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Abstract

Two sellers engage in price competition to attract buyers located on a net-

work. The value of the good of either seller to any buyer depends on the number

of neighbors on the network who consume the same good. For a generic speci-

fication of consumption externalities, we show that an equilibrium price equals

the marginal cost if and only if the buyer network is complete or cyclic. When

the externalities are approximately linear in the size of consumption, we iden-

tify the classes of networks in which one of the sellers monopolizes the market,

or the two sellers segment the market.

Key words: graphs, networks, externalities, Bertrand, divide and conquer, dis-

criminatory pricing, monopolization, segmentation.

Journal of Economic Literature Classification Numbers: C72, D82.

1 Introduction

Goods have network externalities when their value to each consumer depends on

the consumption decisions of other consumers. The externalities may derive from

physical connection to consumers adopting the same good as in the case of telecom-

munication devices, from provision of complementary goods as in the case of oper-

ating systems and softwares for computers, or from pure psychological factors as in

the case of band-wagon and snob consumption. Despite their importance in real-

ity, we only have limited understanding of network externalities particularly when

those goods are supplied competitively. The objective of this paper is to study price

competition in the presence of consumption externalities represented by a buyer

∗ISER, Osaka University, 6-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
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network. Specifically, we represent a network by an undirected graph whose nodes

correspond to buyers, and suppose that the degree of externalities experienced by

any buyer is increasing in the number of buyers who are linked to them in the graph.

A more detailed description of our model is as follows: Two sellers each sell

goods that are incompatible with each other. Consumers of either good experience

larger positive externalities when more of his neighbors consume the same good.

In stage 1, the two sellers post prices simultaneously. The prices can be perfectly

discriminatory and can be negative. Upon publicly observing the price vectors

posted by both sellers, the buyers in stage 2 simultaneously decide which good to

buy or not to buy. The sellers have no cost of serving the market, and their payoffs

simply equal the sum of prices offered to the buyers who choose to buy their goods.

In this framework, we find that the equilibrium outcome of price competition

subtly depends on the network structure. Our first observation concerns the validity

of marginal cost pricing. When no network externalities are present, it is clear that

the unique subgame perfect equilibrium of this game has both sellers offer zero to

all buyers. In the presence of externalities, however, we show that the marginal cost

pricing is consistent with equilibrium only if either the externalities are linear (in the

number of neighbors consuming the same good), or the network is either a complete

graph or a cycle.1 In any other network, if the externalities generic, there exists no

equilibrium in which either seller captures the entire market by offering the same

price to all buyers. This is so even in networks where all buyers have symmetric

locations. Given this surprising result, we attempt to identify equilibrium prices

under non-linear externalities.

Positive identification of equilibrium prices is possible when the externalities are

close to linear and when the network satisfies certain properties as follows. First, we

consider bipartite networks. A network is bipartite if the set of buyers can be divided

into two subsets such that for every buyer in either subset, all his neighbors belong

to the other subset. This is an important class of networks given that it corresponds

to a two-sided market that has received much attention in the literature as discussed

in the next section. We show that in a bipartite network, there exists an equilibrium

in which one of the sellers captures the entire market (i.e., buyers on both sides) by

charging positive prices to all buyers on one side while subsidizing all buyers on the

other side.

1A graph is complete if any pair of buyers are neighbors. The linear externalities in particular

imply that the value of the good is zero to a buyer when none of his neighbors consumes it.
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Next, we identify the class of networks for which market segmentation takes place

in equilibrium. We say that a network is separable if the buyer set can be divided

into two subsets such that every buyer in each subset has at least as many neighbors

in the same subset as in the other subset, and some buyer in each subset has strictly

more neighbors in the same subset than in the other subset. In a separable network,

we show that market segmentation takes place in equilibrium with each seller making

strictly positive profits.

The paper is organized as follows: After discussing the related literature in the

next section, we formulate a model of price competition in Section 3. Section 4 con-

siders the subgame played by the buyers that follows the public observation of prices

posted by both sellers. The critical observations there are that this simultaneous-

move game is one of strategic complementarity, and hence that there exist maximal

and minimal Nash equilibria in each subgame. We present an algorithm to obtain

these extreme equilibria and use them in our construction of a subgame perfect equi-

librium of the entire game. We begin the analysis of a subgame perfect equilibrium

in Section 5 and identify lower bounds on the sellers’ payoff in such equilibrium.

Section 6 examines the validity of marginal cost pricing in equilibrium. With the

definition of approximate linearity, Section 7 discusses equilibrium in a bipartite

network, which corresponds to a model of two-sided markets. Equilibrium market

segmentation in separable networks is discussed in Section 8. We conclude in Sec-

tion 9. All the proofs are collected in the Appendix. The Appendix also contains an

analysis of the game when the buyers coordinate their actions by playing a strong

Nash equilibrium in the stage 2 subgame.

2 Related Literature

Dybvig and Spatt (1983) are the first to theoretically study the provision of goods

with network externalities.2 The problems of a single supplier of a good with network

externalities are subsequently studied by Cabral et al. (1999), Park (2004), Sekiguchi

(2009), Ochs and Park (2010), Aoyagi (2013), among others. These papers focus on

such issues as the construction of efficient or revenue maximizing adoption schemes

under complete and incomplete information, intertemporal patterns of adoption

decisions, as well as the validity of introductory pricing.

Segal (2003), Winter (2004) and Bernstein and Winter (2012) study a closely

2Rohlfs (1974) provides a very early discussion of network externalities.
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related problem of contracting under externalities in which a single principal offers

a contract to the set of agents whose participation decisions create externalities to

other agents. They discuss the so-called divide-and-conquer strategy used by the

principal: According to the strategy, the principal approaches agents one by one

in some order. The contract offered to the first agent induces him to participate

even if all other agents abstain. The contract offered to the second agent induces

him to participate if all but the first agent abstain, and so on. In our analysis

of an equilibrium, we use exactly the same argument: Given some price profile,

we examine if it is profitable for either seller to approach the buyers one by one

in some order with prices that induce them to choose the buyer provided that all

their predecessors do the same. We note that the argument is essentially that of

iterative elimination of strictly dominated strategies, and show that it can be used

very effectively to examine if the given price profile is part of an equilibrium.

Competition between suppliers of goods with network externalities was first for-

mulated by Katz and Shapiro (1985), and subsequently studied by Sundararajan

(2003), Ambrus and Argenziano (2009), Bernaji and Dutta (2009), and Jullien

(2011). These models are often couched in terms of two-sided markets, where the

sellers are providers of platforms who offer a marketplace for agents on two sides

such as sellers and buyers of some good. In such models, the utility of an agent on

one side is an increasing function of the number of participants from the other side.3

Ambrus and Argenziano (2009) analyze Bertrand competition between platforms in

a two-sided market. Jullien (2011) applies the divide-and-conquer argument to his

analysis of multi-sided markets, and derives a bound on the platforms’ payoffs when

they engage in Stackelberg price competition. Both Ambrus and Argenziano (2009)

and Jullien (2011) formulate externalities differently from the present paper, and

impose some non-trivial restrictions on the agents’ strategies. Although these re-

strictions may appear natural under some price profiles, their full implications are

not immediately clear. In contrast, our analysis of a subgame perfect equilibrium

imposes no restriction on the buyers’ strategies.

To the best of our knowledge, Banerji and Dutta (2009) are the only other paper

that introduces graph structure into a model of price competition under network

externalities. They identify conditions under which price competition leads to mo-

nopolization and market segmentation. They assume, however, that each seller sets

the same price for all buyers and also place restrictions on the buyers’ strategies. Be-

3See Armstrong (1998), and Laffont et al. (1998a,b).

4



cause of these differences in assumptions, their conclusions are difficult to compare

with ours.

3 Model

Two sellers A and B compete for the set I = {1, . . . , N} of N ≥ 3 buyers. Con-

sumption of either seller’s good generates externalities to the buyers according to

a buyer network. Formally, a buyer network is represented by a simple undirected

graph G whose nodes correspond to the buyers, and consumption externalities exist

between buyers i and j if they are adjacent in the sense that there is a link between

i and j. When buyer j is adjacent to buyer i, we also say that j is i’s neighbor.

The buyer network G is connected in the sense that for any pair of buyers i and

j, there exists a path from i to j. That is, there exist buyers i1, i2, . . . , im, such

that i1 is adjacent to i, i2 is adjacent to i1, . . . , and im is adjacent to j. For any

buyer i in network G, denote by Ni(G) (or simply Ni) the set of i’s neighbors in G.

The degree di(G) = |Ni(G)| of buyer i in network G is the number of i’s neighbors.

Define also M to be the number of links in G. Since each link counts twice when

aggregating the number of degrees in G, we have M = 1
2

∑
i∈I di.

For r = 2, . . . , N − 1, the network G is r-regular if all buyers have the same

degree r, and regular if it is r-regular for some r. G is cyclic if it is connected and

2-regular, and complete if it is (N − 1)-regular, or equivalently, every pair of buyers

are adjacent to each other. For any non-empty subset J ⊂ I of buyers, denote by

G[J ] the subnetwork induced from G: The set of nodes in G[J ] is J , and G[J ] has

a link between i ∈ J and j ∈ J if and only if i and j are adjacent in the original

network G.

The value of either seller’s good to any buyer i is determined by the number of

neighbors of i who consume the same good. We denote by vn the value of either good

to any consumer when n of his neighbors consume the same good. In particular, v0

denotes the stand-alone value, or the value to any buyer of either good when none of

his neighbors consumes the same good. The value does not depend on the identity

of a buyer or the identity of the seller who supplies the good. The consumption

externalities are non-negative in the sense that 0 ≤ v0 ≤ v1 ≤ · · · ≤ vN−1.

Each seller produces his good at no fixed cost and a constant marginal cost. For

simplicity, assume that the marginal costs also equals zero. Let pi and qi denote

the prices offered to buyer i by seller A and seller B, respectively. The sellers can
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perfectly price discriminate the buyers. They simultaneously quote price vectors

p = (pi)i∈I ∈ RN and q = (qi)i∈I ∈ RN . The buyers publicly observe (p, q), and

then simultaneously decide whether to buy from either seller, or not buy. Buyer i’s

action xi is hence an element of the set {A,B, ∅}, where ∅ represents no purchase.

Each seller’s strategy is hence an element of RN , whereas buyer i’s strategy σi is a

mapping from the set R2N of price vectors (p, q) to the set {A,B, ∅}. Let σ = (σi)i∈I

be the buyers’ strategy profile, and for each choice profile x = (xi)i∈I of buyers, let

IA(x) = {i ∈ I : xi = A}, and IB(x) = {i ∈ I : xi = B}

denote the set of buyers choosing seller A and the set of buyers choosing B, respec-

tively. If we denote by πA(p, q, σ) and πB(p, q, σ) the payoffs of sellers A and B,

respectively, under the strategy profile (p, q, σ), then they are given by

πA(p, q, σ) =
∑

i∈IA(σ(p,q))

pi,

πB(p, q, σ) =
∑

i∈IB(σ(p,q))

qi.

Recall that G[J ] (J ⊂ I) is the subnetwork of G consisting of buyers in J , and that

di(G[J ]) is the degree of buyer i in G[J ]. Given the price profile (p, q), buyer i’s

payoff under the action profile x is given by

ui(x) =


vdi(G[IA(x)]) − pi if xi = A,

vdi(G[IB(x)]) − qi if xi = B,

0 if xi = ∅,

(1)

and buyer i’s payoff under the strategy profile (p, q, σ) is written as:

πi(p, q, σ) = ui(σ(p, q)).

