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Abstract

This paper examines a mechanism of liquidity-preference fluctuations caused

by changes in people’s belief about a random liquidity shock. When observing

the shock, they rationally update their belief so that the shock probability is

higher; consequently they raise liquidity preference and reduce consumption.

As the period without the shock lasts, they become more optimistic so that

they gradually lower liquidity preference and increase consumption. The re-

covery pattern depends on the realized frequency of the shock: when the shock

occurs many times in succession, the consumption recovery is first slow, grad-

ually accelerates and eventually slows down, tracing an ‘S’-shaped curve.
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1 Introduction

Why do people hold money although money does not generate interest earnings? In

the literature a wide variety of reasons for liquidity holding have been discussed, such

as the transaction motive, the speculative motive, status preference, etc. This paper

focuses on the precautionary motive. People hold money since they prepare for a

possible aggregate liquidity shock, such as bank runs or sudden malfunction of the

financial system. By observing whether or not such a shock actually occurs at each

point in time they rationally update the subjective probability of the shock, causing

their liquidity preference to fluctuate. The fluctuation in turn affects the optimal

time path of consumption and generates a demand-driven business cycle. This paper

examines such a business-cycle mechanism.

If transactions are properly settled by checks or credit cards, people need not hold

money stock. However, if a financial crisis occurs and checks or credit cards do not

properly work, holding money stock yields an explicit benefit. Bank runs can also

be regarded as another example of such liquidity shocks. As long as banks normally

operate, people need not hold money since they can easily withdraw money whenever

they buy something. Thus, at normal times holding money does not directly benefit

people. If a bank run occurs, however, people cannot withdraw money so that they

have to use the money that they hold. On this occasion holding money generates

utility.

Since such crises cannot exactly be anticipated, people hold money even when

it is unnecessary. Such liquidity preference depends on how exactly people know

about the probability of the shock at each point in time. If they know the exact

probability and it does not change, the expected gain of holding money is constant

over time. Thus, they behave as if they had a deterministic utility function of money

as originally assumed in Sidrauski (1967). If they do not know the exact probability,

whether the shock occurs or not today conveys some information for people to guess
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the probability of the shock tomorrow. More precisely, when people observe the

shock, they update their subjective probability for meeting with it again and raise

liquidity preference. If the shock does not occur for a while, they gradually reduce

the probability and lower liquidity preference.

In order to highlight such a fluctuation in liquidity preference we impose a rather

extreme assumption: people receive utility from holding money only when the liquid-

ity shock occurs. We also assume that there are two states with different probabilities

of the shock and that people do not know which state they are in. The shock follows

a Poisson process in each state. By observing whether or not the shock occurs at each

point in time people rationally update the subjective probability using Bayes’ law

and revise the time paths of consumption and money holding. If nominal wage ad-

justment is sluggish in this setting, employment also fluctuates over time as liquidity

preference varies. In this way we obtain a demand-driven business cycle.

In the literature of business cycles, there are a few attempts to explain cyclical

movements of macroeconomic variables by combining unobservable regime changes

and Bayesian updating agents.1 Chalkley and Lee (1998) and Potter (2000) examine

how agents react to unobservable changes in an investment opportunity. Andolfatto

and Gomme (2003) and Sill and Wrase (1999) focus on the situation where monetary

policy, which is not directly observable, periodically switches between low and high

monetary growth. In these models time is discrete and in each period agents receive

a noisy signal with respect to the current state. Since the signal is noisy, agents

slowly change their belief, making the effect of a regime change more persistent than

in the case where the state is perfectly observable.

Besides the difference in motivation, our specification differs from them in that

agents receive a signal (namely, observe the liquidity shock) only at sporadic points in

1Hamilton (1989) presents a different but somewhat related approach when viewing business

cycles as regime changes. He assumes that it is not agents but econometricians that cannot directly

observe regime changes, and develops a procedure to estimate the timing of regime changes.
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continuous time and form their belief depending upon when and how frequently the

shock occurs.2 As long as the liquidity shock occurs sparsely in time, people view the

shock as a mere accident. Consumption decreases only by a small amount and then

quickly recovers. However, when the shock occurs many times for a short while,

people are convinced that they are in the more dangerous state and significantly

reduce consumption. In this case, the recovery process takes a long time because a

period without the shock reveals information about the state little by little and thus

people gradually lower liquidity preference. The recovery of consumption is then

found to be initially slow, gradually accelerates and again slows down, tracing an

‘S’-shaped curve.3

After modelling the belief-updating behavior of households in the next section,

we examine liquidity-preference fluctuations and the optimal consumption behavior

in section 3. Section 4 derives the existence, uniqueness and other properties of the

stationary equilibrium path and presents the cyclical movements of the belief and

consumption. Section 5 summarizes and concludes.

2 Liquidity Shock and Bayesian Learning

We use a continuous-time model in which a representative household faces an ag-

gregate liquidity shock that follows an exogenous Poisson process. Liquidity holding

generates utility when the shock actually occurs, but does not while the shock does

2There are some continuous-time models in which agents update their belief based on discrete

signals although the unobservable state is time invariant. Zeira (1999) investigates bubbles in the

stock market in which agents know that bubbles will crash some day but do not know exactly when.

Driffill and Miller (1993) examine the inertia of the inflation rate under sluggish nominal price ad-

justment when agents are learning about the probability of sporadic exchange-rate realignments. In

these models, however, uncertainty vanishes in the long run and recurrent cycles are not generated.

3This mechanism provides a possible explanation of why it took so long a time for consumer

confidence in Japan to recover after experiencing a succession of bank failures in the 1990s.
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not occur. Since when the shock occurs cannot exactly be anticipated, even during

the period without it the household holds liquidity so as to prepare for it.

There are two underlying states with different probabilities of the shock, called

states H and L. In state i ∈ {H,L} the shock occurs with probability θi per unit
time, where θH > θL > 0. The household cannot directly observe the current state

but knows that the state evolves according to a Markov process: state H changes to

state L with Poisson probability pH per unit time whereas state L changes to state

H with probability pL. We assume that the shock occurs much more frequently in

state H than in state L and that the state change is a rare event when compared to

the shock in state H. Formally,

Assumption 1 θH − θL > pH + pL.

