 0 such that V (t) < ε for all t ∈ [T (ε), T (ε)+h) and

V (T (ε)+h) = ε; that is V̇ (T (ε)+h) ≥ 0: this contradicts the fact that p(T (ε)+h) ∈ B−Bε

and consequently, since T (ε) + h > N > T (µ(δ)), V̇ (T (ε) + h) < −δ/2 < 0. Thus no such

h exists and V (t) < ε for all t > T (ε). This proves the claim. •

Collecting together the above claims, we have demonstrated the validity for the following:
9We use |x− y| to denote the Euclidean distance:

√
(
∑

j
(xj − yj)

2); and when W = {wi)},W ? = {wi?}

|W −W ?| will denote
∑

i
|W i − wi?|.
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Proposition 4.4 Consider the process (4.3) and an initial configuration (po, {wio}), po ∈

Rn++, w
io ∈ Rn++,∀i. The solution (p(t), {wi(t)}) converges to (p?, {wi?}) where W ? = {wi?}

is Pareto Optimal and Z(p?, 1, {wi?}) = 0.

This is thus a further step from the Hahn-Negishi Process which we have considered

earlier. Notice that in this case, we have a better description of trades at disequilibrium

prices since these have been provided with some rationality properties. However the price

adjustment mechanism is really borrowed from the tatonnment analysis undertaken earlier.

Besides, the instantaneous nature of transactions and price adjustment makes the entire

process difficult. We proceed in the next section to re-examine these issues in a discrete

time environment. This allows us to describe the entire process in a more satisfactory way.

However, as we shall see the steps taken by Hahn-Negishi and Uzawa will provide important

building blocks towards such an explanation.

4.4 A Discrete Non-Tatonnement Process

4.4.1 Motivation

The most appealing story that one can tell about disequilibrium behavior is the following: if

excess demands are positive, then prices are bid up; whereas, if excess demands are negative,

prices are bid down. We shall attempt here a model for the above story; the story would

be partly modified, but hopefully, its basic appeal would be maintained.

Consider agents who encounter a price - they know their own demands and supplies but

they do not know whether the price is an equilibrium one (i.e., market clearing). We shall
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assume that each agent visits each market in succession - there are n markets if there are

n+ 1 commodities; thus if commodity n+ 1 is the numeraire, first n+ 1 is traded against

1; then n+ 1 against 2 and so on till n+ 1 is traded against n. This completes one round

of trading. At the end of one round of trading, either no agent experienced difficulty in

making desired transactions or some such problems are encountered.

There are two type of problems that one may encounter: (a) some agent wanted to buy

commodity j, some one wishes to sell j, but the agent who wanted to purchase j has run

out of the numeraire: the no-cash problem; (b) some agent wants to buy j and has the

numeraire (cash) but there is no agent who wants to sell j at these prices; alternatively, there

is a seller of j but no purchaser of j even though there is no-cash problem. When agents

encounter problems of the type (b), they correctly infer that the price is not an equilibrium

one. We shall assume that unsuccessful buyers bid the price up and unsuccessful sellers bid

the price down; these bids are subjected to some bounds which will be made explicit below.

It is also clear that the new price lies somewhere between the largest and smallest bid and we

leave the matter at this stage. For our purpose, we do not need to tie down things further.

Once new prices are formed, another round of trading occurs. The succession of trades

and price adjustments are then analyzed and we provide a theorem on the convergence of

endowments and prices.

Thus the price adjustment story we began with has been modified at two levels: first

of all, trades occur at disequilibrium prices and it is through such trades that agents find

out about the nature of the market; and secondly, it is when a buyer (seller) wants to buy
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(sell) more but is unable to do so that prices are bid up (down). To make some of these

ideas more precise, we shall consider first of all, a situation involving two goods only and

use that to prepare the ground for the more general consideration.

4.4.2 A First Step: The Two-good Case

We try to provide a first introduction to the story outlined above. Consider the case of two

goods; the advantage then is that there is only a single market and we are interested in

capturing what happens in that market.

The individuals i have stocks of the goods wi = (wi1, w
i
2) with wij > 0 for all i, j; consider

a price p which is the price of good 1 relative to good 2, the numeraire. At such a price,

each individual would like to consume xi = (xi1, x
i
2) where each xi solves the problem:

maxU i(y1, y2) subject to p.y1 + y2 ≤ p.wi1 + wi2

and thus would like to make the following transactions zi = xi−wi; we shall refer to these as

the desired transactions. Summing over zi for all i, we get the excess demands Z(p, {wi}),

of course. Notice that unless p was market clearing, i.e., Z = 0, the desired transactions

zi are not mutually compatible in the sense not all individuals can make their desired

transactions. This then is the the most important feature of a disequilibrium configuration.

More importantly, it is only when some individual fails to make their desired transactions

that it is revealed that the p is not market clearing.

So suppose then that p is not market clearing Z(.) 6= 0. What actual transactions can

take place ? We shall use the notation {ti} to denote actual transactions. First of all,
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actual transactions must be feasible i.e.,
∑
i t
i = 0. Thus every purchase by individual

i should also be a sale by some person h. Next, no one should lose from making such

transactions i.e., U i(wi+ti) ≥ U i(wi); and transactions should respect the budget constraint

i.e., pti1 + ti2 = 0 for all i. Notice that had the price being market clearing Z = 0, then

ti = zi is possible and desired and actual transactions match. When p is not market

clearing, the feasibility requirement rules out the matching of actual transactions with

desired transactions. In such situations, are there transactions which satisfy the three

conditions outlined above ?

To answer the above consider the following set of individuals at any p: S(p, {wi}) =

{i : zi1(p, w
i).Z1(p, {wi}) ≤ 0} which we may call the short side of the market ; we define

L(p, {wi}) = {i : i /∈ S(p, {wi})} as the long side of the market. It is easy to see that

whenever p is not market clearing, the long side is not empty; but the short side of the

market may be empty. This is so when even though the price is not market clearing, every

individual wants to buy the same commodity. Clearly in such situations, there is no one

who is willing to sell them this commodity and no voluntary transaction can take place.

It would thus appear reasonable to add two other facets to our definition of voluntary

transactions. First of all that ti1 should have the same sign as zi1 (actual transactions must be

in the same direction as desired transactions) and |ti1| ≤ |zi1| the fact that no one should be

coerced into buying (selling) more than the desired quantities. An alternative specification

may be provided as follows: no individual should be able to increase utility by curbing

transactions. Notice that these are all in terms of the non-numeraire commodity only; what
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happens with the numeraire will now follow from the budget constraint. It turns out in case

the short side of the market is non-empty, it is possible to define a set of actual transaction

meeting all the requirements:

ti =


zi(p, wi) ∀i ∈ S(p, {wi})

δizi(p, wi) otherwise
(4.5)

where 0 ≤ δi ≤ 1 are so defined that
∑
i t
i = 0. thus individuals on the short side achieve

their desired transactions; those on the long side try to move up as close as possible to

their desired transactions. Notice that such a set of transactions meets our requirements

but these transactions require that there are individuals on the short side of the market.

After such transactions are complete, notice that the individuals on the short side,

having achieved their desired transactions have no way of figuring out that the price p was

not a market clearing one; it is those on the long side who have recognized that the p is

not market clearing and they have figured out the nature of the imbalance too. Now if

nothing happens to the price then notice that those who were on the short side have no

desire to participate while the only individuals who wish to transact are the unsatisfied

persons on the long side of the market and all of them wish to buy the same commodity:

no further transactions can take place. Thus these transactions are really very much like

the Hahn-Negishi transactions that we have analyzed earlier.

As we had indicated above, the individuals on the long side have been able to identify

the nature of the market imbalance and therefore would like to bid the price up or down in

an attempt to achieve their desired transaction. So such bids are made and the price gets
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revised somewhere in between the highest and smallest bids made and once gain individuals

transact to find out what the nature of the market imbalance is. This is the story that we

shall analyze formally in the multi-good setting. Notice that with many markets, we need

to work a bit more at identifying transactions since it is impossible to define the short side

of THE market. Fortunately, the developments in Non-Walrasian Equilibria will help us in

identifying such transactions.

4.4.3 The Model and Preliminary Definitions

We consider the standard exchange model with n-goods numbered 1 to n; good n is the

numeraire; there are M individuals i = 1, · · · ,M each with an utility function U i(.) and an

endowment wi, with win > 0∀i. It would be convenient to define X = {x ∈ Rn+ : xn > 0};

thus ∀i, wi ∈ X. We shall assume the following:

A. For each i, U i(.) is a strictly quasi-concave, increasing and continuously differentiable on

Rn+.

Define

sij(x) =
∂U i(x)
∂xj

/
∂U i(x)
∂xn

B. sij(x) > 0 for all i, j and for all x ∈ X; further sij(x
t) → 0 for some subsequence {xt} ∈ X

⇒ either xtj →∞ or xtn → 0.

C. For each i, U i(x) ≥ U i(wi) ⇒ x ∈ X.

The assumptions of this section are thus quite similar to the ones made earlier. Now

given a price vector, p,pj > 0 for all j, demand functions xi(p, wi) and excess demand
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zi(p, wi) = xi(p, wi)−wi may be defined for every individual i. The market excess demand is

then Z(p, {wi}) =
∑
i z
i(p, wi). Given a price p such that Z(.) 6= 0, p is a disequilibrium price

vector. To define transactions which might take place at such a disequilibrium configuration,

we take the help of constructs of a Non-Walrasian Equilibrium. The essential nature of

such an equilibrium lies in developing rations or constraints on transactions such that the

constrained transactions are mutually compatible. We begin, as in the two-good case with

a list of requirements for feasible transactions.

Consider the notion of a Younes Equilibrium at {p, {wi}} . We shall say that the

array {ti} constitute a Younes Equilibrium at {p, {wi}} provided the following conditions

hold:

a.
∑
i t
i = 0

b. For each i, ti solves the problem:

maxt U i(wi + t)

subject to p.t ≤ 0

min(0, tij) ≤ tj ≤ max(0, tij) for all j 6= n

wi + t ≥ 0

and

c. There does not exist a pair of consumers (i, h), a commodity j and a real number ε > 0

such that

U i(wi + t
i) < U i(wi + t

i + εaj)

Uh(wh + t
h) < Uh(wh + t

h − εaj)

183



with wi + t
i + εaj ≥ 0 and wh + t

h − εaj ≥ 0, where aj = (ajk), a
j
k = 0, k 6= j, n, ajn = −pj ,

ajj = 1. The vector aj , thus, denotes the transaction involved in the purchase of one unit of

the commodity j.

Notice that the transactions defined above satisfy the requirements of feasibility (a),

voluntariness (b) and exhaust all possible trading opportunities (c). Notice that the con-

straints in the maximization problem in (b), ensure, first of all, that no one loses; secondly,

transactions respect the budget constraint and finally, no one can increase utility by trading

less. These three combine to make the transactions voluntary. The conditions (c) ensure

that all trading opportunities have been exploited so that after transactions have been

completed, there is no scope for further utility enhancing transactions.

An alternative notion to the above is that of transactions {ti} associated with a

Dreze Equilibrium at {p, {wi}} : transactions {ti} are said to be associated with a

Dreze Equilibrium at {p, {wi}} provided there exist cij , C
i
j , j = 1, 2, ..., n−1, i = 1, 2, · · · ,M

satisfying the following three conditions:

i. cij ≤ 0 ≤ Cij∀i,∀j 6= n

ii.
∑
i t
i = 0 and for each i, ti solves the following problem (DE):

maxt U i(wi + t)

subject to p.t ≤ 0

cij ≤ tj ≤ Cij for all j 6= n

wi + t ≥ 0

and
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iii. If for some j there is i1 such that ci1j = t
i1
j then Chj > t

h
j ∀h; similarly if there is some j

and i1 such that Ci1j = t
i1
j then chj < t

h
j ∀h.

Notice now that the Dreze Equilibrium introduces explicitly the notion of constraints on

transactions cij , C
i
j : the first lost are constraints on sales while the second lot are constraints

on purchases; these constraints are such that the constrained plans are mutually compatible

(ii) and are voluntary in that they satisfy the budget constraint as well as the fact that by

reducing the volume of trades, no one would be able to increase utility. Condition iii

ensures that the non-trivial nature of the constraints in that the constraints may bind only

on one side of the market. Markets with such constraints have been termed orderly in the

literature10. As it is easy to see, this requirement is similar to requiring that all possible

transactions have been carried out. It turns out that these two forms of transactions are

related11:

Proposition 4.5 Given any Younes equilibrium {ti} at (p, {wi}} with win+ tin > 0, ∀i, one

may construct {ci, Ci} such that {ti} constitute transactions associated with a Dreze Equi-

librium at (p, {wi}}. Conversely, any transactions {ti} associated with a Dreze Equilibrium

at (p, {wi}} constitute a Younes equilibrium.

As we shall see, crucial use will be made of this result in the analysis provided below.

Some implications of transactions associated with a Dreze Equilibrium are noted below for

future reference. Consider the fact that the transactions {ti} solve the problem DE, where

each utility function U i is assumed to be strictly quasi-concave and where each constraint
10See, for instance, Hahn (1978).
11Silvestre (1982)
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is linear (affine); then for each i, there exist non-negative numbers λi?, µ?ij , δ
?
ij , θ

?
ij satisfying

the following conditions12:

4.i. U ij − λi?pj + µ?ij − δ?ij + θ?ij = 0 ∀j 6= n

4.ii. U in − λi? + θ?in = 0

4.iii. λi?p.ti = 0

4.iv. θ?ij(w
i
j + t

i
j) = 0∀j

4.v. µ?ij(t
i
j − cij) = 0∀j 6= n

4.vi. δ?ij(C
i
j − t

i
j) = 0∀j 6= n

In case, win + t
i
n > 0, it follows from 4.iv that θ?in = 0 and hence from 4.ii that

U
i
n = λi? > 0 where the inequality follows from the strictly increasing nature of the

utility functions. In this situation, we may define:

sij ≡ sij(w
i + t

i) =
U
i
j

U
i
n

∀j 6= n

Then from 4.i, we have

4.vii. sij = pj + {δ?ij − µ?ij − θ?ij}/λi?∀j 6= n

By virtue of condition (iii) of a Dreze Equilibrium, we also have the following:

δ?ij > 0 for some i, j ⇒ µ?ij = 0 ∀i ;

12We shall write U
i
j to designate the partial derivative of U i with respect to j and evaluated at wi + t

i
.
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and

µ?ij > 0 for some i, j ⇒ δ?ij = 0 ∀i.

Thus at any Dreze Equilibrium and for any market j 6= n the following possibilities exist:

There is some i such that cij = t
i
j : the market is sales-constrained ; or

There is some i such that Cij = t
i
j : the market is purchase-constrained ; or

For all i, cij < t
i
j < Cij : the market is unconstrained.

When a market is unconstrained, we have, by virtue of 4.v and 4.vi, µ?ij = δ?ij = 0 and

hence from 4.vii, sij ≤ pj for all i and the equality holds if i is such that wij + t
i
j > 0.

Thus when a market is sales constrained, we have that δ?ij = 0 for all i and hence

sij ≤ pj − µ?ij/λ
i? with equality in case i satisfies wij + t

i
j > 0; and similarly, it follows

that when a market is purchase constrained, we have that µ?ij = 0 for all i and hence

sij ≤ pj + δ?ij/λ
i? with equality in case i satisfies wij + t

i
j > 0. We shall summarize the above

conclusions in the form of the following:

Claim 4.4.1 At transactions {ti} associated with a Dreze Equilibrium, for any j 6= n,

either the market is sales constrained and sij ≤ pj∀i or the market is purchase constrained

and sij ≥ pj∀i such that wij + t
i
j > 0 .

.

We shall refer to the above as Condition A. Now notice that it is not necessary that the

transactions associated with a Dreze equilibrium be non-zero. Condition A however makes

it possible for us to identify the following condition for some transactions to take place: if
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there exists individuals i, h and some commodity j such that

si1j (wi1) > pj > si2j (wi2j ) and wi2j > 0

then transactions associated with a Dreze Equilibrium will be non-zero. We shall refer to

this as Condition T.

With the above set-up, it should be clear that transactions at a Younes Equilibrium

or those associated with a Dreze Equilibrium have rather nice properties and if we are to

identify transactions which might take place at a disequilibrium configuration, then we may

consider these transactions. There is one drawback however and that is there does not

appear to be any way of guaranteeing that these transactions will take place quickly. This

aspect makes us continue our search for what kinds of transactions may take place. The ideal

candidate appears to be to have only one round of transactions (to be made specific below).

On the basis of these transactions, individuals form some idea of the market imbalances or

the nature of binding constraints. And on the basis of this the bids are put in place. The

new price will be somewhere in between the largest and smallest bid in each market. And

then there would be another round of transactions and we shall study the resulting process

below.

4.4.4 One Round of Trading

To overcome the problems mentioned above, we assume that first agents exchange good 1

against n; then 2 against n and so on till they exchange n− 1 against n. This would be one

round of trading. At the end of this one round of trading, individual i would have traded
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and i’s endowment would be altered wi + ei, if at the beginning i held wi; ei denotes the

transactions made by i. We demand that the transactions {ei} satisfy the following13:

1.
∑
i e
i = 0

2. For each i, ei solves the problem YE-1

maxt U i(wi + t)

subject to p.t ≤ 0

min(0, eij) ≤ tj ≤ max(0, eij) for all j 6= n

−win +
∑
k≤j pk.tk ≤ 0 for all j 6= n

wi + t ≥ 0

and

3. There does not exist a pair of individuals i1 and i2, a commodity h 6= n and a number

ε > 0 such that

U i1(wi1 + ei1 + ah) > U i1(wi1 + ei1)

U i2(wi2 + ei2 − ah) > U i2(wi2 + ei2)

wi1n −
∑
k≤h pk.e

i1
k − εph ≥ 0

wi2 + ei2 − ah ≥ 0 and wi1 + ei1 + ah ≥ 0

where ah, as defined before, denotes the effect on the endowment when ε units of good h is

purchased at the unit price of ph. If transactions {ei} satisfy the above conditions, we shall

say that {ei} constitute a Y1-Equilibrium at (p, {wi}).
13This notion is based on Younes (1975).
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We need to point out some differences ( between conditions 1 to 3 and the conditions

for a Younes Equilibrium. First of all notice the problem YE-1 has an extra constraint

that was missing from the earlier constructs of a Younes equilibrium or Dreze Equilibrium :

since the individual visits the markets sequentially, there is a sequential budget constraint:

when the individual visits the first market then the stock of numeraire is win which gets

adjusted by the amount of transaction that is made and this adjusted amount serves as

the constraint when the individual visits the 2-nd market and so on. Similarly, condition

3 has the same type of constraint: trading possibilities are exhausted subject to the fact

that when the agents visited the markets for j, those who have the numeraire and those

who have the good do not want to undertake further transactions. This sequential nature

of the budget constraint is natural in the present context. To relate the transactions after

one round {ei} with our earlier definitions, we have the following claim:

Claim 4.4.2 If {ei} constitute a Y1-Equilibrium at (p, {wi}) and further if for every i

we have:

−win +
∑
j≤k

pje
i
j < 0∀k 6= n (4.6)

then {ei} are transactions associated with a Dreze Equilibrium at (p, {wi}).