A price vector (p∗, q∗) and a strategy profile σ = (σi)i∈I together constitute a

subgame perfect equilibrium (SPE) if given any price vector (p, q) ∈ R2N , the action

vector (σi(p, q))i∈I is a Nash equilibrium of the subgame following (p, q), and given

σ, each component of the price vector (p∗, q∗) is optimal against the other:

πi (p, q, σ(p, q)) ≥ πi (p, q, xi, σ−i(p, q)) for every xi, i and (p, q),

πA (p∗, q∗, σ(p∗, q∗)) ≥ πA (p, q∗, σ(p, q∗)) for every p,

πB (p∗, q∗, σ(p∗, q∗)) ≥ πB (p∗, q, σ(p∗, q)) for every q.
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4 Nash Equilibrium in the Buyers’ Game

In this section, we fix the price vector (p, q), and consider an equilibrium of the

buyers’ subgame following (p, q). For the payoff function ui defined in (1), the

simultaneous-move game (I, S = {A,B, ∅}I , (ui)i∈I) among the buyers is a super-

modular game when the set of actions of each buyer is endowed with the ordering

A ≻ ∅ ≻ B. It follows that the game has pure Nash equilibria that are maximal

and minimal with respect to the partial ordering on S induced by ≻.4 We refer to

the maximal equilibrium as the A-maximal equilibrium and denote it by xA, and

the minimal equilibrium as the B-maximal equilibrium and denote it by xB. By

definition, for any NE y and buyer i, yi = A implies xAi = A, and yi = B implies

xBi = B.

We introduce some notation below in view of the fact that any NE must survive

the iterative elimination of strictly dominated actions.

Define T0 = ∅ and recursively define the subsets of buyers Yk, Zk, Pk, Qk, Rk,

and Tk as follows. For k = 0, 1, 2, . . ., define Yk+1 ⊂ I \ Tk to be the maximal set

such that

Yk+1 =
{
i ∈ I \ Tk :

ui
(
x∗Tk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)
≥ 0

}
.

(2)

Given the action profile x∗Tk
of buyers in set Tk, those buyers in Yk+1 can collectively

choose A to enjoy non-negative payoffs from it. In other words, if i /∈ Yk+1, then

xi = A is an iteratively dominated action for i. Note that maximality is well-defined

since if Y and Y ′ both satisfy (2), then Y ∪ Y ′ also satisfies (2). If there is no such

set, let Yk+1 = ∅. Likewise, define Zk+1 ⊂ I \ Tk to be the maximal set of buyers

who can collectively choose B to enjoy non-negative payoffs from it:

Zk+1 =
{
i ∈ I \ Tk :

ui
(
x∗Tk

, xZk+1
= (B, . . . , B), x−Tk−Zk+1

= (∅, . . . , ∅)
)
≥ 0

}
.

(3)

If there is no such set, let Zk+1 = ∅. Again, if i /∈ Zk+1, then xi = B is iteratively

strictly dominated for i. Define

Rk+1 = (I \ Tk) \ (Yk+1 ∪ Zk+1)

4See Topkis (1998).
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to be the set of buyers i for whom xi = ∅ is iteratively strictly dominant. Now

define Pk+1 ⊂ I \ Tk by

Pk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xi = B, x−Tk−i = (∅, . . . , ∅)
)

> ui
(
x∗Tk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)}

,
(4)

That is, if i ∈ Pn+1, buyer i is strictly better off choosing xi = B than choosing

xi = A or ∅ even if seller A attracts all those buyers j for whom xj = A is not

iteratively strictly dominated. In other words, if i ∈ Pk+1, then xi = B is an

iteratively strictly dominant action for i. Likewise, define Qk+1 ⊂ I \ Tk to be the

set of buyers i for whom xi = A is iteratively strictly dominant:

Qk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xi = A, x−Tk−i = (∅, . . . , ∅)
)

> ui
(
x∗Tk

, xZk+1
= (B, . . . , B), x−Tk−Zk+1

= (∅, . . . , ∅)
)}

.
(5)

1) If Pk+1 = Qk+1 = Rk+1 = ∅, then set K = k and stop.

2) Otherwise, define

x∗i =


B if i ∈ Pk+1,

A if i ∈ Qk+1,

∅ if i ∈ Rk+1.

and

Tk+1 = Tk ∪ (Pk+1 ∪Qk+1 ∪Rk+1) .

If Tk+1 = I, then set K = k + 1 and stop. Otherwise, increase k by one and

start over.

Since the above process starts over only when at least one buyer has an iteratively

strictly dominant action, the maximal number of rounds K must satisfy K ≤ N .

For any NE x, we must have every buyer in TK choosing his iteratively strictly

dominant action so that

xTK
= x∗TK

.

Therefore the possible difference between any pair of NE arises only for buyers in

I \ TK . The following proposition states that the A-maximal and B-maximal NE

can be constructed by letting the maximal number of buyers choose A or B among

those buyers.
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Proposition 1 Let xA and xB be defined by

xA = (x∗TK
, xYK+1

= (A, . . . , A), x−TK−YK+1
= (∅, . . . , ∅)), and

xB = (x∗TK
, xZK+1

= (B, . . . , B), x−TK−ZK+1
= (∅, . . . , ∅)).

Then xA and xB are the A-maximal and B-maximal NE, respectively.

Of course, when TK = I so that every buyer has a iteratively strictly dominant

action, the NE is unique and given by xA = xB.

5 Subgame Perfect Equilibrium

We now turn to the original two-stage game including the sellers. The proposition

below makes a simple observation that if a price vector (p∗, q∗) is sustained in some

SPE, then it must be sustained in an SPE in which the buyers choose an extreme

response to either seller’s deviation: If seller A deviates from p∗, then all buyers

coordinate on the B-maximal NE that least favors seller A, and vice versa. The

proposition hence presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p∗, q∗) is an SPE price vector if and only if

there exists buyers’ strategy profile σ such that (p∗, q∗, σ) is an SPE and

σ(p, q) =

σB(p, q) if p ̸= p∗ and q = q∗,

σA(p, q) if p = p∗ and q ̸= q∗.

Consider next seller A’s best response p to B’s price q when the buyers play the

B-maximal strategy σB. Since σB(p, q) is a B-maximal NE for any (p, q), seller A

can attract buyer i if and only if xi = A is an iteratively strictly dominant action

for buyer i: i ∈ ∪K
k=1Qk, where Qk is as defined in (5). Hence,

πA(p, q.σ
B) =

K∑
k=1

∑
i∈Qk

pi.

The following lemma shows that if seller A’s price vector p is a best response to

(q, σB), then no two buyers inQk defined under (p, q) are adjacent. In other words, in

order to attract adjacent buyers i and j, seller A should approach them sequentially.

Intuitively, this is because making choice A dominant for both buyers simultaneously
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requires offering lower prices to both of them than making xi = A dominant for buyer

i first, then making xj = A dominant for buyer j next conditional on the knowledge

that i chooses xi = A.

Lemma 3 Let (Qk)k=1,...,K be as defined in (5) under the price vector (p, q). If p

is a best response to (q, σB), then for every k = 1, . . . ,K,

i, j ∈ Qk ⇒ i and j are not adjacent.

We now derive a key result that establishes a lower bound for each seller’s equi-

librium payoff given the price vector of the other seller. As mentioned in the Intro-

duction, the argument is one of divide and conquer, where seller A, say, approaches

each buyer sequentially according to some ordered list, and presents them with a

price which makes the choice A a dominant action given all his predecessors in the

list choose A.

Formally, fix the price q∗ of seller B, and suppose that the buyers choose A

only when it is an iteratively strictly dominated action. Suppose further that seller

A makes an ordered list of all buyers i1, . . . , iN . Seller A first targets buyer i1 by

making it strictly dominant for buyer i1 to choose xi1 = A by offering a sufficiently

low price. In fact, seller A needs to offer pi1 such that

v0 − pi1 > vdi1 − q∗i1 and pi1 < v0,

or equivalently

pi1 < min
{
v0 − vdi1 + q∗i1 , v

0
}

to make xi1 = A strictly dominant. Let H1 = {i1}. Seller A next targets buyer i2

by making i2 strictly dominant. In this case, seller A must offer pi2 such that

pi2 < min
{
vsi2 − vdi2−si2 + q∗i2 , v

si2

}
,

where si2 = 1 if buyer i2 is adjacent to i1, and = 0 otherwise. Let H2 = {i1, i2}.
Proceeding iteratively, we see that against buyer ik, seller A must offer pik such that

pik < min
{
vsik − vdik−sik + q∗ik , v

sik

}
, (6)

where sik is the number of neighbors of ik in the set Hk−1 = {i1, . . . , ik−1}. sik can

be thought of the externalities buyer ik can enjoy by choosing A when those buyers
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in Hk−1 have already chosen A. On the other hand, di − sik is the externalities ik

can enjoy from B when those buyers in I \Hk−1 still choose B. Note that for any

list i1, . . . , iN of buyers,
N∑
k=1

sik = M,

where M is the total number of links in G. Define S by

S =
{
s = (si)i∈I : si1 = 0 and sik = |Nik ∩ {i1, . . . , ik−1}| for k ≥ 2

for some relabeling (i1, . . . , iN ) of buyers
}
.

(7)

Note that if s corresponds to the list i1, . . . , iN , then d−s = (di−si)i∈I corresponds

to the reversed list iN , . . . , i1. Hence, if s ∈ S, then d − s ∈ S as well. We also

observe that

Hk ⊂ ∪k
ℓ=1Qℓ,

where Qk is as defined in (5) and equals the set of buyers i for whom xi = A is

iteratively strictly dominant in round k of the iteration process under the price

profile (p, q∗). Hence, even if the buyers play the B-maximal equilibrium σB that

least favors seller A, A can at least secure the payoff implied by the prices in (6). We

hence have the following lemma that gives a lower bound for each seller’s equilibrium

payoff.

Lemma 4 If (p∗, q∗, σ) is an SPE, then

πA(p
∗, q∗, σ) ≥ max

s∈S

N∑
i=1

min
{
vsi − vdi−si + q∗i , v

si
}
,

πB(p
∗, q∗, σ) ≥ max

s∈S

N∑
i=1

min
{
vsi − vdi−si + p∗i , v

si
}
.

(8)

Figures 1 and 2 illustrate the discussion for the line network of three buyers.