By observing whether the shock occurs or not she continuously revises her subjec-

tive shock probability in a Bayesian manner. Let θt denote the true shock probability

at time t, which is unknown to her. Using information available up to time t, she

forms a belief that θt = θH with probability ft(θ
H) and θt = θL with probability

ft(θ
L). Obviously,

ft(θ
L) + ft(θ

H) = 1 for any t. (1)

In order to find how she updates ft(θ
i) from t to t+∆t,4 we first obtain the sub-

jective probability that the shock does not occur between t and t+∆t for given ft(θ
i).

It is denoted by Ft
£
S(t,t+∆t] = φ

¤
, where Ft[·] is a probability operator based on in-

formation available at t, S(a,b] is the set of dates on which the shock actually occurs

during (a, b], and φ the empty set. Since the underlying state is either H or L at time

t+∆t, this probability is divided into two components, Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θH

¤
and Ft

£
S(t,t+∆t] = φ ∩ θt+∆t = θL

¤
.

4Time interval ∆t is taken to be so short that the probability that the liquidity shock and a

state change coexist in the interval is negligible.
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Each of the two components is further divided into two probabilities. The former

is the sum of the probability that ‘the state is H at time t and neither the state change

nor the shock occurs during the interval’ and the probability that ‘the present state

is L and the state changes to H during the interval.’ It is5

Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θH

¤
=
¡
1− (θH + pH)∆t¢ ft(θH) + pL∆tft(θL). (2)

Similarly, the latter is

Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θL

¤
=
¡
1− (θL + pL)∆t¢ ft(θL) + pH∆tft(θH). (3)

Summing up (2) and (3) yields

Ft
£
S(t,t+∆t] = φ

¤
= 1− θet∆t, (4)

where θet represents the expected (or subjective) probability of the shock per unit

time at time t:

θet ≡ θHft(θ
H) + θLft(θ

L). (5)

Let us consider how the representative household updates her belief if she eventu-

ally finds that the shock did not occur during (t, t+∆t]. In this case the information

that S(t,t+∆t] = φ is added to her knowledge. Thus, using Bayes’ law we find updated

subjective probability ft+∆t(θ
i) to be

ft+∆t(θ
i) ≡ Ft+∆t

£
θt+∆t = θi

¤
= Ft

£
θt+∆t = θi|S(t,t+∆t] = φ

¤
=
Ft
£
S(t,t+∆t] = φ ∩ θt+∆t = θi

¤
Ft
£
S(t,t+∆t] = φ

¤ .

Since the numerator is given by (2) or (3) and the denominator by (4), ft+∆t(θ
H)

equals6

ft+∆t(θ
H) =

¡
1− (θH + pH)∆t¢ ft(θH) + pL∆tft(θL)

1− θet∆t
.

5Throughout the paper we ignore the second-order term of ∆t and higher because ∆t→ 0.

6ft+∆t(θ
L) is analogously obtained. From (1) it equals 1− ft+∆t(θH).
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From this equation we derive the time derivative of ft(θ
H):

dft(θ
H)

dt
= lim

∆t→0
ft+∆t(θ

H)− ft(θH)
∆t

= (θet − θH − pH)ft(θH) + pLft(θL).
(6)

We next consider the case where the shock occurs during (t, t+∆t]. Since

Ft
£
S(t,t+∆t] 6= φ ∩ θt+∆t = θi

¤
= θift(θ

i)∆t for i ∈ {L,H}, (7)

the probability that the shock occurs is

Ft
£
S(t,t+∆t] 6= φ

¤
=
¡
θHft(θ

H) + θLft(θ
L)
¢
∆t = θet∆t, (8)

which is consistent with (4). From Bayes’ law dividing (7) by (8) gives the updated

subjective probability that θt+∆t = θi under the condition that the shock occurs

during (t, t+∆t]. It is

ft(θ
i) = lim

t0→t−0
θift0(θ

i)

θet0
≡ θift−0(θi)

θet−0
, (9)

where subscript t− 0 represents the state just before t.
Finally, we obtain the dynamics of subjective probability θet . From (1) and (5),

ft(θ
H) =

θet − θL

θH − θL
, ft(θ

L) =
θH − θet
θH − θL

. (10)

Substituting (6) and (10) into the time derivative of (5) yields the time derivative of

θet in the case where the shock does not occur at time t:

θ̇et = (θ
e
t − θL − pL)(θet − θH − pH)− pLpH ≡ g(θet ) for t /∈ S(0,∞). (11)

Under Assumption 1, this function has an ‘U’-shape as illustrated in figure 1. The

figure shows that

g(θ) Q 0⇐⇒ θ R θ∗ for any θ ∈ £θL, θH¤ , where
θ∗ ≡ θL + θH + pL + pH −p(θH + pH − θL − pL)2 + 4pLpH

2
∈ (θL, θH). (12)
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Similarly, by substituting (9) and (10) into (5) we obtain the value of θet as a

function of θet−0 in the case where the shock does occur at time t.

θet = θL + θH − θLθH

θet−0
≡ h(θet−0) for t ∈ S(0,∞). (13)

As shown in Figure 2, h(θ) satisfies

h(θH) = θH , and θe < h(θe) < θH for all θe ∈ (θL, θH).

Equations (11) and (13) describe the dynamics of θet with and without the shock

respectively. It continuously declines to steady state value θ∗ as long as the shock does

not occur, but discretely jumps upward when it occurs.7 Intuitively, in the absence

of the shock people gradually become more and more optimistic and confident that

the economy is in state L. Thus, their subjective probability of the shock gradually

declines and converges to θ∗.8 Due to the U-shape of function g(θet ), the speed of

adjusting their belief is slower when θet is near either θ
∗ or θH than when it is in the

middle.

Conversely, when the shock is observed, people discretely change their expectation

about the present state. Since h(θe) is located above the 45-degree line in Figure 2,

the more often people observe the shock, the more strongly people believe that they

are in state H, and hence θet becomes closer to θ
H . In this way θet fluctuates between

θ∗ and θH .

7From (11) and (13), we find that θet is trapped within interval
¡
θ∗, θH

¤
in the long run. Since

we are interested in the long-term behavior of the economy, it is assumed throughout this paper

that θet is always within
¡
θ∗, θH

¤
. Under this assumption, θet always declines while the shock does

not occur.