Proof: If (4.6) holds at {ei} then since conditions a and b of a Younes Equilibrium hold, it

remains to check that condition c is also met. Suppose to the contrary that condition c of

a Younes equilibrium is violated. That is there exist individuals (i, h), a commodity j1 and

a real number ε > 0 such that

U i(wi + ei) < U i(wi + ei + εaj1)
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Uh(wh + eh) < Uh(wh + eh − εaj1)

where aj = (0, · · · , 0, ε, 0, · · · ,−εpj); this implies that whj1 > 0 and at the market for j1,

since condition (4.6) holds for i and for k = j1, this implies that condition 3 for a Y1-

Equilibrium is violated. Hence condition c of a Younes Equilibrium must hold as well

and thus, {ei} constitute a Younes Equilibrium at (p, {wi}). By virtue of Proposition

4.5, the claim follows. •

The crucial nature of the condition (4.6) is now revealed. As we have indicated above

at a Y1-Equilibrium, after transactions are complete, markets may not be orderly, in

general. However (4.6) ensures that this property is guaranteed; alternatively, (4.6) ensures

that a Younes Equilibrium is attained in one round of transactions.

4.4.5 The Process and the Main Result

Thus if individuals began with wi, then at the end of a round of trading, they have

wi
′
= wi + ei (4.7)

where the array {ei} satisfies conditions 1-3 of a Y1-Equilibrium. And more importantly,

individuals would have noted which are the binding constraints each faced; for example, an

individual could have been unsuccessful in buying or selling in some market, j, say where

good j was exchanged against the numeraire n.

We shall assume that an unsuccessful buyer (seller) bids the price up (down, respec-

tively); the highest (lowest) bid, we shall assume would be the person’s marginal rate of

substitution, sij(w
i+ei). Given these bids, the new price in the j−th market would be some-
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where between the lowest and the largest bid and hence, between the lowest and largest sij .

It would be convenient to represent the new price as :

p′j = αj max
i

sij(w
i + ei) + (1− αj) min

i3wi
j+e

i
j>0

sij(w
i + ei) (4.8)

where 1 > αj > 0. The minimum is being taken only over those who have positive amounts

of the commodity; only then can one ensure that some persons would be willing to sell the

commodity. The numbers αj play no role in the analysis below except that we require them

to be bounded away from zero and 1. After the new prices are formed as described above,

a further round of trading occurs and subsequently, prices are adjusted once more.

Thus, beginning with {wi(k− 1)}, at the end of round k of trading, in accordance with

the equation ( 4.7 ), each agent i has

wi(k) = wi(k − 1) + ei(k − 1) (4.9)

where the array {ei(k−1)} satisfies conditions 1-3 of a Y1-Equilibrium at p(k−1), {wi(k−

1)}.

Subsequently, we have price adjustment provided by the following (writing sij(k) for

sij(w
i(k)) and I(j, k) = {i : wij(k) > 0}):

pj(k) = αj(k) max
i

sij(k) + (1− αj(k)) min
i∈I(j,k)

sij(k) for all j 6= n (4.10)

where 0 < δj < αj(k) < 1 − ηj for some positive numbers δj , ηj . Initially, we assume that

there is some arbitrary po = (po1, p
o
2, · · · , pon−1, 1) where poj > o∀j and {wio} where for each i,

wion > 0. Thus ei(0)} denotes the transactions at a Y1-Equilibrium at (po, {wio}) which

defines through (4.9), {wi(1)} and hence p(1) through (4.10) and so on.
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As explained above, a sequence of p(k), {wi(k)} is generated after k rounds of trading.

We shall analyze the behavior of this sequence as k →∞. The main result in this connection

is the following:

Proposition 4.6 p(k), {wi(k)} converges to a no-trade Walrasian configuration p∗, {wi∗}.

It would be convenient to introduce the following notation for future use:

aj(k) = max
i
sij(k) ; bj(k) = min

i∈I(j,k)
sij(k) ; Dj(k) = aj(k)− bj(k) (4.11)

Notice then that from (4.10) we have :

bj(k) ≤ pj(k) ≤ aj(k)

and consequently,

aj(k)− pj(k) = αj(k)Dj(k) ≥ δjDj(k) (4.12)

and also

pj(k)− bj(k) = (1− αj(k))Dj(k) ≥ ηjDj(k) (4.13)

First of all, we to restate Claim 4.4.2 to meet current requirements:

Claim 4.4.3 If at some round k, transactions ei(k) are such that for all i

−win(k − 1) +
∑
j≤h

pj(k − 1)eij(k) < 0∀h 6= n (4.14)

then {ei(k)} are transactions associated with a Dreze equilibrium at {p(k− 1), {wi(k− 1}}.
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The significance of the above rests on the crucial property iii of transactions at a Dreze

Equilibrium; this says that only one side of the market can be rationed /constrained. One

may now note, trivially, that:

Claim 4.4.4 If at some round k no trades occur and win(k−1) > 0 ∀i then condition ( 4.6 )

holds.

The proof is immediate since {ei} = 0 ∀i.

Consider then the sequence {p(k), {wi(k)}, {ei(k)}} generated by the equations ( 4.9 )

and ( 4.10 ). Consider Ω ∈ RMn
+ which is such that Ω = {{xi} : i = 1 · · ·M,U i(xi) ≥

U i(wi),
∑
i x

i =
∑
iw

io} where the array {{wio} denotes the initial endowment, i.e., {wi(0)}.

Note that by virtue of our assumption C., {xi} ∈ Ω ⇒ xi ∈ X∀i. Note also that the set

Ω is a compact subset of RMn and by construction, {wi(k)} ∈ Ω∀k; thus all limit points

{w̃i} ∈ Ω; consequently, for each i, sij(k) has a maximum and minimum in Ω, say βij and

θij , respectively. In other words, we have

max
i
βij ≥ pj(k) ≥ min

i
θij > 0

where the strict inequality follows from assumption B. Thus one may conclude:

Claim 4.4.5 {p(k), {wi(k)}, {ei(k)}} is a bounded sequence and hence has limit points

{p̂, {ŵi}, {ei}} such that p̂ > 0 and ŵi ∈ X∀i.

In addition, we have for k > 1, if no transactions occur, then:

Claim 4.4.6 {p(k), {wi(k)}, {ei(k)}} is a no-trade Walrasian configuration if ei(k) = 0∀i.
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Proof: First of all by Claim ( 4.4.4 ), condition ( 4.6 ) holds; hence, by virtue of our

Claim ( 4.4.3 ), {ei(k)} = {0} are transactions associated with a Dreze Equilibrium at

{p(k), {wi(k)}}. Thus the conditions ii. and iii. of the Dreze equilibrium imply one of the

following holds at any j 6= n14:

Either sij(k) ≤ pj(k)∀i

Or sij(k) ≥ pj(k)∀i ∈ I(j, k)

on account of the fact that no transactions have taken place, ei(k) = 0∀i; but on account

of price adjustment we know that aj(k) − pj(k) ≥ δj .Dj(k) and pj(k) − bj(k) ≥ ηj .Dj(k);

thus on either count we must have Dj(k) = 0. This establishes the claim. •

Thus unless a Walrasian configuration is encountered at the end of some round of trad-

ing, trading and price adjustment would continue. Let {p̂, {ŵi}, {êi}} be an arbitrary limit

point of the sequence {p(k), {wi(k)}, {ei(k)}}. We have:

Claim 4.4.7 The array {êi} satisfies conditions 1, 2 and 3 of Y1-Equilibrium at {p̂, {ŵi}}.

Proof: Note that, from Claim 4.4.5, p̂ > 0 and {ŵi} ∈ X ∀i. Suppose that the subsequence

{p(s), {wi(s)}, {ei(s)}} converges to {p̂, {ŵi}, {êi}}. By definition, ei(s) solves the following

problem:

maxt U i(wi(s) + t)

subject to p(s).t ≤ 0
14Recall Claim 4.4.1.
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min(0, eij(s)) ≤ tj ≤ max(0, eij(s)) for all j 6= n

−win(s) +
∑
k≤j pk(s).tk ≤ 0 for all j 6= n

wi(s) + t ≥ 0

Let γi{p(s), wi(s), ei(s)} denote the constraint set of the above problem. We shall show

below that êi solves the following:

maxt U i(ŵi + t)

subject to t ∈ γi(p̂, ŵi, êi)

Thus, the array {êi} satisfies conditions 1 and 2. Now suppose contrary to condition 3.,

there exist individuals i1, i2, a commodity h and a number ε > 0 such that

U i1(wi1 + êi1 + ah) > U i1(wi1 + êi1)

U i2(wi2 + êi2 − ah) > U i2(wi2 + êi2)

wi1 + êi1 + ah ≥ 0 wi2 + êi2 − ah ≥ 0

−wi1n +
∑
j≤h p̂j ê

i1
j + εph ≤ 0


(4.15)

Consequently, for s large enough, we must have the following:

U i1(wi1(s) + ei1(s) + ah) > U i1(wi1(s) + êi1(s))

U i2(wi2(s) + êi2(s)− ah) > U i2(wi2(s) + êi2(s))

 (4.16)

But since the array {ei(s)} satisfies condition 3 by definition, the equation ( 5.2 ) implies

that we must have for each s large enough:

Either − wi1n (s) +
∑
j≤h

pj(s)ei1j (s) + εph > 0

Or wi2h + ei2h (s)− ε < 0
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thus, equation ( 4.15 ) cannot hold. Hence the array {êi} must also satisfy condition 3 at

{p̂, {ŵi}} and the claim is true. •

To complete the proof, recall that we need to clinch a fact assumed in the proof above:

viz., êi solves the following:

maxt U i(ŵi + t)

subject to t ∈ γi(p̂, ŵi, êi)

We do so now through the following two steps:

Claim 4.4.8 Consider (cj , Cj), cj ≤ 0 ≤ Cj , j = 1, 2, ..., (n − 1) and w ∈ Rn+. Define

σ(c, C,w) = {t ∈ Rn : cj ≤ tj ≤ Cj , j 6= n,w + t ≥ 0}. For any sequence (cs, Cs, ws) →

(co, Co, wo) where coj ≤ 0 ≤ Coj , j 6= n and wo ≥ 0 and any to ∈ σ(co, Co, wo) there is a

sequence ts such that ts ∈ σ(cs, Cs, ws) for all s and ts → to.

Proof: Notice first of all that for any (c, C,w) satisfying cj ≤ 0 ≤ Cj , j 6= n and w ≥ 0,

σ(c, C,w) is non-empty. Next since to ∈ σ(co, Co, wo) we can define the following: J1 = {j :

Co = toj = coj} , J2 = {j : Coj > toj = coj} , J3 = {j : Coj = toj > coj} , J4 = {j /∈ J1 ∪ J2 ∪ J3 :

toj + woj > 0} , J5 = {j /∈ J1 ∪ J2 ∪ J3 : toj + woj = 0}. Now define ts as follows:

tsj = toj for j ∈ J1 ∪ J4 ; tsj = Csj for j ∈ J3

for j ∈ J2, define tsj = λscsj +(1−λs)Csj where λs = max[0,1] λ such that wsj + tsj ≥ 0; finally

for j ∈ J5 define tsj = −wsj .

Notice that by definition, tsj + wsj ≥ 0∀j and for all s large enough and for all j /∈ J2

tsj → toj ; for j ∈ J2, notice that since λs is a bounded sequence there is a limit point λ̄ and
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consequently for such tsj , there is a limit point t̂j = coj(= toj)+ (1− λ̄)(Coj − coj) > toj if λ̄ 6= 1;

thus in this case, woj + t̂j > 0 and hence, there exists a subsequence tsr
j such that for all r

large, wsr
j + tsr

j > 0 but then λsr cannot be maximal; hence for every limit point we must

have λ̄ = 1 and hence tsj → toj for j ∈ J2 as well. This proves the claim. •

We write cij = min(0, eij) , Cij = max(0, eij) and recall the definition of γi(p, wi, ei) =

{t ∈ Rn : p.t ≤ 0, cij ≤ tj ≤ Cij for j 6= n,−win +
∑
k≤j pk.tk ≤ 0 for all j 6= n,wi + t ≥ 0}.

We may now show that

Claim 4.4.9 Consider (po, wio , eio), poj > 0∀j, wion > 0, to ∈ γ(po, wio , eio) and a sequence

(ps, wis , eis) → (po, wio , eio). Then there is a sequence ts such that ts ∈ γ(ps, wis , eis) and

ts → to.

Proof: Since wion > 0 ∃t̄ ∈ γ(po, wio , eio) such that po.t̄ < 0 and−wion +
∑
k≤j p

o
k.t̄k < 0∀j 6= n:

for example t̄j = 0∀j 6= n, t̄n = −wion /2. Next notice15 that to ∈ σ(cio , Cio , wio) and hence

from Claim 4.4.8, there is a sequence ts, such that ts ∈ σ(cis , Cis , wis) such that ts → to.

Define next us = λsts + (1 − λs)t̄ where λs is max[0,1] λ such that ps.us ≤ 0; it is to be

noted that λs < 1 ⇒ ps.us = 0; since ts, t̄ ∈ σ(cis , Cis , wis) which is convex, we note that

us ∈ σ(cis , Cis , wis)∩ {t ∈ Rn : ps.t ≤ 0}; since λs forms a bounded sequence, it will have a

limit point λ̄; if possible let this be < 1; then there is a subsequence usr → ū = λ̄to+(1− λ̄)t̄

and since λsr < 1, psr .usr = 0 along this subsequence so that po.ū = 0; since po.t̄ < 0 this

means that po.to > 0: a contradiction. Thus λ̄ = 1 and ū = to. Thus there is a sequence us

such that us → to and us ∈ σ(cis , Cis , wis) ∩ {t ∈ Rn : ps.t ≤ 0}.
15We shall write cio = min(0, eio), Cio = max(0, eio) and cis = min(0, eis), Cis = max(0, eis).
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Next consider the inequalities ς(wi−o, po) = {t ∈ Rn : −wion +
∑
k≤j p

o
k.t

o
k ≤ 0 for all j 6=

n}.

Consider first of all the inequality for j = 1, i.e., −wion + po1t
o
1 ≤ 0; if this inequality is

satisfied with a strict inequality, then for all s large enough, we must have −wisn +ps1.u
s
1 < 0

and consequently, us ∈ σ(cis , Cis , wis) ∩ {t ∈ Rn : ps.t ≤ 0} ∩ {t ∈ Rn : −wisn + ps1u
s
1 ≤ 0}.

On the other hand, if the inequality is satisfied with an equality then to1 > 0 and

−wion + po1.t
o
1 = 0; now define usj(1) = usj , j 6= 1 and for j = 1, define us1(1) = λsus1 where

λs is the max[0,1] λ such that −wisn + ps.us1(1) ≤ 0. As before, notice that λs < 1 ⇒

−wisn + ps.us1(1) = 0. If λs → λ̄ < 1, then us1(1) → λ̄to1 and consequently, from hypothesis,

−wion + po1λ̄t
o
1 < 1 but then, if λsr → λ̄ < 1 then λsr = 1 for all r large and we arrive at a

contradiction and hence λ̄ = 1 and us1(1) → to1 and we have a sequence us(1) → to where

us(1) ∈ σ(cis , Cis , wis) ∩ {t ∈ Rn : ps.t ≤ 0} ∩ {t ∈ Rn : −win + p1.t1 ≤ 0}.

We consider the next inequality in ς(wio , po) and proceed exactly as above and continue

this till we have exhausted all the inequalities in ς(wio , po) to conclude that there is a

sequence us ∈ γ(ps, wis , eis) and us → to as claimed. •

Finally, suppose that (p̂, ŵi, êi) is the limit of a sequence of (ps, wis , eis) where ŵin > 0

for all i, then êi solves the problem maxt U i(wi + t) subject to t ∈ γ(p̂, ŵi, êi); since êi ∈

γ(p̂, ŵi, êi), êi does not solve the problem implies that there is t ∈ γ(p̂, ŵi, êi) such that U i(ŵi+

t) > U i(ŵi + êi); by virtue of the Claim 4.4.9, it follows that there is a sequence ts ∈

γ(ps, wis , eis) and ts → t; thus for s large enough it follows that U (wis + ts) > U i(wis + eis):

a contradiction. This proves the claim.
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The above allows us to demonstrate the validity of:

Claim 4.4.10 {êi} = 0 ∀i.

Proof: Note first of all that the sequence U i(wi(k)) is nondecreasing and bounded above by

virtue of the Claim ( 4.4.5 ); thus for each i, U i(wi(k)) converges to Û i say as k →∞; note

further, that U i(wi(k+ 1)) → Û i too, as k →∞. Thus U i(ŵi) = U i(ŵi + êi) = Û i for all i.

By virtue of the Claim ( 4.4.7 ), it follows that since {êi} satisfies conditions 1,2 and 3 at

{p̂, {ŵi}}, and U i(.) is strictly quasi-concave, we must have êi = 0 for all i and our claim

follows. •

We are now ready to show that:

Claim 4.4.11 At any limit point {p̂, {ŵi}, {êi}} the condition ( 4.6 ) holds: i.e.,

∀i : −win +
∑
j≤h

p̂j ê
i
j < 0∀h 6= n

Proof: Follows by virtue of the Claims ( 4.4.10 ), ( 4.4.7 ) and ( 4.4.4 ). •

This allows us to conclude that:

Claim 4.4.12 For all k large enough, the sequence {p(k), {wi(k)}, {ei(k)}}, is such that

{ei(k)} are transactions associated with a Dreze equilibrium at {p(k), {wi(k)}}.

Proof: By virtue of the Claim ( 4.4.11 ), it follows that for all k large enough, the condition

( 4.6 ) must hold; consequently, the claim follows by virtue of Claim ( 4.4.3 ). •.
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The above shows that even though, the initial steps of the sequence {p(k), {wi(k)}, {ei(k)}}

may not be a Dreze equilibrium, for k large enough, they do constitute such an Equilibrium.