In Figure 1, seller A approaches the buyers in the order (i1, i2, i3) = (1, 3, 2) when

seller B offers q∗ = (q∗1, q
∗
2, q

∗
3): When buyers 1 and 3 switch to A, their valuation of

A’s good is just v0 (stand-alone value) since at that point they don’t know if buyer

2 will switch as well. On the other hand, when buyer 2 switches to A, he knows that

both his neighbors will choose A, and he expects that A’s good is worth v2. Hence,

11



v0 − p1 > max {v1 − q∗1, 0}1

2

3 v0 − p3 > max {v1 − q∗3, 0}

⇔ p1 < min {v0 − v1 + q∗1, v
0}

⇔ p3 < min {v0 − v1 + q∗3, v
0}

v2 − p2 > max {v0 − q∗2, 0}

1

2

3

⇔ p2 < min {v2 − v0 + q∗2, v
2}

⇒

Figure 1: Divide-and-conquer by seller A with (i1, i2, i3) = (1, 3, 2).

v1 − p1 > max {v0 − q∗1, 0}1

2

3 v1 − p3 > max {v0 − q∗3, 0}

⇔ p1 < min {v1 − v0 + q∗1, v
1}

⇔ p3 < min {v1 − v0 + q∗3, v
1}

v0 − p2 > max {v2 − q∗2, 0}

1

2

3

⇔ p2 < min {v0 − v2 + q∗2, v
0}

⇒

Figure 2: Divide-and-conquer by seller A with (i1, i2, i3) = (2, 1, 3).

even if the buyers play the B-maximal equilibrium σB, seller A’s divide-and-conquer

strategy with (i1, i2, i3) = (1, 3, 2) is profitable if

min {v0 − v1 + q∗1, v
0}+min {v0 − v1 + q∗3, v

0}

+min {v2 − v0 + q∗2, v
2} > 0.

(9)

Likewise, his divide-and-conquer strategy with (i1, i2, i3) = (2, 1, 3) illustrated in

Figure 2 is profitable if

min {v0 − v2 + q∗2, v
0}+min {v1 − v0 + q∗1, v

1}

+min {v1 − v0 + q∗3, v
1} > 0,

(10)

and that with (i1, i2, i3) = (1, 2, 3) is profitable if

min {v0 − v1 + q∗1, v
0}+min {v1 − v1 + q∗2, v

1}

+min {v1 − v0 + q∗3, v
1} > 0.

12



6 Marginal Cost Pricing

When there are no consumption externalities 0 < v0 = · · · = vN−1, it is clear that

a subgame perfect equilibrium price (p∗, q∗) is unique and equal to the marginal

cost: (p∗, q∗) = (0, 0). In this section, we will examine if and how this result can be

extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max
i∈I

di(G).

For the network G, hence, the relevant levels of externalities are (v0, . . . , vD). We

say that the externalities (v0, . . . , vD) are linear if there exists h > 0 such that

vk = kh for every k = 0, 1, . . . , D.

Note in particular that the stand-alone value v0 is zero when the externalities are

linear. In this sense, linearity implies pure network externalities and violates the

formulation of weak externalities in Jullien (2011).5

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities

(v0, . . . , vD), (p∗, q∗) = (0, 0) is an SPE price vector.

We next consider some generic property of externalities. As will be seen, whether

or not the marginal cost can be the equilibrium price depends crucially on the

configuration of the buyer network in this case. Specifically, for S defined in (7),

suppose that the externalities (v0, . . . , vD) satisfy the following condition:

s ∈ S and d− s is not a permutation of s ⇒
N∑
i=1

vsi ̸=
N∑
i=1

vdi−si . (11)

(11) implies that the sum of externalities over buyers are different between the two

goods when seller A attracts buyers by offering prices as described in (6). The set

of (v0, . . . , vD) satisfying (11) is generic in the set{
(v0, . . . , vD) : 0 < v0 ≤ · · · ≤ vD

}
of all externalities.

5Assumption 1 of Jullien (2011).
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Lemma 4 implies that a seller’s equilibrium payoff is closely linked to the value

of

max
s∈S

N∑
i=1

(
vsi − vdi−si

)
.

It turns out that whether this quantity is positive or not under (11) depends crucially

on the network configuration as seen in the following lemma.

Lemma 6 Suppose that the externalities v = (v0, . . . , vD) satisfy (11). If the buyer

network G is neither cyclic nor complete, then

max
s∈S

N∑
i=1

(
vsi − vdi−si

)
> 0. (12)

The following lemma, which readily follows from Lemmas 4 and 6, provides some

key observations on equilibrium pricing.

Lemma 7 Suppose that (p∗, q∗, σ) is an SPE for the buyer network G which is

neither complete nor cyclic, and that the externalities v = (v0, . . . , vD) satisfy (11).

Then

1) πA(p
∗, q∗, σ) = 0 ⇒ mini q

∗
i < 0.

2) πA(p
∗, q∗, σ) ≤

∑
i q

∗
i ⇒ maxi q

∗
i > v0.

3) IB(σ(p
∗, q∗)) = I ⇒ maxi q

∗
i > v0, mini (v

di − q∗i ) ≥ v0, and vD > 2v0.

While the first two statements of Lemma 7 are true regardless of whether the

market is monopolized or segmented in equilibrium, the implications of the lemma

are seen most clearly for a monopolization equilibrium. Suppose that G is neither

cyclic nor complete, and that seller B captures the entire market in equilibrium:

IB(σ(p
∗, q∗)) = I. Then seller B must subsidize at least one buyer, and must charge

some buyer strictly above the stand-alone value:

min
i

q∗i < 0 ≤ v0 < max
i

q∗i < vD − v0.

Furthermore, for any such equilibrium to exist, the externalities cannot be too small:

vD > 2v0. This is a non-trivial restriction for networks in which every buyer has a

small degree as in line networks. We summarize this observation as a proposition

below.

14



Proposition 8 Let a buyer network G be given and the externalities v = (v0, . . . , vD)

satisfy (11). Then there exists no SPE in which one of the sellers monopolizes the

market by charging the same price to every buyer.

The impossibility of uniform pricing is counter-intuitive in networks which are

not cyclic or complete, but are symmetric with respect to every buyer. For example,

buyer locations are exactly symmetric in the 4-regular network depicted in Figure

3.

1

2

3

4

5

6

7

8

Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal cost pricing. Suppose

that both sellers offer zero to all the buyers. In this case, both sellers’ payoffs equal

zero regardless of whether or not they capture a positive portion of the market.

Hence, this price profile cannot be an equilibrium by Lemma 7(1) unless the network

is complete or cyclic. The following proposition shows that when the network is

complete or cyclic, there indeed exists an SPE of the type presented in Proposition

2 in which both sellers offer zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v0, . . . , vD)

satisfy (11). (p∗, q∗) = (0, 0) is an SPE price vector if and only if G is either cyclic

or complete.

For illustration of the impossibility of marginal cost pricing, return to the ex-

ample of the three-buyer line network depicted in Figures 1 and 2. Suppose that
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q∗ = 0. In this case, we have

(9) ⇔ 2v1 − v2 − v0 < 0,

(10) ⇔ 2v1 − v2 − v0 > 0.

Hence, if

2v1 ̸= v2 + v0, (13)

seller A can profitably divide and conquer the buyers against q∗ = 0. Note that

(13) corresponds to (12) in Lemma 6: It fails under the linear externalities v0 = 0,

v1 = h and v2 = 2h, but is true under generic specifications of v0, v1 and v2.

7 Monopolization on a Bipartite Network

The result in the preceding section shows that if one of the sellers monopolizes the

market, then he must employ discriminatory pricing. Since it appears difficult to

derive a general conclusion on equilibrium pricing for an arbitrary network, we we

will focus on certain classes of networks in what follows. In this section, we identify

a class of networks in which monopolization takes place in equilibrium through

discriminatory pricing.

Our analysis in the subsequent sections assumes that the externalities are ap-

proximately linear in the following sense: For h > 0, the externalities (v0, . . . , vD)

are ε-close to linear if

|vk − kh| < ε for k = 0, 1, . . . , D.

Since the condition holds for any ε > 0 when the externalities are exactly linear, our

conclusions in what follows hold with no change in models of linear externalities. In

conjunction with Proposition 5, then, this implies the multiplicity of equilibria in

these markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint

subsets I1 and I2 such that every neighbor of i ∈ I1 belongs to I2 and every neighbor

of i ∈ I2 belongs to I1. Line and star networks are simple examples of a bipartite

network. For example, the line network in Figures 1 and 2 is bipartite with the

partition I1 = {1, 3} and I2 = {2}. A cycle network with an even number of buyers

is also bipartite.

Bipartite networks are particularly important in their connection to two-sided

markets. For example, we can think of I1 as the set of sellers and I2 as the set of
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buyers of a certain good. In this case, the sellers A and B are interpreted as the

platforms that offer marketplace to these sellers and buyers, and their prices are

interpreted as participation fees into their platforms. Our conclusion on a bipartite

network hence translates to that on equilibrium determination of participation fees

in a two-sided market where two platforms compete.

Proposition 10 Suppose that the buyer network G is bipartite. For any h > 0,

there exists ε̄ > 0 such that if the externalities are ε-close to h-linear for ε < ε̄, then

there exists an SPE (p∗, q∗, σ) in which one seller captures all the buyers.

The equilibrium constructed in the proof is described as follows: Let I1 and I2 be

the partition of the buyer set, and suppose that seller B captures the market. Seller

B offers qi = vdi − v0 to each buyer i in set I1 and qi = v0 − vdi to each buyer i in

set I2 provided that yields a non-negative payoff.6 In other words, the monopolizing

seller taxes every buyer on one side, and subsidizes every buyer on the other side.

Seller A offers the same price to each buyer as seller B. When either seller deviates,

the buyers play the extreme equilibrium which is least favorable to the deviating

seller as in Proposition 2. It is shown that this price vector leaves no room for

seller A to profitably attract any buyers. Figure 4 illustrates the equilibrium pricing

of Proposition 10 in a star network with five buyers when the externalities satisfy

approximate linearity and

v4 − v0 ≥ 4(v1 − v0). (14)

It can be seen that the hub buyer 1 is charged a positive price whereas all the

peripheral buyers are subsidized. In other words, the subsidies to the peripheral

buyers are a protection against the inducement by the other seller. Since (14) holds

when the externalities are marginally increasing, we can understand this pricing

behavior from the fact that it is relatively more difficult for the other seller to take

away the hub buyer. When the inequality (14) is reversed, then the prices are (−1)

times those listed in Figure 4. In this case of marginally decreasing externalities,

hence, the hub buyer needs to be protected as it is relatively easier for the other

seller to take him away. As seen in this example, which buyer(s) should be protected

with subsidies in a bipartite network depends on the specification of externalities.

6Recall that di denotes the degree of buyer i. If this price profile yields a negative payoff, the

equilibrium prices are simply −qi for each i.
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2

3

4

5
1

p1 = q1 = v4 − v0

p2 = q2 = v0 − v1

p3 = q3 = v0 − v1

p4 = q4 = v0 − v1

p5 = q5 = v0 − v1

Figure 4: Monopolization through discriminatory pricing on a star network when

v4 − v0 ≥ 4(v1 − v0).

8 Segmentation on a Separable Network

Under the same assumption of approximately linear externalities as in the previous

section, we now examine the possibility of an equilibrium in which market segmen-

tation takes place. For this, we consider a class of buyer networks that have roughly

the opposite property as the bipartite networks introduced in the previous section:

In this class of networks, the buyer set is again partitioned into two disjoint subsets,

but each buyer has at least as many neighbors in the same subset than in the other

subset. Formally, the buyer network is separable if there exists a two-way partition

(I1, I2) of the set I of buyers such that for m, n = 1, 2, and m ̸= n,

|Ni ∩ In| ≥ |Ni ∩ Im| for every i ∈ In, and

|Ni ∩ In| > |Ni ∩ Im| for some i ∈ In.

Intuitively, in a separable network with partition (I1, I2), we can classify buyers in

I1 or I2 into core and peripheral buyers: The core buyers are those who have strictly

more neighbors in the same set than in the other set, while the peripheral buyers

have as many neighbors in the same set as in the other set. We can see that any

line network with four or more buyers is separable: For example, a line network of

four or more buyers is separable. The regular network in Figure 3 is also separable

when we take I1 = {1, 2, 3, 4} and I2 = {5, 6, 7, 8}. Buyer 2 and 3 are core buyers

for I1 and buyers 6 and 7 are core buyers for I2.