8θet never becomes lower than θ
∗(> θL) since people take into account the possibility that state

L might have changed to state H even though the shock does not occur.
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3 Liquidity Preference and Consumption Behav-

ior

In this section, we investigate how the aforementioned fluctuations in the represen-

tative household’s belief affects her liquidity preference and consumption behavior.

Before doing that, we briefly describe the basic structure and production side of the

economy.

The economy is inhabited by the representative households with measure one.

Each household is infinitely lived and supplies labor to a representative firm. The

firm inputs only labor to produce the commodity according to yt = yxt, where yt

and xt are respectively the level of output and that of labor input.
9 Input-output

coefficient y is assumed to be constant. Since there is no investment in our setting

and thus consumption ct equals total commodity demand, total labor demand xt is

xt = ct/y. (14)

In this economy, money affects real variables through the sluggishness of nominal

wage adjustment. Instead of explicitly introducing the adjustment cost of nominal

wages, we simply assume that there is a reduced-form relationship between labor

demand xt and the rate of nominal wage adjustment Ẇt/Wt,

Ẇt/Wt = ω(xt − 1), ω0(·) ≥ 0, ω(0) = 0, (15)

i.e., the rate of nominal wage adjustment is an increasing function of labor demand

in excess of the ‘natural’ level, the latter being normalized to unity. Given Wt, the

perfect adjustment of commodity price Pt always yields

Wt/Pt ≡ wt = y, (16)

9Labor supplied by each household is potentially differentiated. In that case ‘yt = yxt’ should

be considered as the outcome when the representative firm employs the same amount of labor from

each household.
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which shows that real wage wt is constant. Thus, from (15), the inflation rate is

determined as a function of commodity demand ct:

πt ≡ Ṗt/Pt = ω(ct/y − 1). (17)

Next, we describe the demand side. We extend the money-in-the-utility-function

framework to include the random liquidity shock. The representative household gains

utility only from consumption ct when the shock does not occur. However, when it

occurs, she gains utility not only from consumption but also from money holding mt.

Her expected utility EUt is therefore given by

EUt = Et

Z ∞
t

u(cτ )e
−ρ(τ−t)dτ +

X
τ∈S(t,∞)

βmτe
−ρ(τ−t)

 , (18)

where ρ is her subjective discount rate, β is a constant specifying the marginal utility

of money holding, and S(t,∞) is the set of future dates on which the shock occurs.

Instantaneous felicity from consumption u(·) is twice differentiable and satisfies the
Inada conditions.

The household chooses assets among money and contingent claims for future

commodities. However, since all households are identical, money is the only asset

that they hold after all arbitrage opportunities are exploited.10 We assume that

nominal money supply is constant and that there is no tax-cum-subsidy.11 Thus, the

flow budget equation is

ṁt = wtxt − πtmt − ct. (19)

Having the belief mentioned in the previous section, the representative household

chooses the time paths of consumption and money holding so as to maximize the

expected utility (18) subject to (19).

10Since the profits of firms are always zero in the present setting, the ownership of firms has no

value.

11The assumption of constant money supply is not essential. In fact, as shown below, the level

of money stock does not affect the household behavior in the present setting.
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Objective function (18) depends on only ct, mt and the expected pattern of the

shock, the last of which is fully described by θet since θ
e
t is a sufficient statistic for

θt that governs the current and future probabilities of the shock. Constraint (19)

depends on wt, xt and πt, all of which are determined by only ct on the equilib-

rium path, as seen from (14), (16) and (17). Therefore, from the perspective of the

household that determines ct, the current status is fully summarized by mt and θ
e
t .

Thus, given the recursive structure of the model, the movement of ct on the path

of stationary dynamics must completely be expressed as a function of mt and θ
e
t .
12

Furthermore, since objective function (18) and constraint (19) are both linear in mt,

the optimal choice of ct is independent of the level of mt.
13 Thus, ct should be a

function of only θet :

ct = C(θ
e
t ) for all t. (20)

Since θet fluctuates within interval (θ
∗, θH ], as shown in the previous section, we

only need to characterize the shape of function C(θet ) in this interval.
14 To this end

we examine the first-order conditions for the household’s optimizing behavior.

Let 1−µ(θet )∆t denote the price of the claim to a unit of the commodity at t+∆t
measured in terms of the commodity at t under the condition that the shock does

not occur between t and t + ∆t. Note that it is a function of θet because the value

12This strategy for finding stationary dynamics is analogous to Lucas (1978) who analyses the

determination of equilibrium price behavior under an exogenous production shock that follows a

Markov process.

13The linearity of the utility function with respect tomt is assumed primarily for showing how the

fluctuation in liquidity preference affects the consumption path of the utility-maximizing household

in the simplest setting. When the marginal utility of holding money is variable, we actually find

that the equilibrium dynamics of ct depends on both θ
e
t and mt. It substantially complicates the

analysis but does not affect our main results, such as the pattern of recovery.

14In the following, it is assumed that θet ∈ (θ∗, θH ] unless otherwise noticed.
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of the claim depends on the probability with which the contingent event occurs.15 If

the shock does not occur during the interval, consumption increases from C(θet ) to

C(θet + g(θ
e
t )∆t) since θ

e
t changes by the amount of g(θ

e
t )∆t, as shown by (11). Since

the probability that the shock does not occur during this interval is 1 − θet∆t, as

given by (4), the first-order condition between the present and future consumption

under the condition that the shock does not occur is

(1− µ(θet )∆t)u0(C(θet )) = (1− θet∆t)u
0(C(θet + g(θ

e
t )∆t))e

−ρ∆t.

From this equation in which ∆t → 0 we derive

µ(θet ) = ρ+ θet +
C 0(θet )
C(θet )

γ(C(θet ))g(θ
e
t ) for all θet , (21)

where γ(c) ≡ −u00(c)c/u0(c).
Analogously, let ν(θet )∆t denote the price of the contingent claim to a unit of

the commodity at t + ∆t under the condition that the shock does occur between t

and t+∆t. When the shock occurs, consumption jumps from C(θet ) to C(h(θ
e
t )), as

seen from (13). Since the shock probability is θet∆t, as shown by (8), the first-order

condition between the present and the future consumption in this case is

ν(θet )∆t · u0(C(θet )) = θet∆t · u0(C(h(θet )))e−ρ∆t.