To complete the proof, we shall consider a sequence {p(k), {wi(k)}, {ei(k)}) such that

{ei(k)} are transactions associated with a Dreze equilibrium at {p(k), {wi(k)}}16.

4.4.6 The Proof of the Main Result

The final steps in the proof will now be provided. We have demonstrated above that for the

sequence (p(k), {wi(k)}, {ei(k)}), ei(k) → 0 for each i (Claim 4.4.10). From the definition

of the process (4.9), we have:

Claim 4.4.13 For each i, wi(k + 1)−wi(k) → 0; in addition for any fixed h, wi(k + h)−

wi(k) → 0.

Note that there would be some associated sequence of {ci(k), Ci(k)} such that ei(k)}

are the associated transactions satisfying conditions i - iii of a Dreze Equilibrium. Hence

we have at each stage k and any market j is either constrained in sales or constrained in

purchases or may not be constrained at all. First, we consider what happens if a particular

market j is sales constrained along some subsequence ks. The notations and relationships

introduced in (4.11), (4.12) and (4.13) will be used in the analysis.

Claim 4.4.14 If for some commodity j, ∃ks, a subsequence, such that for each s there is

some i satisfying cij(ks) = eij(ks) = wij(ks + 1) − wij(ks) < Cij(ks) then Dj(ks) → 0 as

16In other words, we neglect the first steps and concentrate on those stages where the Claim 4.4.12 is

valid.
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s→ +∞; moreover, Dj(ks + 1) → 0.

Proof: From the condition of sales constrained, we know that (see Condition A above) that:

shj (ks + 1) ≤ pj(ks) for all h

and from the price adjustment equations (4.10) that

pj(ks) ≤ aj(ks)(= max
h

shj (ks))

Thus we have aj(ks+1) ≤ pj(ks) ≤ aj(ks); now from Claim 4.4.13, we know that aj(ks+1)−

aj(ks) → 0; hence aj(ks)− pj(ks) → 0 and consequently it is immediate that Dj(ks) → 0.

For the remaining part of the claim, assume to the contrary that Dj(ksr + 1) ≥ ε > 0

for some subsequence ksr . Then we have :

ε ≤ aj(ksr + 1)− bj(ksr + 1)

≤ [aj(ksr + 1)− aj(ksr) + aj(ksr)− bj(ksr)] + [bj(ksr)− bj(ksr + 1)]

The first term within square brackets approaches zero, by virtue of Claim 4.4.13. Conse-

quently for all r large enough, we must have [bj(ksr)− bj(ksr + 1)] ≥ ε/2.

Let i1 ∈ I(j, ksr +1) such that si1j (ksr +1) = bj(ksr +1); note that from the definition of

price adjustment (4.10), it follows that pj(ksr) ≥ bj(ksr). Then i1 ∈ I(j, ksr) as well. Since

other wise, wi1j (ksr) = 0 < wi1j (ksr + 1) and hence ci1j (ksr) < wi1j (ksr + 1) − wi1j (ksr) Since

individual i1 is not constrained in the j-th market at stage ksr , it follows that bj(ksr +1) =

si1j (ksr + 1) ≥ pj(ksr) ≥ bj(ksr): a contradiction. Hence we have : Dj(ksr) = aj(ksr) −

bj(ksr) ≥ si1j (ksr)− bj(ksr) ≥ 0. Thus we have:

ε/2 < |bj(ksr)− bj(ksr + 1)| ≤ |bj(ksr)− si1j (ksr)|+ |si1j (ksr)− si1j (ksr + 1)|
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But the two terms on the right are both tending to zero: the first because Dj(ksr) is

approaching zero, as just demonstrated and the second on account of Claim 4.4.13. We

arrive at a contradiction and thus the claim is established. •

Next consider any limiting configuration for the process (4.9) and (4.10): [p̄, {w̄i}, {ēi}];

we know by virtue of our claims that ēi = 0 ( see Claim 4.4.10 ) for any limiting configuration

[p̄, {w̄i}, {ēi}]. Define āj = maxi sij(w̄
i), b̄j = mini3w̄i

j>0 s
i
j(w̄

i), D̄j = āj − b̄j . First of all

note that:

Claim 4.4.15 For any commodity j 6= n we have only the following possibilities:

4.i. āj ≤ p̄j or

4.ii. b̄j ≥ p̄j or

4.iii. āj = b̄j = p̄j

Proof: Since [p̄, {w̄i}, {ēi}] is a limiting configuration, there is a subsequence (kr) such that

[p(kr), {wi(kr)}, {ei(kr}] → [p̄, {w̄i}, {ēi}] as r → +∞; also the transactions {ei(kr)} are

transactions associated with a Dreze Equilibrium at [p(kr), {wi(kr)}] for all r large enough

( see Claim 4.4.3 ). Thus for all r large enough, we must have Condition A (Claim 4.4.1): for

any j 6= n, either the market is sales constrained and sij(w
i(kr+1)) ≤ pj(kr)∀i or the market

is purchase constrained and sij(w
i(kr+1)) ≥ pj(kr)∀i such that wij(kr + 1) = wij(kr) + eij(kr) > 0 .

Also recall that by virtue of Claim 4.4.13, wi(kr + 1) → w̄i for all i. With these facts in

place, assume to the contrary that there is some j and individuals i1, i2 such that w̄i2j > 0
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and

si1j (w̄i1) > p̄j > si2j (w̄i2)

then notice that Condition A will be violated for large values of r. This establishes the

claim. •

We now claim that

Claim 4.4.16 At any limiting configuration, [p̄, {w̄i}, {ēi}], for any commodity j 6= n, we

must have D̄j = 0.

Proof: There is a subsequence (kr) such that [p(kr), {wi(kr)}, {ei(kr}] → [p̄, {w̄i}, {ēi}] as r →

+∞; consider for any j, the situation (4.i); since along the subsequence aj(kr) − pj(kr) ≥

ηjDj(kr), we must have āj − p̄j ≥ ηjD̄j thus (4.i) ⇒ D̄j = 0.

Next suppose we have at j the situation (4.ii) with D̄j = ε > 0 so that āj > b̄j ≥ p̄j .

Thus there must exist i1 such that si1j (w̄i1) > p̄j . Since for all i, wij(kr + 1) → w̄i, for all r

large enough we must have si1j (kr + 1) > pj(kr) and hence by Condition A, for all large r,

bj(kr + 1) ≥ pj(kr). This means that we must have, for all large r, pj(kr + 1) − pj(kr) ≥

pj(kr + 1) − bj(kr + 1) ≥ δjDj(kr + 1). Thus one may conclude that lim inf pj(kr + 1) ≥

p̄j + δjD̄j ; repeating this argument, for h suitably chosen, we must have:

lim inf pj(kr + h) ≥ lim inf pj(kr + h− 1) + δjD̄j ≥ p̄j + h.δjD̄j ≥ āj

Thus, the sequence [pj(kr + h), {wi(kr + h}, {ei(kr + h}] has, as a limit point [p̂, {w̄i}, {0}]

where we have p̂j ≥ āj or that condition (4.i) holds, but then, D̄j = 0: a contradiction.

Hence in condition (4.ii), as well, we must have D̄j = 0. This proves the claim. •
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This allows us to claim:

Claim 4.4.17 {wi(k)} → {w̄i} as k → +∞, a unique Pareto Optimal configuration.

Proof: At any limiting configuration [p̄, {w̄i}, {ēi}], since D̄j = 0 for all j 6= n it follows that

{w̄i} is Pareto Optimal. Now suppose that {wi(k)} has another limit point {ŵi} where

ŵi 6= w̄i for some i. The we have that {ŵi} is Pareto Optimal too. Recall that U i(wi(k))

being monotonic non-decreasing and bounded must converge to some Ū i as k → +∞; hence

it must be the case that U i(w̄i) = U i(ŵi) = Ū i for all i; the strict quasi-concavity of the

utility functions may now be exploited to conclude that the allocation {(ŵi + w̄i)/2} is

feasible and for all those i such that ŵi 6= w̄i, U i(ŵi + w̄i)/2) > Ū i: which contradicts

the Pareto Optimality of {w̄i}. Hence there cannot be any other limit point and hence the

claim follows. •

Finally, the convergence of prices is established in:

Claim 4.4.18 p(k) → p̄ such that [p̄, {w̄i}] constitute a no-trade Walrasian Equilibrium.

Proof: We have already established that {wi(k)} → {w̄i}, a unique Pareto Optimal con-

figuration. Define p̄j = āj = b̄j . We notice that due to the price adjustment equation, we

have for all k, pj(k) ≤ aj(k); hence it follows that lim sup pj(k) ≤ āj . We first show that

this must be satisfied with an equality.

Notice that for all k large enough, we know that {ei(k)} are transactions associated

with some Dreze Equilibrium at [p(k), {wi(k)}]; thus there are some constrains of the form

[cij(k), C
i
j(k)] for every i and all j 6= n. Suppose there is a subsequence ks such that for each

s along this subsequence, there is some i such that cij(ks) = eij(ks) = wij(ks + 1) − wij(ks)
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that is, there is some subsequence ks along which the j-th market is sales rationed. Thus

aj(ks + 1) ≤ pj(ks) ≤ aj(ks). Thus it follows lim pj(ks) = āj .

Suppose there is no such subsequence, then pj(k+ 1) ≥ pj(k) for all k large enough and

hence is monotonic non-decreasing and bounded above must converge i.e., lim pj(k) = pj∗

for some pj∗. Also we know that pj(k+1)−pj(k) ≥ pj(k+1)−bj(k+1), since the market is

purchase constrained, if at all, we have that pj(k) ≤ bj(k+1) and hence, pj(k+1)−pj(k) ≥

ηjDj(k + 1) ≥ 0 and since the left hand side goes to zero (given that the price sequence

converges), it follows that Dj(k) → 0; since aj(k)−pj(k) = ηjDj(k) it follows that pj∗ = āj .

Thus lim sup pj(k) = āj = b̄j . If possible, let lim inf pj(k) = p̃j < āj ; then for ε > 0 there

is some subsequence kr such that pj(kr) ∈ (āj − ε, āj + ε) while pj(kr + 1) /∈ (āj − ε, āj + ε);

since lim sup pj(k) = āj , for r large enough we must have pj(kr+1) < āj−ε < pj(kr): notice

that this means that along the subsequence (kr), in the j-th market, the only possibility of

a binding constraint is a sales constraint and hence by virtue of Claim 4.4.14, Dj(kr) → 0

and Dj(kr + 1) → 0: thus pj(kr + 1) → āj : thus no such subsequence can exist and hence

lim sup pj(k) = lim inf pj(k) = āj = b̄j for all j. •

This concludes the proof of the Proposition 4.6.

4.5 An Appraisal of the Non-Tatonnement Processes

We began by considering the entire question of allowing transactions at disequilibrium

prices. Several processes were considered. in the case of multiple markets, the problem of

devising rules of transactions, when prices are not market clearing have been considered

in detail. we began with the short-side rule which is the Hahn-Negishi restriction. We
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subsequently replaced that by the rationality requirement that no one should lose from

taking part in disequilibrium transactions which was what Uzawa considered. For both of

these cases, the convergence of prices, when price adjustment was proportional to excess

demand could be guaranteed.

From the point of view of convergence alone, non-tatonnement processes seem to perform

much better. What is significant is that we do not need to impose conditions such as gross

substitutes or dominant diagonals any longer. The really surprising result has been the one

in connection with a discrete process of trading and and price adjustment: we were able

to guarantee convergence without imposing too many restrictions on the utility functions.

If only one recalls our experience with a discrete tatonnement with a single market, one

should appreciate the result in this connection.

The restriction on transactions were mainly that transactions should be feasible, vol-

untary and exhaust all possibilities. In particular, our demand for one round of trans-

actions were even weaker since we lifted the last restriction. However this meant that we

needed to restrict the transaction involving the numeraire: the fact that no one gives up

the total stock of numeraire at any stage. Thus the problem of not having “money” at any

stage was resolved, artificially by means of the consideration of the set X and the condition

C. Thus to take into account all of these problems, our convergence result will run into

problems if people are able to unload their total stock of money.

There is another aspect of non-tatonnement processes which we need to consider. This

is best discussed within the two-good example we have provided above. We reproduce the
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description of trades in the context a single market when the short-side of the market is

non-empty:

ti =


zi(p, wi) ∀i ∈ S(p, {wi})

δizi(p, wi) otherwise

where δi are non-negative and such that
∑
i t
i = 0; notice that these trades are not unique.

To elaborate, suppose that in this market there is excess demand of 100 units at the current

price; suppose also that in this situation there are some people who wish to sell this com-

modity and the total amount that some persons would like to sell is 50 units; this means

that the remaining would want to purchase 150 units, since over all the excess demand is

of 100 units. Now the rule would say that those who want to sell, do indeed manage to sell.

But then for individuals on the long side, who get to buy and how much is not specified.

The numbers δi could be redefined in a variety of way and each would be an admissible set

of transactions. Thus given that there are many ways of defining transactions, the result-

ing equilibrium which will be approached will also vary. Thus the equilibrium approached

depends on the actual transactions carried out.

Originally, the investigation of whether an equilibrium was approached or not was sup-

posed to answer another line of query. This was the method of comparative statics: if

equilibrium was stable, then changes in equilibrium values due to changes in parameters

were meaningful. Since then the new values would in fact be attained. But if we do not

really know what equilibrium would be attained then comparing equilibrium values may

not make too much sense.

Notice also the aspect of production: in fact, we have exclusively considered exchange
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models and assumed that there is no production and consumption along the process of

adjustment. It is as if, producers first decide on how much of the various goods to produce

based on expectations of what prices will be and then bring their goods to the market.

Consumers may have received an advance on their sale of labor and other factors and

decide in turn on what to consume and during this stage, decide to on what to purchase.

Basically it is this stage that we have tried to describe.

When we bring in the treatment of actual time, a time for production, a time for

transaction and so on, we need to handle questions of a somewhat different nature. If one

were to allow for people to take decisions during one period which will affect outcomes in

another, we need to also study the notion of equilibrium over time. We shall turn to the

resultant dynamics of such considerations, next.
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5 Growth Processes

5.1 Introduction

We consider in the present chapter, equilibrium over time; the idea being that whatever

decisions we take today should influence what decisions we can take tomorrow so that there

is another dimension of the competition for resources which we have not considered so far:

do we use up the resources today and leave nothing for the future or do we follow a more

prudent path. These types of issues are at the core of macroeconomics and naturally, as

should be clear, are essentially dynamic in nature. There are three basic types of growth

models that have been considered in the literature. I refer here exclusively to what has

been called the ‘neoclassical’ literature. The first type has been called descriptive and

owes its origin to the contribution of Solow (1956) and Swan (1956). Although it has

been pointed out that there are features of such a construction which tend to be regarded

as unsatisfactory1, we shall begin with such models. Among the remaining two sets of

models, derives savings behavior from maximizing behavior over the consumer’s lifetime.

The optimal economic growth model owes its origin to Ramsey (1928) and subsequently

refined by Cass (1965) and Koopmans (1965) and derives savings behavior on the basis

of the assumption that households live forever2; the third type of model, the overlapping

generations model of growth originates from the Samuelson (1958) and Diamond (1965)
1See for instance, Azariadis (1993), p.4, “ In present terminology, Solow made an ad-hoc assumption -

and there are few sins as grave as this for a self-respecting economist.”
2This is found eminently acceptable and a great improvement over the assumption of constant savings

behavior.
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contributions and the simplest version assumes that each decision maker lives for exactly

two periods. We shall take them up for consideration one by one. Some times, in addition to

this classification, growth models are classified according to whether there are many goods

or not. Thus one talks of one sector (where there is a single good which can be stored and

consumed), two sectors and multi-sector growth models. We begin with the simplest, one

sector, descriptive growth model.

There is a single good which can be produced, consumed and invested; its production

requires, inputs of Labor employed (Nt) and Capital (Kt); the latter is just the good itself

from previous periods. At time t, the output of this good Yt may be written as Yt =

F (Kt, Nt), where the function F (, ) is assumed to be continuously differentiable satisfying

constant returns to scale, with positive marginal products and diminishing returns to each

factor. Thus F (λK, λN) = λF (K,N);Fi > 0;Fii < 0, i = K,N . In such circumstances, it

is more convenient to work with the per-capita terms defined as follows:

yt = Yt/Nt ; kt = Kt/Nt

for then we have that yt = F (1, kt) ≡ f(kt) and hence it is straightforward to check that

FN = f(k)− kf ′(k) ; FK = f ′(k). To avoid problems, we shall also make use of the Inada

conditions3:

lim
k→0

f ′(k) = +∞ and lim
k→+∞

f ′(k) = 0

Investment It is by definition, K̇t
4; in contrast to employment Nt, the supply of labor

3These may be identified as boundary conditions which we have encountered in the earlier chapters.
4We assume that there is no depreciation in capital.
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Lt is assumed to grow at an exogenously specified exponential rate:

Lt = Loe
nt (5.1)

Further there are two types of agents, those who earn wages by selling their labor and

those who earn profits; these two types of agents have differing behavior (utility functions)

resulting in different consumption patterns. We capture this aspect by postulating that

each type consumes a fixed portion of their income 1 − sw, 1 − sp being respectively the

consumption propensities out of wages and those out of profits, respectively. In other

words, sw, sp denote the savings propensities, assumed constant. Thus if wt denotes the

wages (in terms of the good being produced), then consumption by wage earners amount

to (1− sw)wtNt while the consumption by profit earners amount to (1− sp)(Yt−wtNt) and

thus aggregate consumption is given by

Xt = (1− sw)wtNt + (1− sp)(Yt − wtNt)

Thus we have

Xt = (1− sp)Yt + (sp − sw)wtNt (5.2)

Notice that in case the saving propensities match, i.e., sw = sp = s, aggregate consumption

reduces to (1− s)Yt. In any case, we shall assume that sp ≥ sw.

Also in the single produced good market, demand consists of consumption needs Xt and

investment requirements It; thus equilibrium in each period t requires

Yt = Xt + It
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which in turn, taking into account the facts mentioned above, implies the following:

K̇t = spYt − (sp − sw)wtNt (5.3)

This adjustment of capital stock, ensuring that demand and supply match over all periods

will be the focus of our enquiry in the current chapter.