Proposition 11 Suppose that G is separable. For any h > 0, there exists ε̄ > 0
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2 3 41

(p1, q1) = (δ,−δ) (p4, q4) = (−δ, δ)(p2, q2) = (0, 0) (p3, q3) = (0, 0)

Figure 5: Segmentation on a line network (δ = |v2 + v1 − 2v0| > 0): A captures

{1, 2} and B captures {3, 4}.

such that if the externalities are ε-close to h-linear for ε < ε̄, there exists an SPE

in which buyers in I1 choose seller A and buyers in I2 choose seller B.

The proof of this proposition constructs an equilibrium in which each seller

charges a small but positive price to one of the core buyers in his segment of the

market. Specifically, recalling that s is a sequence of degrees of externalities as

defined in (7), we specify the price to be charged to this core buyer by

δ = max
s∈S

N∑
i=1

(
vsi − vdi−si

)
,

which is strictly positive for generic externalities (Lemma 6), but is small for ap-

proximately linear externalities. Each seller charges zero to all other buyers in their

segment of the market. Figure 5 illustrates the equilibrium for a line network of four

buyers.7 As in Proposition 2, any deviation by either seller results in the extreme

equilibrium that is least favorable to the deviating seller. Each core buyer who is

charged the positive price will not switch to the other seller since he enjoys strictly

higher externalities under the present seller. Furthermore, each seller enjoys strictly

positive profits in equilibrium, and has no incentive to engage in divide-and-conquer

taking advantage of the non-generic externalities as in the case of marginal cost

pricing.

9 Conclusion

In this paper, we formulate a model of price competition between two sellers when

each one of their goods exhibits local network externalities as represented by a graph-

theoretic network of buyers. We show that whether a given price profile is consistent

7As seen in Figure 5, each seller charges −δ to the core buyer in the other segment who is

charged δ by the other seller. This is to make the sum of the prices of each seller equal to zero.
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with a subgame perfect equilibrium of the two-stage game depends crucially on

the exact specifications of network structure and externalities. In the non-generic

case of linear externalities, the marginal cost pricing of both sellers quoting zero to

every buyer is consistent with an SPE for any network. In the generic specification

of externalities, however, it is consistent with an SPE if and only if the network

is either cyclic or complete. That is, in any other networks, some form of price

discrimination is expected even if every buyer has exactly symmetric locations in

those networks. Given these results, we proceed to the identification of an SPE when

the externalities are approximately linear. In a bipartite network which corresponds

to a two-sided market, we show that there exists an SPE in which one of the sellers

monopolizes the market by charging a positive price to every buyer on one side, and

a negative price to every buyer on the other side. The pricing strategy there gives

us a hint as to which buyer needs to be protected from the inducement by the other

seller. In a separable network in which each buyer has more neighbors on his side

than on the other side, on the other hand, we show that there exists an equilibrium

in which the two sellers segment the market.

In the present model, the goods of the two sellers are assumed symmetric and

incompatible with each other. A natural extension would involve introducing asym-

metry or a positive degree of compatibility between them. It would also be in-

teresting to study endogenous determination of compatibility levels by the sellers.

Although some of these issues are investigated in the literature,8 it will be useful to

examine them under the alternative specifications of externalities and equilibrium

as in the present paper.

Appendix I: Proofs

Proof of Proposition 1. We show that xA is an A-maximal NE. The symmetric

argument shows that xB is a B-maximal NE. We begin with the following lemma.

Lemma 12 a) ui(x
A) ≥ 0 for every i.

b) For any n, {i ∈ I \ Tn : xAi = A} ⊂ Yn+1 and {i ∈ I \ Tn : xAi = B} ⊂ Zn+1.

c) For any n, J ⊂ I \ Tn, and yJ such that ui(yJ , x
A
−J) ≥ 0 for every i ∈ J ,

{i ∈ J : yi = A} ⊂ Yn+1 and {i ∈ J : yi = B} ⊂ Zn+1. (15)

8See Jullien (2011).
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Proof of Lemma 12. a) Suppose that i ∈ Pn+1 for some n. Then

ui(x
A) = ui(x

A
Tn
, xi = B, xA−Tn−i)

≥ ui
(
xATn

, xi = B, x−Tn−i = (∅, . . . , ∅)
)

> ui
(
xATn

, xYn+1 = (A, . . . , A), X−Tn−Yn+1 = (∅, . . . , ∅)
)

≥ 0.

The proof is similar if i ∈ Qn+1. If i ∈ Rn+1 or i ∈ I \ Tn for n such that Pn+1 =

Qn+1 = Rn+1 = ∅, then the inequality follows from the definition of xA.

b) Denote K = {i ∈ I \ Tn : xAi = A}. Then for any i ∈ K, we have

ui
(
xATn

, xK∪Yn+1 = (A, . . . , A), x−Tn−K−Yn+1 = (∅, . . . , ∅)
)

≥ ui
(
xATn

, xK = (A, . . . , A), x−Tn−K = (∅, . . . , ∅)
)

= ui(x
A) ≥ 0,

and for any i ∈ Yn+1,

ui
(
xATn

, xK∪Yn+1 = (A, . . . , A), x−Tn−K−Yn+1 = (∅, . . . , ∅)
)

≥ ui
(
xATn

, xYn+1 = (A, . . . , A), x−Tn−Yn+1 = (∅, . . . , ∅)
)

≥ 0.

This contradicts the maximality of Yn+1.

c) Denote K = {i ∈ J : yi = A}. Suppose that K ̸⊂ Yn+1. Then for i ∈ K,

ui
(
xATn

, xK∪Yn+1 = (A, . . . , A), x−Tn−Yn+1−K = (∅, . . . , ∅)
)

≥ ui
(
xATn

, xJ , x
A
−Tn−J

)
= ui(x

A
−J , xJ)

≥ 0,

where the first inequality follows from Lemma 12(b), and for any i ∈ Yn+1,

ui
(
xATn

, xK∪Yn+1 = (A, . . . , A), x−Tn−Yn+1−K = (∅, . . . , ∅)
)

ui
(
xATn

, xYn+1 = (A, . . . , A), x−Tn−Yn+1 = (∅, . . . , ∅)
)

≥ 0.

This again contradicts the maximality of Yn+1. ■
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We now return to the proof of Proposition 1.

1) xA is a NE.

Since ui(x
A) ≥ 0 by Lemma 12(a), x′i = ∅ cannot be a profitable deviation for

any i, and moreover a profitable deviation, if any, must yield a strictly positive

payoff.

Take any i ∈ Pn+1 so that xAi = B, and consider a deviation x′i = A. If

ui(x
′
i, x

A
−i) ≥ 0, then i ∈ Yn+1 by Lemma 12(c) and hence

ui(x
′
i, x

A
−i) ≤ ui

(
xATn

, xYn+1 = (A, . . . , A), x−Yn+1 = (∅, . . . , ∅)
)

< ui
(
xATn

, xAi , x−Tn−i = (∅, . . . , ∅)
)

≤ ui(x
A).

Hence the deviation is not profitable. Likewise, no profitable deviation exists for

i ∈ Qn+1. Suppose next that i ∈ Rn+1 so that xAi = ∅. x′i = A is not profitable

since i ∈ Rn+1 implies that i /∈ Yn+1 and hence ui(x
′
i, x

A
−i) < 0 by Lemma 12(c).

Likewise, the deviation x′i = B is not profitable. Finally, suppose that i ∈ I \ Tn

and that Pn+1 = Qn+1 = Rn+1 = ∅. In this case, xAi = A if i ∈ Yn+1 and xAi = ∅
otherwise. If x′i = B, then

ui(x
′
i, x

A
−i) = ui

(
xATn

, x′i, x
A
−Tn−i

)
= ui

(
xATn

, x′i, x−Tn−i = (∅, . . . , ∅)
)

≤ ui
(
xATn

, xYn+1 = (A, . . . , A), x−Tn−Yn+1 = (∅, . . . , ∅)
)

= ui(x
A),

where the inequality follows since i /∈ Pn+1. Hence, x′i = B is not a profitable

deviation. If i ∈ I \ Tn \ Yn+1 and x′i = A, then ui(x
′
i, x

A
−i) < 0 by Lemma 12(c).

2) xA is A-maximal.

Take any NE y. Clearly, ui(y) ≥ 0 for every i. We first show that yi = xAi if

i ∈ T1. To see that yi = B for any i ∈ P1, suppose yi = A. Then by setting n = 0

and J = I in Lemma 12(c), we see that {i : yi = A} ⊂ Y1 so that

ui(yi, y−i) ≤ ui (xY1 = (A, . . . , A), x−Y1 = (∅, . . . , ∅))

< ui (xi = B, x−i = (∅, . . . , ∅))

≤ ui(xi = B, y−i),

22



where the second inequality follows from the definition of P1. Hence xi = B is a

profitable deviation. Likewise, yi = A holds for any i ∈ Q1. If i ∈ R1, then yi = ∅
must hold since i /∈ Y1 ∪ Z1.

As an induction hypothesis, suppose that yi = xAi if i ∈ Tn. We show that

yi = xAi if i ∈ Tn+1 \ Tn. If i ∈ Pn+1, then yi = B: If yi = A, then {i ∈ I \ Tn : yi =

A} ⊂ Yn+1 by Lemma 12(c) (set J = I \ Tn) so that

ui(yi, y−i) ≤ ui
(
xATn

, xYn+1 = (A, . . . , A), x−Tn−Yn+1 = (∅, . . . , ∅)
)

< ui
(
xATn

, xi = B, x−Tn−i = (∅, . . . , ∅)
)

≤ ui(xi = B, y−i),

where the second inequality follows from the definition of Pn+1. Hence xi = B is a

profitable deviation. Likewise, yi = A for any i ∈ Qn+1. If i ∈ Rn+1, then yi = ∅
must hold since i /∈ Yn+1∪Zn+1. Finally, if i ∈ I \Tn and Pn+1 = Qn+1 = Rn+1 = ∅,
then yi = A implies i ∈ Yn+1 by Lemma 12(c), but xAi = A for any such i by

definition. We can therefore conclude that xA is an A-maximal NE. ■

Proof of Proposition 2. If there exists such a strategy profile σ of buyers, then

(p∗, q∗) is clearly an SPE price vector. Conversely, suppose that (p∗, q∗) is an SPE

price vector. Then there exists σ̂ such that (p∗, q∗, σ̂) is an SPE. Define σ as follows:

σ(p, q) =


σ̂(p, q) if (p, q) = (p∗, q∗), or p ̸= p∗ and q ̸= q∗,

σA(p, q) if p = p∗ and q ̸= q∗,

σB(p, q) if p ̸= p∗ and q = q∗.

Then (p∗, q∗, σ) is an SPE: The definition of σB and the equilibrium property of σ̂

together imply

πA(p, q
∗, σ) ≤ πA(p, q

∗, σ̂) ≤ πA(p
∗, q∗, σ̂) = πA(p

∗, q∗, σ).