By making ∆t → 0 in this equation we find

ν(θet ) =
θetu

0(C(h(θet )))
u0(C(θet ))

for all θet . (22)

Next, let us consider the arbitrage between these contingent claims and a risk-free

asset. Let rt be the real interest rate of a risk-free asset, then the price of a risk-free

claim to the future commodity at t +∆t is e−rt∆t. Since the claim is equivalent to

the asset of the synthesis of the claim contingent on the absence of the shock whose

15Note also that consumption (which affects the marginal utility of consumption) depends on θet .
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price is 1− µ(θet )∆t and that conditional on its presence whose price is ν(θet )∆t, the
no-arbitrage condition requires

e−rt∆t = 1− µ(θet )∆t+ ν(θet )∆t.

As ∆t→ 0, it reduces to

rt = µ(θ
e
t )− ν(θet ) for all t. (23)

Substituting (21) and (22) into (23) yields

C 0(θet ) =
C(θet )

γ(C(θet ))g(θ
e
t )

·
rt − ρ+ θet

µ
u0(C(h(θet )))
u0(C(θet ))

− 1
¶¸
. (24)

Applying (11) and (20) to (24) leads to the dynamics of ct (≡ C(θet )) while the shock
does not occur:

ċt
ct
=

1

γ(ct)

·
rt − ρ+ θet

µ
u0(C(h(θet )))
u0(ct)

− 1
¶¸

for t /∈ S(0,∞), (25)

which is the Keynes-Ramsey rule in the present setting. Note that it is the same as

the standard one except for the third term in brackets of the right-hand side. This

term represents a jump in the marginal utility caused by the shock. If ct declines

after the shock, causing the marginal utility of consumption to increase, this term is

positive and thus the growth rate of ct is higher than would obtain in the standard

Ramsey model. That is, since the representative household anticipates a possible

increase in the marginal utility of consumption, she tries to reallocate consumption

from the present to the future, raising the growth rate of consumption during the

period without the shock.

Having examined the household’s intertemporal optimization of consumption, we

now turn to the optimal choice between consumption and money holding. By holding

a one-unit money between time t and t+∆t, the household loses (rt+πt)∆t units of

consumption, or equivalently (rt+πt)u
0(ct)∆t units in terms of utility, when compared

to holding a unit of risk-free asset during this period. At this cost a one-unit increase
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in real money holding raises the household’s utility (18) by β if the shock occurs.

Since the subjective probability that the shock occurs between t and t+∆t is θet∆t,

the increase in the expected utility is βθet∆t. The marginal benefit should equal the

marginal cost on the optimal path, which yields the first-order condition between

money holding and consumption:

rt + πt =
βθet
u0(ct)

for all t. (26)

Equation (26) implies the well-known property–i.e., the marginal rate of substitu-

tion between consumption and real money holding equals the nominal rate of interest.

Substituting (17) into (26) and rearranging terms, the real interest rate is written as

a function of θet and ct:

rt =
βθet
u0(ct)

− ω

µ
ct
y
− 1
¶
≡ R(θet , ct), satisfying

Rθ(θ
e, c) ≡ ∂R(θe, c)/∂θe =

β

u0(ct)
> 0 for all θet > 0 and ct > 0.

(27)

From (24) and (27), the optimizing household behavior is summarized as

C 0(θet ) =
C(θet )

γ(C(θet ))g(θ
e
t )

·
R(θet , C(θ

e
t ))− ρ+ θet

µ
u0(C(h(θet )))
u0(C(θet ))

− 1
¶¸

for all θet ∈ (θ∗, θH ].
(28)

Function C(·) is determined so that it satisfies differential equation (28). To pin
down C(·), however, we also need a boundary condition. If ċt/ct remains positive as
θet approaches steady-state value θ

∗, then ct unboundedly explodes. Conversely, if

ċt/ct remains negative as θ
e
t → θ∗, ct converges to zero, violating the transversality

condition. We rule out such paths by imposing a boundary condition:16

lim
θe→θ∗

R(θe, C(θe))− ρ+ θe
µ
u0(C(h(θe)))
u0(C(θe))

− 1
¶
= 0, (29)

under which ċt/ct given by (25) approaches zero as θ
e
t → θ∗.

16Throughout this paper, we use operator ‘lim’ to denote the right-hand limit.
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Equations (28) and (29) determine the whole shape of C(θet ) within interval¡
θ∗, θH

¤
. Once it is determined, applying the dynamics of θet given by (11) and

(13) to it provides the dynamic path of ct.

4 Business Cycle

This section investigates the shape of the consumption path determined by (28) and

(29). Note that the right-hand side of differential equation (28) includes C(h(θ))

along with θ and C(θ), implying that we cannot simply illustrate a phase diagram.17

Therefore, we theoretically examine basic properties of function C(θ) and then nu-

merically obtain a typical shape of it.

For the tractability of the analysis we assume the following two properties re-

garding u(·) and ω(·), which are stated in terms of R(·) defined by (27).

Assumption 2 limc→0R(θH , c) < ρ and limc→∞R(θ∗, c) > ρ.

Assumption 3 Rc(θ
e, c) is continuous and positive for all θe ∈ [θ∗, θH ] and c > 0,

where Rc(θ
e, c) ≡ ∂R(θe, c)/∂c.

Intuitively, function R(·) represents the household’s preference for liquidity–i.e.,
the expected utility gain minus capital loss from holding money for a unit time,

as shown by (27). If it is stronger than her preference for present consumption ρ,

she postpones consumption and holds more money. Therefore, in Assumption 2

the former property implies that she prefers consumption to liquidity holding when

her consumption is quite low even if she expects the highest shock probability θH .

The latter property implies that she prefers liquidity holding to consumption when

her consumption is sufficiently high even if she expects the lowest shock probability

17In mathematical term, this type of equation is called a difference-differential equation or a delay

difference equation.
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θ∗. Assumption 3 extends this relationship between ct and R(·) to a smooth and
monotonic one under a given θet–i.e., as consumption increases, liquidity preference

rises as long as the state of expectation about the shock is unchanged.