5.2 Full Employment

With full employment of labor ensured, Nt = Lt, we can replace Nt by Lt in all of the above

equations; thus, for instance, we have k = K/L in this section; in addition, we know also

that given Kt, wt must be such that labor demand should be Lt or that

wt = FL(Kt, Lt) = f(kt)− ktf
′(kt) (5.4)

Notice that by virtue of our assumptions, it is clear that f(k)− kf ′(k) is monotonically de-

creasing function. Given Kt and Lt, kt is determined and this determines wt uniquely. With

this clarification, note that the equilibrium over time equation (or the equation adjusting

capital stock) may be re-written in per-capita terms as follows:

K̇t

Lt
= spf(kt)− (sp − sw)(f(kt)− ktf

′(kt)) = swf(kt) + (sp − sw)(ktf ′(kt)

Since we have k = K/L, k̇ = K̇/L− kL̇/L = K̇/L− kn and hence we have:

k̇t = swf(kt) + (sp − sw)f ′(kt)− nkt (5.5)

or we may rewrite it as

k̇t
kt

=
swf(kt)
kt

+ (sp − sw)f ′(kt)− n (say = θ(kt)− n) (5.6)
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We shall analyze the behavior of the solution to this equation next.

The equilibrium for (5.6) is provided5 by k? such that θ(k?) = n; we are sure that there

is a unique equilibrium since, notice that θ′(k) = sw
kf ′(.)− f(.)

k2 +(sp−sw)f ′′(.) < 0 and by

virtue of the Inada conditions, limk→0 θ(k) > n whereas limk→∞ θ(k) < n. Thus, we have

also that k < k? ⇒ θ(k) > n while for k > k? ⇒ θ(k) < n. Not only does this imply that

we have such a k?, but we may show that, beginning from any arbitrary ko, the solution

φt(ko) to (5.6) converges to k?.

Consider, for example V (t) = (φt(ko)−k?)2; we have just shown that6 V̇ (t) = 2(φt(ko)−

k?)k̇ < 0 unless φt(ko) = k?: thus V (t) is a Liapunov function for system (5.6). In fact,

plotting θ(k) will give us the above result as well:

Figure 1: Convergence to Steady State

Thus we have the following:

Proposition 5.1 Given full employment of labor, there is an unique k? at which k̇ is zero

and moreover, beginning from any initial configuration, the solution will approach k? over

time.

k? is called the balanced growth configuration since when K/L = k?, K must be growing at

the same rate as L to maintain the constancy of the capital-labor ratio. This is an optimistic

result; since, it seems to suggest that initial conditions do not matter as over time, k? will be

approached, regardless of initial conditions. Consequently, regardless of the past, differences
5When sp = sw = s, k? is determined by the equation f(k) = nk: this is the Solow (1956) case.
6Recall that since φt(ko) is the solution to (5.6), φ̇t(ko) = k̇.
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will get eroded and ultimately, an economy would be able to achieve balanced growth which

will be tied down by K,Y growing at the rate of growth in population7.

5.3 Unemployment

The story in the last section although optimistic may not have been very convincing and

among the many restrictions imposed, we need to weaken some of them to get at a more

realistic description of the growth path. The first and foremost that comes to mind is

the consideration of unemployment. Recall that when we introduced the basic single good

model, we had kept the notion of employed labor Nt separate from the available labor Lt

and we need to restore that; clearly then, the wage rate wt should determine the level of

employment Nt; but what determines the wage rate then ? Writing the employment ratio

N/L as v, a standard way of approaching this problem is to require that8

ẇ

w
= ψ(v) (5.7)

where ψ′(v) > 0; further ψ(0) < 0, ψ(1) > 0. We shall of course take ψ(.) to be a contin-

uously differentiable function; hence there is a unique v? < 1 such that ψ(v?) = 09.
7Usually, in the context of there being a depreciation in the capital stock over time, say at a constant

rate δ > 0, It = K̇t − δKt and hence at the steady state k?, we should have θ(k?) = n+ δ. Thus K,Y will

have to grow at the rate of n+ δ in the steady state.
8See, for instance, Goodwin (1967), Akerlof and Stiglitz (1969), Rose (1967). Some version of such an

adjustment, the Phillips curve, has been often employed.
91 − v? has some times been referred to as the natural rate of unemployment; see, for instance Akerlof

and Siglitz (1969).
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5.3.1 Capital-output Ratio and Employment-Capital Ratio: Constant

Consider the situation when Nt/Kt = b and Yt/Kt = C where b, C are constants10. First of

all note that v = bk where k = K/L, if there is unemployment; otherwise v = 1. We may

thus write v = min{bk, 1}. Recall the equation (5.3):

K̇ = spYt − (sp − sw)wtNt

Note that

K̇

Lt
= sp

Yt
Lt
− (sp − sw)wt

Nt

Lt
= spCk − (sp − sw)wtvt

Since we have k̇ = K̇
L − k L̇L , we have:

k̇ = spCk − (sp − sw)wv − nk (5.8)

Thus the system of equations, we need to analyze are given by the equations (5.7) and (5.8).

We shall write the system as follows:

k̇ = k{(spC − n)− (sp − sw)wmin(b, 1/k)} and ẇ = wψ(min(bk, 1))

The only possible non-trivial equilibrium for the system is given by k? = v?/b, w? =

spC − n
b(sp − sw) . It is to be noted that the nature of the terms min{b, 1/k} would complicate

matters11 Accordingly, we rewrite the system in the region k < 1/b first: k̇

ẇ

 =

 k{α− βw}

w{θ(k)− c}

 (5.9)

10We are using the assumptions employed by Akerlof and Stiglitz (1969).
11This is on account of the fact that these terms lack differentiability at the switch points; we shall argue

that these switch points are not encountered. In contrast to the local considerations in Akerlof and Siglitz

(1969), we shall attempt a global analysis below.
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where α = (spC − n), β = (sp − sw)b are both taken to be positive; in addition, we define

θ(k) ≡ ψ(bk)+c where c is a positive constant. In particular, we shall choose c = −ψ(0) > 0;

with such a choice, we ensure that θ(0) = 0 and that θ′(0) = limx→0
θ(x)
x > 0 and is well

defined.

It should be noted then that θ′(k) > 0 and the system (5.9) is a Lotka Volterra type

equation12 except for the equation defining ẇ where the function θ(k) need not be of the

form γk+ δ with the coefficients constant. However, we shall show that even for this form,

the conclusions of the Lotka-Volterra equations remain valid13.

The next thing that we need to ensure is that the trajectory or solutions remain bounded.

We take up these considerations one by one. We consider, first of all, the question of

determining the nature of the trajectories of the system (5.9). For this purpose, we introduce

the function:

Φ(x) =
∫ x

0

θ(s)
s
ds

where θ(.) is as above. Some properties of the function Φ(.) are immediate:

Claim 5.3.1 Φ(x) is well defined for all x ≥ 0; Φ(0) = 0; Φ′(x) = θ(x)
x , x 6= 0.

We note next

Claim 5.3.2 Let x? be such that θ(x?) = c. Then the function Ψ(x) ≡ Φ(x)−c log x attains

a global minimum at x?; further, Ψ(x) → +∞ as x→ 0.
12See, Section 1.5.1.
13It is in this sense that our results provided below are stronger than the original Akerlof-Stigliz (1969)

formulation; while their conclusion were based on the linear approximation to (5.9), we shall work with the

equations themselves.

217



Proof. Notice that Ψ′(x) = θ(x)− c
x and Ψ′′(x) = xθ′(x)− θ(x)

x2 + c
x2 ; consequently it

follows that at x?, Ψ′(x?) = 0;Ψ′′(x?) > 0: thus x? is a point of regular local minimum for

the function Ψ(x). Suppose, if possible there is x̄ 6= x? such that Ψ(x̄) < Ψ(x?). For the

sake of definiteness, let x̄ > x?; since x? is a point of regular local minimum it follows that

for some δ > 0, Ψ(x? + δ) > Ψ(x?) > Ψ(x̄) hence for some x̂ ∈ [x? + δ, x̄],Ψ(x̂) = Ψ(x?);

hence for some x ∈ [x?, x̂],Ψ′(x) = 0 or θ(x) = c with x > x?, which contradicts the strictly

increasing nature of the function θ(.). From the definition of the function, it is immediate

that as x→ 0, Ψ(x) → +∞. •.

Now consider the function V (k,w) = Ψ(k) + {βw−α logw}; by virtue of the above, we

should note the following features of this function:

• Along any solution to (5.9), V̇ (k,w) = Ψ′(k).k̇ + (βw − α).ẇ/w = (θ(k) − c)k̇/k +

(βw − α)ẇ/w = 0.

• Thus if the solution has (ko, wo) as initial point, and writing the solution to ( 5.9) as

(kt, wt), we have, V (kt, wt) = V (ko, wo) for all t ≥ 0.

• The function V (k,w) attains a unique minimum at k?, w?. This follows by virtue of the

property of the function Ψ(x) noted above and by virtue of the fact that βw−α logw

is a strictly concave function.

• Consequently, if the initial point differs from (k?, w?) no solution can approach the

equilibrium.

• Along any solution, (kt, wt) > (0, 0) if (ko, wo) > (0, 0). This follows since the axes
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k = 0, w = 0 are trajectories for the system (5.9) and two distinct trajectories cannot

cross.

• Along any solution (kt, wt) wt remains bounded above: since if wt → +∞, βw −

α logw → +∞: for if not, then there is some M such that βw? − α logw? ≤ βwt −

α logwt ≤ M or we have 0 < β ≤ M/wt + α(logwt)/wt; notice that the term on the

right tends to zero as wt → +∞: which is a contradiction; hence no such number

M exists. Thus if wt → +∞, V (kt, wt) → +∞ but we know that V (kt, wt) remains

constant and hence wt must remain bounded.

• Recall that by definition kt = Kt
Lt

= Kt
Nt
.Nt
Lt

≤ 1/b.

Thus, any solution to the system (5.9),(kt, wt) remains bounded and bounded away from

the axes and further, kt ≤ 1/b for all t; thus the ω-limit set is non-empty; notice too that

from the properties of the function, V (k,w), that no equilibrium can belong to this set and

consequently, by the Poincaré-Bendixson Theorem14, the ω-limit set set must be a closed

orbit. Hence there are two possibilities: either we have a limit cycle or the entire trajectory

it self is a closed orbit. Thus the situation is exactly similar to the one encountered in the

proof of Claim 1.5.5 and hence by following the same line of argument, one may conclude

that there cannot be a limit cycle. Thus the entire discussion may be summarized thus15:

Proposition 5.2 For the system (5.9), any trajectory beginning from ko, wo, both positive,
14See Proposition 1.4.
15This is the general form of the result in Section III of Akerlof and Stiglitz (1969), where “there is no

choice of technique” and in which, “wages adjust to their equilibrium value with a lag”.
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with ko < 1/b is a closed orbit around the equilibrium (k?, w?), with kt < 1/b for all t.

The cyclical behavior around equilibrium was explained in terms of the the relationship

(5.7) where high levels of employment are seen to lead to high wages; but this also implies

that average savings rate for the economy must have declined if wage-earners save less than

profit-earners; this lowering of the savings rate leads to fewer jobs in the future and hence

an increase in the rate of unemployment. This sets up a movement in the reverse direction

with lower wages and so on. Consequently the predator-prey relationship between wages

and the capital-labor ratio was used to explain the fluctuation of rates of unemployment

around some equilibrium value.

5.3.2 The Goodwin Growth Cycle

The Goodwin (1967) contribution was perhaps one of the more influential studies on growth

theory. The model was close to the model we analyzed in the last section. First we relax

the assumption of “no choice of technique” which had frozen the ratio Nt/Kt; we maintain

the assumption of a fixed capital-output ratio Yt/Kt = C; the new feature is the presence

of technical progress through growth of labor productivity at = Yt/Nt given by at = aoe
αt;

further it is assumed that sw = 0, sp = 1: thus all wages are consumed and all profits

are invested. As before, the labor force Lt grows a steady rate of n per period so that

Lt = Loe
nt. Instead of our earlier variables, Goodwin conducts the entire analysis in terms

of the variables u, v where u is the share of workers in total product u = wN
Y = w

a and v,

as before is the employment ratio v = N
L . Finally, the wage rates are governed by a Phillips
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curve type relation, we have used before, viz., (5.7).

First of all note that profits in this set-up amount to Yt − wtLt account for the total

amount of investment given our assumption on savings propensities. Thus we have:

K̇t = {Yt − wtLt} = {1− wt
at
}Yt (5.10)

Given the fact that the capital-output ratio is constant, we must have Ẏ /Y = K̇/K and

from the definition of labor productivity, we must have Ẏ /Y − Ṅ/N = α so that using the

equation (5.10), we have Ṅ/N = Ẏ /Y −α = K̇/K−α = {1−wt/at}C−α = {1−ut}C−α.

Now since by definition, once again, v̇/v = Ṅ/N − L̇/L, we have the following:

v̇/v = C(1− ut)− (α+ n) (5.11)

and finally using the the Phillips curve relation (5.7), in conjunction with the definition of

share of workers in total product, we have

u̇/u = ẇ/w − ȧ/a = ψ(vt)− α (5.12)

The system which Goodwin analyzes is made up of equations (5.11) and (5.12); in

particular, he considers a linear approximation for the function ψ(v). However, there is

no need to consider the linear approximation to the function since the methods adopted

to analyze the system made up of (5.9) may be used once more to arrive at the same

conclusion16:
16A comparison of the two systems will show that they are exactly identical and the same method of proof

may be used; consequently, we do not provide the proof in this case.
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Proposition 5.3 The solution to the system made up of (5.11) and (5.12), (ut, vt) from

some arbitrary initial point (uo, vo) > (0, 0) is a closed orbit around the equilibrium (u?, v?),

where u? = C − (α+ n)
C and v? satisfies ψ(v?) = α17.

The above model generated great interest since it describes a scenario where two ratios

u, v (respectively, the share of workers and the employment ratio) are chasing one another

along a closed orbit. To see what this has to say about Goodwin’s model, we need to note

a few things first:

u =
w

a
: share of workers; 1− u: share of capitalists

Thus the rate of profit is given by 1− u
σ which, given the assumptions made above is also the

rate of growth (i.e., ẎY ). It should be clear that along any solution to the Goodwin equations,

the variables u, v will fluctuate between limits say umin ≤ u ≤ umax and vmin ≤ v ≤ vmax.

In the words of Goodwin (1967), one may note the following: “.. when profit is at its

greatest (u = umin), employment is average (vmin < v < vmax) and the high growth rate

pushes employment up to its maximum (v = vmax), which squeezes the profits to its average

level (umin < u < umax). The deceleration of growth lowers employment.....The improved

profitability carries the seed of its own destruction be engendering a too vigorous expansion

of output and employment..”18.

In the last section, the same cyclical behavior was modelled in terms of w, k chasing one
17Recall that ψ(0) < 0 < ψ(1); consequently for such a solution to exist, we need to ensure that α < ψ(1);

further for u? we require C > α+ n.
18See Goodwin (1967), pp. 57-8. According to Goodwin, this is what Marx’s idea of “contradictions of

capitalism” was all about.
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another; this was made possible by virtue of the assumption of fixed methods of production;

this meant that the share of workers u = wN/Y = wN/K.K/Y = wb/C so that u was

a constant multiple of w; similarly, v = N/L = N/K.K/L = bk. Thus the approach, in

the last two sections have been quite similar. In contrast to the earlier section, the fixed

N/K ratio has been discarded in the present context, of course but the conclusions have

not really differed. The type of cyclical behavior studied in the last two sections will be

referred to as Goodwin Cycles. We shall examine, next, how robust this explanation has

been.

5.3.3 Robustness of Goodwin Cycles

To enable us to relate to results of the Section 1.6.1, let us as first step consider the

function ψ(v) to be specified by ψ(v) = ρv − γ where ρ, γ are positive constants. With

this specification, we revert back to the original set of Goodwin equations: v̇
u̇

 =

 v{C(1− u)− (α+ n)}

u{ρv − (γ + α)}

 (5.13)

This of course is the standard form of the Lotka-Volterra equations and as we had

demonstrated in Section 1.6.1, a slight perturbation to the model destroys the periodic

behavior. For example, if instead of the standard Phillips curve in (5.7), we were to consider

that ẇ/w = ψ(v)+τu where τ is a constant and is small in magnitude then the resulting

equations would be a perturbation of the Goodwin model19. Consider next the system
19Such formulations ar not implausible and have been considered in the literature; see, for instance, Lorenz

(1993), p. 70. This says that the rate of change in real wages depends not only on the level of employment

(v) but also on the share of workers (u).
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(5.13) in the light of this adjustment: v̇
u̇

 =

 v{C(1− u)− (α+ n)}

u{ρv + τu− (γ + α)}

 (5.14)

Using the terminology of Section 1.6.1, the NTE (Non-Trivial Equilibrium) for the above

system is given by20

u? = 1− α+ n

C
, v? =

γ + α− τu?

ρ

At the NTE, the Jacobian of the system is given by: 0 −Cv?

ρu? u?τ


Consequently, we have:

Claim 5.3.3 The NTE is locally asymptotically stable (a sink) when τ < 0; for τ > 0, the

NTE is unstable (a source). Further, the real part of the characteristic root of the Jacobian

of (5.14) is given by u?τ/2; and τ = 0 is a point of Hopf Bifurcation for the system.

And using methods similar to the ones employed in Section 1.6.1, one may show:

Proposition 5.4 Any solution (ut, vt) to the system (5.14) with (uo, vo) > (0, 0) as an

initial point converges to the NTE whenever τ < 0; if τ > 0 the only solution which is

bounded is the one originating from the NTE.

Thus for cyclical behavior in a system such as (5.14), τ = 0 is necessary and sufficient.