Likewise, the definition of σA and the equilibrium property of σ̂ together imply

πB(p
∗, q, σ) ≤ πB(p

∗, q∗, σ). ■

Proof of Lemma 3. For simplicity, let k = K and suppose to the contrary that

1, 2 ∈ QK and 1 and 2 are adjacent. Then it must be the case that

vα
K
1 − p1 > max {vd1−αK

1 − q1, 0} and vα
K
2 − p2 > max {vd2−αK

2 − q2, 0},
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where

αK
1 =

∣∣∣N1 ∩ ∪K−1
ℓ=1 Qℓ

∣∣∣ , and αK
2 =

∣∣∣N2 ∩ ∪K−1
ℓ=1 Qℓ

∣∣∣
are the numbers of neighbors of 1 and 2, respectively, for whom xi is iteratively

strictly dominant in round K − 1 or earlier. Hence,

p1 < vα
K
1 −max {vd1−αK

1 − q1, 0} and p2 < vα
K
2 −max {vd2−αK

2 − q2, 0}.

On the other hand, let p′ be such that p′i = pi for i ̸= 2, and

p2 < p′2 < vα
K
2 +1 −max {vd2−αK

2 −1 − q2, 0}.

Denote by Q′
k the set of buyers for whom x1 = A is an iteratively dominant action in

round k under (p′, q) as defined in (5). We then have Q′
k = Qk for k = 1, . . . ,K − 1

and Q′
K = QK ∪ {1} so that αK

2 + 1 of 2’s neighbors have chosen A in round K or

earlier. Since

vα
K
2 +1 − p′2 > max {vd2−αK

2 −1 − q2, 0},

Q′
K+1 = {2}. Furthermore, since p′2 > p2, πA(p

′, q, σB) > πA(p, q, σB). ■

Proof of Lemma 4. Fix any relabeling of buyers i1, . . . , iN . Let s = (si)i∈I be

defined by

si1 = 0 and sik = |Nik ∩ {i1, . . . , ik−1}| for k = 2, . . . , N .

Let ε > 0 be given, and define the price vector p = (pi)i∈I by

pi = min {vsi − vdi−si + q∗i , v
si} − ε. (16)

As explained in the text, by offering p, seller A makes xi1 = A a strictly dominant

action for buyer i1, and in any subsequent step, xik = A an iteratively strictly

dominant action for buyer ik under (p, q∗). Hence, seller A’s payoff under (p, q∗, σ)

satisfies

πA(p, q
∗, σ) ≥

N∑
i=1

min {vsi − vdi−si + q∗i , v
si} −Nε.

Since ε > 0 and s ∈ S are arbitrary, if (8) does not hold, then we would have a

contradiction

πA(p, q
∗, σ) > πA(p

∗, q∗, σ).

The symmetric argument proves the inequality for seller B’s payoff. ■
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Proof of Proposition 5. We first show that (p∗, q∗) = (0, 0) is an SPE price. Let

σA and σB be the A-maximal and B-maximal equilibria as defined earlier, and let

σ be the buyers’ strategy profile such that

σ(p, q) =


(B, . . . , B) if (p, q) = (0, 0),

σB(p, q) if p ̸= 0 and q = 0,

σA(p, q) if p = 0 and q ̸= 0.

Now consider a deviation from p∗ = 0 to p ̸= 0 by seller A. Let Qk (k = 1, . . . ,K)

be as defined in (5) under (p, q∗). It then follows that

IA(σ
A(p, q∗)) = ∪K

k=1Qk

for some K ≤ N . In other words, any buyer attracted by seller A with p must

choose A as his iteratively strictly dominant action. Hence, seller A’s payoff under

(p, q∗, σ) can be written as:

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Qk

pi. (17)

Now let

αk
i =

∣∣∣Ni ∩ ∪k−1
ℓ=1 Qℓ

∣∣∣
denote the number of neighbors of buyer i who have already chosen seller A in

rounds prior to k. If i ∈ Qk, then xi = A must be a dominant action in round k for

buyer i so that

vα
k
i − pi > vdi−αk

i ⇔ pi < vα
k
i − vdi−αk

i . (18)

Note now that

K∑
k=1

∑
i∈Qk

αk
i

=

K∑
k=1

(
#links between Qk and ∪k−1

ℓ=1 Qℓ

)
≤ #links in the subnetwork G

[
∪K
k=1Qk

]
=

1

2

K∑
k=1

∑
i∈Qk

di
(
G
[
∪K
k=1Qk

])
≤ 1

2

K∑
k=1

∑
i∈Qk

di.

(19)
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Substituting (18), (19) and the linearity of the externalities into (17), we obtain

πA(p, q
∗, σ) <

K∑
k=1

∑
i∈Qk

(
vα

k
i − vdi−αk

i

)

= h

K∑
k=1

∑
i∈Qk

(
2αk

i − di

)
≤ 0.

Therefore, the deviation p is not profitable. By the symmetric argument, no devia-

tion q by seller B is profitable either. ■

Proof of Lemma 6. Note that (12) follows if we show that d − s is not a per-

mutation of s for some s: (11) implies that either
∑N

i=1

(
vsi − vdi−si

)
> 0 or < 0.

If the latter holds, then let i′k = iN−k+1 for k = 1, . . . , N and define t = (ti)i∈I by

setting ti′k equal to the number of neighbors of i′k in {i′1, . . . , i′k−1}:

ti′1 = 0 and ti′k = |Ni′k
∩ {i′1, . . . , i′k−1}| for k = 2, . . . , N . (20)

Then we can verify that

N∑
i=1

(
vti − vdi−ti

)
= −

N∑
i=1

(
vsi − vdi−si

)
> 0.

We will consider the following two cases separately.

1) G is not regular.

Take a pair of buyers i and j such that i is adjacent to j, di = D and dj < D,

where D ≥ 2 is the highest degree in G. Take another buyer k that is adjacent

to i but not to j. To see that there exists such a buyer, suppose to the contrary

that every buyer ̸= j that is adjacent to i is also adjacent to j. Then j has at

least D neighbors, a contradiction. Let i1 = k, i2 = i and i3 = j, and define

i4, . . . , iN /∈ {i, j, k} arbitrarily. Then

(si1 , si2 , si3) = (0, 1, 1) ,

(di1 − si1 , di2 − si2 , di3 − si3) = (dk, D − 1, dj − 1) .

If s is not a permutation of d − s, then we are done. Suppose then that s is a

permutation of d− s, and define i′1 = k, i′2 = j, i′3 = i, and i′ℓ = iℓ for ℓ ≥ 4, and let

t = (ti)i∈I be defined by (20) for these i′1, . . . , i
′
N . Then(

ti′1 , ti′2 , ti′3

)
= (0, 0, 2) ,(

di′1 − ti′1 , di′2 − ti′2 , di′3 − ti′3

)
= (dk, dj , D − 2) .
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Since i′ℓ = iℓ for ℓ ≥ 4, we have∣∣∣{ℓ ≥ 4 : diℓ − siℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≥ 4 : di′ℓ − ti′ℓ = 0

}∣∣∣,∣∣∣{ℓ ≥ 4 : siℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≥ 4 : ti′ℓ = 0

}∣∣∣. (21)

a) dj = 1.

In this case, ∣∣∣{ℓ ≤ 3 : diℓ − siℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≤ 3 : siℓ = 0

}∣∣∣ = 1.

Hence, since d− s is a permutation of s, we must have

|{ℓ ≥ 4 : diℓ − siℓ = 0}| = |{ℓ ≥ 4 : siℓ = 0}| .

It then follows from (21) that∣∣∣{ℓ ≥ 4 : di′ℓ − ti′ℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≥ 4 : ti′ℓ = 0

}∣∣∣ . (22)

However, ∣∣∣{ℓ ≤ 3 : di′ℓ − ti′ℓ = 0
}∣∣∣ ≤ 1 < 2 =

∣∣∣{ℓ ≤ 3 : ti′ℓ = 0
}∣∣∣ . (23)

(22) and (23) together show that d− t cannot be a permutation of t.

b) dj ≥ 2.

In this case, we have D ≥ 3 since D > dj ≥ 2, and also∣∣∣{ℓ ≤ 3 : diℓ − siℓ = 0
}∣∣∣ = 0 < 1 =

∣∣∣{ℓ ≤ 3 : siℓ = 0
}∣∣∣.

Hence, since d− s is a permutation of s,

|{ℓ ≥ 4 : diℓ − siℓ = 0}| = |{ℓ ≥ 4 : siℓ = 0}|+ 1.

It then follows from (21) that∣∣∣{ℓ ≥ 4 : di′ℓ − ti′ℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≥ 4 : ti′ℓ = 0

}∣∣∣+ 1. (24)

However, ∣∣∣{ℓ ≤ 3 : di′ℓ − ti′ℓ = 0
}∣∣∣ = ∣∣∣{ℓ ≤ 3 : ti′ℓ = 0

}∣∣∣− 2 (25)

(24) and (25) together imply that d− t is not a permutation of t.
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2) G is r-regular with 2 < r < N − 1.

Since G is connected and not complete, we can take a pair of buyers i1 and i2

such that i1 and i2 are adjacent, and take another buyer i3 who is adjacent to i2

but not to i1. To see that this is possible, suppose to the contrary that for any

pair of adjacent buyers i and j, any buyer k ̸= i adjacent to j is also adjacent to

i. We then show that G must be complete. Take any pair of buyers i and j. Since

G is connected, there is a path k1 = i → k2 → · · · → km−1 → km = j. Since k2 is

adjacent to i = k1 and k3 is adjacent to k2, k3 is adjacent to i as well by the above.

Now since k4 is adjacent to k3, it is also adjacent to i. Proceeding the same way, we

conclude that j = km is adjacent to i = k1, implying that G is complete.

We now label buyers other than {i1, i2, i3} as i4, . . . , iN in an arbitrary manner.

For our choice of i1, i2 and i3, we have

(si1 , si2 , si3) = (0, 1, 1) ,

(di1 − si1 , di2 − si2 , di3 − si3) = (r, r − 1, r − 1) .

If d − s is a not permutation of s, then we are done. Suppose then that d − s is a

permutation of s. We then must have∣∣∣{ℓ : siℓ = 0}
∣∣∣ = ∣∣∣{ℓ : diℓ − siℓ = 0}

∣∣∣. (26)

Let i′1 = i1, i
′
2 = i3, i

′
3 = i2 and i′ℓ = iℓ for ℓ ≥ 4, and let t = (ti)i∈I be defined by

(20) for these i′1, . . . , i
′
N . Note that(
ti′1 , ti′2 , ti′3

)
= (0, 0, 2) ,(

di′1 − ti′1 , di′2 − ti′2 , di′3 − ti′3

)
= (r, r, r − 2) .

Since r > 2, if (26) holds, then the same argument as in the non-regular case shows

that ∣∣∣{ℓ : ti′ℓ = 0
}∣∣∣ ̸= ∣∣∣{ℓ : di′ℓ − ti′ℓ = 0

}∣∣∣,
implying that d− t is not a permutation of t. ■

Proof of Lemma 7. We first show that if (p∗, q∗, σ) is an SPE, then

πA(p
∗, q∗, σ) >

N∑
i=1

min {q∗i , v0} and πB(p
∗, q∗, σ) >

N∑
i=1

min {p∗i , v0}. (27)
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By Lemma 4, for any s ∈ S, seller A’s payoff under (p∗, q∗) satisfies

πA(p
∗, q∗, σ) ≥

N∑
i=1

min {vsi − vdi−si + q∗i , v
si}.