Under the two assumptions we find the existence, and a few properties, of function

C(θe) that satisfies (28) and (29):

Proposition 1 Under Assumptions 2 and 3, there exists a unique function C(θe)

that satisfies (28) and (29). It is strictly downward sloping for any θe ∈ (θ∗, θH ] and
has positive and finite upper and lower bounds c and c that are given by

R(θ∗, c) = ρ, R(θH , c) = ρ. (30)

Proof. See Appendix A.

Given initial belief θe0 and the history of the liquidity shock S(0,t], the path of θ
e
t

is uniquely determined by (11) and (13). Therefore, the uniqueness of function C(·)
implies that of the consumption path: ct = C(θ

e
t ). The negative relationship between

θet and ct provides an intuitive figure of the dynamics. Figure 1 shows θ̇
e
t < 0 for

any (θ∗, θH ], implying that subjective shock probability θet gradually declines while

the shock does not occur. Thus, preference for liquidity gradually decreases and

consumption grows. When the shock occurs, people discretely increase θet to h(θ
e
t ),

as illustrated in Figure 2, causing a negative jump in consumption to occur. If the

shock does not occur for a while, people again gradually become optimistic and raise

consumption. In this way, consumption persistently fluctuates within finite interval

[c, c].

To obtain a typical shape of function C(θe) and the dynamics of consumption

more clearly, we numerically analyze the dynamics by assuming

u(ct) = log ct and ω(xt − 1) = α · (xt − 1) where α is constant. (31)
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In this setting, Assumptions 2 and 3 reduce to the following:18

βyθ∗ > α, ρ > α.

In the numerical calculation we choose parameter values so that these conditions as

well as Assumption 1 are satisfied.19

Figure 3 illustrates the shape of C(θet ) obtained from the numerical analysis. It

is in fact downward sloping from c∗ ≡ C(θ∗) to cH ≡ C(θH). If the shock does not
occur while θet moves from θH to θ∗ according to equation (11), C(θet ) moves along

the solid curve in Figure 4. Note that consumption first grows slowly, gradually

accelerates, and eventually slows down again as it approaches c∗–i.e., it traces an

S-shaped trajectory.

The intuition behind is clear from the U-shape of function g(θet ) as depicted in

Figure 1. If people strongly believe that they are in state H and thus θet is very close

to θH , they do not significantly alter their pessimistic view for a while. In fact, the

speed of change in θet , given by |g(θet )|, is then small and thus consumption increases
very slowly. As the period without the shock lasts, θet decreases and |g(θet )| increases,
as Figure 1 shows. People become more and more optimistic and thus θet declines

faster, which accelerates the recovery speed of consumption. As θet approaches to

steady-state value θ∗, people become quite confident that they are in state L, and

hence an additional period without the shock provides little information. |g(θet )|
approaches zero and the growth rate of consumption converges to zero.

18Using a money-in-utility model without uncertainty Ono (1994, pp.86-88; 2001) shows that in

the case where βy > α and ρ > α there is a unique saddle-stable path. Furthermore, the path

accommodates a persistent demand shortage when ρ < βy, whereas it reaches a full-employment

steady state when ρ > βy. The present condition is the same as his condition except that the

former includes shock probability θ∗.

19Specifically, θH = .4, θL = .05, pH = .025, pL = .1, y = 1, ρ = .05, α = .025, and β = .4.

Under these parameter values, we obtain θ∗ ≈ .069, c∗ ≈ 1.3 and cH ≈ .60. The details of the

numerical procedure are described in Appendix B.
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Once the liquidity shock occurs, however, their consumption jumps downward

since the subjective shock probability jumps upward, raising their liquidity prefer-

ence. Consumption falls from C(θet ) to C(h(θ
e
t )), the latter being depicted by the

dashed curve in Figure 4 (where vertical arrows express the magnitude of each fall).

Thereafter the recovery process ‘restarts’ from the point that corresponds to the de-

creased level of consumption (as indicated by horizontal arrows) and consumption

again traces the solid curve. If the shock continually occurs for a short period, the

subjective probability successively increases and C(θet ) approaches the lowest level

cH . Thereafter, consumption recovers along the S-shaped trajectory, as mentioned

above.

Finally, by simulating the Markov process of the underlying state and the Poisson

process for the shock, we numerically obtain an example of the realized time paths

of θt, θ
e
t and ct. Figure 5 illustrates them. Consumption in fact traces an S-shaped

path especially after it vastly declines. Since the inflation rate is given by (17) and

y is located between c∗ and cH under the present parameter values, in the recovery

process serious deflation initially occurs, then its rate reduces, and eventually a boom

comes and inflation arises after c exceeds y. If the shock does not frequently occur

and hence consumption does not seriously decline, the recovery process starts before

deflation occurs.

It is also worth noting that realized booms and depressions do not exactly match

the underlying state of the economy but follow the subjective probability that peo-

ple have in mind. Even when the economy switches to state H and thus the true

probability of the shock jumps up, people do not increase money holding until they

actually observe it. Analogously, even if the true shock probability jumps down, they

still keep strong liquidity preference and thus the recovery speed is very slow for a

while once they become very pessimistic.
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5 Conclusions

Liquidity preference depends on people’s belief about how frequently they encounter

crises in which liquidity is needed. This paper has examined the way they update

the belief based on Bayesian inference and its effect on their preference for liquidity

holding over consumption, in a circumstance where the economy shifts between two

unobservable states with different probabilities of the liquidity shock. Each time

they observe the shock, they raise their subjective probability of being in the more

dangerous state and increase preference for holding money over consumption. The

longer the period without the shock lasts, the larger probability people attach to the

safer state and increase preference for consumption over money holding. With in-

complete nominal wage adjustment, such movements in liquidity preference generate

demand-driven business cycles.