We next examine whether the approximation of the function ψ(v) is essential to reach the
20We are of course assuming that such a solution exists in the positive quadrant with 0 < u?, v? < 1; in

addition, we are assuming that the coefficient τ is small in magnitude.
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above conclusions. In other words, if we maintain that original formulation of the Phillips

curve in (5.7), viz., ψ(v) is an increasing function with ψ(0) < 0 < ψ(1); we shall thus

write, as before ψ(v) = θ(v)−γ where γ = −ψ(0) > 0 so that θ(v) = ψ(v)−ψ(0) and hence

θ(0) = 0; with these modifications, the system (5.14) becomes: v̇
u̇

 =

 v{C(1− u)− (α+ n)}

u{θ(v) + τu− (γ + α)}


or writing C − (α+ n) = A, we have: v̇

u̇

 =

 v{A− Cu}

u{θ(v) + τu− (γ + α)}

 (5.15)

Now consider the function:

W (u, v) = {Cu−A log u}+ {
∫ v

0

θ(s)
s
ds− σ log v}

where σ = γ + α− τA
C and is a constant. Then along any solution to (5.15), we have:

Ẇ = {Cu−A} u̇
u

+ {θ(v)− σ} v̇
v

= {Cu−A}[θ(v) + τu− (γ + α)− θ(v) + σ] = τ{Cu−A}2/C

Consequently, it follows that whenever τ < 0, Ẇ < 0 along any solution to (5.15) unless

Cu = A; we may therefore conclude, as in the proof of Claim 3.6.8, that W (u, v) is a

Liapunov function for (5.15) and the solution converges to the non-trivial equilibrium u? =

A/C; v? = θ−1(γ + α− τu?)21. We may thus summarize our findings in the following:
21The boundedness of the solution follows from the definition of the variables u, v; these are both fractions

and cannot exceed 1; in addition any solution originating from an initial positive configuration cannot

approach the axes since the axes u = 0, v = 0 are trajectories or solutions. Finally, it should also be pointed

out that the function W (.) is a strictly concave function of (u, v) and attains a global minimum at (u?, v?).
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Proposition 5.5 Any solution (ut, vt) to the system (5.15) with (uo, vo) > (0, 0) as an

initial point converges to the NTE whenever τ < 0; if τ > 0 the only solution which is

bounded is the one originating from the NTE.

Thus the conclusions of Proposition 5.4 are independent of the approximation of the function

ψ(v); with a more general form too, identical conclusions may be obtained without imposing

any additional restrictions22.

Before passing on to related considerations, it should be pointed out that possibilities of

convergence in Goodwin type models have been noted in the literature. An exercise due to

Flaschel (1984) may be reported to indicate differences from the above approach. Flaschel

considers the following variation to the Goodwin basic model:

ẇ

w
+ ηπ = ψ(v) , ψ′ > 0

where π = g((1 + r)u − 1) with g′ > 0, g(0) = 0; all other aspects are as above, except for

the fact that:

K̇

K
= s(u)Y/K = s(u)C , s′ < 0

Thus, in contrast to what we have described above, the Phillips curve (5.7) has been adjusted

for “money illusion” so that when η > 0 (< 0) workers receive a lower (respectively, higher)

real wage than they bargained for together with an equation which describes how the rate

of inflation π is formed via a mark-up process. Finally the investment or accumulation

equation is a straightforward generalization from the constant savings rate assumption.
22For an alternative approach, via the Dulac’s Criterion, see below.
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Combining these, we have the following system: v̇
u̇

 =

 v{Cs(u)− (α+ n)}

u{ψ(v)− α− ηg((1 + r)u− 1)}

 (5.16)

The difference between (5.15) and the above is easy to spot: first of all notice that (5.15)

is a particular case of (5.16) where the functions s(.), g(.) have been taken to be linear. For

the system (5.16), the following result is claimed: Assume that the Jacobian J = (Jik) of

the system (5.16) satisfies

• trace J < 0,

• det J > 0 and

• J12.J21 6= 0

everywhere on <2
+, then the equilibrium (u?, v?) is asymptotically stable in the large. Now

J is given by the following matrix:Cs(u)− (α+ n) vCs′(u)

uψ′(v) {ψ(v)− α− ηg((1 + r)u− 1)} − uηg′(.)(1 + r)


It should be easy to see that at the equilibrium all the conditions mentioned above are

satisfied; notice too that the only condition which is easily seen to hold all over the non-

negative orthant is the requirement on the off-diagonal terms, given the sign restrictions on

the derivatives of the functions ψ, s; it is not at all clear how the other two requirements

on the trace and the determinant are going to be met on the entire non-negative orthant.

However without imposing any of the above requirements, notice that one may

claim :
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Claim 5.3.4 For the system (5.16), there can be no cyclical orbits in the positive orthant,

given the sign restrictions on the derivatives of the functions g(.).

Proof: Consider the function θ(v, u) = 1
uv and then consider:

∂{θ(v, u)v[Cs(u)− (α+ n)]}
∂v

+
∂{θ(v, u)u[ψ(v)− α− ηg((1 + r)u− 1)]}

∂u

= 0− ηg′(.)(1 + r)
v

< 0

on the positive quadrant: hence by Dulac’s Criterion, there can be no cycles in the positive

orthant. •

Thus for convergence to equilibrium from any initial positive configuration, one may

note that additionally we need to show that the solution is bounded and one may use

the Poincaré-Bendixson Theorem to complete the demonstration. It may be recalled that

the variables u, v are, by definition, fractions and cannot exceed unity; consequently the

bounded nature of the solution should follow from the model itself.

5.4 A Digression: A General Lotka-Volterra Model

We have seen that a Lotka-Volterra Model has made its appearance from time to time

in various contexts; the original form of the Lotka Volterra Model studied in Sections

1.5.1 and 1.6.1 used specific forms for the pair of differential equations; we saw in the last

section, that replacing these forms by more general forms often did not change the nature

of results. We attempt here to provide a very general treatment of Lotka-Volterra Models

and identify conditions for periodic behavior and convergence. Hopefully, apart from being
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of independent interest, they might be of specific interest to the situations we have been

analyzing at present.

The basic feature of the predator-prey model or the Lotka-Volterra models is the follow-

ing pair of functions: let M,N be two functions M,N : <+×<+ → <, M,N ∈ C1 satisfying

the following:

P1 M(0, 0) > 0 ≥ N(0, 0)

P2 Mx(x, y) ≤ 0,My(x, y) < 0;Nx(x, y) > 0, Ny(x, y) ≤ 0 , ∀(x, y) ∈ <+ ×<+.
23

A pair of functions M,N satisfying the above two conditions define a Generalized Lotka-

Volterra System (GLVS) given by:

ẋ = xM(x, y) and ẏ = yN(x, y) (5.17)

The interpretation of the above system is as follows: there are two species in a particular

environment, one of which preys on the other (the predator and the prey). The predator

requires prey in order to subsist while the prey can live off the environment; denoting the

population of the prey be denoted by x while that of the predator by y; thus the rates of

growth of the population of the species are related as follows: for the prey, the greater the

population of the predators, the lower is the prey’s rate of growth other things being equal

(My < 0); and since the environment too is limited in some way, the rate of growth of the

prey, given any fixed level of the population of predators, is decreasing, if at all, in its own

population level (Mx ≤ 0). For the predator, on the other hand, the rate of growth of its
23A subscript indicates a partial derivative with respect to the variable in the subscript. Thus Mx(x, y) is

the partial derivative of the function M with respect to the variable x.
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population increases with the population of the prey and decreases with its own population,

other things remaining the same. This is the rationale for P2. The rationale for P1, follows

from the above. We call the system (5.17)24. We begin my noting that for the system (5.17),

given P1 & P2, the following are the types of equilibria25:

• No Species E1(0, 0).

• No Predator E2(x̂, 0), x̂ > 0.

• Both Species E3(x̂, ŷ) > (0, 0).

Consider for example the following specifications of the functions M,N :

M(x, y) = a− αx− by and N(x, y) = dx− βy − c (5.18)

where a, b, c, d > 0, α, β ≥ 0. It is immediate to note that

Claim 5.4.5 For the above specification of the functions M,N , E2, E3 both exist if and

only if α > 0;αc < ad. If α = 0, E3 exists but E2 does not; while if α > 0 but αc > ad E2

exists but E3 does not.

Consider, next, the following forms of the functions M,N

M(x, y) =
1 + ax

1 + x
− by and N(x, y) =

1 + dx

1 + x
− βy − c (5.19)

24Since the standard form of the Lotka-Volterra system or the Predator-Prey Model is given by the

following: M(x, y) = a− by and N(x, y) = dx− c with a, b, c, d > 0: see, for instance Section 1.5.1.
25A fourth possibility with only predators (0, ŷ) cannot be an equilibrium since that would require

N(0, ŷ) = 0 and this would contradict our assumptions.
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where 0 < a < 1, b > 0, d > c > 1, β > 0. Note that M(0, 0) = 1;N(0, 0) = 1− c < 0;Mx <

0,My < 0, Nx > 0, Ny < 0.

Claim 5.4.6 For M,N given by (5.19) there is no E2 and if ab >
d− c
β there is no E3.

Proof: That there is no E2 is immediate since M(x, 0) = 0 has no positive solution. Notice

that along M(x, y) = 0, by = 1 + ax
1 + x so that along the curve, we have y > a

b . Similar

considerations along N(x, y) = 0 lead us to conclude that along this curve, y < d− c
β .

Consequently if the parameters are so chosen that ab >
d− c
β then the curves M(x, y) = 0

and N(x, y) = 0 have no intersection and there is no E3, as claimed. •

The above discussion goes to show that the existence of equilibria E2&E3 are indepen-

dent of one another and we need to strengthen our assumptions in order to specify existing

equilibria. We do so below:

P3 (i) Mx(x, y) < 0, Ny(x, y) < 0∀(x, y) ∈ <+ ×<+.

(ii) There is some positive number K such that M(x, y) ≤ 0, if either x ≥ K or y ≥ K.

(iii) For any y ≥ 0 there is a positive number x(y) such that N(x(y), y) > 0; further for

each x ≥ 0, ∃K(x) such that N(x, y) ≤ 0 if y ≥ K(x).

To maintain our analogy with x being the population of prey and y being the population

of predators, the above specifies that first of all, the rates of growth of population of preys

and predators, are decreasing functions of their own population, other things remaining the

same; P2 had merely required that these be non-increasing functions. Secondly, if either

the population of preys or that of the predators are large enough, the rate of growth of

population of preys cannot be positive; and finally, for the growth rate of the population

231



of predators to be positive, given any current level of its population, requires an adequate

population of preys; and given any population of preys, if the population of predators is

large enough, the growth rate of the predator population will be non-positive. That these

are not too restrictive a set, may be seen by referring to the specification given by (5.18)

when all the parameters a, b, c, d, α, β are positive: this system satisfies P1, P2 and P3.

We note that:

Claim 5.4.7 Under P1, P2 and P3, there are at most three equilibria; E1&E2 always

exist; E3 may also exist under some conditions26.

Proof. We have already seen that there are three types of equilibria possible; P3 ensures

that there cannot be multiple equilibria of type E2 and E3 since intersections between the

curves M(x, y) = 0 and the y = 0 line is unique if at all; since the former has a negative

slope27; similarly, the intersection between M(x, y) = 0 and N(x, y) = 0 , if any, has to be

unique too since while the former has a negative slope the latter has a positive slope. Hence

there can be at most three equilibria.

Since M(0, 0) > 0 ≥ M(K, 0) there is some x̂ ∈ (0,K] such that M(x̂, 0) = 0; (x̂, 0) is

the E2 equilibrium with no predators.

Next by virtue of the restriction placed on the function N(x, y), we note that there

is x(0) such that N(x(0), 0) > 0 ≥ N(0, 0) and hence there is x̄ ∈ [0, x(0)) such that
26Essentially, for E3 to exist, the curves M(x, y) = 0 and N(x, y) = 0 have to intersect in the positive

quadrant; the conditions we shall identify, guarantee that this happens.

27The slope of M(x, y) = 0 is given by −Mx
My

< 0; and the slope of the curve N(x, y) = 0 is given by

−Nx
Ny

> 0.
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N(x̄, 0) = 0. If x̄ < x̂ then an E3 equilibrium exists; to see this note that under this

condition M(x̄, 0) > M(x̂, 0) = 0 = N(x̄, 0) while N(x̂, 0) > N(x̄, 0) = 0 = M(x̂, 0); thus

from continuity, there has to be some x̃, x̄ < x̃ < x̂ and corresponding ỹ > 0 such that

M(x̃, ỹ) = N(x̃, ỹ): the E3 equilibrium. •

5.4.1 Local Stability Properties of Equilibria

We examine the local stability of the equilibria E1, E2 and E3 in this section. First of all,

we need to compute the Jacobian of the system (5.17) given P1, P2 & P3. This is given

by the following matrix:M(x, y) + xMx(x, y) xMy(x, y)

yNx(x, y) yNy(x, y) +N(x, y)

.

Thus at E1(0, 0) we have from P1: + 0

0 −

;

this establishes that at E1, the Jacobian has one positive and one negative characteristic

root and hence the equilibrium is a saddle-point. Next at E2(x̂, 0) the Jacobian is given by:− −

0 N(x̂, 0)

;

where the sign of the termN(x̂, 0) depends on whether x̂ > x̄: the condition for the existence

of E3, as we had shown in the proof of Claim 5.4.7. Since by definition, N(x̄, 0) = 0, if

E3 exists, E2 is a saddle point, since then one characteristic root is positive and the other

negative; whereas if there is no E3 equilibrium then E2 is locally asymptotically stable since

both characteristic roots are then negative.
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Whenever E3 exists, the Jacobian evaluated at E3 has the following sign pattern:− −

+ −

;

consequently, whenever E3 exists, the Jacobian has both roots with real parts negative and

the equilibrium is locally asymptotically stable.

Finally, consider the system 1.3; we may consider this to be a special case of 5.18 where

α = β = 0. It is easy to check that under this specification, the system 1.3 has two equilibria:

E1(0, 0) and E3( cd,
a
b ) and at E3, the Jacobian has the following sign pattern: 0 −

+ 0

 ;

thus under, 1.3, the characteristic roots are pure complex, the real parts being zero. Thus

E3 is a center.

5.4.2 Global Stability Properties

Invariant Set For the system (5.17), we shall refer to a solution originating from some

point (xo, yo) by the notation φt(xo, yo) and our objective here is to tie down what happens

to this solution as t → ∞, for an arbitrary (xo, yo) ∈ <+ × <+. We show that under our

assumptions P1, P2 and P3, there is an invariant set Q ⊂ <+×<+. That is the solution

φt(x, y) is defined for all (x, y) ∈ Q and remains within the set Q for all t. We do this

constructively in the following steps.

• From P1, P3, we have, M(0, 0) > 0 ≥ M(0,K); hence, ∃ȳ ∈ (0,K] such that

M(0, ȳ) = 0.
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• Under P1, P2 and P3, E2 exists; denote this by (x̂, 0).

• Given ȳ noted above, P3 guarantees that there is x(ȳ) such that N(x(ȳ), ȳ) = 0.

• Define x? = max[x̂, x(ȳ)]. Then define y? by N(x?, y?) = 0. That this is well defined

may be seen as follows. If x? = x(ȳ) then y? = ȳ. On the other hand, if x? = x̂ > x(ȳ),

then N(x̂, ȳ) > 028. Thus by P3, there is K(x̂) such that N(x̂, y) ≤ 0∀y ≥ K(x̂);

hence there is y? such that N(x̂, y?) = 0 as claimed.

Now consider the rectangleQmade up with the points E1 = (0, 0), (0, y?), (x?, y?), (0, x?).

We may now show:

Claim 5.4.8 The set Q defined above is invariant.

Proof: Consider any (x, y) ∈ QB where QB ⊂ Q is the boundary of Q and consider the

solution (trajectory) φt(x, y). We shall show that the trajectory either coincides with the

boundary or enters Q.

E1 is an equilibrium so any trajectory originating there stays put; in case x? = x̂, the

point (x?, 0) is another equilibrium, E2 and once again, any trajectory originating there

stays put; in case x? = x(ȳ) > x̂, any trajectory originating from (x?, 0) has ẏ = 0, ẋ < 0

since M(x?, 0) < M(x̂, 0) = 0 and so the trajectory coincides with the x− axis, and is

directed inside Q along the boundary. Notice that any trajectory originating from a point

on the x−axis is directed along the x−axis towards the equilibrium E2 and hence stays

within Q.
28Since N(, ) is increasing in x and N(x(ȳ), ȳ) = 0.
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Consider, next, any point (0, y) with 0 < y ≤ y?; for the trajectory originating from

such a point has ẋ = 0, ẏ < 0 since N(0, y) < 0 and hence the trajectory coincides with the

y−axis and is directed towards E1.

Any trajectory originating from a point of the type (x, y?), 0 < x ≤ x? has ẋ < 0, ẏ < 0

since M(x, y?) < 0, N(x, y?) < 0 and consequently, the trajectory is directed inside Q.

Similarly, any trajectory originating from a point of the type (x?, y), 0 < y ≤ y? is also

directed inside Q. This completes the demonstration of our claim. •

Figures 2A and 2B would clarify the claims made above29.

FIGURES 2A AND 2B: THE INVARIANT SET

5.4.3 General Conclusions

By appealing to the Poincaré-Bendixson Theorem, the following claim can be made:

Remark 22 For any (x, y) ∈ <+ × <+, the trajectory φt(x, y) must enter Q and either

approaches an equilibrium or there is a limit cycle in Q. Any limit cycle, if there is one,

must surround an equilibrium.

Remark 23 Further, when there is no E3, as in Figure 2A, the triangular region bounded

by the axes and the curve M(x, y) = 0 is an invariant subset of Q: once entered, it cannot be

left. In such a situation, there can be no limit cycle and hence any trajectory must approach

the equilibrium E2. Consequently, ultimately, all predators disappear.
29Although the lines M(x, y) = 0, N(x, y) = 0 have been drawn as straight lines, they need not be so, of

course. It is their slopes which are of interest; see footnote 27 above.
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Remark 24 On the other hand, when we have an equilibrium such as E3 as in Figure 2B,

there appear to be only two possibilities for any trajectory: beginning from a strictly positive

configuration, either we have convergence to E3 or a limit cycle around E3. Neither E1 nor

E2 can be approached.

However, given P3, we can go further. Recall that under this restriction, we have first

of all that Mx < 0;Ny < 0 over the domain of discussion. Then consider the function

θ(x, y) = 1
x.y in the positive quadrant and consider the expression:

∂{xM(x, y)θ(x, y)}
∂x

+
∂{yN(x, y)θ(x, y)}

∂y
=

1
y
Mx(x, y) +

1
x
Ny(x, y) < 0

over the entire positive quadrant: hence by Dulac’s criterion30, there can be no cycles in

the positive quadrant.

Thus when there is no equilibrium with Both Species present, all trajectories converge

to the No Predator equilibrium; if an equilibrium with Both Species present exist, we will

have convergence to this equilibrium. To apply Dulac’s criterion, it may be recalled that

we do not need the strict signs of the partial derivatives Mx, Ny; the weak signs admitted

under the restriction P1 are sufficient together with a proviso that they are not identically

zero. Consequently, if we are interested in exhibiting cyclical behavior of any kind, we must

have some variation in the sign of Mx, Ny
31.