Rearranging, we get for any s ∈ S,

πA(p
∗, q∗, σ) ≥

N∑
i=1

(
vsi − vdi−si

)
+
∑
i

min {q∗i , vdi−si}

≥
N∑
i=1

(vsi − vdi−si) +

N∑
i=1

min {q∗i , v0}.

When G is neither cyclic or complete, there exists by Lemma 6 an s ∈ S such that

the first term on the right-hand side is > 0. Hence, the first inequality in (27) must

hold. The proof for the second inequality is similar.

a) If mini q
∗
i ≥ 0, then πA(p

∗, q∗, σ) = 0 ≤
∑

i min {q∗i , v0}, contradicting (27).

b) If maxi q
∗
i ≤ v0, then πA(p

∗, q∗, σ) ≤
∑

i q
∗
i =

∑
i min {q∗i , v0}, contradicting

(27).

c) The inequality maxi q
∗
i > v0 follows from (b) above since IB(p

∗, q∗, σ) = I implies

πA(p
∗, q∗, σ) = 0 and 0 ≤ πB(p

∗, q∗, σ) =
∑

i q
∗
i . If vdi − q∗i < v0 for some i,

then any p such that pi = v0 − ε and p−i = 0 for 0 < ε < q∗i − vdi + v0 would

induce buyer i to switch to A and hence is a profitable deviation for seller A.

To see that vD > 2v0, note first that mini (v
di − q∗i ) ≥ v0 in particular implies

that maxi q
∗
i ≤ vD − v0. Hence, if vD ≤ 2v0, we have a contradiction to the first

statement since maxi q
∗
i ≤ vD − v0 ≤ v0. ■

Proof of Proposition 8. Suppose that G is neither cyclic or complete, and sup-

pose that seller B attracts all the buyers in an SPE (p∗, q∗, σ) such that q∗1 = · · · =
q∗N . Then since πA(p

∗, q∗, σ) = 0, Lemma 7(1) implies that q∗1 = · · · = q∗N =

mini q
∗
i < 0. Then, however, πB(p

∗, q∗, σ) < 0, a contradiction. ■

Proof of Proposition 9 It suffices to show that (p∗, q∗) = (0, 0) coupled with

the following strategy profile σ of the buyers is an SPE in each class of networks:

σ(p, q) =


(B, . . . , B) if (p, q) = (p∗, q∗),

σA(p, q) if p = p∗ and q ̸= q∗,

σB(p, q) if p ̸= p∗ and q q∗.
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In other words, all buyers choose B under (p∗, q∗) = (0, 0), and when one of the

firms deviates to a non-zero price vector, the buyers coordinate on the NE which is

least favorable to the deviating seller. In what follows, we show that seller A has no

incentive to deviate. A symmetric argument shows that seller B has no incentive to

deviate.

1) G is a cycle.

Suppose that seller A deviates to p ̸= p∗. Let Qk be as defined in (5) under

(p, q∗). Since

IA(σ(p, q
∗)) = ∪K

k=1Qk

for some K ≤ N , if σi(p, q
∗) = A, then i ∈ Qk for some k ≤ K. Recall that Ni is

the set of neighbors of i in G, and that di = |Ni| = 2 since G is cyclic. Let

αk
i =

∣∣∣Ni ∩ ∪k−1
ℓ=1 Qℓ

∣∣∣ ∈ {0, 1, 2}

denote the number of i’s neighbors who have chosen A in rounds prior to k. If

i ∈ Qk, then xi = A is a dominant action in round k for buyer i so that

vα
k
i − pi > v2−αk

i ⇔ pi < vα
k
i − v2−αk

i . (28)

In particular, buyer i is attracted by seller A in round 1 if pi < v0−v2, and attracted

by A in round k > 1 either if (i) pi < 0 and exactly one of his two neighbors has

already chosen A (αk
i = 1), or (ii) pi < v2 − v0 and both his neighbors have already

chosen A (αk
i = 2). Note also that only in round 1 does any buyer choose A when

neither of his neighbors have already chosen A.

Seller A’s payoff under (p, q∗, σ) hence satisfies

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Qk

pi

< |Q1|(v0 − v2) + (v2 − v0)

K∑
k=2

∣∣∣{i ∈ I \
(
∪k−1
ℓ=1 Qℓ

)
: αk

i = 2}
∣∣∣ .

Since no buyer chooses A in round k ≥ 2 if neither of his neighbors has already

chosen A, the number of components in G[∪k−1
ℓ=1 Qℓ] is less than or equal to that in

G[Q1] for any k. It follows that

K∑
k=2

|{i ∈ I \
(
∪k−1
ℓ=1 Qℓ

)
: αk

i = 2}| ≤ |Q1|.
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We can therefore conclude that πA(p, q
∗, σ) ≤ 0 and hence that p is not a profitably

deviation.

2) G is complete.

Define Qk (k = 1, . . . ,K) as above. Since G is complete, for any buyer i, the

number αk
i of i’s neighbors who have chosen A equals the number αk of buyers who

have chosen A in rounds 1, . . . , k − 1:

αk
i =

∣∣∣Ni ∩ ∪k−1
ℓ=1 Qℓ

∣∣∣ = k−1∑
ℓ=1

|Qℓ| ≡ αk.

Furthermore, by Proposition 3, we only need consider p such that each Qk contains

a single buyer. (If Qk contains two or more buyers, then since G is complete,

those buyers are adjacent.) Hence, without loss of generality, Qk = {k} for each

k = 1, . . . , N . For k = 1, . . . ,K, we also have

pk < vαk − vN−1−αk .

Seller A’s payoff under (p, q∗, σ) hence satisfies

πA(p, q
∗, σ) =

N∑
k=1

N∑
k=1

pk <

K∑
k=1

(
vαk − vN−1−αk

)
. (29)

It is then straightforward to verify that the right-hand side equals zero. Hence,

seller A has no profitable deviation.

■

Proof of Proposition 10. We will construct an SPE (p∗, q∗, σ) in which seller B

captures all the buyers: IB(σ(p
∗, q∗)) = I. Let the buyer set be partitioned into I1

and I2 so that links exist only between I1 and I2. Suppose without loss of generality

that ∑
i∈I1

(vdi − v0)−
∑
i∈I2

(vdi − v0) ≥ 0. (30)

Let

p∗i = q∗i =

vdi − v0 if i ∈ I1,

v0 − vdi if i ∈ I2,

and

σ(p, q) =

σB(p, q) if q = q∗,

σA(p, q) otherwise.
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By (30), seller B’s payoff under (p∗, q∗, σ) is non-negative:

πB(p
∗, q∗, σ) =

∑
i∈I

q∗i ≥ 0.

By the definition of the B-maximal NE, if seller A deviates to p, then the set of

buyers he captures equals IA(σ(p, q
∗)) = ∪K

k=1Qk, where Qk is the set of buyers i

for whom xi = A is a strictly dominant strategy in round k under (p, q∗) as defined

in (5).

Suppose first that Q1 ⊂ I1. we then have∑
i∈Q1

pi <
∑
i∈Q1

min {v0 − vdi + q∗i , v
0} = 0.

Therefore, no p such that K = 1 and Q1 ⊂ I1 under (p, q∗) is profitable. Since

q∗i < 0 for i ∈ I2, it is clear that no p such that K = 1 under (p, q∗) is profitable

either.

Suppose next that K = 2 and that Q1 ⊂ I1. Then Q2 ∩ I1 = ∅ since in round

2, every buyer i ∈ Q1 must be adjacent to some buyer in Q1 ⊂ I1. (Otherwise, i

would have been in Q1.) It follows that q∗i < 0 for each i ∈ Q2, and hence that∑
i∈Q2

pi <
∑
i∈Q2

min {vα2
i − vdi−α2

i + q∗i , v
α2
i }

=
∑
i∈Q2

(
vα

2
i − vdi−α2

i − vdi + v0
)
≤ 0,

where α2
i = |Ni ∩Q1| is the number of i’s neighbors in Q1. Therefore, no deviation

p is profitable if K = 2, Q1 ⊂ I1 and Q2 ⊂ I2 under (p, q∗). It is then also clear that

no deviation p is profitable if K = 2 and Q2 ⊂ I2.

We next show that no deviation p is profitable if K ≥ 2 and Qk∩I1 ̸= ∅ for some

k ≥ 2. Together with the above observations, this would imply that no deviation p

is profitable if K = 2. Furthermore, if K ≥ 3, then it must be the case that either

Q2 ∩ I1 ̸= ∅ or Q3 ∩ I1 ̸= ∅ since G is bipartite, and since every i ∈ Q3 is adjacent

to some buyer in Q2. It would hence follow that no deviation p is profitable.
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Let j ∈ Qk ∩ I1 for some k ≥ 2. Then

πA(p, q
∗, σ) =

K∑
ℓ=1

∑
i∈Qℓ

pi

<

K∑
ℓ=1

∑
i∈Qℓ

min
{
vα

ℓ
i − vdi−αℓ

i + q∗i , v
αℓ
i

}

≤
K∑
ℓ=1

∑
i∈Qℓ

(
vα

ℓ
i − vdi−αℓ

i + q∗i

)
+ vα

k
j −

(
vdj − v0 + qj

)
,

(31)

where

αℓ
i =

∣∣∣Ni ∩
(
∪ℓ−1
κ=1Qκ

)∣∣∣
is the number of i’s neighbors who have chosen A prior to round ℓ. We now use

approximate linearity to evaluate the right-hand side of (31) term by term. First,

since q∗j = vdj − v0,

vα
k
j −

(
vdj − v0 + q∗j

)
≤ −vdj + 2v0 < −hdj + 3ε. (32)

Observe next that

K∑
ℓ=1

∑
i∈Qℓ

{
vα

ℓ
i − vdi−αℓ

i

}

=

K∑
ℓ=1

∑
i∈Qℓ

[{
vα

ℓ
i − αℓ

ih
}
−

{
vdi−αℓ

i − (di − αℓ
i)h

}]

−
K∑
ℓ=1

∑
i∈Qℓ

(
(di − αℓ

i)− αℓ
i

)
h

≤ 2ε
∣∣∪K

ℓ=1Qℓ

∣∣− hm,

(33)

where

m = #links between ∪K
ℓ=1Qℓ and I \

(
∪K
ℓ=1Qℓ

)
.
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Observe finally that

K∑
ℓ=1

∑
i∈Qℓ

q∗i

=

K∑
ℓ=1

∑
i∈Qℓ∩I1

(vdi − v0)−
K∑
ℓ=1

∑
i∈Qℓ∩I2

(vdi − v0)

=
K∑
ℓ=1

∑
i∈Qℓ∩I1

(vdi − v0 − dih)−
K∑
ℓ=1

∑
i∈Qℓ∩I2

(vdi − v0 − dih)

+ h

K∑
ℓ=1

∑
i∈Qℓ∩I1

di − h

K∑
ℓ=1

∑
i∈Qℓ∩I2

di.