The magnitude and persistence of fluctuations in consumption depend on the

realized frequency of the shock, which does not necessarily match the underlying

state of the economy. As long as the shock occurs sparsely in time, it has only a

minor effect on the belief and economic recovery after it is fast. However, if people

observe the shock many times for a short while, they hold a strong belief of being in

the more dangerous state and reduce consumption a lot. Once it occurs, it takes a

long time for them to reverse their belief and increase consumption. In this process,

the recovery speed is first slow, then gradually accelerates, and eventually declines,

tracing an S-shaped curve.
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Appendix A: Proof of Proposition 1

Proof of C(θ) to be downward sloping20

Before starting the proof we define D(θ):

D(θ) ≡ R(θ, C(θ))− ρ+ θ

µ
u0(C(h(θ)))
u0(C(θ))

− 1
¶
. (32)

Since D(θ) is the expression in brackets of (28) and (11) shows g(θ) to be negative

for all θ ∈ (θ∗, θH ],
C 0(θ) S 0⇐⇒ D(θ) T 0. (33)

Using function D(θ) we first prove

Lemma 1 Suppose that C(θ) satisfies (28) and that there exists θ0 ∈ [θ∗, θH) sat-
isfying limθ→θ0 D(θ) = 0. Then, under Assumption 3, C(θ) is strictly downward

sloping for all θ ∈ (θ0, θH ].

Proof: If Lemma 1 does not hold and hence C(·) is weakly upward sloping somewhere
in (θ0, θH ], either of the following must be the case.

(i) There exists some θA ∈ [θ0, θH) such that limθ→θA D(θ) = 0 and C 0(θ) ≥ 0 for
all θ ∈ (θA, θH ].

(ii) There exist some θA ∈ [θ0, θH) and θB ∈ (θA, θH) such that limθ→θA D(θ) =

D(θB) = 0, C 0(θ) ≥ 0 for all θ ∈ (θA, θB], and C 0(θ) ≤ 0 for all θ ∈ (θB, θH ].

Intuitively, if the lemma is false, we can choose interval (θA, θB] in which function

C(θ) is weakly increasing, θA is either a local minimum or θ0, and θB is either a local

maximum or θH . If there are multiple intervals of such, we choose the rightmost one.

We shall find neither (i) nor (ii) to be valid.

20In Appendices A and B we use θ instead of θet to minimize notation.
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We first show that case (i) leads to a contradiction. SinceRc > 0 from Assumption

3 and Rθ > 0 from (27), in case (i)

lim
θ→θA

R(C(θ), θ) < R(C(θH), θH). (34)

Since h(θA) ∈ (θA, θH), limθ→θA C(θ) ≤ C(h(θA)) whereas C(θH) = C(h(θH)) since
h(θH) = θH from (13). Since applying these properties and (34) to (32) implies 0 =

limθ→θA D(θ) < D(θ
H) in case (i), from (33) we find C 0(θH) < 0, which contradicts

(i).

In case (ii) limθ→θA C(θ) ≤ C(θB). Since Rc > 0 from Assumption 3 and Rθ > 0

from (27), this inequality implies

lim
θ→θA

R(C(θ), θ) < R(C(θB), θB). (35)

Further, h(θA) is located in either (θA, θB] or (θB, θH). If h(θA) ∈ (θA, θB],

then C(h(θA)) ≥ limθ→θA C(θ) since we suppose C 0(θ) ≥ 0 for all θ ∈ (θA, θB].
Contrastingly, C(h(θB)) ≤ C(θB) since h(θB) ∈ (θB, θH) and C 0(θ) ≤ 0 for all

θ ∈ (θB, θH ]. Using these inequalities, (32) and (35) we find limθ→θA D(θ) < D(θ
B),

which contradicts case (ii).

If h(θA) ∈ (θB, θH), then because h0(θ) > 0 from (13), we find θA < θB < h(θA) <

h(θB) < θH . In case (ii), this means

lim
θ→θA

C(θ) ≤ C(θB) ≥ C(h(θA)) ≥ C(h(θB)).

Thus,

u0(C(h(θB)))
u0(C(θB))

− 1 ≥ max
µ
0, lim

θ→θA
u0(C(h(θ)))
u0(C(θ))

− 1
¶
.

Applying this property and (35) to (32) yields limθ→θA D(θ) < D(θB), which contra-

dicts case (ii). Thus, anyway case (ii) results in a contradiction. ¥

From (32), boundary condition (29) is equivalent to limθ→θ∗ D(θ) = 0. By re-

garding θ∗ as θ0 in Lemma 1, we find C(θ) that satisfies (28) and (29) to be strictly

downward sloping for all θ ∈ (θ∗, θH ].
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The existence of upper and lower bounds for C(θ)

We first show c and c to be unique and well defined. Since θ∗ < θH and Rθ > 0 from

(27), under Assumption 2

lim
c→0

R(θ∗, c) ≤ lim
c→0

R(θH , c) < ρ < lim
c→∞

R(θ∗, c) ≤ lim
c→∞

R(θH , c).

Applying this property and Assumption 3 to the intermediate value theorem im-

plies that there are unique and positive c and c satisfying (30). Furthermore, since

R(θH , c) > R(θ∗, c) = ρ = R(θH , c), Assumption 3 implies c > c.

Next, we prove the following lemma.

Lemma 2 Suppose that C(θ) satisfies (28) and that there exists θ0 ∈ [θ∗, θH) sat-
isfying limθ→θ0 D(θ) = 0. Then, under Assumptions 2 and 3, C(θ) ∈ [c, c] for all
θ ∈ (θ0, θH ].

Proof: As shown by Lemma 1, the last term in (32) is positive when θ → θ0 and

hence

lim
θ→θ0

R(θ, C(θ)) < ρ. (36)

From the first equation of (30), the positivity of Rθ given by (27), and Assumption

3, R(θ, c) > ρ for all θ ∈ [θ∗, θH ] and c > c. Thus, (36) implies limθ→θ0 C(θ) ≤ c.
When θ = θH , the last term in (32) equals zero since h(θH) = θH from (13). Since

C 0(θ) = D(θ)/g(θ) from (28) and (32), C 0(θH) ≤ 0 from Lemma 1, and g(θH) < 0

from (11), we find D(θH) ≤ 0. Applying these properties to (32) yields

R(θH , C(θH)) ≥ ρ.