30See Remark 7.
31See, for example, the example in Section 1.6.2.
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5.4.4 Robust Unemployment Cycles

We consider in this section, the possibility of having robust unemployment cycles in set-ups

similar to the ones we have been discussed above. The model32 which we shall consider is

somewhat reminiscent of the Generalized Lotka-Volterra models we have considered in the

last section. As we shall see, to obtain a robust example of periodic behavior, we need to

follow the formal structure of the example in Section 1.6.2. In terms of our construct of

unemployment cycles, the Phillips curve will play a major role too. And we shall identify

conditions which are required to ensure that we have such a configuration.

Consider an economy with imperfectly competitive firms; a representative firm33indexed

by the subscript r is assumed to satisfy the following:

5.i. The output-capital ratio for the entire economy Y/K and its employment capital

ratio N/K are respectively equal to the ratios Yr/Kr, Nr/Kr chosen by the firm. Let

x ≡ N/K ≡ Nr/Kr. Then

Y/K ≡ Yr/Kr = f(x) (5.20)

where f(.) is well defined for all x > 0 and f ′(x) > 034.

5.ii. Kr = λK , 0 < λ < 1 and λ is a constant.

5.iii. Current production is planned to to equal expected demand at the current price; given

the current price, the growth of expected demand is an increasing function of the ex-
32This is based on the model of Rose (1967).
33See, Rose (1967), p.154 on such firms. By the action of the representative firm, average firm behavior is

being conveyed.
34Thus production function for the representative firm is homogeneous of degree one in Nr,Kr.
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cess of actual demand over expected demand in the past; the relationship between

aggregate demand and aggregate production determines the relationship between ac-

tual demand and expected demand. Thus aggregate demand greater (or less than

equal) to aggregate production implies that actual demand is greater (or less than

equal to, respectively) to expected demand. If actual demand and expected demand

match, then the current growth of excess demand is equal to the growth of aggregate

capital.

5.iv. The planned growth rate I/K where I is planned investment of the whole economy

equals that for the representative firm.

Consider the expected demand function to be given by p = Ad(Yr/B) where p is the

expected demand price of output Yr; and A,B are time dependent functions of time, both

positive; thus, Yr/B = d−1(p/A) = φ(p/A); the price elasticity of demand η is given by

η = −φ′(p/A)1/A
p

Yr/B
= − d(Yr/B)

d′(Yr/B)
1

Yr/B
> 1

where the inequality is by assumption . At constant prices, expected demand varies

according to:

Ẏr/Yr = ηȦ/A+ Ḃ/B

where Ȧ/A will be related to the difference between aggregate demand and aggregate

production; Ȧ/A will be zero if the difference is zero: this is in line with the specifications

mentioned above. The specifications also imply that when aggregate production and de-

mand match, Ẏr/Yr = K̇/K; hence we must have Ḃ/B = K̇/K; we may thus take B = Kr;
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thus expected demand reduces to:

p = Ad(Yr/Kr) = Ad(f(x)) (5.21)

Expected profit maximization givenK and henceKr, and w/A leads to the maximization

of :

π = [A d(f(x)).f(x)− wx]K = [d(f(x)).f(x)− (w/A)x]A K

by choosing an appropriate x35. The first order condition for this maximization problem

leads to

(1− 1/η)d(f(x)).f ′(x) = w/A. (5.22)

Using this expression, the expected rate of profit r is given by:

r = π/pK = f(x)− (1− 1/η)f ′(x)

Consider the aggregates next; planned savings S depends on expected real income (pro-

duction) or on expected real profits and wages, the stock of capital and the rate of interest;

we may express this as the following, suppressing the rate of interest:

S/K = g(x) (5.23)

where g′(x) > 0 so that the marginal propensity to save is positive. Next, regarding planned

investment I and given the assumption that that the planned growth rate I/K is the same

as the representative firm’s, one may note that this rate for the representative firm should

be a decreasing function of the rate of interest and an increasing function of the state of
35Actually choosing an employment level Nr.
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“ long-term expectations”. It is further assumed that the long-term is dominated by what

happens in the short run and thus, the firm’s planned growth rate is an increasing function

of the rate of profit and as before suppressing the rate of interest, we obtain:

I/K = k(x) (5.24)

where k′(x) > 0 thus the marginal propensity to invest is positive.

In each short period, the market for goods is in temporary equilibrium with any gap

between savings and planned investment being met by movements of stocks; some times

the latter is taken to be unplanned (dis)investment36. Thus buffer stocks should enter in

the the stock of capital which is considered in the production function, since its role some

times add to costs in terms of carrying charges and some times saves costs by reducing the

risk of depletion according to Rose (1967). Consequently

S = K̇. (5.25)

We are now ready to tie up the term Ȧ/A in the following manner:

Ȧ/A = E(k(x)− g(x)) = H(x) (5.26)

where E(0) = 0 and E′(x) > 0. Notice that H ′(x) = E′(.){k′(x)− g′(x)} and consequently

the sign of H ′(.) depends upon the sign of k′(x) − g′(x): or the difference between the

marginal propensities to save and invest.

Finally, the behavior of wages w will be taken to be of the type we have investigated
36See Rose (1967), p. 157, paragraph (f) for details.
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above, viz., (5.7), namely:

ẇ

w
= ψ(v) (5.27)

where v = N/L, L is the supply of labor so that v is the employment ratio as before. Further

the function ψ(.) is restricted by the following on an interval [a, b] where 0 < a < b ≤ 1:

ψ′(v) > 0 , lim
v→a

ψ(v) = −∞ , lim
v→b

ψ(v) = +∞

Labor supply L is assumed to grow at a constant rate n; the labor capital ratio L/K

will be denoted by z and is the counterpart on the supply side to x, the employment capital

ratio N/K. It follows therefore that

ż/z = L̇/L− K̇/K = n− g(x). (5.28)

It should be remembered that by definition, we have

v ≡ x

z
. (5.29)

From the first order condition, (5.22), we have:

ẋ

x
= γ(x)(

Ȧ

A
− ẇ

w
)

where

1
γ(x)

= −d log{(1− 1/η)d(f(x))f ′(x)}
d log x

and γ(x) > 0 in the relevant region. Substituting from equations (5.26) and (5.27) and

using (5.29), we have

ẋ

x
= γ(x){H(x)− ψ(x/z)} (5.30)
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The system of equations that we shall analyze are now in place and is made up of equations

(5.28) and (5.30):

ẋ/x = γ(x){H(x)− ψ(x/z)} and ż/z = n− g(x). (5.31)

Trajectories and Equilibrium for the system (5.31) Since we are assuming that the

various functions appearing in the system are differentiable and well defined in the subset

R of the positive quadrant, where R = {(z, x) : z, x > 0, 0 < a < x/z < b ≤ 1}; through

any point(zo, xo) in R there is a trajectory (solution) to the system (5.31) which we shall

denote by Φt(zo, xo) and which in turn denotes the time path of all relevant variables in

the model. The equilibrium for the system in R, is given by solving for ẋ/x = 0, ż/z = 0

and noticing the fact that the function γ(x) > 0 in the region, to obtain x? = g−1(n) and

z? = x?/ψ−1(H(x?))37. Thus there is a unique equilibrium for the system in R.

Notice that at this equilibrium, there is a steady growth of capital and income at the ‘nat-

ural rate’ n since with g(x?) = n, hence K̇/K = S/K = g(x?) = n and since Y/K = f(x?),

a constant, Ẏ /Y = K̇/K = n; further at this equilibrium, since H(x?) = ψ(x?/z?), prices

and wages rise at the rate H(x?) and the employment rate v? = x?/z? is just appropriate

and self-sustaining. To analyze the local stability of the equilibrium, we need to look at the

Jacobian of the system (5.31) evaluated at equilibrium: γ(x?){x?H ′(x?)− v?ψ′(v?)} γ(x?)v?
2
ψ′(v?)

−z?g′(x?) 0


Notice that the determinant is positive; while the trace is given by γ(x?){x?H ′(x?) −

37Notice that the inverse functions exist since the functions involved in the inversion are monotonic.
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v?ψ′(v?)} whose sign is determined by the term {x?H ′(x?) − v?ψ′(v?)}; notice here that

the second term is negative; hence if the sign of H ′(x?) = E′(.)(k′(x?) − g′(x?)) or that of

k′(x?)− g′(x?) is negative, the trace is negative and the equilibrium is locally stable for the

system (5.31). In any case, the equilibrium cannot be a saddle-point. We thus have the

following:

Claim 5.4.9 The unique equilibrium (z?, x?) is locally stable if g′(x?) > k′(x?).

We may also note the following:

Proposition 5.6 If g′(x) ≥ k′(x) for all x > 0 then there can be no cyclical trajectories in

R.

Proof: We shall demonstrate the validity of this proposition by the application of Dulac’s

Criterion. Consider the function θ(z, x) = 1
xγ(x)z and note that

∂{xγ(x)(H(x)− ψ(x/z))θ(z, x)}
∂x

+
∂{z(n− g(x))θ(z, x)}

∂z

= {H ′(x)− ψ′(x/z).1/z}1/z

and under the given condition, H ′(x) = E′(.)(k′(x) − g′(x)) ≤ 0 on R so that the entire

expression is always negative on R: thus there can be no cyclical trajectory in R. This

completes the demonstration. •

To proceed with a further characterization of possibilities, it would be best to consider

the phase-plane for the system (5.31).

Figure 2C: Phase Plane for the Rose Model
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Notice that the region R has been divided up into four subregions named I, II, III and

IV by means of the line ẋ = 0 and ż = 0; these lines intersect at the equilibrium E ; and

we have drawn the the curve ẋ = 0 to have a positive slope, for reasons which may become

clear soon. The slope of the curve ẋ = 0 may be determined thus: first of all, along this

curve, we must have H(x) = ψ(x/z); hence

dx

dz ẋ=0
= − (x/z2)ψ′(.)

H ′(.)− ψ′(.)
;

hence the slope of the curve depends on the sign of the term ψ′ − H ′; the first term is

positive but the second term could be of any sign depending on the relative magnitudes of

marginal propensities to save and invest. For the moment, we need not really worry about

this sign.

Consider an initial configuration (zo, xo) ∈ R; the question we need to analyze is whether

the solution Φt(zo, xo) can leave the region R: notice leaving the region from subregions I

and III is not possible; this is so, because the arrows on the rays a, b respectively, indicate

that the trajectory will be directed back into the region R; from the remaining two subre-

gions, II, IV , notice that ẋ is +∞ in the former, and −∞ in the latter and these direct the

trajectory towards R; the only movement away comes from the movement on the variable

z but on both instances, ż is finite consequently the rays a, b cannot be reached; thus

the trajectory Φt(zo, xo) remains within R; also as the arrows will indicate, the variables

cannot both go to +∞ nor can they both go to 0 since in regions III and IV one variable

is always increasing and in regions I, II one variable is always increasing. This establishes

the following:
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Claim 5.4.10 For the system, (5.31), for any arbitrary point (zo, xo) ∈ R, the solution

Φt(zo, xo) lies within a bounded subset of R.

Claim 5.4.10 simplifies matters enormously since now we have a set of immediate impli-

cations. First of all,

Proposition 5.7 If g′(x) ≥ k′(x) for all x > 0 and the strict inequality holds at x?, then

for any initial configuration, (zo, xo) ∈ R, Φt(zo, xo) converges to the unique equilibrium.

Proof. Since the Claim 5.4.10 implies that the ω-limit set is non-empty; the Proposition

5.6 implies that under the given condition, there can be no cycles. Hence the Poincaré-

Bendixson Theorem implies that the equilibrium must be a limit point for every trajectory.

But by Claim 5.4.9, the equilibrium is locally stable and hence if any trajectory enters a

neighborhood of the equilibrium, it cannot leave. This concludes the demonstration. •

Finally, we have:

Proposition 5.8 A necessary condition for the existence of cyclical orbits is that for some

x > 0, k′(x) > g′(x); if x?H ′(x?) − v?ψ′(v?) > 0, then there will be a limit cycle: i.e., for

any arbitrary (zo, xo) ∈ R, the ω-limit set will be a closed orbit.

Proof: The necessity is immediate from Proposition 5.6. By virtue of Claim 5.4.9, it follows

that if k′(x?) > g′(xstar), the unique equilibrium is locally unstable: the relevant Jacobian

has a positive trace and the unique equilibrium is unstable38. Consequently for any initial
38The Figure 2-C depicts such a situation. Notice too that at such an equilibrium, we must have k′(x?) >

g′(x?).

246



configuration (zo, xo) ∈ R, the non-empty ω-limit set cannot contain a equilibrium and

hence by virtue of the Poincaré-Bendixson Theorem, the ω-limit set must be a closed orbit.

•

It should be pointed out that there may be more than one periodic orbits: with the

outermost and innermost being attracting orbits. What happens along such a periodic

orbit ? Note that this cyclic orbit surrounds the unstable equilibrium at E . When x/z or

v, the employment ratio is at a minimum, x < x?, so that ż > 0 but the rate of profit and

the employment-capital ratio and x are rising; employment is raised since x is now rising

faster than z. The relatively flat section of the Phillips curve (contained in the specification

of the function ψ(v)) does not allow x, z to rise to their equilibrium values; as x crosses

x?, z starts to fall and v rises and this causes wage inflation to overtake demand-price

inflation consequently causing the rate of profit to fall, once employment is high enough

and subsequently, x starts to fall. The rate of profit and x continues to fall; a falling x

reduces the growth of capital and ultimately reduces the fall in z and the employment rate

v reaches a maximum and declines since z continues to fall less rapidly than x. The inflation

in wages is sustained over the flat part of the Phillips curve once more and the rate of profit

is continues its fall as well. Once more x crosses x? (this time falls below) and so z starts to

rise and the employment rate v declines; once this has declined far enough, wages first rise

less rapidly and then fall and causes the rate of profit and x to rise and ultimately x and v

both rise and the minimum v is attained once more. Basically, what has been described is

a movement along the orbit beginning from sub-region II of the phase plane and continuing
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through region III , IV, I and back to subregion II .

Notice that such a limit cycle is robust in the sense that small changes in initial con-

ditions will lead to the same cyclical orbit; small changes in parameters are unlikely to

alter the unstable character of the equilibrium too. Consequently cyclical behavior should

persist. Rose (1967) attributes the possibility of there being an unstable equilibrium to gov-

ernment policies directed towards the avoidance of both excessive inflation and excessive

unemployment 39. Finally, it should be pointed out that it has been possible to isolate the

aspects which are crucial for such a configuration to exist: the relative magnitudes of the

marginal propensities to save and invest.

5.5 Discrete Growth Processes

5.5.1 Classical Growth Processes

Till relatively recently, one of the fundamental presumptions about processes of economic

growth has been the approach over time to a steady state; that the dynamics, on its own, is

capable of showing highly complex behavior without any exogenous shocks was established

only around the 1980’s through the works of persons such as Day ( ), etc. We consider

these aspects below. As always, it is best to begin with the simplest possible constructs to

understand the interplay of various aspects. Classical growth theory, analyzes very familiar

terrain for most economists and so when the authors named above came up with their

conclusions, the results made an impact to say the least.
39See, Rose (1967), p. 162.
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5.5.2 Population Dynamics

Consider a single good being produced by means of labor alone according to a production

function of the type f(`); we consider first, a completely egalitarian agrarian society where

the output is completely distributed among the population according to the average product

f(`)/` which is the wage rate w. Malthus argued that when the necessities were plentiful,

population tended to grow at its maximum biological rate or natural rate, say n; when the

situation was adverse, Malthus assumed that the net birth rate to be the maximum that

could be attained under some exogenously determined subsistence level σ. Finally it was

also being assumed that the net birth-rate was being determined by the income or level of

output. We are considering a formalization of all of these ingredients which are due to Day

(1983).

Thus it is being assumed that population growth rate 4`
` would be governed by an

equation of the form:

4`
`

= min{n, w − σ

σ
} (5.32)

We note for future reference the fact that the population and labor employed are being

treated as one and the same variable `. Now writing 4` = `t+1 − `t, the above equation

reduces to

`t+1 = min{(1 + n)`t, wt`t/σ} (5.33)

The next ingredient, in this simple economy is the production function Y = f(`) which

determines output as a function of labor employed and a distribution rule which ensures
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that the total product is distributed according to the average product so that we have

wt = f(`t)/`t (5.34)

The production function is assumed to satisfy the following:

5.i. f(0) = 0

5.ii. f(.) is continuous and single-humped

Then the equation (5.33) reduces to

`t+1 = θ(`t) = min{(1 + n)`t, f(`t)/σ} (5.35)

Notice that the function θ(.) is well behaved and continuous, single-humped although there

are two segments to it.

To make matters somewhat more definite we assume that, in addition to the ones listed

above

• f ′(0) exists and further, it is greater than σ(1 + n)

On the basis of this restriction, we can say that for low values of `, (1 + n)` < f(`)

and there is a switch-point `s > 0 beyond which the inequality is reversed. Thus for values

of ` low enough, 0 < ` < `s, θ(`) = (1 + n)`: this is the region when the rate of growth

is determined purely by biological conditions, and the natural rate n prevails. Beyond the

range `s, however, θ(`) = f(`)/σ the population growth rate is determined by subsistence

considerations. Thus the former range (less than `s ) is referred to as the B-phase and the

latter range (beyond `s) is referred to as the S-phase.
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The equilibrium or steady state for the equation (5.35), say `?, is determined by `? =

θ(`?). To proceed, we need to tie matters down a bit more. For example, recall single-

humped has not been provided with a formal definition; we do so by requiring40the following:

• f ′′(.) exists and is non-positive for all ` ≥ 0.

• There is ¯̀> 0 (¯̀ may be +∞) such that f ′(`) > 0 for all ` ∈ [0, ¯̀).

• There is ˆ̀> 0 such that f(ˆ̀)/σ < ˆ̀.

We note that under these conditions, see, for example, Figure 3 below. The diagram is

drawn under the assumption that ¯̀ is finite. In such a situation the map consists of two

segments: the first for ` ∈ [0, `s],the operative portion is the straight line (the dashed line in

the diagram) AD; and the next segment is for ` ∈ [`s, `m], the dotted parabola D onwards.

The first is what has been termed the B-phase where rates of growth is the natural biological

rate; the latter, is the subsistence phase, S-phase where rates of growth are constrained by

the subsistence levels. Note first of all that under the conditions stated above, we have:

Claim 5.5.11 `? exists and `? > `s.