(34)

Since the externalities are ε-close to linear,

K∑
ℓ=1

∑
i∈Qℓ∩I1

(vdi − v0 − dih)−
K∑
ℓ=1

∑
i∈Qℓ∩I2

(vdi − v0 − dih) ≤ 2ε
∣∣∪K

ℓ=1Qℓ

∣∣ . (35)

We also have

K∑
ℓ=1

∑
i∈Qℓ∩I1

di = #links between ∪K
ℓ=1Qℓ ∩ I1 and I2

K∑
ℓ=1

∑
i∈Qℓ∩I2

di = #links between ∪K
ℓ=1Qℓ ∩ I2 and I1

≥ #links between ∪K
ℓ=1Qℓ ∩ I2 and ∪K

ℓ=1Qℓ ∩ I1

so that

K∑
ℓ=1

∑
i∈Qℓ∩I1

di −
K∑
ℓ=1

∑
i∈Qℓ∩I2

di

≤ #links between ∪K
ℓ=1Qℓ and I2 \

(
∪K
ℓ=1Qℓ

)
≤ #links between ∪K

ℓ=1Qℓ and I \
(
∪K
ℓ=1Qℓ

)
= m.

(36)

Substituting (35) and (36) into (34), we obtain

K∑
ℓ=1

∑
i∈Qℓ

q∗i ≤ 2ε
∣∣∪K

ℓ=1Qℓ

∣∣+ hm. (37)
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Substituting (32), (33) and (37) into (31), we see that

πA(p, q
∗, σ) < 2ε

∣∣∪K
ℓ=1Qℓ

∣∣− hm+ 2ε
∣∣∪K

ℓ=1Qℓ

∣∣+ hm− hdj + 3ε

= ε
(
4
∣∣∪K

ℓ=1Qℓ

∣∣+ 3
)
− hdj

≤ ε (4N + 3)− hdj .

Hence, if we set ε̄ = h/ (4N + 3), then πA(p, q
∗, σ) < 0 when ε < ε̄. ■

Proof of Proposition 11. Let

δ = max
s∈S

N∑
i=1

(
vsi − vdi−si

)
.

When the externalities are ε-close to h-linear,

N∑
i=1

(
vsi − vdi−si

)
=

N∑
i=1

{
(vsi − sih)−

(
vdi−si − (di − si)h

)
− h ((di − si)− si)

}
< 2Nε,

and hence

δ < 2Nε. (38)

Since G is separable, let (I1, I2) be the partition of the buyer set I, and let iA ∈ I1

and iB ∈ I2 be such that

|NiA ∩ I1| > |NiA ∩ I2| and |NiB ∩ I2| > |NiB ∩ I1|.

We specify (p∗, q∗, σ) as follows:

(p∗i , q
∗
i ) =


(δ,−δ) if i = iA,

(−δ, δ) if i = iB,

(0, 0) otherwise,

and

σ(p, q) =


(A, . . . , A︸ ︷︷ ︸

I1

, B, . . . , B︸ ︷︷ ︸
I2

) if (p, q) = (p∗, q∗),

σB(p, q) if p ̸= p∗,

σA(p, q) if p = p∗ and q ̸= q∗.

Note that πA(p
∗, q∗, σ) = πB(p

∗, q∗, σ) = δ.
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We first show that the buyers’ action profile following (p∗, q∗) is a NE. If i ∈
I1 \ {iA}, then xi = A is a best response since

v|Ni∩I1| − pi = v|Ni∩I1| ≥ v|Ni∩I2| = v|Ni∩I2| − qi.

If i = iA, then |Ni ∩ I1| > |Ni ∩ I2| so that

v|Ni∩I1| − v|Ni∩I2|

=
(
v|Ni∩I1| − h|Ni ∩ I1|

)
−

(
v|Ni∩I2| − h|Ni ∩ I2|

)
+ h {|Ni ∩ I1| − |Ni ∩ I2|}

≥ h− 2ε.

Hence, if we take

ε̄ =
h

2(2N + 1)
, (39)

then for any ε < ε̄, (38) implies that

v|Ni∩I1| − pi = v|Ni∩I1| − δ > v|Ni∩I2| + δ = v|Ni∩I2| − qi.

The symmetric argument shows that xi = B is a best response for each i ∈ I2

following (p∗, q∗).

We will next show that seller A has no profitable deviation. Let p be any

deviation by seller A, and denote by Qk the set of buyers who will choose A as an

iteratively dominant action in round k under (p, q∗) as defined in (5). Since the

buyers play σB following (p, q∗), buyer i will choose A only if xi = A is iteratively

dominant: i ∈ ∪K
k=1Qk. By Proposition 3, we may assume that no buyers in Qk are

adjacent.

If i ∈ Qk, then

pi < min {vαk
i − vdi−αk

i + q∗i , v
αk
i } ≤ vα

k
i − vdi−αk

i + q∗i ,

where

αk
i =

∣∣∣Ni ∩
(
∪k−1
κ=1Qκ

)∣∣∣
is the number of i’s neighbors who have chosen A prior to round k. Suppose first

that ∪K
k=1Qk ⊊ I. Since the externalities are ε-close to h-linear, we have

vα
k
i − vdi−αk

i

=
(
vα

k
i − αk

i h
)
−

(
vdi−αk

i − (di − αk
i )h

)
−

(
(di − αk

i )− αk
i

)
h

< 2ε−
(
(di − αk

i )− αk
i

)
h.
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Hence,

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Qk

pi

≤
K∑
k=1

∑
i∈Qk

(
vα

k
i − vdi−αk

i + q∗i

)

<

K∑
k=1

∑
i∈Qk

{
2ε−

(
(di − αk

i )− αk
i

)
h
}
+

K∑
k=1

∑
i∈Qk

q∗i

= 2ε
∣∣∪K

k=1Qk

∣∣− h

K∑
k=1

∑
i∈Qk

(
(di − αk

i )− αk
i

)
+

K∑
k=1

∑
i∈Qk

q∗i .

Since ∪K
k=1Qk ⊊ I by assumption and since G is connected,

K∑
k=1

∑
i∈Qk

(
(di − αk

i )− αk
i

)
= #links between ∪K

k=1Qk and I \ ∪K
k=1Qk ≥ 1.

It hence follows from (38) that

πA(p, q
∗, σ) < 2ε

∣∣∪K
k=1Qk

∣∣− h+ 2Nε < 4Nε− h,

which is < 0 for ε < ε̄ when ε̄ is given in (39).

Suppose next that ∪K
k=1Qk = I. In this case,

∑K
k=1

∑
i∈Qk

q∗i = 0. Hence the

definition of δ implies that

πA(p, q
∗, σ) =

K∑
k=1

∑
i∈Qk

pi ≤
K∑
k=1

∑
i∈Qk

(
vα

k
i − vdi−αk

i + q∗i

)
≤ δ = πA(p

∗, q∗, σ).

In either case, hence, the deviation p is not profitable. ■

Appendix II: Strong Equilibrium in the Buyers’ Game

Our discussion in the text has placed no restriction on the buyers’ strategies other

than that implied by a Nash equilibrium. In this Appendix, we ask what happens

when the buyers actively coordinate their actions. While there can be many different

formulations of action coordination, one simple and extreme way is to suppose that

any subset of the buyers may choose a joint deviation whenever that yields each

one of them a strictly higher payoff than adhering to the proposed action profile.
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In other words, we will require that in each subgame, the buyers’ action profile

constitutes a strong Nash equilibrium.9 We find that the marginal cost pricing is

not consistent with a strong Nash equilibrium even if the network is complete or

cyclic.

Formally, the buyers action profile x∗ is a strong Nash equilibrium (strong NE)

if for any nonempty subset J ⊂ I of buyers, and for any xJ ,

ui(x
∗) ≥ ui(xJ , x

∗
−J) for some i ∈ J . (40)

In other words, an action profile is a strong NE if, whenever a coalition of buyers

contemplate a joint deviation, there is a member in the coalition who cannot strictly

benefit from the deviation. If x∗ is a strong NE, then it is clearly a NE. Note also

that x∗ is a strong NE if and only if (40) holds for any non-empty J ⊂ I and any

xJ such that xj ̸= x∗j for every j ∈ J .10

A strong NE x of the buyers’ subgame is A-maximal if for any strong NE y,

yi = A implies xi = A, and B-maximal if yi = B implies xi = B. We can find these

maximal strong NE using the iteration procedure similar to that used to find the

A-maximal and B-maximal NE.

For any action profiles x and y, identify ui(x∅, y) with ui(y). Let T0 = ∅, and
define the subsets of buyers Tk, Pk, Qk, Rk, Yk and Zk (n = 1, 2, . . .) recursively as

follows.

For k = 0, 1, 2, . . ., define Yk+1 ⊂ I \ Tk to be the maximal set such that

Yk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)
≥ 0

}
.

Yk+1 is the set of buyers not in Tk who, given x∗Tk
, can collectively choose A and

enjoy non-negative payoffs from it.11 If there is no such set, let Yk+1 = ∅. Likewise,
define Zk+1 ⊂ I \ Tk to be the maximal set such that

Zk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xZk+1
= (B, . . . , B), x−Tk−Zk+1

= (∅, . . . , ∅)
)
≥ 0

}
.

9By the property of the payoff functions of the buyers’ game, we can verify that any strong Nash

equilibrium is a coalition-proof Nash equilibrium in the sense of Bernheim et al. (1987).
10To see this, suppose that x∗ is not a strong NE. Then there exist J ̸= ∅ and xJ such that

uj(x
∗) < uj(xJ , x

∗
−J) for every j ∈ J . Then J ′ ≡ {j ∈ J : xj ̸= x∗

j} ̸= ∅. Moreover,

uj(xJ′ , x∗
−J′) = uj(xJ′ , xJ\J′ , x−J) = uj(xJ , x

∗
−J) > uj(x

∗)

for every j ∈ J ′ since j ∈ J \ J ′ implies xj = x∗
j . Hence, the coalition J ′ also has a profitable joint

deviation such that xj ̸= x∗
j for every j ∈ J ′.

11With the possible difference in Tk and xTk , hence, the definition of Yk+1 is the same as in (2).
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If there is no such set, then let Zk+1 = ∅. Let also Rk+1 be defined by

Rk+1 = (I \ Tk) \ (Yk+1 ∪ Zk+1) .

As before, Rk+1 is the set of buyers i for whom xi = ∅ is iteratively strictly dominant

given x∗Tk
. Now define Pk+1 ⊂ I \ Tk to be the maximal set such that

Pk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xPk+1
= (B, . . . , B), x−Tk−Pk+1

= (∅, . . . , ∅)
)

> ui
(
x∗Tk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)}

.

If there exists no such set, then let Pk+1 = ∅. Pk+1 is the set of buyers whose payoffs

from collectively choosing xi = B are strictly higher than those from the maximal

coordination on A or from ∅. Likewise, define Qk+1 ⊂ I \ Tk to be the maximal set

of buyers whose payoffs from collectively choosing xi = A are strictly higher than

those from the maximal coordination on B or from ∅:

Qk+1 =
{
i ∈ I \ Tk :ui

(
x∗Tk

, xQk+1
= (A, . . . , A), x−Tk−Qk+1

= (∅, . . . , ∅)
)

> ui
(
x∗Tk

, xZk+1
= (B, . . . , B), x−Tk−Zk+1

= (∅, . . . , ∅)
)}

.

Again, if there exists no such set, then let Qk+1 = ∅.

1) If Pk+1 = Qk+1 = Rk+1 = ∅, then let k = K and stop.

2) Otherwise, let

Tk+1 = Tk ∪ (Pk+1 ∪Qk+1 ∪Rk+1) ,

and

x∗i =


B if i ∈ Pk+1,

A if i ∈ Qk+1,

∅ if i ∈ Rk+1.

If Tk+1 = I, then set K = k + 1 and stop. Otherwise, increase k by one and start

over.