Comparing this property with the second equation of (30) and using Assumption

3 yield C(θH) ≥ c. Furthermore, the monotonicity of C(θ) from Lemma 1 implies

C(θ) ∈ [C(θH), limθ→θ0 C(θ)] ⊆ [c, c] for all θ ∈ (θ0, θH ]. ¥

Under condition (29), θ∗ satisfies the requirement for θ0 in Lemma 2. Thus,

C(θ) ∈ [c, c] for all θ ∈ (θ∗, θH ].
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The uniqueness of C(θ)

Let eC(θ, cH) be the solution to differential equation (28) that satisfies the following
boundary condition: eC(θH , cH) = cH , (37)

where cH(> 0) is an arbitrary constant. We can solve differential equation (28)

backward from θ = θH with boundary condition (37), because h(θ) is larger than θ

and thus C(θ) and C(h(θ)) are already known when we calculate the gradient of C(·)
at θ.21 Therefore, function eC(θ, cH) is uniquely determined within interval (θ∗, θH ].
Using function eC(·), boundary condition (29) can be rewritten as

lim
θ→θ∗

eD(θ, cH) = 0, where (38)

eD(θ, cH) ≡ R(θ, eC(θ, cH))− ρ+ θ

Ã
u0( eC(h(θ), cH))
u0( eC(θ, cH)) − 1

!
. (39)

eD(θ, cH) is the expression in brackets of (28) with C(θ) being replaced by eC(θ, cH).
Functions eC(·) and eD(·) have the following properties:22
Lemma 3 Under Assumption 3, (a) eCc(θ, cH) > 0 and (b) eDc(θ, cH) > 0 for all θ ∈
(θ∗, θH ] and cH > 0. In addition, (c) there is a constant, Dc, such that eDc(θ, cH) >
Dc > 0 whenever eC(θ, cH) ∈ [c, c].
Proof: By rearranging terms in (28),

eD(θ, cH) = g(θ)γ( eC(θ, cH)) eCθ(θ, cH)eC(θ, cH) = −g(θ)Mθ(θ, c
H), (40)

where M(θ, cH) ≡ lnu0
³ eC(θ, cH)´ . (41)

Differentiating (40) with respect to cH yields

Mθc(θ, c
H) = − eDc(θ, cH)/g(θ). (42)

21The numerical analysis follows this way. See Appendix B for it.

22 eCc(θ, cH) ≡ ∂ eC(θ, cH)/∂cH . eDc(θ, cH) and other partial derivatives are defined likewise.
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Differentiating (39) with respect to cH gives

eDc(θ, c
H) = Φ(θ, cH) +Ψ(θ, cH), where

Φ(θ, cH) ≡ Rc(θ, eC(θ, cH)) u0( eC(θ, cH))
u00( eC(θ, cH))Mc(θ, c

H),

Ψ(θ, cH) ≡ θ
u0( eC(h(θ), cH))
u0( eC(θ, cH)) ¡

Mc(h(θ), c
H)−Mc(θ, c

H)
¢
.

(43)

Since (37) implies eCc(θH , cH) = 1, differentiating (41) with respect to cH yields
Mc(θ

H , cH) = u00(cH)/u0(cH) < 0. (44)

From (13), h(θH) = θH and thus Ψ(θH , cH) = 0. Using this property, Assumption 3,

(37), (43) and (44) we obtain

eDc(θH , cH) = Rc(θH , cH) > 0.
Now we extend this property to all θ ∈ (θ∗, θH ]. To prove this, suppose otherwise.

Then, there should be some θA ∈ (θ∗, θH) that satisfies eDc(θ, cH) > 0 for all θ ∈
(θA, θH ] and eDc(θ

A, cH) ≤ 0. This property, combined with (42), (44) and the

negativity of g(θ) from (11), gives

Mc(θ
A, cH) =Mc(θ

H , cH) +

Z θH

θA

eDc(θ, c
H)/g(θ) dθ

< u00(cH)/u0(cH) < 0.

(45)

Assumption 3, (43) and (45) imply Φ(θA, cH) > 0. Similarly, from (42)

Mc(h(θ
A), cH)−Mc(θ

A, cH) = −
Z h(θA)

θA

eDc(θ, cH)/g(θ) dθ > 0, (46)

which means Ψ(θA, cH) > 0. Substituting these results into (43) yields eDc(θA, cH) >
0, which contradicts the assumption that eDc(θ

A, cH) ≤ 0. Thus there is no such θA,
and therefore property (b) holds.

Property (b) and (42) imply

Mθc(θ, c
H) > 0 for all θ ∈ (θ∗, θH ] and cH > 0. (47)
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From (44) and (47),

Mc(θ, c
H) < u00(cH)/u0(cH) < 0 for all θ ∈ (θ∗, θH ]. (48)

Since (48) is equivalent to eCc(θ, cH) > 0 from (41), property (a) holds.

Finally we prove property (c). Define

Φ(θ, c) ≡ Rc(θ, c)u
0(c)u00(cH)
u00(c)u0(cH)

.

From Assumption 3, Φ(θ, c) is positive and continuous for all (θ, c) ∈ Θ ≡ [θ∗, θH ]×
[c, c]. Since Θ is a compact set, there exists Dc ≡ min(θ,c)∈ΘΦ(θ, c) > 0. Combined
with (43), (47) and (48), this property implies

eDc(θ, cH) > Φ(θ, cH) > Rc(θ, eC(θ, cH))u0( eC(θ, cH))u00(cH)
u00( eC(θ, cH))u0(cH) ≥ Dc

whenever eC(θ, cH) ∈ [c, c]. ¥

We now prove the uniqueness of function C(θ) using Lemmata 2 and 3. Suppose

that there are two distinct functions C1(θ) and C2(θ) both of which satisfy (28) and

(29). Let cH1 ≡ C1(θ
H) and cH2 ≡ C2(θ

H). Then C1(θ) = eC(θ, cH1 ) and C2(θ) =eC(θ, cH2 ) for all θ ∈ (θ∗, θH ]. Note that cH1 6= cH2 because we have assumed that C1(θ)
and C2(θ) are distinct functions. Since (29) is equivalent to (38), both functions

satisfy

lim
θ→θ∗

eD(θ, cH1 ) = lim
θ→θ∗

eD(θ, cH2 ) = 0. (49)

From Lemma 2, eC(θ, cH1 ), eC(θ, cH2 ) ∈ [c, c] for all θ ∈ (θ∗, θH ]. Applying it to
property (a) of Lemma 3 implies eC(θ, cH) ∈ [c, c] for all cH ∈ [cH1 , cH2 ] and all θ ∈
(θ∗, θH ]. Thus, we can use property (c) of Lemma 3 to obtain

lim
θ→θ∗

| eD(θ, cH1 )− eD(θ, cH2 )| > |cH1 − cH2 |Dc > 0, (50)

which contradicts (49).
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The existence of C(θ)

We obtain another property with respect to eD(θ, cH).
Lemma 4 Under Assumptions 2 and 3, (a) eD(θ, c) < 0 and (b) eD(θ, c) > 0 for all
θ ∈ (θ∗, θH).