Figure 3 here

This may be seen as follows: note that `s solves (1 + n)` = f(`)/σ; such a solution

exists since for small `, it follows from the boundary condition that (1 + n)` < f(`)/σ

and moreover, we have f(ˆ̀)/σ < ˆ̀< (1 + n)ˆ̀ thus the two curves must cross somewhere
40This need not be the most general set of conditions for our analysis. But these are certainly very

convenient.
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in between. Hence f(`s)/σ = (1 + n)`s > `s; thus there must be `? ∈ (`s, ˆ̀) such that

f(`?)/σ = `?.

Thus notice that the steady state equilibrium `? must necessarily be in the S-phase. We

consider what happens when ¯̀ is finite and the strictly increasing nature of the production

function ceases at ¯̀. It follows that f(.) reaches a global maximum at ¯̀ and there can be no

other humps on account of the restriction on the sign of the second order derivative of the

function f(.). The situation then is exactly as depicted in Figure Day. Thus f(¯̀)/σ = `m,

say; note that `m = max`≥0 min{(1 + n)`, f(`)/σ}.

Next note that at ¯̀, f(¯̀)/σ > ¯̀ and hence ¯̀< `? ≤ `m = f(¯̀)/σ = θ(¯̀). As a reference

to the section of Discrete processes will make clear it is of crucial importance to study the

relative magnitudes of θ(`m) = θ2(¯̀) = f(`m)/σ and ¯̀. For complicated dynamics, as we

know, it is necessary that f(`m)/σ < ¯̀; let `c be defined by the lower of the two values

generated by the equation θ(`c) = ¯̀. Thus `c < ¯̀; further `c < ¯̀< `m; now if f(`m) < `c,

the conditions for Proposition ?? are satisfied and the map θ(.) is chaotic. Thus very

complicated dynamics would follow in such situations and the growth path, stemming from

the simple dynamics of (5.35) is capable of generating cycles of any order. The source of

this complex set of results is clear: it has to do with the function f(.) being such that ¯̀ is

finite.

To consider what happens when ¯̀ is infinite so that f ′(`) > 0∀` > 0 together with

f ′′(`) < 0 and given the existence of ˆ̀ such that f(ˆ̀)/σ < ˆ̀, it follows that`? exists and is

in the S-phase, as before. But given the geometry of the situation, specified by the other
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conditions, it follows that at `?, 0 < f ′(`?)/σ < 1 and consequently, the steady state is

immediately known to be locally asymptotically stable, since at the steady state, we are in

the S-phase, so that the map θ(.) is given by the function f(.)/σ. For global stability, we

note that the map θ(.) is monotonic increasing; consequently, `1 < `? ⇔ θ(`1) < θ(`?) = `?;

this shows that the iterates form a monotonic sequence: increasing, bounded above by `?, if

the initial point `o < `?; the iterates form a monotonic decreasing sequence bounded below

by `? if the initial point `o > `?. Thus the sequence of iterates {`t} converge and they must

converge to `?. Thus the situation is as expected.

5.5.3 Distribution Dynamics

There may be other sources for complicated dynamics in even rather simple classical model.

We consider in this section the following Ricardian model, analyzed by Bhaduri and Harris

(1987) where the essential dynamics of the Ricardian system is governed solely by distribu-

tional changes and we shall follow the Bhaduri and Harris treatment closely. The simple

model that they consider is one where some homogeneous output, made from labor and

land, is distributed as wages, profits and rents. There is an abstraction from the kind

of Malthusian dynamics considered in the last section and it is assumed that with real

wages fixed, the labor supply is perfectly elastic. The profits are reinvested by extending

the margin of cultivation and the paper studies the interaction between distribution and

accumulation with unlimited labor supply at constant real wages.

Thus labor (`) is applied in fixed proportions to to less and less fertile land as the

margin of cultivation is extended and there is a falling marginal product (MP`) curve for
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labor taken to be:

MP`t ≡
dYt
d`t

= a− b`t (5.36)

where a, b > 0. This leads to to the total product curve for labor

Yt = a`t − b`2t = `t(a− b`t) (5.37)

by specifying that labor is essential for production, so that ` = 0 ⇒ Y = 0. Thus the

average product of labor (AP`) is given by

AP`t = a− b`t/2 (5.38)

and this allows us to consider at stage t, the rents Rt to land as the difference between the

average and marginal products of Labor:

Rt = AP`t −MP`t = bN2
t (5.39)

The final category Profits Pt, is then the residual after the payment of rents and replacement

of the wage fund advanced to hire labor. Thus we have

Pt = Yt −Wt −Rt (5.40)

further since as we have indicated above the real wage is fixed at some w, Wt = w`t;

accumulation of additional wage funds to increase employment arises from the reinvestment

of profits (assuming that there is no consumption out of such accruals):

Wt+1 −Wt = Pt (5.41)

so that using the above, we have:

`t+1 =
a

w
`t −

b

w
`2t (5.42)
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If we rewrite the above using the transformation xt = b`t/a, then notice that (5.42) reduces

to

xt+1 = Axt(1− xt) (5.43)

where A = a/w. Now this is the logistic map which we have studied in some detail earlier

and for the present, we note that even here complicated dynamics may result for values of

the constant A close to 4. It would thus appear that simple classical models contain within

them scope for generating very complicated trajectories.

5.5.4 A Re-examination of Source of Complicated Dynamics

In both of the cases considered above, we need to examine one particular aspect which is

common to both of the models. The common feature of both of these models is the existence

of a production function which is single-humped. See, for example, Figure 3 above.

The point to note is that at ¯̀ the marginal product of labor is zero and beyond this

level of employment, marginal product becomes negative. Of course for positive output, we

must have 0 < ` < OC.

Any rational producer should never employ in the range ¯̀< ` < OC since by cutting

down on employment, profits can be made to increase on two counts: first in the cutting

back in wages and secondly due to the negative marginal product of labor. Consequently

we need to take this matter into account when we consider production functions of this

type. We investigate in this section the effect of this step on the conclusions arrived at in

the last two sections.
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Consider first of all the Malthusian population dynamics analyzed through (5.35) and

consider the case when the production function is of the type depicted above41 in Figure .

For the egalitarian society being considered, it would make little sense to employ beyond ¯̀:

notice that f(¯̀+ h) < f(¯̀)∀h > 0 ⇒ f(¯̀+ h)/(¯̀+ h) < f(¯̀)/(¯̀+ h) so it is best to keep

the extra h unemployed and share out the maximum output among every one. The result

of this would make the basic dynamics to be governed by the following equation:

`t+1 = φ(`t) ≡ min(θ(`t), ¯̀) (5.44)

First of all notice that this would mean that there are two possibilities for equilibria:

• `? = θ(`?) < ¯̀

• `? = ¯̀< θ(¯̀)

In the first case, notice that first of all, `? occurs where 0 < f ′(.)/σ < 1 so that the

steady state is locally asymptotically stable; next since the only region for consideration,

is the interval [0, ¯̀]; either the initial point lies in [0, `?] or in (`?, ¯̀]; in the former case,

the iterates are monotonic increasing and bounded above; while in the latter case, they are

monotonic decreasing bounded below and convergence in both cases to the steady state is

guaranteed.

In the second case, notice that the situation is even simpler: since now the only region

for consideration is the interval [0, ¯̀] and the iterates are monotonic increasing and bounded

above; hence they converge and the only possible point of convergence is the steady state.
41We analyzed this by referring to the case when ¯̀ is finite.
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Thus complicated Malthusian population dynamics, which we saw was plausible, is no

longer feasible once we make provisions for rational employment rules. To obtain the con-

clusions that were obtained in Day (1983), it would have to be ensured that the population

dynamics was governed by the earlier equation (5.35): it would thus have to be said that

the function f(.) is not really a production function but a relationship between output and

population denying the notion of employment.

The Bhaduri-Harris (1987), conclusion, similarly may appear to be completely depen-

dent on the single humped production with an unique maximum at ¯̀. In this paper, there is

a restriction 0 < xt = b`t/a < 1 which guarantees that marginal products are non-negative

(see (5.36): thus always ` < ¯̀.) However regardless of this, the logistic equation appears

and so does the possibility for complicated dynamics. It seems that the difference between

the two (Day (1983) and Bhaduri and Harris (1987)) lie in the fact that whereas the pro-

duction function itself appeared as part of the map in the former this is not so in the latter

study. In fact, it may be useful to see a somewhat more general setup in the Bhaduri-Harris

(1983) context. To investigate the nature of the map, consider a general production function

Y = f(`), f ′(.) > 0, f ′′(.) < 0; then notice that the crucial map (5.42) reduces to:

`t+1 =
f ′(`t)
w

.`t (5.45)

Put this way, it is easy to see what is happening along the process: if the current level of

marginal products exceed the fixed real wage, then employment is increased; whereas if the

marginal products happen to be less than the real wages, then employment is curtailed.

Now given the specification of marginal products in (5.36), the function f ′(`t).`t/w yields
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the logistic curve even after constraining employment levels to yield non-negative marginal

products.

However, this need not necessarily be so. For example, consider the function f(`) =

A.`γ where 0 < γ < 1, A > 0. Such a specification meets all the requirements; however, it

is easy to check that f ′(`).` = γA`γ and consequently the map is monotonic increasing,

strictly concave, ensuring the existence of `? which is locally asymptotically stable; the last

assertion follows since first of all `? = {Aγw }
1

1−γ and evaluating the derivative of γA`γ/w

at this equilibrium, yields γ which is less than unity. Having established this and the

monotonic increasing nature of the map, it is straightforward to establish that iterates

form a monotonic bounded and hence convergent, sequence as before. Thus there are no

possibilities for any complicated dynamics. Thus the source of the complicated dynamics

may be traced to the nature of the function φ(`) = f ′(`).`. It is usual to take φ′(`) > 0

for small values of `42. Thus unless this derivative changes sign, there can be no chance

of complicated dynamics. For example, for the Bhaduri and Harris (1987) set-up, this

derivative is a− 2b`
w which changes sign at ` = a/2b43.

We summarize this discussion in the form of the following:

Claim 5.5.12 In the Ricardian Model a necessary condition for the existence of complicated

dynamics is that the function φ(`) defined above is non-monotonic.
42This follows from the fact that φ′(`) = `f ′′(`)+ f ′(`) and the second term is usually assumed to become

large as ` → 0 while the first term vanishes if one were to take the second derivative to be bounded, for

example.
43Recall that non-negative marginal products make us confine attention the interval [0, a/b].
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5.5.5 Growing Through Cycles

Matsuyama (1999)(and (2001)) presented a model which appears to have rather interesting

implications; the standard neoclassical model of growth focuses on capital accumulation

to be the sole process through which an economy grows and consequently, if there is di-

minishing returns to capital, such a process of growth cannot be sustained. The more

recent endogenous theories of growth suggest a way around this problem of diminishing

returns through a consideration of innovations of new products which then sustain growth

indefinitely.

That neoclassical models of growth may be capable of non-convergence and generating

complicated behavior has been known for some time. Matsuyama shows that there is

a trade-off between growth and innovation; while innovation is necessary for sustaining

growth, during the process of innovation, growth rate is low. It is during the period when

no innovation occurs, that growth rate picks up and these two states alternate to achieve

a high rate of growth. We shall reexamine these conclusions below. We present the model

next.

There is one final good which is produced under competitive conditions with the help of

labor (L) supplied inelastically and several intermediate goods; the single final good is both

consumed and invested; say that at the end of period t− 1, Kt−1 units of the final good is

unused and is thus available for production in period t and is to play the role of capital.

Additionally in period t, there are several types of intermediate goods available denoted

by z, z ∈ [0, Nt]; prior to period t, types of intermediate goods up to Nt−1 have been
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introduced (N0 > 0); in period t, production of type z up to Nt−1 (the old intermediate

goods) require just a units of capital per each unit of any of the old intermediate goods.

New intermediates in the range [Nt−1, Nt] may also be introduced and sold exclusively by

those who choose to innovate; for each of the new intermediate, in addition to the a units of

capital per unit, a fixed cost of F units of capital has to be incurred before production can

be carried out. The old intermediate goods are sold competitively and hence, price must

reflect marginal costs i.e.,

pt(z) = art, z ∈ [0, Nt−1]

where rt is the price of a unit of capital in period t; the new intermediates are sold under

conditions of monopoly by the investor who innovates and to compute sales we need to find

out about the demand for the new intermediates.

Production of the final good in period t takes place according to the production function:

Yt = AL1/σ{
∫ Nt

0
[xt(z)]1−1/σdz} (5.46)

where xt(z), z ∈ [0, Nt] is the intermediate good of type z in period t; σ ∈ [1,∞] is the

constant direct partial elasticity of substitution between any two pairs of intermediates; the

following features should be noted:

•given Nt, production in period t satisfies constant returns to scale.

•the price elasticity of demand for each intermediate is σ.

•the share of labor is 1/σ.
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Given the above demand condition, the price of the new intermediates must satisfy

pmt (z) =
σart
σ − 1

, z ∈ (Nt−1, Nt]

Since all intermediate goods enter the production function symmetrically, we may take

xt(z) = xct∀z ∈ [0, Nt−1];xt(z) = xmt ∀z ∈ (Nt−1, Nt]

and given the demand conditions specified above,

xct
xmt

= [
pct
pmt

]−σ = [1− 1
σ

]−σ (5.47)

Note that the above has been obtained on the assumption that both the new and the

old intermediate goods are produced. The new intermediates are produced by monopolists

whose one period profit πmt is the sole incentive for production. Note that πm(t) = pmt .x
m
t −

rt(axmt +F ) = rt(axmt
1

σ−1 −F ). Free entry guarantees that profits are non-positive so that

we have axmt ≤ (σ − 1)F with the proviso that: Nt ≥ Nt−1 and

(Nt −Nt−1)[a.xmt − (σ − 1)F ] = 0 (5.48)

Thus when Nt > Nt−1, innovation occurs and new products are introduced; the innova-

tor earns no extra profits and operates at its break even point; while if this is not possible,

potential sales do not break even, then Nt = Nt−1 and no innovation takes place. In this

situation, of course there is a constraint which needs to be looked into. Recall that available

capital is Kt−1 and the production of both types of intermediates requires the use of this

261



resource; hence we must have

Kt−1 = Nt−1a.x
c
t + (Nt −Nt−1)(a.xmt + F )

Recall that if production takes place for both the sets of intermediate products (the new

and the old), we have, Nt > Nt−1 and from (5.47), a.xct = a.xmt {σ − 1
σ }−σ and from (5.48),

axmt = (σ − 1)F , so that axct = θFσ where θ = {σ − 1
σ }1−σ. It should be pointed out that

as σ ∈ [1,∞], θ ∈ [1, e]. If on the other hand, Nt = Nt−1, axct = Kt−1
Nt−1

. Thus, we have:

axct = min[
Kt−1

Nt−1
, θσF ] (5.49)

And further,

Nt = Nt−1 + max[0,
Kt−1

σF
− θNt−1] (5.50)

Substituting the above into (5.46), we have:

Y (t) =


AL

1
σNt−1(

Kt−1
aNt−1

)1−
1
σ for σFθNt−1 ≥ Kt−1

AL
1
σ [Nt−1(θσFa )1−

1
σ + (Kt−1

σF − θNt−1)(
(σ − 1)F

a )1−
1
σ ] otherwise

(5.51)

And finally to close the model, we have that a constant fraction of the output is left unused

so that it may be used as capital in the next period,44 i.e.,

Kt = µYt (5.52)
44It is this which provides the point of departure for the contribution of Matsuyama (2001) where capital

accumulation is derived from intertemporal optimization of the infinitely lived agent. This does lead to a

complication in the dynamics.
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To simplify matters, we introduce the following notation:

α =
A(aL)

1
σ

a(θσF )
1
σ

, kt =
Kt

NtσFθ

The dynamics of the entire system is captured through the equations (5.50), (5.51) and

(5.52). And we may combine them in to a single equation, using the variable kt introduced

above as follows:

kt =


µαk

1− 1
σ

t−1 if kt−1 ≤ 1

µαkt−1

1 + θ(kt−1 − 1) otherwise
(5.53)

In short, we shall write

kt = φ(kt−1) (5.54)

and given any initial k0, we shall study the iterates φt(k0), for t = 1, 2, ...

It should be noted φ(1) = G = µα; further that φ′(k) = (1 − 1
σ )Gk−

1
σ > 0 if k < 1

and φ′(k) = G(1− θ)
(1 + θ(k − 1))2

< 0 if k > 1. Thus the map φ(.) is of the standard uni-modal

variety with a maximum value at 1.

FIGURES 4a and 4b HERE

5.5.6 Possible Equilibria

It may be easily seen by referring to (5.53) that a crucial parameter for the system is

G = φ(1). Note also that as k → ∞, φ(k) → G
θ , which is finite, so that for all k large

enough, φ(k) < k; also since φ(k) > k for all k small enough (since φ(0) = 0 and φ′(k) > 1
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for all k small enough), it follows that there exists k > 0 such that k = φ(k). Further such

a positive k is unique too.

There are two possibilities depending on the magnitude of G; first of all notice that if

G < 1, k∗ is an equilibrium ⇒ k∗ < 1; consequently k∗ ≤ 1 ⇒ k∗ = Gσ; and if G > 1 then

k∗ > 1 ⇒ k∗ = G− 1
θ + 1. Consider then these two cases one by one.

Consider first, G ≤ 1; as indicated above, in this case, k∗ = Gσ. In this equilibrium,

notice that N remains fixed and hence no innovation occurs; since N is constant and given

the definition of the variable k, K too remains fixed and hence Y , so that no growth takes

place. Beginning from any arbitrary k0, the iterates settle to the regime k < 1 (Matsuyama

calls this the Solow regime) and converges to k∗ since, |φ′(k∗)| = |(1 − 1
σ )| < 1; thus k∗ is

locally asymptotically stable.

Consider next G > 1; k∗ = G− 1
θ + 1 and |φ′(k∗)| = |θ − 1

G |; thus it is seen that local

asymptotic stability requires that θ−1 < G. If on the other hand, θ−1 > G, the equilibrium

is unstable. At this equilibrium notice that N is increasing continuously and keeping pace

with it is K and as we may see Y too is increasing all at the same rate: the case of balanced

growth. Along the balanced growth path, where kt = k∗ > 1, it follows from (5.50) that

Nt+1
Nt

= G and consequently, Yt+1
Yt

= Kt+1
Kt

= G as well; thus G− 1 is the growth rate per

period along the balanced growth path.