Given that the above process starts over only when there is a buyer who has a

joint dominant action, the maximal number of iteration K ≤ N .

Proposition 13 Let xA and xB be defined by

xA = (x∗TK
, xYK+1

= (A, . . . , A), x−TK−YK+1
= (∅, . . . , ∅)), and

xB = (x∗TK
, xZK+1

= (B, . . . , B), x−TK−ZK+1
= (∅, . . . , ∅)).

Then xA and xB are the A-maximal and B-maximal strong NE, respectively.
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(p∗, q∗, σ) is a strong SPE if for every (p, q), σ(p, q) is a strong NE of the buyers’

subgame, and πA(p
∗, q∗, σ) ≥ πA(p, q

∗, σ) and πB(p
∗, q∗, σ) ≥ πB(p

∗, q, σ) for every

p and q.

Proposition 14 Let a buyer network G be given and the externalities v = (v0, . . . , vD)

satisfy (11). There exists no buyers’ strategy profile σ such that for p∗ = q∗ = 0

(p∗, q∗, σ) is a strong SPE.

Proof of Proposition 13. We show that xA is an A-maximal strong NE. The

symmetric argument shows that xB is a B-maximal strong NE. We begin by making

some preliminary observations as follows:

Lemma 15 a) ui(x
A) ≥ 0 for every i.

b) For any k = 1, . . . ,K,

{i ∈ I \ Tk : xAi = A} ⊂ Yk+1, and {i ∈ I \ Tk : xAi = B} ⊂ Zk+1. (41)

c) For any k, J ⊂ I \ Tk and xJ , if ui(xJ , x
A
−J) ≥ 0 for every i ∈ J , then

{i ∈ J : xi = A} ⊂ Yk+1 and {i ∈ J : xi = B} ⊂ Zk+1. (42)

In particular, for any y−Tk
such that ui(y−Tk

, xATk
) ≥ 0 for every i ∈ I \ Tk,

{i ∈ I \ Tk : yi = A} ⊂ Yk+1 and {i ∈ I \ Tk : yi = B} ⊂ Zk+1. (43)

Proof of Lemma 15. a) Suppose i ∈ Pk+1. Then

ui(x
A) = ui

(
xATk

, xPk+1
= (B, . . . , B), xA−Tk−Pk+1

)
≥ ui

(
xATk

, xPk+1
= (B, . . . , B), x−Tk−Pk+1

= (∅, . . . , ∅)
)

> ui
(
xATk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)

≥ 0,

where the last inequality holds trivially if i ∈ (I \ Tk) \ Yk+1 and by the definition

of Yk+1 if i ∈ Yk+1. ui(x
A) ≥ 0 holds also when i ∈ Qk+1, Rk+1 or I \ TK .

b) Let Y = {i ∈ I \ Tk : xAi = A}. If Y ̸⊂ Yk+1, then

ui
(
xATk

, xY ∪Yk+1
= (A, . . . , A), x−Tk−Y−Yk+1

= (∅, . . . , ∅)
)

≥ ui
(
xATk

, xY = (A, . . . , A), x−Tk−Y = (∅, . . . , ∅)
)
= ui(x

A) ≥ 0
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for i ∈ Y , and

ui
(
xATk

, xK∪Yk+1
= (A, . . . , A), x−Tk−K−Yk+1

= (∅, . . . , ∅)
)

≥ ui
(
xATk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)
≥ 0

for i ∈ Yk+1. This contradicts the maximality of Yk+1.

c) Let Y = {i ∈ J : xi = A}. If Y ̸⊂ Yk+1, then

ui
(
xATk

, xY ∪Yk+1
= (A, . . . , A), x−Y−Yk+1

= (∅, . . . , ∅)
)
≥ ui

(
xJ , x

A
−J

)
≥ 0

for every i ∈ Y because of (41), and

ui
(
xATk

, xY ∪Yk+1
= (A, . . . , A), x−Y−Yk+1

= (∅, . . . , ∅)
)

≥ ui
(
xATk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)

≥ 0

for every i ∈ Yk+1. This contradicts the maximality of Yk+1. Hence (42) holds. (42)

implies (43) if we set J = I \ Tk. ■

We now return to the proof of Proposition 13.

In what follows, denote by J the deviating coalition of buyers. We first show

that xA is a strong NE by verifying (40) for each choice of J specified below.

1) First take J such that J ∩ T1 ̸= ∅.

If J ∩ P1 ̸= ∅, take i ∈ J ∩ P1. Then xAi = B by the definition of xA. If xJ is

such that xi = A and uj(xJ , x
A
−J) ≥ 0 for every j ∈ J , then

ui(xJ , x
A
−J) ≤ ui (xY1 = (A, . . . , A), x−Y1 = (∅, . . . , ∅))

< ui (xP1 = (B, . . . , B), x−P1 = (∅, . . . , ∅))

≤ ui(x
A),

where the first inequality follows from (41) and (42). Likewise, (40) holds

for any J such that J ∩ Q1 ̸= ∅. If J is such that J ∩ R1 ̸= ∅, then take

i ∈ J ∩ R1. By definition, xAi = ∅. If xAi = A, then since i /∈ Y1, we have

ui(xJ , x
A
−J) < 0 = ui(x

A). We also have ui(xJ , x
A
−J) < 0 = ui(x

A) if xi = B

since i /∈ Z1.
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2) As an induction hypothesis, suppose that (40) holds for any J such that J ∩
Tk ̸= ∅.

Suppose that we take J such that J ∩ Tk = ∅ but J ∩ Tk+1 ̸= ∅.

If J ∩ Pk+1 ̸= ∅, take i ∈ J ∩ Pk+1. Then xAi = B by the definition of xA. If

xJ is such that xi = A and uj(xJ , x
A
−J) ≥ 0 for every j ∈ J , then

ui(xJ , x
A
−J) = ui

(
xATk

, xJ , x
A
−J−Tk

)
≤ ui

(
xATk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)

< ui(x
A
Tk
, xPk+1

= (B, . . . , B), x−Tk−Pk+1
= (∅, . . . , ∅))

≤ ui(x
A),

where the second line follows from (41) and (42). By the similar argument, (40)

holds for any J such that J∩Qk+1 ̸= ∅. If J∩Rk+1 ̸= ∅, take i ∈ J∩Rk+1. Then

xAi = ∅ by definition. If xi = A, then since i /∈ Yk+1, ui(xJ , x
A
−J) < 0 = ui(x

A).

We also have ui(xJ , x
A
−J) < ui(x

A) if xi = B since i /∈ Zk+1.

3) Finally, suppose that J ⊂ I \ TK . Since PK+1 = ∅, if xJ = (B, . . . , B), there

exists i ∈ J such that

ui(x
A) = ui

(
xATK

, xYK+1
= (A, . . . , A), x−TK−YK+1

= (∅, . . . , ∅)
)

≥ ui
(
xATK

, xJ = (B, . . . , B), x−TK−J = (∅, . . . , ∅)
)

= ui(xJ = (B, . . . , B), xA−J),

where the last equality holds because xAi ̸= B for any i ∈ I \TK by definition.

Clearly, no other joint deviation xJ by J yields a higher payoff for i than

ui(xJ = (B, . . . , B), xA−J). Hence, (40) holds for any J such that J ⊂ I \ TK .

We next show that the strong NE xA is A-maximal. Take any strong NE y.

Clearly, ui(y) ≥ 0 for every i ∈ I. If i ∈ P1, then yi = B: If yi ̸= B, then

ui (xP1 = (B, . . . , B), y−P1) > ui (xY1 = (A, . . . , A), x−Y1 = (∅, . . . , ∅))

≥ ui(y),

where the last inequality from (43) for k = 0. Hence, y violates (40). Likewise, we

can conclude that

yi =

A if i ∈ Q1,

∅ if i ∈ R1.
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Hence, yT1 = xAT1
. As an induction hypothesis, suppose that yTk

= xATk
. If i ∈ Pk+1

then yi = B: If yi ̸= B, then

ui
(
yTk

, xPk+1
= (B, . . . , B), y−Tk−Pk+1

)
> ui

(
yTk

, xYk+1
= (A, . . . , A), x−Tk−Yk+1

= (∅, . . . , ∅)
)

≥ ui(yTk
, y−Tk

),

where the last inequality follows from (43) since yTk
= xATk

by the induction hypoth-

esis. Hence, y violates (40). We also have

yi =

A if i ∈ Qk+1,

∅ if i ∈ Rk+1.

Hence, yTk+1
= xATk+1

. Suppose finally that i ∈ I \ TK . Since {i ∈ I \ TK :, yi =

A} ⊂ YK+1 by (??), yi = A implies xAi = A, showing that xA is A-maximal. ■

Proof of Proposition 14. In view of Proposition 9, it suffices to check the exis-

tence of a strong NE when G is either cyclic or complete.

1) G is a cycle.

Suppose that for ε > 0 small, p is given by

pi =


v1 − v2 − ε if i = 1, N − 1,

−ε if i = 2, . . . , N − 2,

v2 − v0 − ε if i = N .

We can then verify that under (p, q∗), Q1 = {1, . . . , N − 1}: For i = 1 and N − 1,

ui (xQ1 = (A, . . . , A), xN = ∅) = v1 − pi

= v2 + ε

> ui (x = (B, . . . , B)) ,

and for i = 2, . . . , N − 2,

ui (xQ1 = (A, . . . , A), xN = ∅) = v2 − pi

= v2 + ε

> ui (x = (B, . . . , B)) ,
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but for i = N ,

uN (x = (A, . . . , A)) = v2 − pN

= v0 + ε

< uN (x = (B, . . . , B)) .

We can also verify that P1 = R1 = ∅. Given T1 = I \ {N}, Q2 = {N}:

uN (xT1 , xN = A) = v2 − pN = v0 + ε > uN (xT1 , xN = B).

Therefore, Q1 ∪Q2 = I and seller A’s payoff under (p, q∗) equals

πA(p, q
∗, σ) = 2(v1 − v2 − ε) + v2 − v0 − ε = 2v1 − v0 − v2 − 3ε,

which is strictly positive if 2v1−v0−v2 > 0 and ε is sufficiently small. If 2v1−v0−
v2 < 0, then we can verify that πA(p, q

∗, σ) > 0 if we take ε > 0 small and p such

that

pi =


v2 − v1 − ε if i = 1, N − 1,

−ε if i = 2, . . . , N − 2,

v0 − v2 − ε if i = N .

2) Suppose next that G is complete.

Consider p such that

pi =

vN−2 − vN−1 − ε if i = 1, . . . , N − 1,

vN−1 − v0 − ε if i = N .

Then Q1 = {1, . . . , N − 1} and Q2 = {N}, and

πA(p, q
∗, σ) = (N − 1)(vN−2 − vN−1 − ε) + vN−1 − v0 − ε

= (N − 1)vN−2 − (N − 2)vN−1 − v0 −Nε,

which is strictly positive if (N −1)vN−2− (N −2)vN−1− v0 > 0 and ε is sufficiently

small. If (N − 1)vN−2 − (N − 2)vN−1 − v0 < 0, then πA(p, q
∗, σ) > 0 if ε > 0 is

small and p is given by

pi =

vN−1 − vN−2 − ε if i = 1, . . . , N − 1,

v0 − vN−1 − ε if i = N .

In either case, hence, seller A can profitably deviate from p∗ = 0 against q∗ = 0. ■
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