Proof: We first prove property (a). From (27) and (30),

R(θH , c) = ρ and R(θ, c) < ρ for all θ ∈ (θ∗, θH). (51)

Since (13) implies h(θH) = θH , substituting (37) and (51) into (39) yields

eD(θH , c) = 0. (52)

Since (40) and (52) imply eCθ(θH , c) = 0, and Rθ > 0 from (27), differentiating (39)

with respect to θ when θ = θH gives

eDθ(θ
H , c) = Rθ(θ

H , c) > 0. (53)

Equations (52) and (53) show that there is a small ε (> 0) such that eD(θ, c) < 0 for
all θ ∈ (θH − ε, θH).

We now extend the negativity of eD(θ, c) to the whole interval of (θ∗, θH). To see
this, suppose otherwise. Then, there must be some θA ∈ (θ∗, θH) such that eD(θ, c) <
0 for all θ ∈ (θA, θH) and that eD(θA, c) ≥ 0. Since eD < 0 ⇔ eCθ > 0 from (40)

and the negativity of g(θ) in (11), we obtain eC(θA, c) < eC(h(θA), c) < eC(θH , c) = c.
With Assumption 3 and (51), these inequalities yield R(θA, eC(θA, c)) < R(θA, c) < ρ

and hence from (39) eD(θA, c) < 0, which is a contradiction.
Next we prove property (b). From Assumptions 2 and 3,

R(θ, c) > ρ for all θ ∈ (θ∗, θH ]. (54)

It implies eD(θH , c) > 0 from (39) since h(θH) = θH from (13). To prove that this

inequality actually holds for whole (θ∗, θH ], suppose otherwise. Then, there should be
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some θA ∈ (θ∗, θH) such that eD(θ, c) > 0 for all θ ∈ (θA, θH ] and that eD(θA, c) ≤ 0.
From (33), we find eC(θA, c) > eC(h(θA), c) > eC(θH , c) = c. With Assumption 3 and
(54), these inequalities imply R(θA, eC(θA, c)) > R(θA, c) > ρ and therefore from (39)eD(θA, c) > 0, which is again a contradiction. ¥

Applying property (b) of Lemma 3 and Lemma 4 to the intermediate value the-

orem assures that, for any given θ0 ∈ (θ∗, θH), there uniquely exists cH ∈ [c, c] that
satisfies eD(θ0, cH) = 0. That is, there is a unique function, cH = ζ(θ0), satisfying

eD(θ0, ζ(θ0)) = 0 for all θ0 ∈ (θ∗, θH). (55)

From Lemmata 1 and 2, function eC(θ, ζ(θ0)) is monotonic and bounded by [c, c]
within interval θ ∈ (θ0, θH ]. By taking limit as θ0 → θ∗, we conclude that C(θ) =eC(θ, cH∗) is monotonic and bounded for all θ ∈ (θ∗, θH ], where cH∗ ≡ limθ0→θ∗ ζ(θ0).23

This implies ct should neither explode, implode nor oscillate. Thus ċt/ct → 0 as

θet → θ∗, which gives the validity of boundary condition (29).

Appendix B: Numerical procedure of finding C(·)
Our problem is generally called an IVP (initial value problem), which is usually

solved by finite difference methods, such as the Runge-Kutta method and the Euler

method.24 However, we cannot use them since the right-hand side of (28) contains

C(h(θ)), which makes impossible to calculate the gradient of C(θ) before C(h(θ))

is determined. Since h(θ) is always larger than θ, we cannot solve the differential

equation forward from θ∗, where the boundary condition is given, toward θH . Instead,

23Note that, ζ(θ) is bounded by c and c from Lemma 2. In addition, by totally differentiating

(55) and utilizing Lemma 1, we can prove that ζ(θ) is continuous and monotonic for all θ ∈ (θ∗, θH ].
It means that ζ(θ0) does not oscillate as θ0 → θ∗, hence the existence of cH∗ ≡ limθ0→θ∗ ζ(θ0) is

guaranteed.

24See, for example, Judd (1998).
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we can solve it backward from θH toward θ∗, during which C(h(θ)) is already known

when we calculate the gradient of C(θ).

This strategy, however, involves another difficulty because the value of the func-

tion at the starting point, cH ≡ C(θH), is not predetermined. Thus, we have to find
an appropriate initial value cH such that boundary condition (29) is eventually met

when (28) is solved from it.25 This method is in fact used when we prove proposition

1 in appendix A–i.e., we show that there is a unique cH∗ ∈ [c, c] that satisfies this
property. In the numerical analysis we calculate cH∗ in the following way:

Step 1. Let i = 0, h0 = c and l0 = c.

Step 2. Let cHi = (hi+li)/2. Using the Euler method, solve differential equation (28)

(to which (31) is applied) backward starting from boundary value C(θH) = cHi .

Step 3. If C(θ) exceeds c during the calculation, or if D(θ) defined by (32) remains

positive when θ approaches θ∗, let hi+1 = cHi and li+1 = li. Conversely, if C
0(θ)

becomes positive during the calculation or if D(θ) remains negative when θ

approaches θ∗, let hi+1 = hi and li+1 = cHi . Otherwise, c
H
i is the solution.

Step 4. Let i = i+ 1.

Step 5. Repeat steps 2-4 until hi and li get sufficiently close to each other. Then

admit cH = (hi + li)/2 as the solution.
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