5.5.7 2-cycles and Their Stability

When G > 1 and θ− 1 > G, the equilibrium is unstable as we have shown above; but there

is a 2-cycle, i.e., ∃k1 > 1 > k2 such that k1 = φ(k2) and k2 = φ(k1).
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Thus it is asserted that there exist k1 > 1 > k2 satisfying the following:

k2 =
Gk1

1 + θ(k1 − 1)

and

k1 = Gk
1− 1

σ
2

Using the second relation to eliminate k1, we have the following claim: there is 0 < k2 < 1

such that

k
1− 1

σ
2 [(1− θ)k

1
σ
2 +Gθk2 −G2] = 0

Note that writing f(k2) = [(1 − θ)k
1
σ
2 + Gθk2 − G2], f(0) = −G2 < 0 while f(1) =

(G− 1)(θ − 1−G) > 0 and hence the claim follows. Also note that f ′(0) < 0 and f ′(k) =

0 ⇒ k = k = {θ − 1
σθG }

σ
σ−1 and f(.) is decreasing for k < k and increasing for k > k;

consequently, there is a unique k2 satisfying the above claim.

It is easy to see that there cannot be any two period cycle (k1, k2), 0 < k1 < k2 < 1. For

then k1 = Gk
1− 1

σ
2 and k2 = Gk

1− 1
σ

1 ; this implies that k1 = Gσ > 1 which is a contradiction.

Nor can there be a cycle (k1, k2), 1 < k2 < k1; for other wise k2 + k2θ(k1 − 1) = Gk1

and k1 + k1θ(k2 − 1) = Gk2 so that (k2 − k1)(1− θ +G) = 0 which too is a contradiction.

Thus:

Claim 5.5.13 There is a unique 2-period cycle (k1, k2) with 0 < k2 < 1 < k1 when θ− 1 >

G > 1.

The stability of this cycle depends on whether the following is greater or less than unity:
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|φ′(k1).φ′(k2)| = |
G2(1− 1

σ )(θ − 1)

k
1
σ
2 {1 + θ(k1 − 1)}2

| = [
G2(θ − 1)

k
1
σ
2

].
(1− 1

σ )
{1 + θ(k1 − 1)}2

=
(θ − 1)(1− 1

σ ).G2.k2
1

{1 + θ(k1 − 1)}2.k2
1.k

1
σ
2

=
θ − 1
G

.
k

1
σ
2 (1− 1

σ )
G

= A.B say

Note that A > 1 while B < 1 so that the product could go either way. If the above

happens to be less than unity then, the 2-period cycle is attracting while if the quantity is

greater than unity the cycle is unstable. It should be clear that the smaller is the ratio A,

the greater is the chance of the cycle being stable. As we shall see, this point is of crucial

importance for locating a robust range of parameter values for which the cycles will be

stable. There can be nothing more definite about the aspect of stability since as is clear

from the above expression, both possibilities exist.

For instance, consider the following situations for σ = 5 and hence, θ = 2.44; but for

alternative similar looking values of G, we have:

Example 1 Let G = 1.075 < θ − 1 = 1.44. Then the two period cycle is given by k1 =

1.06487 > 1 > k2 = 0.988226; |φ′(k1).φ′(k2)| = 0.995503 hence the cycle is stable.

Example 2 Let G = 1.070 < θ − 1 = 1.44. Then the two period cycle is given by k1 =

1.06041 > 1 > k2 = 0.988805; |φ′(k1).φ′(k2)| = 1.00491 hence the cycle is unstable.
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Since both kinds of cycles are possible, consider then the merit of the following propo-

sition (Proposition 2, Matsuyama (1999)):

Let gx be the gross growth rate of the variable x. Along the period-2 cycles

(a) gN = 1 < G < G(k2)−
1
σ = gK = gY in the Solow Regime.

(b) gN = 1 + θ(k1 − 1) > G = gk = gY in the Romer Regime.

(c) gN = gK = gY = {1 + θ(k1 − 1}
1
2 = Gk

1
2σ
2 > G over the cycles.

The claims made above were meant to show that output (Y ) and investment (K) grow

faster in the Solow Regime: i.e., (when k < 1 and no innovation takes place); in other words,

even though innovation is essential to sustain growth, during the process of innovation (the

Romer regime when k > 1) the economy registers lower growth. After innovation stops,

markets become competitive; only then, higher growth is possible. And it is along the cycles

that the economy grows faster than along the unstable balanced growth path.

As should be obvious, this conclusion is of some interest only if the cycle is stable, since

otherwise the fact, that along the cycle a higher growth rate is possible, is of little interest.

It is because of this that the calculations about the stability of the cycles provided above

assume significance.

5.5.8 Are Robust Stable 2-Cycles Plausible?

What kind of parameter values are sure to provide us with stable cycles ? The Examples

(1) and (2) show that with roughly similar looking values of G one may get different results.

But there is some thing more that one may say in addition to the above.

Consider the situation when G = θ−1; it is immediate, by referring back to (5.53), that
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in this case, φ(1) = G and φ(G) = 1; further |φ′(1).φ′(G)| = (1 − 1
σ )/G < 1 so that this

cycle is stable (here φ′(1) is to be interpreted as the derivative on the left); this assertion

follows by considering the expression A.B derived earlier; now A = 1 and hence the assertion

follows. But in this particular situation there is an embarrassment of cycles; since for any

k1 > 1, k1 < G there is k2 > 1 such that φ(k1) = k2 and φ(k2) = k1. But these cycles

disappear as soon as G < θ− 1, as we have seen above but, it should be clear that the cycle

close to (1, G) remains and that cycle retains stability.

Thus if G is close but less than θ − 1 then the resultant cycle is stable. Note that

for the situation described in Examples 1 and 2, θ − 1 is about 1.44; thus some where

between the values for G given by 1.07 and 1.075, the two-period cycles change their stability

property and we have a point of bifurcation; for lower values of G there may be other points

of bifurcation. Indeed, Mitra (2001) has shown that this model is capable of exhibiting

topological chaos too (i.e., there may be a cycle whose period is not a power of 2)45 for

certain configuration of parameters. The fluctuation in the interval [φ(G), G] which we

noted earlier, may in fact be quite complicated.

In other words, very complicated dynamics may be possible in this framework and

consequently, the relevance of the Proposition such as the one mentioned above may be

ascertained only if we are assured that parameters have certain values which guarantee the

robust stability of the two-period cycles i.e., G is close to θ − 1. This is robust because
45Consequently, for every integer n, there is a cycle with period n and there is an uncountable set X such

that for every ko ∈ X the iterates φt(ko) do not exhibit any periodicity. See the Example 3 below for one

such configuration.
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there would be an open set O = (G, θ− 1) and any G ∈ O would ensure stability of the two

period cycles. The lower bound on this interval amounts to where the product A.B becomes

unity. Matsuyama seems to be aware of this problem although he does not appear to quite

attribute either the stability or the robustness aspect the importance each deserves46.

However before leaving the question of stability of the two period cycles, we present an

estimate of the of the range of G-values for which the two cycles retain stability. To obtain

an estimate for G, we may note that the expression in A.B may be written as

(θ − 1)(1− 1
σ )

G2
.k

1
σ
2 = C.D say

where we know that D < 1 so now if C < 1 then we are sure that A.B < 1 and the cycle is

stable. Thus a sufficient condition for the stability of the two-cycle is:

Claim 5.5.14 If G > Ĝ =
√

((θ − 1)(1− 1
σ )) then the 2-cycle is stable.

The claim follows by noticing that whenever the condition is satisfied, the term C < 1. In

fact for σ = 5, for example, we have, Ĝ = 1.07384 so that, whenever G > 1.07384 the two-

cycle is stable47. This allows us to obtain an estimate of the open interval O, viz., (Ĝ, θ−1)
46See, for example, Matsuyama (1999), p. 344.; it is clear from this that there may be ranges over which

the 2-cycles may be unstable; also over this range, the attracting cycles may have periods which are powers

of 2, as we see below. It appears that the author is more concerned about the empirical plausibility of

the existence of 2-cycles, as his discussion on plausibility considers only the condition for the existence of

2-cycles, viz., θ−1 > G > 1, with G being ‘close‘ to θ−1. The entire plausibility exercise considers G = θ−1.

47It should be clear that Ĝ > G. Thus for σ = 5, G ∈ [1.07384, 1.44) implies stability of the two period

cycle. In Matsuyama (1999), as we indicated above, G is taken to be θ−1 = 1.44 while discussing plausibility.

Our analysis thus reveals that the 2-cycles are a lot more “plausible”.
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and for any G-value in this interval, the two-cycle is stable. Since we do not know what

the magnitude of the parameter σ will be, let us take the range suggested in Matsuyama

(1999), [5, 22]; we examine next, how the range of G-values which imply stability for the

2-cycle, [Ĝ, θ − 1) behaves with a variation in the parameter σ.

Claim 5.5.15 Let H be defined as the range of G-values which imply stability of the period

2-cycles, i.e., H = θ − 1− Ĝ. Then H is an increasing concave function of σ in the range

[5, 22].

The proof of this claim is contained in the Figure 5 below48

FIGURE 5 HERE

Thus so far as two-cycles are concerned, the range of G-values which ensure stability

increase with the value of σ. Be that as it may, we shall show below, that we do not need to

confine attention to 2-cycles alone to establish the fact that cycles are growth enhancing. In

fact, the range of values for the parameter G for which stable cycles are growth enhancing,

as we indicate, cover a much wider range.

5.5.9 When 2-cycles fail to attract

When the 2-cycle is not attracting, we need to analyze further. In this section, we shall

confine ourselves to the case when 1 < G < θ − 1. Given this restriction, we note that

φ(G) < 1. To proceed formally, note first of all,
48Given the nature of the functions involved, we have used Mathematica to generate the diagram which

seems to be enough for the purpose at hand.
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Claim 5.5.16 φ : [0, G] → [0, G].

Next, we note that49:

Claim 5.5.17 [φ(G), G] is an absorbing state (i.e., φ(G) ≤ k ≤ G⇒ φ(G) ≤ φ(k) ≤ G).

In addition,

Claim 5.5.18 For any initial point ko ∈ [0, G], ko 6= 0, k?, ∃t such that φt(ko) ∈ [φ(G), G]

unless φt(ko) = 0 for some t.

For, suppose to the contrary, that there is some ko ∈ [0, G] such that for no t is φt(ko) ∈

[φ(G), G]; then φt(ko) ∈ (0, φ(G))∀t i.e., kt+1 = φt+1)(ko) = φ(kt) = Gk
1−1/σ
t > kt. Thus

{kt} is a monotonically increasing sequence bounded above and hence must converge to some

k, say, k ∈ [0, φ(G)]. Note that since kt+1 and kt both converge to k, φ(k) = k ⇒ k = 0

which is a contradiction, since 0 is an unstable equilibrium.

Thus the structure of an arbitrary trajectory is that apart from hitting the unstable

equilibrium 0 accidentally, it will enter the interval [φ(G), G] in finite time and remain

inside, thereafter. Limit points for the trajectory will thus exist and will be located in

the interval [φ(G), G]. Our next task is to locate these limit points, if possible. We note,

however, that cyclical orbits, if these exist have a special structure:

Claim 5.5.19 Consider any cycle of period n, k1, k2, ..., kn ∈ [0, G], say, with k1 = min1≤j≤n kj

must have k1 < 1 and kn > 1.
49See, for instance, Matsuyama (1999), p. 342.
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First of all note that kn > k? since otherwise k1 = φ(kn) ≥ kn: a contradiction. Thus

1 < k? < kn ≤ G. Hence, φ(1) = G > k? > k1 > φ(G). Suppose that k1 ≥ 1 that is, we

have: 1 ≤ k1 < k?, kn. Then, φ(k1) = k2 > φ(k?) = k? ⇒ k3 = φ(k2) < k? but k3 > k1

since recall that k1 was the minimum. Thus k? > k3 > k1 ≥ 1 and G > k2 > k?; proceeding

in this manner, it may be concluded that n must be even i.e., n = 2s say and we must have

k1 < k3 < k5....k
? < k2s=n < k2(s−1) < ...k2 ≤ G

But now k1 6= φ(kn): a contradiction. Hence k1 < 1 as claimed.

Thus any n-cycle must spend at least one period in the Solow- Regime. This fact allows

us to note the following property of growth rates along any n-period cycle. Consider any

such cycle k1, k2, ..., kn; we shall write kn+1 = k1 and we note the following: If kj < 1 then

kj+1 = Gk
1−1/σ
j ; thus we have

kj+1

kj
= Gk

−1/σ
j

which means that

gK =
Kj+1

Kj
= Gk

−1/σ
j > G

since no innovation occurs and Nj+1 = Nj . On the other hand, if kj > 1, we have

kj+1

kj
=

G

1 + θ(kj − 1)

and further since innovation takes place , we have from equation (5.50)

gN =
Nj+1

Nj
= 1 + θ(kj − 1)

consequently, we have:

Kj+1

Kj
.
Nj

Nj+1
=
gK
gN

=
G

1 + θ(kj − 1)

272



which means that gK = G, given the expression for gN obtained above. With these pre-

liminaries, let us return to the n-cycle k1, k2, ..., kn with kn+1 = φ(kn) = k1 which means

that

Kn+1

Nn+1
=
K1

N1
⇒ Kn+1

K1
=
Nn+1

N1

in other words, we have:

Kn+1

Kn
...
K2

K1
=
Nn+1

Nn
...
N2

N1

on the left hand side, each term is either G if the corresponding kj ≥ 1 or is G.k−1/σ
j if

the corresponding kj < 1. Thus the product on the left hand side is greater than Gn, since

we have shown that at least one of the kj ’s namely k1 is less than 1. Consequently, the

average gross growth rate gK = gY = gN along the cycle must be greater than

G.We note this in the form of the following claim:

Claim 5.5.20 Along any n-period cycle, the average gross growth rate gK = gY = gN > G.

Let us return to the Example 2 , where the 2-cycle had been shown to be unstable. It

may be shown that in that context viz., G = 1.07, σ = 5: there is a stable 4-period cycle

k1 < 1, k2 > 1, k3 < 1, k4 > 1, φ(ki) = ki+1, i = 1, 2, 3, 4 with k5 = k1. k1 = 0.9888, k2 =

1.060402, k3 = 0.988814, k4 = 1.0604139; further it may be checked that |φ′(k1)....φ′(k4)| =

0.000583969 < 1 which signifies that the 4 period cycle is stable.

Figure 6 demonstrates the existence and convergence to such a 4-period cycle.

FIGURE 6 HERE
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For the case σ = 5, it has not been possible to locate any more points of bifurcation;

that is on the basis of simulation exercises, and the bifurcation diagram (Figure 7) it seems

reasonable to conclude that there may be at the most a stable 4-period cycle.

FIGURE 7 HERE

The bifurcation diagram50 plots for values of G between θ− 1 = 1.4 and 1, the last 100

points in an iteration of 1000 points from an arbitrary initial point. For G between 1 and

1.4, beginning with the high G values, we note the first approach to a two period cycle; for

lower values of G, the two period cycle disappears and a stable four period cycle appears.

This happens for values of G close to 1 and it has not been possible to uncover other points

of bifurcation51. Outside the range, we note convergence to a steady state, as the results

indicate.

We consider next bifurcation diagrams for narrower ranges of the parameters but still

for σ = 5: first consider the range of G values between 1.4 and 1.48.

FIGURE 8 HERE

Notice the shift from convergence to the fixed point to convergence to the two-period cycle

as the value of G decreases. And consider next the range of G values between 1 and 1.08,

still for σ = 5.
50All diagrams were prepared on Mathematica Version 4.1 .
51The exercises we have conducted seem to indicate that bifurcations leading to cycles with period 8 and

period 16 and more are non-existent, at least when σ is small; see Matsuyama (1999), p.344. For such

possibilities, σ has to exceed 22. See below.
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FIGURE 9 HERE

Notice here the shift from convergence to a two period cycle to convergence to a four period

cycle as G attains the value unity. Thus Figures 8 and 9 focus attention on the two extreme

ranges of the parameter G contained in Figure 7.

We present next, an example of topological chaos when G is small and σ is large. For

this purpose it would be helpful to note the following:

Claim 5.5.21 φ2(1) = φ(φ(1)) < 1 ⇔ 1 < G < θ − 1.

Thus a necessary condition for topological chaos52 is always satisfied, for every value of

G whenever, the steady state is unstable. But to clinch matters and to show the presence

of complicated dynamics, we need to show that φ3(1) < k? 53

Example 3 Consider σ = 22 and G = 1.001; one may then check that φ3(1) < k?. We

thus have topological chaos for this map. For values of σ ≥ 22, low values of G imply the

existence of topological chaos54.

The bifurcation diagram for σ = 22 is provided below.

FIGURE 10 HERE

The above set of exercises allows us to draw the following conclusions:
52See, for instance, Mitra (2001), p. 140, (2.5).
53Mitra (2001), Proposition 2.3, p. 142.
54See Mitra (2001), p.142 where he looks at the case when σ = 50, G = 1.01 to apply his result.
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• When the steady state is unstable, two-cycles exist; further, any G value in the set

[Ĝ, θ − 1) implies that the two-cycle is stable. This range increases with σ over the

range [5, 22] of plausible σ-values.

• When σ is small (around 5), the steady state and the two period-cycle is unstable,

there would be a stable cyclical orbit with period 4; cycles with higher periods do not

appear possible.

• When σ is large (≥ 22), possibilities for chaos exist particularly if the value of G is

small enough.

• Whenever the steady state is unstable and a stable cycle exists, the rate of growth

along the cycle will be greater than that along the unstable steady state.
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          Figure 1: The Predator-Prey Model (b, c, d = 1, a = 2) 
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Figure 2: The Predator-Prey Model (a, b, c, d as above; γ=-0.5) 
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Figure 4: Robust Periodic Behavior in a Lotka-Volterra Model
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 Diagrams for Chapter 5 
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        Figure 1:  Convergence to Steady State 
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               Figure 2A: The Invariant Set When there is no E3 
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             Figure 2B: The Invariant Set when there is E3 
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       Figure 2C:  Phase Plane for the Rose Model 
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Figure 7 : The BifurcationMap s = 5, 1.5 > G > 1
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Figure 8 : The BifurcationMaps = 5, 1.48 > G > 1.4



1.02 1.04 1.06 1.08
G

0.925

0.95

0.975

1

1.025

1.05

1.075
k

Figure 9 : The BifurcationMaps = 5, 1.08 > G > 1
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Figure 10 : The BifurcationMaps = 22




